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Introduction: Many studies on the impact of type 2 diabetes mellitus (T2DM) on

sleep breathing have shown a higher prevalence and severity of sleep apnea-hypopnea

syndrome (SAHS) in those with T2DM. Moreover, an increased activity of the sympathetic

nervous system has been described in both pathologies. This cross-sectional study

aimed to assess sympathetic activity in patients with T2DM, and to investigate the

relationship between sympathetic activity and polysomnographic parameters.

Materials and Methods: Thirty-six patients with T2DM without known clinical

macrovascular nor pulmonary disease and 11 controls underwent respiratory polygraphy,

and their cardiac variability and 24-h urine total metanephrines were measured.

Results: SAHS was highly prevalent with a mean apnea-hypopnea index (AHI) in

the range of moderate SAHS. In patients with T2DM, the nocturnal concentration of

total metanephrines in urine were higher than diurnal levels [247.0 (120.0–1375.0) vs.

210.0 (92.0–670.0), p = 0.039]. The nocturnal total metanephrine concentration was

positively and significantly associatedwith the percentage of sleeping time spent with

oxygen saturation <90%(CT90). In the entire population and in subjects with T2DM,

the multivariate regression analysis showed a direct interaction between the nocturnal

concentration of urine metanephrines and the CT90.

Conclusion: These findings suggest that the increase in sympathetic activity previously

described in patients with T2DM could be mediated through nocturnal breathing

disturbances. The diagnosis and treatment of SAHS may influence sympathetic activity

disorders and may contribute to an improvement in T2DM and cardiovascular risk.

Keywords: type 2 diabetes, sympathetic hyperactivity, sleep apnea-hypopnea syndrome, sleep breathing,

cardiovascular risk
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INTRODUCTION

A wealth of clinical and cross-sectional studies showed a higher
prevalence of sleep apnoea-hypopnea syndrome (SAHS) in
patients with type 2 diabetes (T2DM). The data vary according to
the population studied, but reach a prevalence of up to 85%, with
70% for the range of moderate SAHS (1–5). Despite the lack of
prospective studies to demonstrate the SAHS impact in patients
with T2D, it is well known that intermittent nocturnal hypoxia
is associated with poorer glycaemic control and an increase in
cardiovascular risk (6–13). Alternatively, patients with T2D, in
comparison with the general population have a negative impact
on breathing during sleep, creating greater sleep fragmentation,
an increase in micro-awakenings and a higher prevalence of
nocturnal hypoxia episodes (14–18). However, there is little
evidence and some controversy on whether these alterations
are responsible for hyperactivation of the sympathetic nervous
system described in patients with T2DM.

Usually, the autonomic nervous system shows episodic
oscillations of broad-spectrum activity during sleep with
dynamic fluctuation of vital factors such as heart rate, blood
pressure and ventilation (19, 20). Moreover, changes in sleep
architecture are associated with increased sympathetic activity,
leading to endothelial dysfunction and decreased nitric oxide
concentration (21–23). In this way, episodes of nocturnal hypoxia
also activate the sympathetic system, promoting alterations
in cardiac variability and probably endothelial damage,
which contributes to increased cardiovascular risk (24–27).
Sympathetic overactivity has also been associated with metabolic
dysfunction such as insulin resistance, obesity, hypertension
and dyslipidaemia (28–30). Even genetic polymorphisms have
been identified the sympathetic nervous system of humans and
animals and seem to contribute to the development of obesity
and T2DM in certain populations (31–33).

Since the origin of sympathetic hyperactivation in patients
with T2DM is not precisely known, we propose to analyse
the relation between the presence of breathing disorders that
characterize their sleep with data related with sympathetic
activity. We aimed to deepen this hypothesis by studying
the polysomnographic record of 36 subjects with T2DM and
its relationship with measurement of urine metanephrine
concentration, heart rate variability (HRV) and other serum
markers of sympathetic activity.

MATERIALS AND METHODS

Ethic Statement
The study was approved by the human ethics committee from
the Arnau de Vilanova University Hospital and was conducted
according to the ethical guidelines of the Helsinki Declaration.
Informed written consent was obtained from all participants
included in the study.

Description of the Study Population
In this cross-sectional study, a total of 36 patients of Caucasian
origin with T2DM were prospectively recruited between
September 2017 and July 2018 at the outpatient clinic in the

Endocrinology Department of the Arnau de Vilanova University
Hospital. Willing participants were given detailed information
about the objectives and procedures of the study.

