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1 Introduction

Theories close to being conformally invariant are of utmost interest as they can generate
large hierarchies of scales that can be useful in particle physics and cosmology. This moti-
vates the understanding of how theories behave at the critical point at which, by varying
the parameters of the theory, we pass from a conformal regime to a non-conformal one.
This is especially interesting in strongly-coupled theories as they can give rise to non-
trivial dynamics. An example is QCD where by increasing the number of flavors Ng, the
theory is expected to become conformally invariant at some critical value Np = Nl'ffit.
It is unclear where this exactly happens, but lattice simulations suggest that this could

be around N& ~ 10 for N, = 3 where N, is the number of colors. For Np > Nit,



QCD becomes a conformal field theory (CFT) till reaching Np = %Nc, at which the
theory reaches the Banks-Zaks fixed point, becoming IR free for Np > %Nc. The region
Ngtt < Np < LN, is called the conformal window.

Recent lattice simulations suggest that, contrary to real QCD, theories close to the
conformal transition have as the lightest resonance a 0" state (apart, of course, from the
Goldstone bosons, the pions) [1-5]. It is unclear what is the origin of the lightness of this
state. Some arguments suggest that this could be a dilaton, the Goldstone associated to the
spontaneous breaking of scale invariance. If this is the case, it would be interesting to know
whether in the large- N, limit, where Nl%rit /N¢ = Zerit, becomes a continuous parameter, the
dilaton mass tends to zero as we approach the critical point from below Np /N, — Zcyit.

In this article we would like to analyze the physics of conformal transitions using
holography. We will follow ref. [6] that argued that the exit of the conformal window of
large- N. QCD occurs when the IR fixed point disappears by merging with a UV fixed point.
Close to the conformal edge the theory contains a marginal operator O, whose dimension
gets a small imaginary part when conformal invariance is lost (see next section for details).
Assuming that this is the case, the AdS/CFT correspondence [7-9] can provide a simple
realization of this idea as a complex operator dimension matches to a scalar having a mass
below the Breitenlohner-Freedman (BF) bound M2 = —4/L?. When this happens, the
scalar becomes tachyonic and gets a non-zero profile that results into a departure from the
Anti-de-Sitter (AdS) geometry [6].

The presence of a marginal operator Oy in the model could suggest the presence of a
light dilaton, along the lines of refs. [10-14]. The argument goes as follows. The dilaton

potential can be written as

Vet (9a) = Aest (0) 03 (1.1)
such that, when a minimum exists, leads to a dilaton mass given by

Tes gy o4+ 5L, (1:2)

(¢a)? o Aett 2

where ), = dAeg/dIn ¢y and Bf\eﬂ = df);/dNegt. A nonzero 85, arises only from an
explicit breaking of scale invariance. When this latter comes only from' ¢ Oy € L, we expect
Brg X By, and eq. (1.2) predicts mid x 4. Therefore, a dilaton can be parametrically
light if the dimension of Oy is given by 4+ 6 with § < 1 (i.e., By < 1) being a controllable
small parameter till the end of the RG-flow. The holographic implementation of this is the
Goldberger-Wise mechanism [15], where the operator O, matches to an almost massless
scalar in 5D (protected by a shift symmetry) [10-14]. Nevertheless, we will see that this
is not the case at the conformal transition, as the marginal operator O, corresponds to
a double-trace operator whose dimension is not protected along the RG-flow. Having the
explicit breaking of conformal invariance arising from an almost marginal operator however
will have as a consequence that the dilaton is light, although not parametrically light.

We will be working with a simple weakly-coupled AdSs theory, with the extra-
dimension cut off by an IR-brane, that will contain the basic ingredients to describe the

'We remark that g is a coupling of the theory not necessarily related with the gauge coupling.



conformal transition. We will calculate the mass spectrum of resonances and show that
the lightest resonance is the dilaton (the radion of the compact extra-dimension). We will
present a simple analytical formula for the mass of the dilaton that will allow to under-
stand its lightness as a function of the change of the tachyon as we move the IR-brane.
This will show that either at small or large positions of the IR-brane, the dilaton is always
parametrically light. In between these two regions, we will see that the dilaton mass does
not have “room” to grow and as a consequence the dilaton is always kept light.

We will compare our results with lattice simulations, showing good agreement in the
pattern of masses when the conformal critical point is approached. Furthermore, we will
provide further predictions to be checked in the future by lattice simulations.

The 5D model presented here could also be useful to generate small scales and explain,
for example, the difference between the electroweak scale and the Planck scale. More-
over, the presence of a light scalar can have an important impact in the searches for new
resonances at the LHC as predicted in composite Higgs models.

There have been previous approaches using holography to understand the conformal
transition and the existence of a light dilaton [16-29]. We find however that these studies
were not exhaustive nor conclusive. Our goal is not only to provide evidence for a relatively
light dilaton, but also to explain the reasons behind this.

The article is organized as follows. In section 2 we introduce the idea of leaving the
conformal window by fixed-point merging and remark its implications. In section 3 we
present the five-dimensional model and its relation with the large N, and Nr expansion.
We also discuss the tachyon solution and the stabilization of the radion. Next we present
the predictions for the resonance mass spectrum, presenting an analytical formula for the
case when the dilaton is light, as well as discussing the other scalar and vector resonance
masses. In section 4 we compare the mass spectrum calculated within our model with that
obtained from lattice simulations, and in section 5 we discuss how these models could also
be useful for explaining the smallness of the electroweak scale. Conclusions are given in
section 6. We also present two appendices. In appendix A we give the coupled system of
equations of motion for the scalar and gravitational sectors, and derive the approximate
analytical formula for the dilaton mass. In appendix B we present the 4D effective theory
of a tachyon and dilaton valid when they are the lightest states.

2 Conformal transition by fixed-point merging

There are several ways to lose an IR fixed point as we move the parameters of the theory.
Either the fixed point goes to zero, to infinity or it merges with a UV fixed point. Following
ref. [6] we will consider conformal transitions characterized by the third case, the merging
of the IR fixed point with a UV fixed point, as depicted in figure 1. In this case, the beta
function can be written as

By~ —e—(9-9:)°, (2.1)

where g is a coupling of the theory (not necessarily related to the gauge coupling in gauge
theories), and e depends on the parameters of the theory, e.g., Np. The IR and UV fixed



Figure 1. Beta function of the coupling ¢ for different values of €. For ¢ = 0, the IR and UV fixed
points merge at g..

point are respectively at
g=0«FV—c. (2.2)

As we vary € from negative to positive values, we have the merging of the IR and UV fixed
points at € = 0, while for € > 0 the theory abandons conformality, i.e., the IR fixed point
is at complex coupling.

As argued in ref. [30], for € negative and close to zero, the operator O, with coupling
g must have dimension

Dim[Oy] =4 + Cf;;g ~ 4+ 2\/—e€, (2.3)

and can be considered to be responsible for the RG flow towards the IR fixed point. For
€ = 0 we have that Oy becomes marginal, and develops a complex dimension for € > 0,
signaling the end of conformality.

The above properties of this conformal transition have a straightforward holographic
interpretation using the correspondence (or duality) between strongly-coupled CFT,4 (in
the large N. and large 't Hooft coupling) and weakly-coupled five-dimensional Anti-de-
Sitter theories (AdSs) [7-9]. Operators in the CFT4 (O) correspond to scalars in the AdSs
(®) where dimensions and masses are related via the AdS/CFT relation [7-9]:

Dim[O] =2+ (/4 + M2L2. (2.4)

Eq. (2.4) tells us that in order to have a dual of a CFT operator with complex dimension,
the AdS; must have a scalar slightly below the BF-bound, M2 = —(4 +¢€)/L?. Eq. (2.4)
also tells us that this operator of complex dimension (O,) has, in the limit ¢ — 0, dimension
2 instead of 4. Therefore the natural identification for the O, operator discussed above
is Oy = |O4]?, since in the large N, this implies Dim[Oy] = 2Dim[0,] and that gives us
eq. (2.3). In other words, O, must be a double-trace operator.?

The existence of O, in the conformal transition is only an implication from large- N,
theories, and could be not true in general. In QCD, as argued in ref. [6], O, is expected to be

It has been proven in refs. [30, 31] that this is always the case for theories in the large-N. limit.



the ¢qq operator whose dimension will go from ~ 3 when entering the conformal window (at
the Banks-Zaks fixed point) to 2 when leaving it at the other side when it becomes complex.
When the theory is close but outside the conformal window (i.e. 0 < € < 1), one can
calculate the RG flow “time” required to cross the region where g ~ g, and |34| < 1. This
gives us the IR-scale Aig at which the theory is expected to confine as g becomes large.

From eq. (2.1) one gets
AR ~ e_ﬂ/\/gAUV , (2.5)

where Ayy is roughly the scale at which g < g.. Eq. (2.5) is usually referred as walking or
Miransky scaling.

3 A five-dimensional model for the conformal transition

We want to study the conformal transition described above using holography. For this
reason we will consider the simplest but at the same time most generic five-dimensional
model containing the basic ingredients needed to describe the conformal transition via
fixed-point merging. Our purpose is to generically understand the mass spectrum at the
conformal transition and the presence or not of light scalars.

