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SUMMARY

Mammalian gametogenesis involves dramatic and
tightly regulated chromatin remodeling, whose regu-
latory pathways remain largely unexplored. Here, we
generate a comprehensive high-resolution structural
and functional atlas of mouse spermatogenesis by
combining in situ chromosome conformation capture
sequencing (Hi-C), RNA sequencing (RNA-seq), and
chromatin immunoprecipitation sequencing (ChIP-
seq) of CCCTC-binding factor (CTCF) andmeiotic co-
hesins, coupled with confocal and super-resolution
microscopy. Spermatogonia presents well-defined
compartment patterns and topological domains.
However, chromosome occupancy and compart-
mentalization are highly re-arranged during pro-
phase I, with cohesins bound to active promoters in
DNA loops out of the chromosomal axes. Compart-
ment patterns re-emerge in round spermatids, where
cohesin occupancy correlates with transcriptional
activity of key developmental genes. The compact
sperm genome contains compartments with actively
transcribed genes but no fine-scale topological do-
mains, concomitant with the presence of protamines.
Overall, we demonstrate how genome-wide cohesin
occupancy and transcriptional activity is associated
352 Cell Reports 28, 352–367, July 9, 2019 ª 2019 The Author(s).
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with three-dimensional (3D) remodeling during sper-
matogenesis, ultimately reprogramming the genome
for the next generation.
INTRODUCTION

Mammalian genomes are packaged into a tailored chromatin

structure, the regulation of which depends on several superim-

posed layers of organization, including epigenetic modifications

(of both the DNA and nucleosomes) and the higher-order organi-

zation of chromatin compartments inside the nucleus. This orga-

nization is achieved by chromatins folding into loops, topologi-

cally associating domains (TADs), and compartments (A and

B), which can ultimately influence transcriptional activity (Dixon

et al., 2012; Lieberman-Aiden et al., 2009; Rao et al., 2014).

How these different levels of chromatin organization interact dur-

ing the cell cycle has just begun to be elucidated (Dekker et al.,

2013). In somatic cells, the highly compartmentalized folding of

the genome in interphase is lost during mitosis, when chromo-

somes are linearly organized in consecutive chromatin loops

(Gibcus et al., 2018; Naumova et al., 2013). Recent studies in

mice have suggested remarkable chromatin architecture reprog-

ramming during the formation of germ cells (Alavattam et al.,

2019; Patel et al., 2019; Wang et al., 2019) and early develop-

ment (Du et al., 2017; Flyamer et al., 2017). However, how the

higher-order chromatin organization is configured during all

stages of spermatogenesis, and how insulator proteins and
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cohesins determine this organization to regulate transcription

activity, remains largely unexplored.

Germ cells represent a unique cell model, where unipotent

diploid cells (gonia) undergo extensive cellular differentiation

(gametogenesis) to form highly differentiated cells (oocytes

and sperm) that ultimately form a totipotent embryo. In the

case of mammalian males, this complex process is divided

into three stages: (1) proliferation and differentiation of sper-

matogonia (Spg); (2) meiosis, a reductional division that pro-

duces haploid cells through two consecutive cell divisions

(meiosis I and meiosis II); and (3) spermiogenesis, where round

spermatids (RSs) are transformed into densely compacted sper-

matozoa. These sequential developmental stages involve dra-

matic and tightly regulated chromosomal re-organization and

chromatin remodeling. It is during the firstmeiotic prophase (pro-

phase I) that homologous chromosomes align, pair, synapse,

and recombine. All these processes are interconnected through

four sequential stages: leptonema, zygonema, pachynema, and

diplonema (Handel and Schimenti, 2010).

At leptonema, chromosomes cluster by their telomeres to the

nuclear envelope in the bouquet (Reig-Viader et al., 2016). This

structure promotes the pairing of homologous chromosomes

by the formation of proteinaceous structures along chromo-

somes formed by cohesins (i.e., REC8 and RAD21L; Gutiérrez-

Caballero et al., 2011; Llano et al., 2012) and proteins of the

synaptonemal complex (SC). Meiotic recombination is triggered

by the formation of double strand breaks (DSBs), caused by the

endonuclease protein SPO11 (Keeney et al., 1997). DSBs

are then initiated at zygonema, leading to synapsis between

homologous chromosomes. Subsequently, at pachynema, SCs

are completely established, creating bivalent structures with

resolved recombination producing crossover events. At diplo-

nema, homologous chromosomes start to segregate by the

disassembly of SCs to produce spermatocytes II, which undergo

a second meiotic division resulting in RSs. Finally, spermatids

become sperm ready for fecundation through spermiogenesis,

a differentiation stage that includes changes in cell morphology

and DNA packaging via the replacement of histones by prot-

amines (testis-specific histone variants).