Participants fulfilled the following inclusion criteria: T2DM
with more than 5 years of known evolution, men and women
aged 40 and 70 years without any history of vascular disease or
lung disease and a BMI of less than 40 kg/m2. The exclusion
criteria were presence of type 1 diabetes, chronic kidney disease,
active neoplasia, neuromuscular diseases, active smoking or
former smokers, history of alcohol abuse and treatment with
continuous positive airway pressure (CPAP). Patients who were
treated with drugs with activity on the central nervous system
(e.g., hypnotics, antidepressants, sedatives, psycholeptics) were
also excluded from the study. No pregnant womenwere included.
A control group of 11 healthy subjects without T2DM or lung
disease and well matched by age, body mass index (BMI), neck
and waist circumferences and blood pressure was also recruited
during the same period among the relatives of patients with
diabetes, as well as the employees of our institution.

Measurement of Sleep-Disordered
Breathing
The 36 recruited patients and the 11 controls underwent a
non-attended respiratory polygraphic record with a portable
Sleep Diagnostic Alice PDx (Philips Respironics, Spain) which
records nasal airflow (nasal cannula), respiratory effort (chest
and abdominal bands), snoring, body position and finger pulse
oximetry. The same technicianmanually checked all sleep studies
to reduce variability. Records with less than 5 h of correct
signal were repeated. An apnea was defined as cessation of
airflow for more than 10 s. Hypopnea was defined as a reduction
in respiratory signals for at least 10 s associated with oxygen
desaturation of 4% or more. The apnea-hypopnea index (AHI)
was calculated as the total number of respiratory events (apneas
plus hypopneas) divided by the recording time in bed (per hour
of sleep). On this basis, SAHS was defined as an AHI >10
events/hour (e/h). The cumulative percentage of time spent with
oxygen saturations below 90% (CT90) was also assessed (34–36).

Laboratory Assessment
After patients fasted overnight for 12 h, venous blood was
collected from the antecubital vein. Samples were separated
by centrifugation (2,000 g at 4◦C for 20min) and analyzed
in the clinical laboratory of our hospital using standard
methods to obtain biochemical parameters. The measurement
of urine metanephrines was realized by high performance liquid
chromatography. In order to compare the concentrations of
urine metanephrines between day and night, urine collection
was carried out in two 12-h time periods [from 8:00 to
20:00 (day) and from 20:00 to 8:00 (night)]. The serum
concentration of hormones related with glucose metabolism
[cortisol, insulin, glucagon, insulin-like growth factor-1 (IGF-
1) and growth hormone (GH)] were also determined through
chemiluminescence enzyme immunoassay. All samples were
collected in the absence of clinical evidence of active infection or
inflammatory diseases.
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Cardiac Variability Study: Heart Rate
Variability Parameters
Heart rate variability (HRV), defined as the measurement of
the variation in milliseconds between heart beats, was studied
in its R-R intervals, through a QHRV device with DT-HW6c
hardware (QHRV, Santa Bárbara, CA, United States). The results
were analyzed after measuring in four different stages: after a
15-min rest, breathing deeply, in Valsalva and in a standing
position. In the time domain, we analyzed RR intervals, standard
deviations of RR intervals (SDNN), the square root of the mean
squared difference of successive RR intervals (RMSSD), and the
percentage of adjacent NN intervals differing by more than 50ms
(pNN50). This last measurement was referred to as “short-term”
HRV and reflects the parasympathetic influence on the heart rate.
In the frequency domain, we analyzed the low-frequency band
(LF, an index of both sympathetic and parasympathetic activity),
high-frequency band (HF) and very low-frequency (VLF, that
reflects thermoregulatory mechanisms, fluctuation in activity of
the renin–angiotensin system, and the function of peripheral
chemoreceptors) (37). Patients were advised not to consume
food, coffee or nicotine 3 h before the test and to not receive
treatment with anticholinergics, fludrocortisone, antihistamines,
alpha or beta antagonists, or anxiolytics during 48 h before
the test.