Let us recapitulate the basic ingredients of the theory in the 4D side. This is a strongly-
coupled deformed CFT with a scalar operator, qiLLj};L (i, = 1,...,Np) for concreteness,
whose dimension is 2 + /—¢ with 0 < ¢ < 1. This means that the scalar qi(ﬁz gets a
vacuum expectation value (VEV), signaling the loss of conformality. The global symmetry
of this theory is SU(Np)r ® SU(Np)r ® U(1)p that is broken by the VEV of the scalar
<qiq§2> oc 1 down to the diagonal subgroup SU(Ng); ® SU(Ng)r — SU(Ng)y.3

The corresponding holographic model will consist in a SU(Np)r ® SUNp)r @ U(1)p
gauge theory in 5D with a complex scalar ® transforming as a (Ng,N)g. This scalar plays
the role of the gg operator whose VEV is responsible for the breaking of the conformal and
gauge symmetry, and therefore its mass will be related to the dimension of the ¢g operator.
We also impose parity, defined as the interchange L <+ R. The action is given by

S5:/d4x/dz\/§M5 [,32 (R +As) + L5 | , (3.1)

where, up to dimension-four operators,? the most general Lagrangian is given by
Ly = —% Tr [Lary EMY + Ryry RMV] — %BMNBMN + %Tr IDud|® = Va(@),  (3.2)
with Lysn, Ry n and By being the field-strength of the SU(Ng)r, SU(Np)r and U(1)p

gauge bosons respectively, and the indices run over the five dimensions, M = {u,5}. We
parametrize the fields as ® = &, + T, P, with Tr[T,T}] = d4p. The fields @5 and @, will

3The U(1) 4 is anomalous and will not be considered here.

4Following the Effective Field Theory (EFT) approach, higher-dimensional operators are supposed to be
suppressed by the cutoff scale of the model (Acutost) estimated to be the scale at which the 5D theory becomes
strongly coupled (i.e., when loops are as important as tree-level contributions), that is Acutosr ~ 2473 M [32]
— see also section 3.1.



respectively transform as singlet and adjoint under the SU(Np)y . The covariant derivative
is defined as

Dy® =0y ® +igs Ly ® — igs PRy (33)

and the potential is given by®
Vo (®) = %Mq% Tr |®% + i)\l Tr |®* + i)xg(Tr 1®|2)2. (3.4)
The 5D metric in conformal coordinates is defined as
ds* = a(z)Q(an:L'“d:E” - sz) , (3.5)

where 7, = diag(1, -1, =1, —1) and a(z) is the warp factor. Before the scalar ® turns on,
the presence of A5 leads to an AdSs geometry:
L
= — 3.6
a(z) = —, (3.6)
where L? = 12/A5 is the squared AdS curvature radius.

As explained above, our important ingredient here is to consider that the conformal
breaking arises when Dim[gg] becomes imaginary. In AdS this corresponds from eq. (2.4)

to take the 5D mass of ® below the BF bound. For this purpose, we will consider

4+¢€

M3 = 3

(3.7)
When e > 0 the mass of ® is below the BF bound and & turns on in the 5D bulk, breaking
the conformal and chiral symmetry SU(Np)r, ® SU(Np)r — SU(Np)y. @ will grow as
~ 22, as expected from a dimension-two perturbation in the dual 4D theory. When the
energy-momentum tensor induced by the nonzero ® profile gets of order of the inverse 5D
Newton constant, 2, the backreaction on the metric will be important, starting to depart
then from AdS, and signaling the breaking of the conformal symmetry. This simple model,
however, does not lead to a mass gap for all bulk fields, as the extra dimension is not
ending at any z. In fact, as we will see, the tachyon ® would stabilize at the minimum
of the potential eq. (3.4) and the metric would become again AdS. As we know that in
strongly-coupled models outside the conformal window, like QCD, all resonances are heavy,
we need to implement the same in our holographic version. The simplest way is to cut off
the 5D space by an IR-brane at some point z = zg to be determined dynamically.

The presence of the IR-brane add extra parameters to the theory as ® might also have
a potential on the IR-boundary. We will limit ourselves to up to quadratic terms in ®:
- Ay

1
T(®) = 3 + Smi Tr |0 (3.8)

['IR = —a4f/b(<I>)‘ 2

2R’

and study their impact on the properties of the model. We could also add to eq. (3.8)
quartic terms but these are not expected to change significantly our predictions, since they

5We notice that one can absorb one coupling into Ms, as we will do later.



are suppressed by 1/(MsL) with respect to the bulk terms.® As it is usual in AdS/CFT,
we will be regularizing the UV-divergencies by placing a UV-boundary at z = zyy and
taking the limit zyy — 0 at the end of the calculation of physical quantities.

In this 5D model the two phases are determined, as in the strongly-coupled model
described in section 2, by the ¢ parameter:

e For e < 0, we have ® = 0 and zg = co: AdS5 (CFT4) phase.

e For e > 0, we have ® # 0 and zig # oo: non-AdS; (non-CFTy) phase.

3.1 The large N. and Nr power counting

By the AdS/CFT correspondence, the 5D scalar and gauge bosons are associated to the me-
son operators qq and gv,q respectively. Therefore 5D couplings from single-trace operators
must scale in this sector as 1/N.. This can be implemented by assuming

1 1672
ML N. '’

A1~ g5~ N2 (3.9)

On the other hand, double-trace operators are suppressed with respect to single-trace ones:

Ag ~ ]\1[0 . (3.10)
For this reason these latter terms were neglected in previous holographic approaches to
QCD [33-35]. Nevertheless, in some physical quantities the parameter g is accompanied
by a factor Np, as we will see explicitly below (e.g. eq. (3.14)), and then its effect is not
suppressed for large values of Ng. Therefore it is important to keep double-trace operators
in eq. (3.2) when comparing our results to strongly-coupled theories in the large N, and
Np limit. In particular, Ao will be responsible for generating a mass splitting in the scalar
sector between the singlet (®) and the adjoint states (®,), as observed in lattice results
with large Np [1-5].

Using the scaling eq. (3.9), one realizes that in the limit Np ~ N, 5D models are in
danger of not providing reliable calculations by the usual perturbative expansion. Indeed,
in this limit loops of vector or scalar resonances in the adjoint of SU(Np)y contribute
1 Np Np

w2 iR ~ N~ L meaning that loops could be as important as tree-level contribu-

tions. The N enhancement of these corrections is due to the large number of fields (for

as

example, P, consists of N% — 1 fields). Still, by extending the results to Ngp/N. ~ 1, one
hopes to capture well the qualitative dynamics.

A case that is more under control arises if one can restrict only to the flavor-singlet
sector of the theory [36], which is justified when the other sectors are heavier. In this case
the Ng dependence enters only into the couplings of the flavor-singlet sector, which can be
treated perturbatively (loops are always small since the number of fields is not large) even
in the strict Veneziano limit where N is of order or even larger than N.. In fact, ref. [36]

SEven though the same is true for the two terms in eq. (3.8), these are respectively quartically and
quadratically UV sensitive so they can be sizable.



provides an example of a weakly-coupled closed string dual description of the flavor-singlet
sector of a gauge theory in the Veneziano limit.

From the AdS/CF'T dictionary, we are also able to relate the gravitational sector of the
5D theory with the glueball sector of the 4D CFT, and derive the scaling of the 5D Newton
constant with the number of colors: x2/(MsL3) ~ 167%/N? that using eq. (3.9) implies

2
K 1
— o~ . 3.11
L? N, ( )
From the above we can estimate the mixing between the flavor-singlet meson sector and

the glueball sector (dual respectively to the scalar and gravitational sectors in 5D) to go as

2

k*N N

2= (3.12)
L? N,

that becomes order one for N ~ N.. Therefore, contrary to previous holographic models,

the impact of the gravitational sector in the singlet scalar sector cannot be neglected in

this case.

3.2 The tachyon solution

The non-zero profile for ® will be taken to be along the ¢ = |®4| direction, whose 5D
Lagrangian is given by

Lo = Nr {50007 ~ V(9)| + 9267 Tr 43, (313)

where

1 1
V(p) = §M§>¢2 + Z)\¢4> A=A+ Nplo, (3.14)

being Ay = (Las — Rar)/V/2 the axial-vector gauge bosons that will get masses from their
coupling to ¢. The IR-brane potential can be written as

Lig = —a’NpVy(9)| zagz T3

Vi(9) = P2 (3.15)

2R’

Notice that the presence of a factor N in front the Lagrangian means that the couplings
of ¢ are suppressed by an extra 1/Np with respect to those in the non-singlet sector, as
expected in strongly-coupled theories in the large N, ~ Ng limit. The equation of motion
(EOM) for ¢ from eq. (3.13) must be solved including the metric back-reaction that via
the Einstein equations (see appendix A) determines the warp factor:

; 1 G212 / A2
—;:\/p+'12(£a‘v<¢>)’ (3.16)

where from now on we will be using the dot notation: ¢ = 0,¢. It is important to notice
that by the field redefinition ¢ — ¢/+/|\| we could factorize || in front of the first term
of eq. (3.13) and make the EOM that determines the solution for ¢ independent of |\
(only sensitive to its sign). This redefinition introduces |A| in the interactions of ¢ with




the gauge and gravitational fields (second term of eq. (3.13) and eq. (3.16) respectively).
Nevertheless, this can be reabsorbed respectively in g2 and 42, making the solutions and
full mass spectrum of the model insensitive to |A|. Therefore, with no loss of generality, we
will consider A = +1.