Despite recent analysis of genome conformational changes in

male germ cells (Alavattam et al., 2019; Patel et al., 2019; Wang

et al., 2019), how the higher hierarchal level of genome organiza-

tion is related to gene expression and insulator proteins during

spermatogenesis remains unknown. It has been generally

accepted that there are two waves of active transcription: one

before entering meiosis and a second in the transition from

RSs to sperm (Sassone-Corsi, 2002). However, recent transcrip-

tome analysis in germ cells suggests that these two transcrip-

tional waves might take place earlier (da Cruz et al., 2016), which

evidences a finely tuned regulation of chromatin remodeling and

active transcription. Here, we implement a reproducible flow

cytometry protocol to isolate enriched male mouse germ cell

populations representing all stages of spermatogenesis: pre-

meiotic (Spg), meiotic (leptonema, zygonema, pachynema, and

diplonema), and post-meiotic cells (RSs and sperm). On these

sorted germ cell populations, we performed genome-wide chro-

mosome conformation capture analysis (in situ Hi-C [chromo-

some conformation capture sequencing]), coupled with RNA
sequencing (RNA-seq) and chromatin immunoprecipitation

sequencing (ChIP-seq) of CCCTC-binding factor (CTCF) and

meiotic cohesins (Figure 1A). These data have permitted the

comprehensive study of the close interplay between chromatin

higher-order organization dynamics and function during mouse

spermatogenesis.

RESULTS

Dynamic Overall Chromatin Structure Reorganization
during Spermatogenesis
To unveil changes in chromosome conformation during sper-

matogenesis, we developed a reproducible fluorescence-acti-

vated cell sorting (FACS) protocol to obtain, based on DNA

content and chromatin complexity, highly enriched (90.4%

average enrichment) cell fractions for Spg, primary spermato-

cytes at the leptonema-zygonema (L/Z) and pachynema-diplo-

nema (P/D) stages, RSs, and sperm (Figures 1B, 1C, and S1)

(STAR Methods). For each germ cell fraction, as well as for a

mouse primary fibroblast cell line as a somatic profile, we per-

formed in situ Hi-C (Rao et al., 2014) (Figures 1D�1F and S1).

After filtering the raw Hi-C interactions, an average of 237.86

million valid interactions were obtained per cell type (Tables

S1 and S2). The comparison between biological replicates re-

sulted in highly reproducible Hi-C maps (Figure S2).

Genome organization changed during spermatogenesis (Fig-

ures 1F and 2A�2F), as reflected by the analysis of distance-

dependent interaction frequencies (Figure 2C) and inter- and

intra-chromosomal interaction ratios (Figure 2D). Fibroblasts

showed high inter- and intra-chromosomal interaction ratios

(>0.6) inversely correlated with chromosomal size (p < 0.001),

suggesting distinct chromosomal compartmentalization within

nuclei (Figure 2D). In contrast, inter- and intra-chromosomal

interaction ratios decreased 2-fold to about 0.3 for all chromo-

somes in Spg, suggesting that a commitment to enter meiosis

is accompanied by a drastic remodeling of chromosomal terri-

tories within the nucleus. Importantly, this decrease in inter-

and intra-chromosomal interactions was concomitant with the

dynamic changes of the so-called A-B compartments (Lieber-

man-Aiden et al., 2009). Likewise, fibroblasts and Spg, both in

interphase, shared similar contact probability patterns at short

distances (from 0.5 to 7 Mbp) and had the lowest intermediate

interactions (between 1 and 10 Mb) (Figure 2C). However, at

larger genomic distances (>10 Mb), fibroblasts showed a slight

change in the slope at 10 Mbp with fewer interactions, whereas

Spg maintained the same trend up to 100 Mbp.

As meiosis progressed, compartments were mostly lost in

primary spermatocytes (L/Z and P/D), coinciding with pro-

phase I, when homologous chromosomes condensate, align,

pair, synapse, and recombine (Figures 2B, 3A, and 3B). Consis-

tent with this absence of compartments during prophase I,

eigenvector values were close to 0 (Figures 2B, 3A, and 3B),

and inter- and intra-chromosomal interaction ratios reached a

minimum for all chromosomes (Figure 2D). An exception was

the sex chromosomes in P/D, which had detectable variations

in the inter- and intra-chromosomal interactions ratio. This un-

usual pattern most likely reflects meiotic sex chromosome inac-

tivation (MSCI), the process by which the X and Y chromosomes
Cell Reports 28, 352–367, July 9, 2019 353



Figure 1. Higher-Order Chromatin Structure during Spermatogenesis
(A) Experimental workflow: Hi-C, ChIP-seq, and RNA-seq on fluorescence-activated cell sorting (FACS)-enriched mouse germ cells.

(B) Flow cytometry Hoechst Blue (UV355-460/50) and Hoechst Red (UV355-670/30) plot showing spermatogonia (Spg), leptonema-zygonema (L/Z), pachynema-

diplonema (P/D), secondary spermatocytes (2c), round spermatids (RSs), and sperm. Recovered germ cell fractions presented the following average enrichment:

91% for Spg, 88.7% for L/Z, 89.2% for P/D, 92.9% for RS, and 90% for sperm.

(C) Histogram of the differential DNA content showing cell events for each FACS-isolated germ cell population (Hoechst Red, UV355-670/30).