Statistical Analysis
Normal distribution of the variables was assessed using the
Kolmogorov-Smirnov test. Data were expressed as the mean
± standard deviation or percentage. Given their skewed
distribution, AHI, CT90 and serum triglycerides are shown as
median (range) and were logarithmically transformed to achieve
a normal distribution. The relationship between the continuous
variables was examined by the Pearson linear correlation test.
Univariate and multivariate logistic regression models were
computed. A stepwise multivariate regression analysis was
performed to explore the variables independently related to
nocturnal urine metanephrines. Variables significantly associated
with changes in urine metanephrines in the bivariate analysis
(i.e., CT90 and serum glucagon concentration), together with
heart rate variability parameters and clinically relevant variables
(i.e., gender, BMI, age, smoking habit, blood pressure, AHI, neck
circumference and HbA1c) were included in the analysis. All p-
values were based on a two-sided test of statistical significance.
Significance was accepted at the level of p < 0.05. Statistical
analyses were performed using the SPSS statistical package (IBM
SPSS, Statistics for Windows, Version 20.0. Armonk, NY, USA).

RESULTS

The main clinical features and metabolic data of the study
population are presented in Table 1. Briefly, patients with T2DM
were 56.3± 8.7 years old, mainly female (27.7%) and obese (BMI
31.9 ± 4.8 kg/m2) and showed a poor metabolic control (HbA1c
8.0 ± 1.3%). Regarding measurements from the non-attended
polygraphy, they exhibited a median AHI of 23.5 (3.0–78.0) e/h,

TABLE 1 | Baseline main clinical, metabolic and sleep-breathing characteristics of

participants in the study.

Type 2 diabetes Control group p

N 36 11 –

Age (years) 56.3 ± 8.7 51.2 ± 8.8 0.101

Women, n (%) 10 (27.7) 11 (100%) <0.001

BMI (Kg/m2) 31.9 ± 4.8 32.5 ± 5.8 0.745

Neck circumference

(cm)

41.9 ± 4.2 39.6 ± 2.8 0.095

Waist circumference

(cm)

113.0 ± 11.0 116.0 ± 10.8 0.431

HbA1c (%) 8.0 ± 1.3 5.5 ± 0.5 <0.001

LDL Cholesterol

(mmol/l)

2.8 ± 1.0 3.2 ± 1.1 0.337

Triglycerides (mmol/l) 1.7 (0.8–3.7) 1.1 (0.8–2.0) 0.089

Systolic blood

pressure (mm Hg)

131.6 ± 12.6 131.9 ± 10.5 0.902

Diastolic blood

pressure (mm Hg)

77.6 ± 8.2 80.7 ± 5.3 0.260

AHI (events/hour) 23.5 (3.0–78.0) 14.0 (0.0–67.0) 0.227

CT90 (%) 7.5 (0.0–64.0) 6.5 (0.0–44.0) 0.355

Data are mean ± SD, median (range) or n (percentage). BMI, body mass index; HbA1c,

glycated hemoglobin; LDL, low density lipoprotein; AHI, apnea-hypopnea index; CT90,

percentage of time spent with oxygen saturations below 90%.

TABLE 2 | Hormones values and heart variability parameters of participants in the

study.

Type 2 diabetes Control group p

Cortisol (nmol/L) 330.0 (41.0–616.2) 452 (211.3–798.3) 0.094

Insulin (mIU/L) 100.3 (24.0–523.8) 128.5 (40.1–188.0) 0.899

IGF-1 (ng/mL) 135.1 (55.3–273.2) 149.9 (85.0–215.9) 0.461

Glucagon

(pg/mL)

136.0 (61.0–304.0) 112.0 (63.0–183.0) 0.348

GH (ng/mL) 0.1 (0.0–2.1) 0.1 (0.0–1.2) 0.800

LFa/RFa resting 0.9 (0.3–2.0) 0.7 (0.2–1.8) 0.299

LFa/RFa

respiratory

0.6 (0.2–1.7) 0.4 (0.3–0.7) 0.099

LFa/RFa valsalva 1.7 (0.8–3.0) 1.7 (0.6–3.5) 0.591

LFa/RFa

standing

1.1 (0.3–2.8) 0.7 (0.5–2.2) 0.022

SDNN 21.5 (7.1–85.3) 39.5 (17.4–76.7) 0.013

Data are median (range). IGF-1, insulin-like growth factor-1; GH, growth hormone; LFa,

low frequency component; RFa, high frequency component; SDNN, standard deviation

of beat to beat or NN intervals.

with a median CT90 of 7.5 (0–64)%. Finally, hormone values and
HRV parameters were within the normal range (Table 2).