We are interested to study the model close to the conformal transition. Therefore we
will work in the limit € — 0. The solution for ¢ then only depends on zr, 42 and mg (and
the sign of A). At the UV-boundary we will impose ¢ = 0, otherwise we would be breaking
the chiral symmetry from UV-physics (as adding an explicit mass term to the quarks in the
dual theory).” On the other hand, at the IR-brane we must impose the boundary condition

<M5<b+ Vb’>
a

where we defined V) = 04V4. For the metric we must impose the junction condition [37]:

-
(o)

R2L? a?

determined by the model:
=0, (3.17)

ZIR

= 0. (3.18)

2IR
3.2.1 Region ﬁzg > —2

We will start looking for solutions of the tachyon for m% > —2, where we define
mgL

~ 2
mb M5

(3.19)

In this case non-trivial solutions from eq. (3.13) fulfilling eq. (3.17) are only found if the
IR-brane is beyond some critical value, zigr > 2{. It is easy to find z{y, as this corresponds
to the critical value at which we pass from having all Kaluza-Klein (KK) states of ¢ with
positive squared masses to having 4D tachyons in the theory. Therefore at zir = 2 there
must be a 4D massless mode, ¢;(x). The wave-function of this massless mode must satisfy
the linearized bulk EOM with p? = 0. We obtain [16, 17]

o(z,2) = d)t]if) 22 sin <ﬁ1n Z) : (3.20)

UV

with N a normalization constant, and where the IR-boundary condition eq. (3.17) at
2R = 21y leads to

tan(ﬁlnzﬁ{): \/€2 = +eln IR ~nw, n=12,.... (3.21)
2Uv 2+ mj 2UV

Notice that to have non-trivial solutions, the limit ¢ — 0 must be taken with zyy — 0,
such that the angle in eq. (3.20) is kept fixed. The presence of n solutions in eq. (3.21) is a
well-known feature of these configurations, and it is associated to the existence of Efimov
states. We will be considering n = 1, that will give us the global minimum, being the
other possibilities just local minima. Eq. (3.21) reproduces eq. (2.5) for Ajg ~ 1/2{z and

"Imposing a different boundary condition, such as z<15|ZUV X @|zyy, would lead to the same predictions
in the limit € — 0 (zuv — 0).
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Figure 2. 5D tachyon solutions (in units of 1/L) for /i = —1. LEFT: limit I with zig = 1.2 2{3.
RIGHT: limit IT with zig = 20 2{3. We have taken A\ = 1, and #? = 1 (4) for the solid (dashed)
line, and A = —1, 42 = 4 for the dotted line.

Auy ~ 1/zyy. The origin of the logarithm in eq. (3.20), that will play an important role,
can be more easily understood by looking at the strongly-coupled dual theory; this has
an explicit breaking of the conformal symmetry due to the double-trace marginal operator
O,y = |O.|? that leads to a log-running of the couplings [38].

Depending on the position of the IR-brane with respect to 2, we can distinguish two
limiting cases that will help to understand the physics of the model. These are illustrated
in figure 2 and corresponds to

I) zir = 2. In this case ¢L < 1 for all z, meaning that the scale of confinement
~ 1/z1r is larger than the scale of chiral breaking that is of order ~ L¢(21R)/2IR.

ITI) zir > 2fi. In this case ¢L reaches O(1) values at some z = 2z, < zr, and then the
scale of chiral breaking ~ 1/z, is larger than the scale of confinement ~ 1/zR.

These two cases should be considered as formal limits, since in most of the parameter
space of the model we will find that the IR-brane sits at zir ~ few X 2y, i.e., between
limits I and II, implying that naturally the scale of chiral breaking is similar to the scale
of confinement.

Let us start considering the limit I, where z1g is assumed to be just slightly above
Zig- In this case the 4D mode ¢;(x) gets a small negative mass-squared, becoming a 4D
tachyon. We find this mass is given by

412 + 2)?
m? ~ —% In ZITR, where [ = %. (3.22)
2R 2R my, + 6my + 10

Eq. (3.22) is only valid for |m?| < 1/z%; that, obviously, requires a tuning in the parameter
space: either Inzg/zfz < 1 (that we will see later cannot be achieved by the radion
minimization) or f < 1 that requires mg — —2. To find a stable configuration this 4D
tachyon must have a positive quartic self-interaction, A; > 0, and this can arise either from
A or the feedback from gravity. We find

At = Aea(md) + A2ce (i), (3.23)

~10 -



where c) ,, are smooth and positive functions of mg as derived in appendix B.1. The 4D
tachyon VEV is then given by

1 /B, 2R
(pr) = Vo ln%. (3.24)
Therefore, in the limit I the z-profile of ¢ is given by eq. (3.20) with eq. (3.24) and
N = Lzre/, as we follow the normalization of ¢; of appendix B.1. This solution is
shown in the left plot of figure 2 for A = 1 and A#? = 1,4. In the limit 4% > 1, we see
from eqs. (3.20)—(3.24) that #2¢?L? stays constant and small. This means that the metric
remains always close to AdSs.

Let us now move to the limiting case II. First, let us neglect the feedback from the
metric (A2 < 1). As the IR-brane is now placed far away from 2ir, the tachyon profile
grows o< z2 till the quartic term of the potential becomes relevant. Solutions only exist if
A > 0, such that ¢(z) settles at the minimum of the 5D potential V' (¢) where it takes the

constant value ¢(z) ~ y/M2/\ = 2/(L)) (see right plot of figure 2).® This means, in the
dual interpretation, that the CFT flows at around 1/2fz towards another CFT in which the
global symmetry has been reduced to U(Np)y with ®5 and ®, respectively transforming
in the singlet and adjoint representation. In this new CFT, scale invariance is broken at a
much lower scale 1/zig. Let us now consider the feedback of the metric. For large %2 the
gravitational feedback becomes important before ¢ reaches the V(¢) minimum, making ¢
to enter into a “slow-roll” condition (see appendix A for details) delaying the position z
at which ¢ gets its maximum ~ 2/(LA). In this case A < 0 is also possible as the slow-roll
condition keeps ¢(z) slowly growing till reaching the IR-brane (see right plot of figure 2).
The metric evolves from AdSs at 2z ~ z{y to another approximately AdSs space at z > z{y.

3.2.2 Region mg < =2

In this region we have that 2 + frh% is negative, and from the left-hand side of eq. (3.21),
the smallest z{ is determined by

2[R 1
In ~ — 5 (3.25)
Zuv 2 +my
that does not depend on e. This means that non-trivial solutions for ¢ exist even if € < 0.
These solutions however are supported by the IR-brane and for zig — oo we have ¢ — 0.
Therefore as soon as the IR-brane is not stabilized for € < 0 (i.e., z;rg = 00), we can also
consider this region of the parameter space for studying the conformal transition.
In this case the solution for ¢, as we vary zig, behaves in the following way. For
2 < 2R < 2f, where 2{}; is determined by In(z{%/zuv) ~ 7/\/€, we find that ¢ takes
a nonzero value with a profile localized towards the IR-brane, ¢ ~ (z/2zr)?, as we said.
The origin of this nonzero profile is that the IR-brane mass 'fng, and not the 5D mass,
is exceedingly negative. ¢(zgr) is mostly constant in this region and it does not help to

8To satisfy the boundary condition at the IR-brane, ¢ must depart from 2/(LA) when approaching the
IR-boundary, as can be appreciated in figure 2.
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stabilize the IR-brane. On the other hand, for zir > z{};, the profile of ¢ grows to become
similar to the limit II discussed before (see right-hand side of figure 2), indicating that ¢
behaves as a genuine 5D tachyon. This latter behavior only occurs if the 5D mass is below
the BF bound and can lead to a stable IR-brane.

3.3 Radion/dilaton stabilization

Since the position of the IR-brane zig is associated to a dynamical field, the radion (not
necessary a mass eigenstate), its value must be determined dynamically. The extremization
condition for zR is exactly the junction condition eq. (3.18) after putting on-shell all other
fields. This can be written, using eq. (3.16) and eq. (3.17), as

6Ms |1 R2L2 (V2
n V() + V =0. 2
p2i2\ 12 12(%@ 2 b 0 (326)

2IR

For our particular case, this reduces to a quadratic equation for ¢(zR):

5A2

i (5A — 7) + &2L2 [;mZQZ)?(ZIR) — 2¢4(ZIR):| =0, (3.27)

L? 12

where have introduced m? = [(1hZ + 2)? — 207 m2/3]/L%, A = X+ i#?my/3, and

~ L
ON=— A, +6 3.28
M5 4 + ? ( )
that is a measure of the detuning of the IR-brane tension away from the AdSs value. Their
values are bounded to be in the region

0<6A<6. (3.29)

The lower bound arises from demanding that for € < 0, the IR-brane is driven to zig — o0,
such that the theory is in the AdS5 (CFT,) phase. From appendix B, in particular eq. (B.4),
we see that dA is related to the self-coupling of the dilaton and 6A > 0 comes from re-
quiring a positive dilaton self-coupling. On the other hand, the upper limit in eq. (3.29) is
a more basic (geometrical) requirement: to possibly solve the junction condition even for
dynamical solutions that start away from the minimum. If 6A > 6, the TR-brane tension
Ay is positive and it is easy to see that there would be no solutions where the IR-brane acts
as an IR boundary (i.e., a cutoff of the AdSs space at z = z1g). Therefore these regions
must be discarded.