(D) Overview of the spermatogenesis process (adapted from Reig-Viader et al., 2016). Numbers between parentheses indicate the diploid (2n) haploid (n) number

for each cell type and the number of chromatids per chromosome (4c, 2c, or c).

(E) Representative immunofluorescence images showing DAPI-stained DNA (gray/blue) and specific meiotic proteins for the different cell populations included in

the present study. Fibroblasts and Spg have DAPI-stained DNA in gray. For L/Z and P/D, DAPI is shown in blue, SYCP3 in green, and gH2AX in red. The image

represents a mosaic of two individual captured cells. In RSs, DAPI is blue, and H3K9me3 (marker for the constitutive heterochromatin at centromeres- chro-

mocenters) is red. Scale bars, 10 um.

(F) Iterative correction and eigenvector decomposition (ICE)-corrected Hi-C matrices for chromosome 15 at a 50-kbp resolution for the cell types analyzed. Deep

blue lines indicate non-mapped bins.

See also Figure S1.
are transcriptionally inactivated in primary spermatocytes,

forming the sex body at the periphery of the nucleus (Turner,

2007). Another structural feature characteristic of early meiosis

that was revealed in our analyses was the bouquet structure.We

detected high inter-chromosomal contact between telomeres in
354 Cell Reports 28, 352–367, July 9, 2019
primary spermatocytes, being more prominent in L/Z (Figures

2E and 2F). Both L/Z and P/D had an enrichment of counts

at the most proximal sub-telomeric bins, but cells at L/Z had

significantly higher interactions (Wilcoxon test, p < 0.05) than

any other cell type (Figures 2E and 2F). The analysis of the



(legend on next page)
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distance-dependent interaction frequencies revealed a distinct

chromosome organization for primary spermatocytes, with two

abrupt changes in slope: the first at 2.5�4.5 Mbp and the sec-

ond at 40 Mbp (Figure 2C).

After meiosis, haploid cells (RSs and sperm) had a distinctive

higher-order chromatin structure. Although A-B compartments

re-appeared after being lost in previous stages, they presented

as a blurry plaid pattern of larger mean size (0.86 Mbp in RSs

and 0.93 Mbp in sperm) compared to Spg (Figures 2F, 3B, S3A,

and S3B; Table S3). Interestingly, the proportion of genomic

bins with the same compartment status (A or B) was higher be-

tween haploid cells (r2 = 0.80) than between haploid cells and

Spg (RSs versus Spg, r2 = 0.58; sperm vs Spg, r2 = 0.48). This

pattern of differential compartmentalization in RSs was also vali-

dated by three-dimensional fluorescence in situ hybridization

(3D-FISH), where physical distances between pairs of loci

increased compared to Spg and fibroblasts (Figure S4; Table

S4). Moreover, the inter- and intra-chromosomal interaction ratio

values were higher in RSs for all chromosomes, with the excep-

tion of sex chromosomes (Figure 2D), which are known to form

post-meiotic sex chromatin (PMSC) attached to the chromocen-

ters (Namekawa et al., 2006). Thus, the formation of PMSC corre-

lates with chromatin remodeling that results in low inter- and

intra-chromosomal interactions. Remarkably, in sperm, inter-

chromosomal interactions were greater than intra-chromosomal

interactions, compared to previous stages, and inversely corre-

lated with chromosomal size (p < 0.001) (Figure 2D). Since ratio

valueswere higher than in fibroblasts, the higher-order chromatin

structure is likely densely packed in sperm but remains in chro-

mosome territories. The sex chromosomes did not follow the

autosomal pattern; the interactions ratio decreased by 2-fold

(Figure 2D). In both haploid cell types, we detected higher inter-

chromosomal contact between centromeres, suggestive of the

presence of the chromocenters (Figures 2E and 2F). In fact, it is

known that in mouse sperm, centromeres are located at the

center of the nucleus, while telomeres attach to the nuclear enve-

lope (Haaf andWard, 1995). This particular compartmentalization

in both cell types was also reflected by a decrease in interaction

frequencies as genomic distance increased (Figure 2C).

These observations indicate that the genome suffers a major

structural re-organization during spermatogenesis with dy-

namic and dramatic changes in chromosome occupancy and

compartments.
Figure 2. Chromosomal Organization in Interphase, Pre-meiotic, Meio

(A) Genome-wide ICE-corrected heatmaps at 500 kbp for the cell types analyzed

(B) Chromosome 18 region-specific ICE-corrected heatmaps at 50 kbp (from

cell types.

(C)ContactprobabilityP(s) asa functionofgenomicdistance inall cell types for autos

correspond to the fractal (green) and equilibrium (red) models (Lieberman-Aiden et

(D) Inter- and intra-chromosomal interaction ratios for each chromosome and cell

ratio and chromosomal size (autosomes only) are shown for each cell type.

(E) Heatmaps showing normalized inter-chromosomal interactions between chro

(F) Left panel: boxplots depicting inter-chromosomal interactions per million at s

(Wilcoxon test, **** < 0.0001; n.s., not statistically significant when compared

centromeres and telomeres in L/Z, P/D, RSs, and sperm. Dots represent centrom

in the center of the cell forming the chromocenter.