Urine concentrations of total metanephrines were statistically
higher during the night compared with the concentrations during
the day period in the group of subjects with T2DM [247.0
(120.0.1375.0) vs. 210.0 (92.0–670.0), p = 0.039]. However, no
differences between day and night were observed in the control
group [243.0 (104.0–560.0) vs. 250.5 (94.0–485.0), p= 0.674).
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Linear correlations between day and night metanephrines
and serum hormones and heart rate variability parameters are
shown in Table 3. Whereas the nocturnal concentration of urine
metanephrines were positively associated with values of CT90
(r = 0.617, p < 0.001), this association disappeared with the
metanephrines collected during the day (r = 0.093, p = 0.644)
(Figure 1). In addition, nocturnal and daily urine metanephrines
were negatively associated with serum glucagon concentrations
(r = −0.427, p = 0.008). In the multivariate regression analysis
including the entire population we found a significant direct
interaction between the concentration of urine metanephrines at

TABLE 3 | Linear correlations between day and night metanephrines and serum

hormones and heart rate variability parameters.

Night metanephrines Day metanephrines

r p r p

CT90 (log) 0.617 <0.001 0.093 0.644

AHI (log) 0.146 0.356 0.426 0.146

Cortisol (mmol/L) 0.069 0.677 −0.102 0.522

Insulin (mIU/L) 0.235 0.145 0.050 0.752

IGF-1 (ng/mL) 0.045 0.784 0.039 0.802

Glucagon (pg/mL) −0.427 0.008 −0.452 0.003

GH (ng/mL) 0.231 0.151 0.101 0.519

LFa/RFa respiratory −0.163 0.335 −0.176 0.271

LFa/RFa valsalva 0.085 0.612 0.236 0.132

LFa/RFa standing 0.127 0.448 0.035 0.828

LFa/RFa resting −0.161 0.334 −0.137 0.386

IGF-1, insulin-like growth factor-1; GH, growth hormone; LFa, low frequency component;

RFa, high frequency component.

night and the percentage of time spent with oxygen saturation
<90% (p = 0.001) [together with serum glucagon concentration
(p = 0.001), LFa/RFa resting (p = 0.009) and diastolic blood
pressure (p= 0.047), R2 = 0.741]. This indicated that the increase
in the secretion of metanephrines at night could be related with
the severity of nocturnal hypoxia (Table 4). When subjects with
T2DM were assessed alone, serum glucagon concentrations (p
= 0.011) and CT90 (p = 0.016) still independently predicted
nocturnal urine metanephrines (R2 = 0.549). However, in the
control group, only diastolic blood pressure and serum glucagon
concentrations but not CT90 were significantly related with
nocturnal total metanephrines.

DISCUSSION

The main findings in this study were that a subgroup of patients
with T2DM exhibited an increase in urinemetanephrines at night
associated with nocturnal hypoxia and with a decrease in serum
glucagon concentrations, specifically for the parasympathetic
tone. This autonomic disturbance can be explained by the
deleterious effects of diabetes during night-time sleep, leading to
an important nocturnal hypoxia.

It is well known that T2DM patients exhibit a hyperactivation
of the sympathetic nervous system (SNS) that amplifies the
effect of hyperglycaemia, increasing both cardiovascular risk and
microangiopathic diabetic complications (38). The origin of this
sympathetic hyperactivation has not been precisely described.
We propose that, both intermittent hypoxia and the greater
number of micro-awakenings that characterize the sleep of
T2DM patients could explain the increase in SNS activity.

While the evidence is controversial, previous studies have
demonstrated that apnea and hypopnea events are accompanied
by concomitant cyclic variations in heart rate and changes in both

FIGURE 1 | Linear correlation between concentration of urine metanephrines and percentage of time with oxygen saturations below 90%.
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TABLE 4 | Variables independently related to nocturnal urine total metanephrines

in the multiple regression analysis (stepwise method) in the entire population.