By playing with the parameters of the model, A\ = %1, &2, fn% and §A, we can find
regions where z1g is stabilized thanks to the presence of the 5D tachyon. These are shown
in figure 3 in the plane 7} — A for 42 =4 and A = 1 (left plot), and A = —1 (right plot).
These regions are bounded from the left and the right at which, as it will be discussed later,
the radion is massless. At the left boundary one obtains the lowest value of (a stabilized)
zr- For mg > —2, this lowest value of the IR-brane position is achieved when SA = 0;

1/2

for m% — —2 we obtain the smallest zir/2{y that is given by zr = e/“2fy, as can be
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Figure 3. Region of the parameter space that leads to a stable IR-brane for 42 = 4 and A = 1
(left) and A = —1 (right). We also provide the value of the lightest scalar mass, mg, /m,.

analytically found by looking at the 4D effective theory (see appendix B). On the other
hand, as we get close to the boundary on the right of the regions in figure 3, we have
zir, — oo (limit IT). In most of the colored regions however we have that zir ~ z,. In other
words, the model naturally predicts the scale of chiral symmetry breaking to be around
the scale of confinement.

If the radion is the lightest 4D mode in the theory, we can use eq. (3.26) to obtain its
effective potential. The radion corresponds in the dual 4D CFT to the dilaton, ¢4, whose
VEV determines the scales of the model. For this reason ¢4 at the minimum is related
with the warp factor evaluated at z = zg. Nevertheless, outside the minimum eq. (3.26)
the relation of zig with ¢4 is a more complicated function, zig = f(¢q4), especially in the
basis where ¢4 is canonically normalized. Going off-shell requires not equating the lLh.s.
of eq. (3.26) to zero, and identifying this with the first derivative of the dilaton effective

potential:
dVeti (Pa) 2 RILA (V2 R2L
= 1 — .
dog n(pq) + 12 2M52 Vo)) + 6.M5 Vo ’ (3.30)

2r=f(¢a)

where n(¢g) > 0 is in general a complicated function of ¢4 (that cannot be zero, otherwise
we will have an extra minimum beyond eq. (3.26)) that we do not need to specify here.
By integrating eq. (3.30) over ¢4, one can obtain the dilaton effective potential Vig(dq).
For the simple case in which the backreaction is neglected and the space is just AdSs, we
have zig o 1/¢4 and n(¢q) is just a constant. For this case we show the effective potential
(up to an overall constant) in figure 4. We can see that the potential has a minimum at
2IR =~ 2 — 3 2y and goes to a constant value at large zir, where ¢ becomes constant as
it approaches the minimum of its 5D potential. For a better understanding of the dilaton
effective potential, we can analytically calculate the effective potential of the 4D tachyon
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Figure 4. Dilaton effective potential for A = 1, &% = 0, §A = 0 and different values of ma.

and dilaton in the limit z1r/2fz ~ 1. This is done in appendix B. This shows that the
origin of the existence of a minimum in Veg(¢4) can be tracked back to the log-dependence
in eq. (3.22).

3.4 Excitations around the 5D tachyon

The main interest of the article is to know whether close to the conformal transition there
is a light dilaton, as often claimed in the literature. Therefore we will start considering the
flavor-singlet 07" spectrum of the theory, to analyze later other sectors.

3.4.1 The singlet scalar sector and light dilaton

The flavor-singlet 07" spectrum is composed by the radion (the only scalar in the gravi-
tational sector) and the excitations of ®5 around the background ¢(z). Since the mixing
of the dilaton with ®; is in principle sizable for Ny ~ N, (i? ~ 1), we must consider the
coupled EOM between the scalar sector and the gravitational sector. The equations for
the mass spectrum are given in appendix A.2 and must be solved numerically.

For the lightest mode S; the results are presented in figure 3 for A = £1. We have
normalized the S mass to the one of the lightest vector resonance, m,, being this latter
the lightest state in real QCD and holographic versions [33-35]. Figure 3 shows that the
0T state is always lighter than the vector in all regions of the parameter space. At the
boundary of the regions at which IR-brane stabilization is achieved, the dilaton is massless,
but its mass is roughly below half of the p mass in most of the interior region. We have
checked that for larger 42, the value of mg, increases but not significantly.

To understand why the dilaton mass is small, it is convenient to show how its mass
varies as a function of zig for different values of 7;. This corresponds to moving in vertical
lines in the plane of figure 3 from the bottom to the top, trading the parameter SA for zig
by means of eq. (3.27). We remark however that we will present results for a wide region
of zr, going beyond the allowed region eq. (3.29). This will help us to understand the
origin of the smallness of mg, /m,. The result is shown in figure 5 for different values of
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Figure 5. Masses of the lightest singlet scalar S; normalized to the vector mass. We have taken
k% = 1 (solid line), #? = 4 (dashed line) and #* = 10 (dot-dashed line). LEFT: A = 1 and
m? = —1.5 (—0.5) for the upper blue (lower black) lines. RIGHT: A = —1 and m} = —1.

mg > —2. We see that the dilaton mass starts at zero at zig ~ 21, grows for intermediate
2IR/ %y, and tends again to zero for zr /2y — 0o.

We can understand this behaviour analytically. Assuming that S is the radion/dilaton,
we can analytically obtain its mass by taking the derivative of eq. (3.30) evaluated at the
minimum eq. (3.26). We obtain

) a2 (VY 4
mid ~ 4H2a(ZIR)L2 |:24a < ?\4_21) — V/> — 6]\25] 821R¢(ZIR) ) (331)
5 ZIR

where we have used that at the minimum ¢34, f(da)/n(¢a) ~ —4a(zr)/L derived in
appendix A. In our particular case eq. (3.31) reduces, after normalizing to the vector mass
eq. (3.39), to

2
Mgy

~ P(¢(21r)) Q(P(21R)) By (21R) 5 (3.32)

5
mp
where we have defined the dimensionless functions

#2¢?(z1r) _ 8RZL%¢*(21R)

P(QS(ZIR)) = 6ml2) = 2771_2 A%R ’ (333)
m2=0
Qé(m)) = AlR A6 ()27 — (1 +2)” — 4} (i — 1)] (3.34)
_ L aZIRd)(ZIR)
Bg(21R) = o) o(zm) (3.35)
with

. : 2272 12 2 .

AIR:—% :\/1+’£§4¢ <4+m§—”\§¢2> ., Amr>1, (3.36)
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where we have used eq. (3.16). From eq. (3.32) we can infer different regimes at which the
dilaton can be light:

e The prefactor P(¢(z1Rr)) is suppressed for #2¢?(zr) < 1/L?. Therefore in the limit
I the dilaton is always light, even when formally we take &2 > 1 (see discussion after
eq. (3.24)). Also for large values of L¢, possible in the limit IT with A < 0, we have
P — 1/(L¢)?, and consequently the dilaton mass is suppressed.

e The function Q(¢(zr)) determines the sign of mid. In the limit I we have ¢L — 0
and Ajr — 1, and then ) becomes negative. This means that the dilaton effective
potential has actually no minimum, as we already pointed out in section 3.3. As we
increase zir/z{y, @ increases till becoming zero, corresponding to the points seen in
figure 5 with mg, = 0. One can check that they are inflection points of the dilaton
potential.

e The function 3 is the main responsible for natural light dilatons in Goldberger-Wise
models [10-14]. Since moving simultaneously the UV and IR boundaries does not
change physical quantities, we can deduce

a(zIR)

CL(ZU\/)

showing that 3 is in fact sensitive to the dependence of the tachyon ¢ with variations

aZIR ¢(ZIR) =

aZUV(ﬁ(ZIR) s (3.37)

of the UV boundary, and therefore to the explicit breaking of conformal invariance
(that arises due to the presence of the UV cutoff). For this reason (4 is directly
related with the beta function ), of the dilaton effective coupling of eq. (1.1). B4
explains why the dilaton mass always goes to zero for large zr/2{z. Indeed, as we
approach the limit IT for A > 0, the 5D tachyon goes to the minimum of its potential
where it becomes constant. We then expect 3, < 1. Also in the limit I for A < 0 the
slow-roll conditions are achieved and 4 tends to zero. Unfortunately, these regions of
a parametrically light dilaton are very small in the full parameter space of the model,
see figure 3, since stabilizing the IR-brane at large zir/2{y requires an adjustment
of the parameters of the model. In the limit I we can derive from eq. (3.20) and
eq. (3.24) that B4 ~ 1/(2In(z1r/2{g)), and using the eq. (B.5) we get 4 ~ (3 that is
nonzero but smallish in the regions considered.”