Fib, fibroblast; Spg, spermatogonia; L/Z, leptonema-zygonema; P/D, pachy

chromosomes; tel, telomeres of non-centromeric ends. See also Figures S2–S5.
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Two Rounds of TAD Reorganization in Primary
Spermatocytes and Sperm
To further investigate the dynamics of the higher-order chro-

matin structure at the sub-megabase scale, we identified

TADs and examined the robustness of their boundaries using

TADbit (Serra et al., 2017) at 50-Kbp resolution. Similar to the

A-B compartment patterns, TADs were well defined in both

fibroblasts and Spg (Figure 3C). In primary spermatocytes,

however, there was a substantial reduction in the variance of

TAD insulation score as well as an increase in TAD size, espe-

cially in L/Z (Figures 3C�3E). TAD insulation scores were

partially recovered in RSs but, in contrast to previous observa-

tions (Jung et al., 2017; Wang et al., 2019), were drastically

reduced in sperm cells (close to 0) (Figures 3D, 3E, and S5).

A total of 2002 TADs, with an average length of 1.3 Mbp,

were identified in fibroblasts, which was more than in Spg

(834 TADs, mean size of 3.26 Mbp) (Figure 3C; Table S3).

Although fewer TADs were identified in primary spermato-

cytes (305 TADs in L/Z and 294 TADs in P/D), their bound-

aries had high strength scores (74.25% of TADs in L/Z,

and 79.59% in P/D, had scores >9; Table S3). This pattern

contrasted with RSs, which had a large number of small

TADs (n = 4,649) with low border strength scores (Figure 3C;

Table S3). Meta-border plots confirmed this dynamic (Fig-

ure 3F). These results demonstrate that TADs also underwent

a large reorganization in genome structure during spermato-

genesis, concomitant to larger changes in chromosome terri-

tories and compartments.

In summary, our data suggest at least four distinct patterns of

chromatin interactions during spermatogenesis progression: (1)

interphase-like organization (e.g., Spg); (2) a condensed pattern

in prophase I (i.e., L/Z and P/D) where A-B compartments and

TADs are largely lost; (3) RSs with a blurry compartment plaid

pattern; and (4) sperm where TADs are reduced, but A-B com-

partments are observed.

Functional Compartment Switching during
Spermatogenesis
To assess whether A-B compartmentalization changes during

spermatogenesis correlated with differential expression of resi-

dent genes, we investigated changes of compartment type be-

tween the stages where compartments could be clearly

observed. The proportion of the genome organized in the
tic, and Post-meiotic Cells

.

20 Mbp to 60 Mbp), depicting compartment signal (first eigenvector) for all

omes (leftpanel) and theXchromosome (rightpanel).Discontinuousstraight lines

al., 2009). Gray-shadowed area expands the genomic region from 0.5 to 7 Mbp.

type. Correlation values (**p < 0.001) between the inter- and intra-chromosomal

mosomes 1 and 2 in all cell types. Red circles represent high-contact regions.

ub-centromeric regions (from the centromere up to 3.5 Mbp) for all cell types

to fibroblasts). Right panel: schematic representation of chromosomes and

eres (pink) and telomeres (green). In RSs and sperm, all centromeres associate

nema-diplonema; RS, round spermatids; cen, centromeres of acrocentric



Figure 3. Chromosome-specific A-B Compartment Profiles and TAD Signals

(A) Compartment signal (first eigenvector) across chromosome 18.

(B) Density plots of eigenvector values considering autosomes.

(C) TAD border alignments along chromosome 18. Dark gray arches represent TADs with higher intra-TAD interactions than expected. TAD border robustness

(from 1 to 10) is represented by a color gradient.

(D) Representation of TAD insulator score in mouse chromosome 18.

(E) Variance of the TAD insulation scores for autosomes (left panel) and the X chromosome (right panel).

(F) Meta-plots for all TAD boundaries detected in fibroblasts (n = 2002), Spg (n = 834), L/Z (n = 305), P/D (n = 294), RSs (n = 4649), and sperm (n = 1042).

Fib, fibroblast; Spg, spermatogonia; L/Z, leptonema-zygonema; P/D, pachynema-diplonema; SpII, spermatocytes II; RS, round spermatids. See also

Figures S3–S5.
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Figure 4. Dynamics of Gene Expression during Gametogenesis

(A) Two extensive waves of transcription take place during spermatogenesis.

(B) Differentially expressed genes (DEGs) for each pairwise comparison, including known nuclear protein-coding RNA (RefSeq), long noncoding RNA, antisense

RNA, processed transcripts, and mitochondrial nuclear protein-coding RNA.

(C) Boxplots representing genome-wide expression (as fragments per kilobase of transcript per million mapped reads [FPKM] values) according to A-B

compartment assignment (N/A, not assigned compartments).

(D) Gene Ontology (GO) analysis of expressed genes in cell-specific A compartments. Bubble size represents the number of genes assigned to eachGO. Only GO

terms with two or more genes are represented.