β Beta (95% IC) p

CT90 (log) 0.520 191.2 (93.9 to 288.6) 0.001

Glucagon (pg/mL) −0.505 −1.3 (−2.0 to −0.6) 0.001

LFa/RFa resting −0.379 −148.9 (−255.4 to −42.5) 0.009

Systolic blood

pressure (mm Hg)

0.277 6.0 (0.0 to 12.0) 0.047

AHI (events/hour) −0.212 – 0.095

Smoking status * −0.240 – 0.114

GH (ng/mL) −0.260 – 0.172

LFa/RFa standing −0.218 – 0.196

Age (years) −0.148 – 0.289

IGF-1 (ng/mL) 0.138 – 0.356

Insulin (mIU/L) 0.132 – 0.370

Systolic blood

pressure (mmHg)

−0.246 – 0.371

Cortisol (mmol/L) −0.115 – 0.434

LFa/RFa respiratory −0.100 – 0.436

HbA1c (%) 0.120 – 0.443

BMI (kg/m2 ) 0.074 – 0.596

Gender

(men/women)

−0.047 – 0.742

LFa/RFa respiratory −0.041 – 0.763

LFa/RFa Valsalva 0.026 – 0.866

Neck circumference

(cms)

−0.016 – 0.914

Constant – −58.1 (−540.7 to 424.3) 0.802

R2
= 0.741

CT90, percentage of time spent with oxygen saturation below 90%; LFa, low frequency

component; RFa, high frequency component; AHI, apnea-hypopnea index; GH, growth

hormone; IGF-1, insulin-like growth factor-1; HbA1c, glycated hemoglobin; BMI, body

mass index.

sympathetic and parasympathetic activity without differences in
subjects with diabetes (39, 40). As far as we know, hyperactivation
of the autonomic system has been described in patients with
T2DM but with involvement of both patterns (sympathetic
and parasympathetic) and it was related to male sex and the
presence of neuropathy (41–43). None of our patients had clinical
neuropathy, and the test group was predominantly female.

Although we cannot elucidate whether the effects of hypoxia
and diabetes overlap with the effects of obesity, some recent
studies have shown an increased SAHS prevalence in non-
overweight patients with Type 1 diabetes, suggesting that
nocturnal hypoxia might be more related to autonomic
disturbances rather than obesity (44, 45).

Our study combined data from men and women in the
analyses, but differences regarding sex and menopausal status
have been previously described. In this way, some findings
suggest that men have a higher sympathetic nerve activity than
women after the development of essential hypertension, and that
this could have implications for gender-specific management
of hypertension (46, 47). Similarly, muscle sympathetic nerve
activity has been described to be greater in postmenopausal

women in comparison with premenopausal women (48). In our
study, the LFa/RFa respiratory parameter was the only parameter
related with heart rate variability that was significantly decreased
in women when compared to men [0.7 (0.2–1.7) vs. 0.4 (0.2–
0.8), p = 0.002], and it was also the only parameter that was
positively associated with age in the bivariate analysis (r = 0.318,
p = 0.038). The other heart rate variability parameters and
serum hormone concentrations showed no differences between
genders nor correlations with age. In addition, gender and age
were not independently associated with total nocturnal urine
metanephrines in the multivariate analysis.

The present study does not have sufficient power to exhibit
endothelial damage or cardiovascular risk caused by this
hyperactivity, but some previous studies have described the
relationship between variability in autonomic function and an
increase in insulin resistance, oxidative stress and inflammatory
response that cause endothelial celldamage, development of
atherosclerosis and increased cardiovascular risk (49–51). Along
the same lines, it has been described that cardiovascular
autonomic neuropathy contributes to a poorer prognosis in
ischemic heart disease and heart failure (52). Also, the decrease
in HRV can predict the progression of atherosclerosis in T2DM
patients (53).

Our study has some limitations. First, this is a cross sectional
whereby causality cannot be determined. The size of the study
might have been inadequate, and a prospective study with a
higher number of patients could yield better results. In addition,
it should be noted that the control group in our study was
composed only of women. As previously mentioned, women
have a lower sympathetic nerve activity than men, so this
data could influence our results. However, in the multivariate
regression analysis, gender was not related to the concentration
of urine metanephrines at night. Second, the HRV study might
have been influenced by differences in baseline physical condition
or cardiac status. We did not perform any cardiac evaluation
although all participants were asked for cardiovascular diseases
and arrhythmias and neither of them were athletic. Third, the
effects of the antidiabetics (insulin, SGLT2, incretins) could not
be excluded.

CONCLUSION

We suggest that the increased sympathetic activity previously
described in patients with T2DM is mediated through the
deleterious effect of diabetes in nocturnal breathing. In
addition, sympathetic activity is associated with disorders of
autonomic tone at resting, suggesting a new pathological pathway
between T2DM and cardiovascular risk. More studies are
needed to clarify whether treatment of SAHS will improve
sympathetic hyperactivity, T2DM and cardiovascular outcomes
in these patients.
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