The situation is similar in regions with m; < —2 (see figure 3 or figure 8). The only main
difference is that the dilaton mass goes to zero for small values of zr/z{%, not due to
@ — 0, but because ¢(zr) tends to a constant value as explained in section 3.2.2, and
therefore 845 — 0.

We conclude that the dilaton mass is parametrically smaller than m, at small and large
z1r (respectively corresponding to the left and right boundaries of the regions of figure 3).
At small z1g, the reason is either the existence of an inflection point in the dilaton potential

“Notice that O.;p #(21R) # 020|sn, and then B4 does not measure the growth of the tachyon (that is
power-law ~ 2z?), but its variation as we move the IR-brane (or UV-boundary) that it is much milder
(logarithmic).
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(for the case m? > —2) or that ¢(zr) becomes frozen and S5 — 0 (for the case m? < —2).
Also at small 5D tachyon values its log-dependence on zir gives a smallish 34 and therefore
a smallish dilaton mass. At large zig (limit II) the geometry approaches again AdSs (the
dual model flows towards another approximate CFT,) where scale invariance is partially
recovered and therefore the dilaton mass must go to zero. “Trapped” between these two
limits, the dilaton mass cannot grow much in the intermediate region and then remains
always the lightest resonance (although not parametrically lighter than the others).
Finally, we would also like to discuss the mass of the second lightest singlet scalar, Ss.
This is also obtained numerically (see appendix A.2), and the result is shown in figure 6 for
certain representative values of the parameter space. This scalar Ss is mostly the excitation
around the profile ¢(z) (up to a small mixing with the radion), a Higgs-like state. For this

reason when zjg — zfp, we expect m?gz — M@? — 0, as appreciated in figure 6.

3.4.2 Non-singlet scalars, vector and axial-vector excitations

For the scalars in the adjoint under the SU(Np)y symmetry, ®,, the EOM is given by

[0 — a70.a%0. + a® M3 + a®(3)\ — 2NpA)¢*(2)]®q = 0. (3.38)
As we already mentioned, there are two important difference with respect the singlet scalar
case. First, the scalars in the adjoint do not mix with the radion/dilaton. Second, the
quartic coupling in eq. (3.38) is different from the singlet case due to the presence of Ao.
This implies that the adjoint scalar masses are expected to be different from the singlet
scalar masses, with the magnitude of the mass splitting being sensitive to 42 and As.

We are also interested in the vector Vay = (L + Ra)/v/2 and axial-vector
Anr = (L — Rar)/V/2 spectrum [33-35]. The vector spectrum is only indirectly sensitive
to the tachyon through its impact to the metric. Therefore, since flavor-singlet resonances
(the w in QCD) and adjoint resonances (the p in QCD) feel the same metric and have the
same boundary conditions, they get equal masses. This is an important prediction of the
5D model.”

It is useful to have an approximate analytic value for m,, since we are using this mass
to normalize the other resonance masses. This is possible in the limit in which the 5D space
is approximately AdS, that corresponds to limits I and II, as we explained in section 3.2.
In AdSs we have m, ~ —(37/4)(a/a). We find that a reasonably good approximation for
a/a in the limit of small and large zig is given by eq. (3.16) neglecting the derivative terms
and taking ¢ at z = zig.'! We then have:

. 3malzr) 4
VI PR

(3.39)

We have checked that this value is within < 20% the exact mass of p for the regions of the
parameter space studied in this article.

100f course, mass splittings could be generated at the loop level or from higher-dimensional operators in
eq. (3.2), but these are expected to be suppressed.
1We put to zero the derivative terms to avoid the drastic change of ¢ near the IR boundary -see footnote 8.
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Figure 6. Masses of the two lightest singlet scalars, S; and So, lightest adjoint scalar (ag), lightest
axial-vector (a;) and Fj, normalized to the vector mass for i = —1, A =1, Ao = =2, g2 = 1 and
k2 =1 (4) for the solid (dashed) line.

The axial-vector spectrum depends directly on the ¢ profile via eq. (3.13), being this
responsible for the mass splitting from the vector spectrum. Another important quantity
is the Goldstone decay constant Fj, that is the order parameter of the chiral breaking.
This can be calculated via holography from the axial-vector two-point correlator at zero
momentum [33-35]:

M5L 8ZA(Z)

Fr=Tl4(0) = =5 2= = o , (3.40)

UV

where A(z) is the 5D solution of the axial-vector with Dirichlet UV-boundary condition.

The results (with no approximations) are shown in figure 6 for some representative
values of the parameter space. Following the notation in QCD, we denote with ag and
a1 the adjoint scalar and axial-vector respectively. Since Fy is the only quantity that
depends on M5 (N, in the dual theory), we have fixed its value using eq. (4.4) with N, = 3.
For zir ~ 2y (limit I) where the chiral breaking is small, we see that indeed F; and
(mp—myg,)/m, are small. As we increase zir, we move towards limit IT where the breaking
of the chiral symmetry is larger, as can be appreciated by the growth of F; and Sy — ag
and p — a; mass splittings. On the other hand, the mass of a¢ strongly depends on Ay, and
we have chosen a negative value, \g = —2, that makes the mass splitting with the singlet
sector positive, as lattice simulations (see later) seem to suggest. Similarly to the singlet
scalars, we also have that mg, goes to zero as zir — 27, since the tachyon value goes to
zero in this limit and we recover the chiral symmetry.

Let us briefly comment on what happens for other values of the parameters of the
model. The effect of #? in the mass spectrum is clear from figure 6 where we show the
spectrum for two different values of #2. The main effect is that as we increase &2, the profile
of ¢ becomes flatter and smaller, as appreciated in figure 2, giving a smaller breaking of
the chiral symmetry. The spectrum is mildly sensitive to the values of mg, unless we take
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Figure 7. Masses of the two lightest singlet scalars, S; and Ss, lightest adjoint scalar (ag), lightest
axial-vector (a1) normalized to the lightest vector mass (m,) for constant F; ~ m,/7 as a function
of zir /2fz for A = 1. We have taken #? = 1 (4) for solid (dashed) lines. The left grey (right orange)
band corresponds to the region 0.5 < g2 < 2 for #* =1 (4). LEFT: 7} = —1. RIGHT: mj = —1.5.

m? < —2 that we will discuss later (figure 8). Finally, g? only affects F; and m,, that will
increase as g% increases.

It is more instructive, also in part to compare later our results with lattice simulations,
to analyze the spectrum at constant F,. For this purpose, we adjust g% to fulfill, for the
different values of zir/2fy (or equivalently 6A), the relation Fy ~ m,/7 as in QCD. The
results are given in figure 7 for 7 = —1 (left) and /m? = —1.5 (right). We have kept g2
in the interval 0.5 < gg < 2 and this has limited the possible values of zr /2y to the blue
and orange bands for #? = 1 and 4 respectively.'? The main conclusions from figure 7 are
the following. The lightest resonance is always the scalar Sp, a dilaton-like state. The Sy,
the Higgs-like state, is also smaller or around m,, and can only be larger if we take large
values of zir/2{; (that implies small values of g2 in order to keep Fy ~ m,/7). The ratio
Mg, /M, is closer to 1 than in real QCD where my, /m, ~ 1.6 or previous holographic QCD
versions [33-35]. The mass of ag is also smaller than in real QCD. As we will see in the
following, these properties are also found in lattice QCD for large Np.

The situation is only slightly modified in the region mg < —2. In figure 8 we show
the mass spectrum for m% = —3. The main differences with respect figure 7 is in the
scalar mass spectrum where we appreciate that at smaller values of zir/z{f, where here
2 = e™/Vezyuy, the ap and Sy masses do not go to zero. The reason is the following.
As explained in section 3.2.2, for mg < —2 the profile of ¢ is always non-zero (unless
2R < 2 ~ zuy). This implies that we do not recover the chiral symmetry in the region
of interest, zir ~ 2{%, and the Sy and ag masses never approach zero. Nevertheless, their
masses are predicted to be around the p mass.

The main lesson that we have learned on the mass spectrum of So, ap and a; is that
they seem to tend to be lighter in models close to the conformal transition (as compared
to real QCD that is far from the conformal critical point). What is the reason for that?

12The constraint §A < 0 has not been imposed. If we impose it, we obtain zir/zr > 3.06 (3.37) for
/% =1 (4) in the left plot of figure 7, and zr/2{z > 1.88 (1.9) for the right plot.
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Figure 8. As in figure 7 but for m? = —3.

As it is well-known, the dimension of a scalar operator has a minimal value determined
by its unitarity bound, in this case Dim[O,] = 1, a limit at which the scalar decouples
from the CFT [40]. Therefore it is expected that, as a scalar operator approaches this
decoupling limit, the mass of the lightest resonance associated to it becomes smaller. By
using the AdS/CFT correspondence this means, via eq. (2.4), that the lightest ® resonance
is expected to be lighter the more we approach the BF-bound. We can also understand
this “geometrically”. The wave-function of the lightest scalar grows as 22TV 4+M§>L2, that
implies that the wave-function becomes flatter and spread more into the AdSs5 space as we
approach the BF-bound ]\L%L2 — —4. In this limit, then, the scalar excitation becomes
less sensitive to the IR and therefore its mass is expected to be smaller (see also [41]).1

The fact that the profile of ¢ becomes flatter as we approach the BF-bound also
explains the smaller mass splitting between a; and p than in real QCD. Indeed, if we keep
F; constant, the flatter the ¢ profile, the smaller ¢(zg). Since the a; wave-function is
peaked towards the IR-brane, it is mostly sensitive to the value of ¢(zir). Therefore, as
the 5D mass of ¢ gets closer to the BF-bound, we expect mg, to be less sensitive to chiral
breaking. For the same reason we understand m,, becoming smaller as we increase zir
(see figure 7), as ¢ becomes flatter for larger zR.