Spg, spermatogonia; P/D, pachynema-diplonema; RS, round spermatids.
A compartment was 45.7% in fibroblast and reduced to 39.4% in

Spg, before a rise in RSs (46.9%) and sperm (48.6%). Since A

compartments correlate with open chromatin and active genes

(Lieberman-Aiden et al., 2009), the switching of compartment

types can provide insight into genome function during spermato-

genesis. We therefore performed low-input RNA-seq (four bio-

logical replicates) on a selected group of the enriched germ

cell populations: Spg, primary spermatocytes (P/D), RSs, and

sperm. After filtering, an average of 35.37 million paired-end

reads was obtained per cell type (Table S5).

The total number of expressed genes decreased as spermato-

genesis progressed, with 19,145 expressed in Spg, 15,480 in

P/D, 14,706 in RSs, and 13,646 in sperm. Pairwise differential
358 Cell Reports 28, 352–367, July 9, 2019
gene expression analysis between cell types generated lists of

differentially expressed genes (DEGs), which were classified as

(1) protein-coding RNA; (2) long non-coding RNA (lncRNA); (3)

antisense RNA (asRNA); (4) processed and unprocessed pseu-

dogenes; or (5) unannotated and unconfirmed transcripts

(Figure 4; Table S6). The majority (76.55%) of DEGs were pro-

tein-coding, with their abundance reducing as spermatogenesis

progressed. This was coupled with an increased expression of

lncRNAs and non-coding asRNAs and pseudogenes (Figure 4;

Table S6). Consistent with the global shutdown in gene expres-

sion that occurs during meiosis (Sassone-Corsi, 2002), the net

balance between pairwise comparisons (Spg versus P/D, RSs

versus sperm, and Spg versus sperm) was negative, which



suggests higher transcriptional activity in RSs than in primary

spermatocytes (Figures 4A and 4B).

Consistent with a correlation between chromatin remodeling

and active transcription, genes in the A compartments had

significantly higher expression than those in the B compartments

(Figures 4C and 4D). As expected, genes related to spermato-

genesis (e.g., morphogenesis and cell differentiation) were en-

riched in the A compartments (Figure 4D). In RSs, during the sec-

ond wave of transcription (Figure 4A), the most representative

Gene Ontology (GO) term was ‘‘system process,’’ which

included 27 genes involved in sensory perception, including

olfactory receptors. Likewise, genes with important roles in fertil-

ization were also expressed in RSs, including the acrosome

reaction (e.g., Plcz1 and Smcp). Therefore, the transformation

of RSs into spermatozoa was accompanied by the transcription

of genes related to spermiogenesis and sperm function located

in newly created A compartments.

Differential CTCF and Cohesin Loading Correlates with
Gene Expression and Chromatin Remodeling
Western blots confirmed the presence of CTCF and meiotic

cohesins (REC8 and RAD21L) in whole-testis protein extracts.

Immunofluorescence (IF) then revealed a previously unreported

pattern for CTCF, with signal along all chromosome axes in pri-

mary spermatocytes that were more intense on autosomals than

on the X (Figure S6). There was a weak CTCF signal in RSs and a

clear, cloud-like signal for cohesins (Figure S6). ChIP-seq anal-

ysis confirmed these differences in IF signal intensity and density

(Figure S6). In fact, we detected 19,347 CTCF ChIP-seq peaks in

primary spermatocytes (P/D), with the vast majority (97.1%)

being lost in RSs (Figures 5A and 5B).

We then performed ChIP-seq in P/D and RSs on the meiotic

cohesins REC8 and RAD21L. In primary spermatocytes (P/D),

we detected 11,618 REC8 and 9639 RAD21L peaks distributed

across the genome, with substantial overlap (55.8% for

RAD21L and 46.3% for REC8) (Figures 5A and 5B). Of the total

peaks, 3999 were common to all CTCF (20.6%), RAD21L

(41.5%), and REC8 (34.4%). In RSs, we found 11,559 REC8

peaks and 12,507 RAD21L peaks, of which 6383 (51% of

RAD21L and 55.2% of REC8) overlapped (Figures 5A and 5B).

The vast majority (90.5%) of REC8 peaks observed in primary

spermatocytes were maintained in RSs, which contrasted

RAD21L, where 40% of the peaks were specific to RSs.

Despite the overlap of RAD21L and REC8 peaks detected

genome-wide in P/D, the distribution of REC8 and RAD21L im-

munolabeling along the axes was not continuous or significantly

correlated, as measured by super-resolution microscopy (r2 =

0.15; Figure S6). The close proximity of meiotic cohesins

genome-wide (on average, peaks are scattered every 264.3

Kbp for RAD21L and 219.2 Kbp for REC8) was much lower

than the estimated DNA loop size at the axes for mouse pachy-

nema (1.5�2 Mbp; Patel et al., 2019). This pattern suggests that

the peaks correspond not only to cohesins loaded at the chro-

mosomal axes (expected every 1.5�2 Mbp), but also to DNA

loops out of the axes. Given the close interplay among the orga-

nization of chromosomal axes, DNA loops, and the formation of

DSBs during early prophase I (Kleckner et al., 2003; Ruiz-Herrera

et al., 2017; Wang et al., 2015), we examined the correlation
between cohesins and DSBs (SPO11-oligos hotspots; Lange

et al., 2016) and H3K4me3 (Brick et al., 2012). Interestingly,

both SPO11 hotspots and H3K4me3 marks correlated with co-

hesin occupancy (STAR Methods; p < 0.001), concomitant with

open chromatin states. Since DSBs are known to occur

genome-wide before being recruited at the chromosomal axes

to be repaired (Lange et al., 2016), the observed correlation be-

tween SPO11 hotspots and cohesion peaks also suggests the

presence of cohesins in DNA loops out of the axes.

Remarkably, we detected a correlation of cohesin genomic

distribution with gene expression and local insulation in both

primary spermatocytes and RSs (Figures 5 and 6). In P/D,

most cohesin peaks (80.7% of RAD21L and 83.3% of REC8)

were located in promoter regions (less than 2 kbp from the tran-

scriptional start site [TSS]) of genes with significantly (p < 0.01)

higher expression than genes without promoter-associated

cohesin peaks (Figures 5C�5E). In RSs, cohesin peaks associ-

ated with TSSs were reduced to 77.7% for REC8 and 45.5%

for RAD21L, suggesting an unequal re-distribution of meiotic co-

hesins later in spermatogenesis (Figures 5C and 5D). Regardless

of RAD21L re-distribution, the overlapping of genes with

RAD21L in their promoters between P/D and RSs was statisti-

cally significant (p = 0e+00, Fischer’s exact test). Despite this

reduction of peaks in RSs, genes with cohesin peaks in their

TSSs still had significantly higher expression than genes without

peaks (Figures 5E and 5F). In contrast, only 25.9% of the CTCF

peaks were within promoter regions (i.e., 2 kbp upstream of

TSSs) in primary spermatocytes, with the majority located in in-

tergenic regions (Figure 5C). In all cases, CTCF and cohesin

peaks were preferentially located (nearly 80% of peaks) in A

compartments (permutation test, STAR Methods; p < 0.001),

consistent with a correlation between chromatin remodeling

and active transcription. Although the TAD insulation score

was reduced in primary spermatocytes (Figures 3D and 3E),

some TADs still remained, with boundaries enriched for CTCF

and cohesins (STAR Methods; p < 0.01) (i.e., genomic regions

with lower TAD insulation scores; Figure 6B) and associated

with gene expression (Figure 6C). Meta-border plots of CTCF

and cohesin peaks confirmed this trend (Figure 6D). The same

pattern was observed in RSs (Figures 6B�6D), suggesting that

despite global chromatin remodeling, local insulation is main-

tained by insulator proteins and can affect gene expression.

Expressed genes with CTCF, RAD21L, and REC8 in their pro-

moters in P/D had GO term enrichments related to protein regu-

lation, modification, and polymerization (e.g., Usp42), as well as

DNA repair and cellular response to DNA damage stimulus (e.g.,

Herc2), suggesting a regulatory role in spermatogenesis pro-

gression. Interestingly, genes with CTCF at their promoters

were involved in the transcriptional machinery (e.g., Nsa2),

whereas genes with both cohesins but not CTCF were essential

for posterior neural development of the embryo (e.g., Cdh2). In

RSs, CTCFwas almost absent, but remarkably, when it co-local-

ized with promoters, it was associated with genes implicated in

key pathways of embryo development (e.g., Nanog). Genes with

both cohesins in their promoters were related to the regulation of

cell growth and theWnt signaling pathway (e.g.,Amer3) and gen-

eral nervous system development (e.g., Ccd88a; Figure 5F).

Genes with RS-specific RAD21L peaks had functions involved
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Figure 5. CTCF and Cohesin Profiles in Primary Spermatocytes and RSs

(A) Venn diagrams for CTCF and cohesins in P/D and RSs considering peak overlaps per cell type and peak overlaps per protein.

(B) Representative examples of CTCF and cohesins’ genomic distribution along chromosome 1 in P/D and RSs. For each cell type, A-B compartments, gene

expression (represented as log FPKM), CTCF peaks, and cohesin peaks are displayed.

(C) Genome-wide distribution of CTCF and cohesin-occupied sites in relation to TSSs and other genomic features in P/D and RSs.

(D) Insulator peak frequencies relative to TSSs of genes in P/D and RSs.

(E) Boxplots representing expression (FPKM values) of genes with CTCF and cohesin peaks located at the TSS. Asterisks represent statistically significant

differential gene expression when compared with all genes in the mouse genome (p < 0.01).

(F) Examples of CTCF and cohesion-occupied sites in P/D and RSs for the expressed gene Cdc88a.