4 Comparison with lattice QCD in the large Ng

Lattice results for N. = 3 QCD with Np = 8 have been reported in refs. [1-5]. At such
large value of Np, it is believed that QCD is close to the conformal transition, expected to

13We could make the wave-function even flatter by quantizing differently the scalar following ref. [39]
(valid for —4 < (MsL)?> < —3). In this case we have Dim[O.] = 2 — \/4 + MZL? that means that the
scalar is the dual of an operator of dimension between 1 and 2. We will get in this case the wave-function
22 VAMEL? reaching the full decoupling from the IR (from the CFT) at M2 = —3/L® when the mode
becomes non-normalizable. Nevertheless the scalar becomes UV sensitive and it is not expected to survive
in the spectrum.
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occur around Np ~ 9. It was found [1-5]

Fx
o4, Bongs, Maooq Ma gy (4.1)
mp mp mp mp

where fj is the lightest flavor-singlet 0% state (S; in our notation).!* It is instructive
to compare them with real QCD that is supposed to be far from the conformal edge. We
have [42]

Mag May

Fx
o3, Bonqg, ~13,

~1.6. (4.2)
mp mp mp mp

We see that close to the conformal transition, we spectrum of eq. (4.1) shows, as compared
to real QCD eq. (4.2), lighter fy and ag scalars, and a smaller mass splitting between the
p and a; resonance. Surprisingly, the ratio of F/m, is quite similar to real QCD, showing
that this quantity is quite independent of Ng.

Let us compare our results to the values of eq. (4.1). In order to reduce the number
of parameters, we can match the predictions of our model at the UV with those of QCD
with Ng flavors. In particular, the two-point vector-vector correlator at large momentum
p? is given in our model by [34, 35]

L
P ln(p2z%v) , (4.3)

that matching to that of QCD with N flavors gives

Ms;L N,
g2 12727

(4.4)

Using eq. (4.4) our predictions for the mass spectrum were presented in figures 7 and 8
for Fr = m,/7. We see that our predictions on the spectrum of resonances follow quite
close the pattern eq. (4.1). We have mq, /m, closer to one than in QCD, with the scalars
ap and S7 being lighter than the p in most of the parameter space. Indeed, in the region
1.2 <mg,/m, < 1.4, we find mq,/m, S 1 and mg, /m, S 0.3.

There are other important predictions arising from our holographic model that would
be interesting to check in future lattice simulations. For example, as we already mentioned,
the mass splittings between the adjoint and singlet vectors is zero at leading order, and
can only arise from loop effects or higher-dimensional operators that are suppressed. Also
the second singlet scalar Sy (a Higgs-like scalar) seems to be lighter than the p in the
region where 1.2 < mg, /m, < 1.4. Finding this second resonance so light would be a
clear indication that the lightest scalar S is a dilaton and not a Higgs-like state. Other
properties of the scalars, such as decay constants or couplings, that can also be calculated
in these holographic models, are left for future work.

M attice results are presented for nonzero quark masses. We will assume here that the pattern eq. (4.1)
does not drastically change in the limit M, — 0.
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5 Models for the hierarchy problem

The model described here open new possibilities for generating small scales. Since the
IR-brane is naturally stabilized at zir ~ O(z{y), we have a way to generate exponentially
small scales. Indeed, from eq. (3.21) we have

1 1 1 1

The presence of a scalar with a mass just below the BF bound can also be achieved
dynamically. If the mass of ® is z-dependent, for example, M2 L? = —4 — £(z), where &(2)
slowly varies from negative to positive values as z increases, the mass of ® will cross the BF
bound at the position z = z{;, at which £(z{;y,) = 0. For example, we can consider £(z) =
eln(z/z{;y) with € < 1 (for other cases, see [43]). This z-dependent mass for ® can be easily
achieved by promoting £(2) to a scalar R with a 5D potential V = —/eR(1 + |®|>/L?).
This scalar gets a profile R(z) = /eln(z/zyv), giving a contribution to the mass of ®
proportional to eln(z/zyv).

For M2L? = —4 — £(z) with £(z) = eln(z/z{;y/), the wave-function of the massless
mode is not anymore eq. (3.20) but

P(z) = ¢t]£[x) 22\/In(z/z2uv) Ji 3 (3\@1113/2 Z) : (5.2)

UV

where Jj /3 is a Bessel-function of order 1/3, and the IR-boundary condition eq. (3.17) at
2IR = #{y leads now in the limit € — 0 to

7\[1 3/2 7ICR — 71 T =1,2 (5 3)
eln ~|n n . .
3 ZUV 12 ’ T ’

corresponding to the zeros of the Bessel function. The situation is quite similar to the case
of constant £(z) discussed above; the only important difference worth to mention is that
in the limiting case IT with A > 0, the maximal value of ¢ is not constant, as M(% evolves
logarithmically. The theory has evolved into a deformed CFT.

We leave the implications of these scenarios for the electroweak scale for future work.
We only point out several interesting features. First, the lightness of the dilaton can
have important implications for the LHC [44-46]. Also the fact that the mass of a; is
closer to the mass of p implies smaller values for the S-parameter (this was also pointed
out in ref. [47] for M2 — —4/L? from above), favored by precision experimental data.
Furthermore, having the operator that drives symmetry breaking a dimension close to 2
helps to pass flavor constraints [48]. Also it was shown in ref. [49] that these models can
lead to a long period of supercooling in the early universe with implications in Dark Matter
and axion cosmological abundances.
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6 Conclusions

We have used holography to study strongly-coupled theories close to the conformal tran-
sition, that is the transition from the non-conformal regime to the conformal one. This
transition is expected to happen in gauge theories (such as QCD) as the number of fermions
Np increases. Recent lattice results [1-5] have shown that as we get closer to the conformal
transition, the lightest resonance is a 07 state, claimed to be a dilaton.

We have followed the idea of ref. [6] that suggested that conformality is lost when the
IR fixed point merges with a UV fixed point, as shown in figure 1. Holography tells that
this must occur by an operator O, (probably ¢g in QCD) whose dimension is equal to two
that gets a small imaginary part when leaving the conformal regime. In the gravitational
dual models this is driven by a scalar whose mass goes below the BF bound and becomes
tachyonic.

We have presented a very simple extra-dimensional model with the essential ingredients
to study the conformal transition and calculate the mass spectrum. The model consists
of a five-dimensional gravitational sector with a scalar and gauge bosons associated to the
global SU(Np)p ® SU(Np)r ® U(1)g. We have allowed for the most general Lagrangian
following the 5D EFT rules, and explained the connection between the 5D couplings and
the large N, and Np expansion. To model confinement we cut off the space by an IR-brane
that we showed to be stabilized by the presence of the tachyon.

We have calculated the mass spectrum of this 5D model, showing that indeed the dila-
ton corresponds to the lightest resonance. To understand this property, we have derived
a simple formula for the dilaton mass, eq. (3.32). This shows that the mass of the dilaton
crucially depends on [y (2r) given in eq. (3.35) that is sensitive to the variation of ¢(zr)
as we move the UV boundary (therefore sensitive to the explicit breaking of the conformal
symmetry). Either for small or large values of zr, we have shown that f4(zir) — 0 and
therefore the dilaton mass tends to zero. For small zigr this is due to either the existence of
an inflection point in the dilaton potential (for m? > —2), or that ¢(z1r) becomes constant
(for 7 < —2). Also for small ¢(z), where we can perform analytical calculations, we find a
mild log-dependence of ¢(z1r) with zir (and therefore a smallish 34 (21r)) that can be traced
back to the explicit breaking of the conformal symmetry due to the double-trace marginal
operator O, = |O,|?. For large z1g, also f,(zr) — 0 as the tachyon either goes to the min-
imum of its potential and becomes constant or enter into a “slow-roll” condition, meaning
that the geometry approaches again AdSs. In between these two limiting cases, the dilaton
can become heavier but its mass cannot grow enough to overcome m,. Therefore the dila-
ton is found to be lighter than the rest of the resonances, although it is never parametrically
lighter in most of the area of the allowed parameter space, as shown in figure 3.

We have compared our predictions with lattice results for QCD with a large Np
(eq. (4.1)) and showed that our model predicts quite similar resonance mass pattern: the
lightest state is the singlet 07", with the adjoint scalar ap mass close to m, and lighter
than in real QCD. We have also shown than the mass splitting between the vector (p) and
axial-vector (ap) is smaller close to the conformal transition. We have given a geometric
explanation for these properties. Furthermore, the 5D model proposed here also provides
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extra predictions that lattice could check in the future. For example, we find that the sec-
ond 01 state, S, is mostly a Higgs-like state (¢ state) with a mass around m,, similarly
as ag. The 5D model also predicts that the masses of the flavor singlet and adjoint vector
resonances are similar (as it happens also in real QCD).