See also Figure S6.
in oligondendrocyte differentiation and cardiac ventricle devel-

opment (e.g., Notch1), whereas RS-specific REC8 peaks were

found to be involved in nervous system development (e.g.,

Kif3c).
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Sex Chromosome Silencing Is Coupled with Higher-
Order Chromatin Restructuring
The eutherian mammal X chromosome is composed of evolu-

tionary strata that were isolated from recombination with the



Figure 6. Local Insulation, Cohesin Occupancy, and Gene Expression

(A) Representative examples of CTCF and cohesins’ genomic distributions across a specific region of chromosome 19 (from 7 to 9.3 Mbp) in P/D and RSs. For

each cell type, Hi-C interaction maps (50-Kbp bins), gene expression (represented as log FPKM), CTCF peaks, cohesin peaks, and genes from NCBI Ref Seq

annotation are displayed. Green and orange highlights indicate differentially expressed genes (DEGs) in each cell type: Gm17227 and Uqcc3 for P/D and Atl3;

Hrasls5, 1700092M07Rik, Eef1g, and Asrgl1 for RSs.

(B) Distribution of CTCF and cohesin peaks at TAD borders. The y axes represent the TAD insulation Z-score relative to random genomic regions (based on 10,000

permutation tests with randomization, p < 0.01).

(C) Distribution of gene expression for CTCF and cohesin peaks located at TAD borders. The y axes represent the TAD insulation Z-score relative to random

genomic regions (based on 10,000 permutation tests with randomization, p < 0.01).

(D) Meta-plots for all peaks detected in P/D and RSs.

P/D, pachynema-diplonema; RS, round spermatids. See also Figure S6.
Y chromosome at different evolutionary times (Lahn and Page,

1999). In mice, the X chromosome evolutionary strata are highly

rearranged, and there are 22 ampliconic regions known to

escape MSCI (Mueller et al., 2008) (Figure S7; Table S7). The

X chromosome lost its A-B compartment pattern once meiosis

was initiated, from L/Z onward (Figures 7A and 7B), consistent

with MSCI chromatin remodeling. This translated into an overall

reduction in gene expression in P/D compared to Spg, although

ampliconic regions were still expressed in P/D, RSs, and sperm

(Figure 7C). Importantly, this organization of the X chromosome

was maintained in post-meiotic cells (RSs and sperm) (Figures
7A and 7B). In fact, distance-dependent interaction frequencies

revealed that genomic interactions at medium genomic dis-

tances (1�10 Mbp) were higher in the X chromosome in post-

meiotic cells than in autosomes of the same cell type (Figure 2C).

For higher-order chromatin structures at the sub-megabase

scale, all chromosomes except X had equivalent TAD dynamics

during spermatogenesis. In the X of meiotic and post-meiotic

cells, there was a trend for fewer and larger TADs compared to

those observed in Spg (Figure 7D; Table S8). The genomic posi-

tions of TADs were not equally distributed along the X; in RSs,

there were more short TADs detected in the distal regions of
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the X (Figure 7D), consistent with the increase of autosomal vari-

ance of TAD insulation scores in RSs compared to L/Z and P/D

(Figure 3E). However, the remainder of the X in RSs maintained

the fewer and larger TADs observed in L/Z and P/D. In sperm,

the high density of short TADs was only observed in proximal

X chromosome long arm (Xq).

Differential CTCF and Cohesin Loading in Autosomes
and the X Chromosome
The proportion of cohesin peaks was lower for the X chromo-

some than for any autosome in both P/D and RSs (Figure 7E).

The X represents �4.9% of the mouse genome, but only ac-

counts for 1.82% of the total RAD21L peaks in P/D and 1.54%

of peaks in RSs. Likewise, REC8 peaks on the X chromosome

were underrepresented, with 2.12% of the total peaks in P/D

and 2.03% of peaks in RSs. The underrepresentation of REC8

ChIP-seq peaks was confirmed by super-resolution microscopy

in pachynema, with decreased labeling of REC8 (44.7% ±

10.7%) on the X chromosome axis relative to those of autosomes

(Figure S6). In contrast, RAD21L labeling actually increased

(25.6% ± 10.6%) on the X (Figure S6).

Overall, 75% of cohesin peaks co-localized with promoter re-

gions (less than 2 kbp upstream of TSSs) in both P/D and RSs in

the X chromosome (Figure 7F). These genes had significantly

higher expression than genes without promoter-associated

cohesin peaks, despite MSCI and PMSC (Figures 7G and 7H),

suggesting that genes that escapeMSCI correlate with promoter

cohesin occupancy. As with the cohesins, CTCF was depleted

on the X chromosome relative to the autosomes (1.26% of total

peaks were on the X in P/D). However, CTCF was almost

completely depleted from the X chromosome in RSs (just two

peaks were detected). This was not observed for individual auto-

somes, on which the proportion of CTCF peaks were generally

stable between P/D and RSs. Collectively, these observations

point to a novel role for meiotic cohesins in genome organization

and function during meiotic prophase I and spermiogenesis.