There are several interesting calculations that are left for the future. For example,
it is also possible to calculate decay constants and couplings of the resonances along the
lines of refs. [34, 35]. Ome could also easily add explicit quark masses to the model to
see the impact on the spectrum, or study the model at the conformal edge but inside the
conformal window. It could also be interesting to understand what are the holographic
versions of the complex CFT described in ref. [30]. Finally, as discussed above, this type of
models can provide a new approach to the hierarchy problem with a clear impact on LHC
phenomenology as the 07" resonance is expected to be the lightest one. All these issues
clearly deserve more attention.
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A Scalar and gravity coupled equations of motion

In this appendix we present the equations of motion (EOM) of the scalar and gravitational
sector, that we use in this article in order to derive the background and mass spectrum of
the model. For this purpose it is useful to work with proper coordinates, as the metric-
scalar system of EOM simplifies. Once the results are obtained, we have rewritten them in
conformal coordinates eq. (3.5) to be presented in the main text. Conformal coordinates
allow a better interpretation of the results as 1/z determines the natural mass scale at the
position z.

A.1 Scalar-metric system
In proper coordinates {z*,y} the background metric can be written as

ds? = e_QA(y)an:E“dw” —dy?, (A.1)
where 7, = diag(1,—1,-1,-1), 0 < y < yr with the IR-brane localized at y = yir,

and we have conveniently rewritten the warp factor as a = e~4. The 5D EOM for the
metric-scalar system, that follow from the action in eq. (3.1) in these coordinates, are
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given by

b=4Ap+ V', (A.2)
. 1 L2172 /A2

A= \/L2 * Rlz (% N V(¢)> ’ (A-3)
i-Elg (A4)

where in this appendix ¢ = Oy, A= OyA. At the IR-brane we must impose the IR-
boundary conditions:

(Msé+13(0) | =0, (A.5)
(Bpd+@)] =o. (A6)

where the second equation is the junction condition that determines the value yig where
the IR-brane is dynamically stabilized. Plugging eq. (A.3) into eq. (A.2) gives a differential
equation involving only ¢ that can be easily solved. Afterwards, we can solve eq. (A.3)
to obtain the metric warp factor A(y). We can go to conformal coordinates by using
dy/dz = e AW,

Working with proper coordinates, the slow-roll conditions are, in analogy with inflation,

given by
52 <1 and ;8?{%} <1, (A7)

where H = A. Using eq. (A.2)-eq. (A.4), the slow-roll conditions eq. (A.7) can be written
in the following equivalent form:

(V')? £272 ! ~272
——— < K°L° and ——— <R L. (A.8)
(V - ,%21%4)2 V - %21%4
Since we work with polynomial potentials, the two slow-roll conditions eq. (A.8) reduce to

one condition when the feedback of the metric becomes important (V > 521%4) This is

given by
i2¢? > 1/L%. (A.9)
A.2 Singlet scalar-dilaton system

If the dilaton is not a priori assumed to be light, we must solve exactly the eigenmasses
of the scalar sector considering the mixing between the singlet scalar ¢ and the dilaton,
which is of order one for Ngp ~ N.. This is done conveniently in a diagonal gauge where
the brane is straight, corresponding to a constant value of the extra coordinate ygr =const.
In this gauge, the EOM reduces to eq. (3.17) of ref. [37], that we can write as

2
3ms;

Dipn = #2022

2A : 3¢*4 —2A
(& 'lpn with D=1-— 8y may[e ] y (Al())
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with the IR-boundary condition:

I
YIR ¢

(A.11)

YIR

A.2.1 Light dilaton limit

When the dilaton becomes the lightest mode of the scalar sector, we can analytically derive
its mass, as given in eq. (3.31). Here we present the details to obtain this mass.

The physical meaning of the dilaton field is the IR scale that appears dynamically in the
theory. In the 5D model, this is incarnated geometrically by the location of the IR-brane
which is indeed dynamical. The picture is more transparent by allowing the IR position
to be z¥-dependent, i.e., that it is a 4D field. This is equivalent to using a gauge where
the IR-brane location is not straight, but rather defined by the surface y = yr(z*). On
the other hand, the variable that transforms under a scale dilatation of the z* coordinates
is not the proper coordinate y itself but the warp factor a(y). Therefore it is natural to
identify the dilaton field with the warp factor evaluated at the IR-brane location,

b = %e—Awm | (A12)

This variable is also convenient because it is easy to extract the normalization of both the
potential and of the kinetic terms in terms of it. For instance, with this definition the
brane tension term (proportional to /—g!/f with g{ﬁ the induced metric on the brane)
is simply a quartic coupling, dA)j Below we will see that this variable is actually not
canonically normalized in general, although its kinetic term can be easily found. From the
normalization of both kinetic and potential terms then a formula for the mass will follow.

Let us start by the potential term. We can redo the argument around eq. (3.30) in
terms of gﬁd, that allows to reconstruct quite directly the derivative of the off-shell effective
potential, dVeg/ dq@d, which must be proportional to (;35’ and to the junction condition. The
overall normalization constant can be fixed by requiring that in the #? — 0 limit the
effective potential reduces to Veg = (M5 L) [, (V + $%/2) + V,, with ¢ solving the EOM
and depending parametrically on yg. This leads to

AV (hq) Ms , .3 R2LA (V)2 R2L3
T — 94 22 (L 1 — Al
ddy w2 (Léa) T (2M§ V) o - A1y

YR

that differs from eq. (3.30) by an overall multiplicative constant; this does not matter
much however for the mass eq. (3.31) as long as we factor out the same constant in the
kinetic term.

Next, the normalization of the dilaton kinetic term. Another advantage of using a
non-straight gauge is that all the kinetic term contributions arise only from localized terms
on the IR-brane itself. This is welcome because the dilaton is an IR mode and its properties
should arise from the IR only. Moreover, it is also convenient because it allows to identify
these kinetic term contributions in the ‘probe’ limit, where we ignore how the brane bending
sources the 5D metric. Following [50], one quickly sees that the radion/dilaton kinetic term
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arises from two sources. First, the brane tension (potential) term, via the determinant of
the induced metric on the brane,

V=% = a*(ym) (/1 — g?;ﬁj , (A.14)

where (Jyr)? = n* Ouyr Oyyir- Second, the Gibbons-Hawking, proportional to the ex-
trinsic curvature at the y = yir(z*) surface, generates additional terms. The relevant ones
(contributing to the quadratic kinetic part) are proportional to the derivative of the warp
factor at the brane location.

At this point we must make a slight detour, to be more precise on how several quantities
depend on yr, that is, on the dilaton. The key point is that the bulk scalar ¢ is coupled
to the IR-brane (because the IR potential Vj(¢) acts effectively like a scalar charge). For
this reason, the profile of ¢ (and therefore of the metric) in the bulk actually depends on
the IR-brane location even when we allow the brane location to be off shell. To make
this dependence manifest, we can write that the field profile is a function of both the bulk
coordinate and the IR-brane location, ¢ = ¢(y,yr).'> This is indeed implied by eq. (3.20)
and eq. (3.24) in the main text. In this notation, the field evaluated on the IR-brane is
?(yir, yIr ), and the derivative with respect to yir originates from the two arguments. The
boundary condition specifies 0y¢(y, Yir ) |y=yr, but the ‘full’ derivative Oy, d(yir, yir) is
left unspecified and it is nontrivial in a nonlinear theory. As we will see shortly this full
derivative is the one that controls the dilaton mass (it is the one that appears in eq. (3.31)).

The same qualifications apply also for the metric. After all, the ‘Friedman’ eq. (A.3)
forces dya to be an algebraic function of ¢(y, yir) and 9y¢(y, yir), so the warp factor profile
too depends parametrically on ygr, that is, we must write a = a(y, yir). Now, the extrinsic
curvature is related to ya(y, yir)|ly=yy- The dilaton variable ¢4 defined in eq. (A.12)
stands for a(yir, yir), and its derivative with respect to yir, Oy a(yir) is not the same as
O0ya(y, YR ) ly=yr - To make the distinction clear in the following we will keep this notation
and show explicitly the difference. Form eq. (A.3) we have

YIR
—Ina(yr, yr) = AYR, YIR) :/ dj\l 1z + 15 2

yuv

1 R2L2 <¢2<y,ym>

that differentiating with respect to yir leads to

Oy A(yir, yir) = A(yir, yir) + HZS /yIR dy ¢ay“ib 4_ ‘.//(QS) O : (A.16)
wv 14+ BE (G272 - V(9))

where A(yIR,yIR) = (Oylna(y, yIR))‘y:yIR and the rest of the notation should be clear.

This shows that both at small and large &2, the difference between A and 9, A is small.

15We could also include the dependence on the UV brane location, yuy, however we will omit it here
to avoid clutter. The symmetries of the background ensure that ¢ = ¢(y — yuv, yir — yuv). This makes
manifest that the field evaluated at the IR brane, ¢(yir — yuv, yir — yuv), is sensitive to yuv.
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Numerically, in our solutions we finds it to be less than 5%. (The same cannot be said
about the two types of derivatives acting on ¢.)

Returning to the kinetic term: after collecting all terms and using the EOM of the
background, one arrives at [50]

3% A(yr) @®(yir) (Ouyir)? - (A.17)

With the definition eq. (A.12) that implies 8u<2>d = —0y; In a(yir) ba OuyIR, this gives

3M5 L2 A(yIR)
K2 [ayIR,A(yIR)]

As discussed above, one can set A(yIR) ~ Oyr A(yr) to a good approximation, therefore

5 (Ouda)®. (A.18)

the kinetic term is to a good accuracy

3M5 L2 (9u0a)>

. A.19
K2 Oy AYR) ( )
On the other hand, differentiating eq. (A.13) we get
d2veff(<£d) 4 72 I:l (VZ VZ, /) 4 /:| 9 (b(yIR)
G I Np LA M52 |~ V) 4+ | DmPUIR) A20
dd)?l : ’ (bd A Mg Ms ’ ayIR,A(yIR) ( )

by using the chain rule and eq. (A.12). Taking everything together, and the approximate
expression eq. (A.19) we find that the physical dilaton mass is given by

r214 vl
o KL ool (VY 4
My, = —T bq [A ( Mg -V + E Vg ayIR¢<yIR) ) (A'21)

where everything is evaluated at the minimum, which coincides with eq. (3.31) after the
change of coordinates dy = a(z)dz. As a further cross-check, let us note that this expression
agrees with eq. (2.25) of [51]. This was obtained starting directly from eq. (A.10) and
obtaining an expression for the lowest KK mass under the assumption that it is light. The
formula of [51] has two distinct limits corresponding to whether or not the light dilaton is
incarnated by the IR-brane position. It is easy to check that in the limit where the dilaton
is the displacement of the IR-brane, eq. (A.21) agrees with eq. (2.25) of [51].

Finally, we remark that using the EOM of the background we can rewrite eq. (A.17) as

— 5V (0um)) P (um) Guum)*. (A.22)

One immediately realizes an important implication: the positivity of the kinetic energy
restricts Vi (¢(yr)) < 0. This is equivalent to restricting the effective tension on the IR-
brane to be negative — as it should be in order that it gives an end to the geometry at
yir. If we demand that this constraint is satisfied by all the solutions, including the one
with ¢(z) = 0 (for € < 0), then this translates into a constraint on the IR-brane tension
‘detuning parameter’,

5A <6. (A.23)

This reproduces the upper bound in (3.29), i.e., that the brane on the IR (on the ‘interior’)
side of the geometry has negative tension.
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B A tale of two scalars: the 4D effective potential of a tachyon and
a dilaton

When both 4D tachyon and dilaton masses are smaller than 1/z1r, we can easily understand
the physics of the system by just looking at the 4D effective theory for these two modes.
This is possible when working close to the critical point, zir =~ z{i (limiting case I of
section 3.2), where we can obtain the masses and quartic couplings of the model as a
perturbation of the model around zg = 2fz. We find

1

L. 1 1
VLN, Ve (@0 60) = 5 (606767 + Pt + phadi (B.1)

where ¢q = 1/z1r is the dilaton and ¢; the 4D tachyon. We are working here with non-
canonically normalized fields:

1

1 2 3 2
I hd , B.2
MsLNg Liin 2(8“¢t) +g2(a"¢d> (B:2)

Eq. (B.1) can only give a non-trivial minimum for ¢4 < pe = 1/2{z such that m?(¢g) is
negative. In this regime, this is given by

1 (¢a) = BIn(¢a/pc) (B.3)

where f is given in eq. (3.22). Recall that eq. (B.1) is only valid for m?(¢,) < 1 that
requires either |In¢g/u.| < 1 or f < 1 (m? — —2). The tachyon quartic A; has a mild
dependence on mg and is derived below (section B.1), while the dilaton quartic is given by
the detuning of the IR-brane tension:

SA

The presence of the tachyon leads to a non-trivial potential for the dilaton with a

m %4 _ 1 [1 + \/1+16)\t>\d/62} . (B.5)

fe 4
We see that the largest value of the dilaton is given by In (¢4) /p. < —1/4 that implies that
the IR-brane can never be stabilized very close to the critical point zfz where the tachyon

minimum at

mass is small. At the closest value In (¢g)/p. = —1/4, one finds that the minimum is an
inflection point where the minimum coincides with a maximum (and one can check that
the dilaton mass is zero at this point). Nevertheless, demanding that the quartic couplings
are positive, to guarantee that for e < 0 the theory is conformal (¢4 — 0), one obtains
In ($a) /1e < —1/2.

We can also find the masses of the dilaton and tachyon by calculating the eigenvalues
of the matrix of second derivatives at the minimum eq. (B.5) after canonically normalizing
the fields. These give rather complicated functions of \;, A\g and 8. For 8%2/(Ag)\) < 1
they reduce to

9 28 ik?

m ~y)
%0 52 46/ M /g

~.2

0, = (4 VRD) 0% (B9
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Figure 9. Masses of the two scalars, that play the role of S; and Ss, as a function of p./{¢4) and
normalized to (37/4) (¢4). We have taken A = 1, 4% = 6 and 7} = —0.5, —1.5, —1.75 for the black,
blue and red lines respectively. The solid (dashed) line indicate the lightest (heaviest) mode. The
quartic coupling A4 varies along the horizontal axis according to eq. (B.5). The vertical line marks
where Ay = 0, having Ay > 0 in the region to the right of it.

while for 82/(Ag\¢) > 1 these are

o BB
¢ 6 2\

With an abuse of notation, we have identified the lightest of the two modes as the dilaton,

(pa)”,  m3, ~ B (¢a). (B.7)

even though the eigenmodes corresponding to eq. (B.7) can have a sizeable mixing in the
¢q — ¢r basis. We show the full dependence on the parameters in figure 9, where we keep
A+ and S fixed and vary Ay for various values of mg (that is, of Ay and (3). One clearly sees
several features:

i) the solutions ‘start’ at In(u./(¢q)) = 1/4 where the dilaton is massless, correspond-
ing to the inflection point. This requires however A\; < 0 that we already said is
inapplicable.

ii) the dilaton mass is suppressed by one power of g for MxA\g ~ O(1) (eq. (B.6)). In
our model 8 can be small only near mg = —2. In that case the suppression reads
m?bd ~ (m% + 2)2. Keep in mind, however, that mg = —2 is not protected by any
symmetry, so this is not representative of the full allowed parameter space.

iii) the shapes of the lines resemble qualitatively those of figure 5. Nevertheless, the
agreement between this and the 5D model is only expected for small m?(¢,), since
this measures how large is the tachyon VEV. A similar analysis can be done with
more general choices of Mm?(¢4) and the same qualitative behavior is observed quite
generically as long as 7m?(¢y) changes sign and has a moderate dependence on ¢g.
Interestingly enough, it suffices to take that m?(¢y) goes to a constant as ¢g — 0, in
order to obtain a dilaton mass with a rising-decreasing shape as in figure 5

When the dilaton is lighter than the tachyon, for example for § < 1, we can alterna-
tively integrate out the tachyon from eq. (B.1) and obtain eq. (1.1) with

A 2
Nor(9a) = 24 = L1 (Ga/c) (B3)
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that tells us that the explicit breaking of scale invariance is logarithmic, as expected from
the dual theory due to the presence of the double-trace marginal operator O4. Eq. (1.1)
with eq. (B.8) leads to eq. (B.5) and to the dilaton mass of eq. (B.6). As expected the
dilaton mass is proportional to

2

Bron () = —fAt In({ga)/1e) ~ B, (B.9)

where in the last equality we have used eq. (B.5) with 8 < 1.

B.1 Effective quartic coupling for the tachyon

The quartic self-coupling for the 4D tachyon can be obtained readily by plugging into
the 5D potential quartic term the normalized profile of the 5D tachyon field near the
condensation point and performing the integral over z. In the limit € — 0, zuv/2{z — 0
with /€ In (zuv/z{y) finite, one obtains

3 9+ 22
N=(2 b A B.10
! <8+2(10+6mb+m;§)2> (B-10)

Even without any quartic self-coupling A, the tachyon field experiences a stabilizing effect
from its coupling to the metric. This is manifest in the background equation eq. (A.2),
because the ‘friction’ term which depends on ¢ itself, see eq. (A.3). More explicitly, the
metric can be integrated out by using eq. (A.3) to obtain a closed equation for ¢

d=14

1 522 qu
L? 12 2

+ = - V(¢>> o+ V'(9).

2. one identifies a cubic term in the equation of motion

I%2L3 QSQ .
6 (2 - V(¢)> ¢.

This suggests identifying the effective quartic coupling from the 5D integral of ¢ times the

At leading order in &

previous expression with the normalized tachyon profile. This gives

A, — 72 128 + 12817 + 601 + 12/ + 1 ‘
6(10 + 61 + ;)2

(B.11)

The expressions in eq. (B.10) and eq. (B.11) define the functions cy, introduced in
eq. (3.23).
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