DISCUSSION

Here, we provide a high-resolution structural and functional atlas

of mouse spermatogenesis. Our data reveal the compartmental-
Figure 7. Higher-Order Chromatin Structure and Gene Expression in t

(A) ICE-corrected Hi-C matrices for the X chromosome in mouse germ cells, at a

(B) Representation of compartment signal (first eigenvector) along the mouse’s X

(C) Upper panel: Overview of spermatogenesis with two pairs of autosomes (blac

chromosome inactivation (MSCI) characterizes prophase I (shown as a pink cloud

the cell forming the chromocenter, with the X adjacent, forming the post-meiotic

X genes binned according to A-B compartment or ampliconic. N/A are not assig

(D) X chromosome TAD alignments. Arches represent TADs with higher (darker g

(E) CTCF and cohesin distribution on the X in P/D (green) and RSs (black). Ampl

resenting older strata and red representing newer strata (see Figure S7 for furthe

(F) X chromosome distribution of CTCF and cohesins’ occupancy relative to TSS

(G) Expression (FPKM values) of genes with CTCF and cohesin peaks located at p

differential gene expression when compared with all genes in themouse genome (

represent the median values.

(H) Expression changes (versus Spg) of representative X genes that reduce expres

that reduce expression in P/D and increase in RSs and sperm (i.e.,Cdk16), genes t

in P/D and then reduce (i.e., Cldn34c4).

Fib, fibroblast; Spg, spermatogonia; L/Z, leptonema-zygonema; P/D, pachynem
ization of meiotic chromosomes in both early and late stages

of spermatogenesis, which was reflected at different levels: (1)

inter- and intra-chromosomal interaction ratios; (2) distance-

dependent interaction frequencies; (3) genomic compart-

ments; (4) topological domains; and (5) occupancy of insulator

proteins. We provide evidence of a delicate fine-tuning among

chromatin remodeling, architectural proteins, and cell-specific

gene expression.

Our analyses complement and extend recently published

works (Alavattam et al., 2019; Patel et al., 2019; Wang et al.,

2019) with a comprehensive view of the sequential develop-

mental stages during mouse spermatogenesis. Pre-meiotic,

meiotic, and post-meiotic cells all presented differences in inter-

and intra-chromosomal interaction ratios that were distinct from

somatic cells (i.e., fibroblasts). Although Spg maintained the

equivalent proportion of A-B compartments as fibroblasts, they

showed a drastic remodeling of chromosomal compartmentali-

zation. As the firstmeiotic prophase begins, additional chromatin

remodeling appears. The inter- and intra-chromosomal interac-

tion ratio reaches a minimum in primary spermatocytes, with

the A-B compartments almost lost in both L/Z and P/D, in

contrast to previous observations (Patel et al., 2019). Thus, chro-

mosomal occupancy and compartmentalization inside nuclei

were re-arranged (i.e., higher-chromatin structure relaxation)

during prophase I, permitting DNA-scaffold assembly and the

formation and repair of DSBs, with no distinction between

autosomes.

The distance-dependent interaction we detect suggests dif-

ferences in previously reportedmitotic andmeiotic chromosome

folding (Gibcus et al., 2018; Naumova et al., 2013; Wang et al.,

2019). Prophase I cells display two changes in contact probabil-

ity: the first between 2.5 and 4.5 Mbp and the second at 40 Mbp.

This organization can result from two features of chromosome

assembly during prophase I. First, the chromatin is anchored

as long DNA loops in a protein scaffold composed of specific

meiotic cohesins (e.g., REC8 and RAD21L) (Gutiérrez-Caballero

et al., 2011; Llano et al., 2012) and proteins of the SC (e.g.,

SYCP3) (Henderson and Keeney, 2005), preventing interactions

below 40 Mbp. Second, the association of recombination hot-

spots and cohesins in primary spermatocytes suggests that

cohesion-mediated transcription in genomic regions out of the
he X Chromosome

50-Kbp resolution. Plaid blue regions correspond to non-mapped bins.

chromosome.

k and gray lines) and the sex chromosomes (X and Y as red lines). Meiotic sex

; also known as the sex body). In RSs, all centromeres associate in the center of

sex chromatin (PMSC). Lower panel: Boxplots of expression (FPKM values) of

ned to a compartment or amplicon.

ray) and lower (lighter gray) than expected intra-TAD interactions.

iconic regions are green, and evolutionary strata are displayed, with blue rep-

r details).

s and other genomic features in P/D and RS.

romoter regions (�2 kbp from TSS). Asterisks represent statistically significant

p < 0.01). Boxes represent first and third quartiles, whereas black bars in boxes

sion in P/D andmaintain low levels during spermatogenesis (e.g., Cybb), genes

hat increase expression in RSs (e.g.,Actr1), and genes that increase expression

a-diplonema; RS, round spermatids. See also Figure S7.
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axes can provide an environment conducive to both gene

expression and the formation of DSBs. This is reflected by the in-

teractions observed at shorter distances (2.5–4.5 Mbp).

Compartments re-emerged in post-meiotic cells with a

remarkable high-level organizational difference between RSs

and sperm. Chromosomal territories were re-established in

both cell types but with chromatin less densely packed in RSs,

as revealed by the interaction ratio and 3D-FISH. In RSs, intra-

chromosomal interactions were greater than inter-chromosomal

interactions, the opposite to what was observed in sperm. In

both cell types, A compartments (which correlate with gene

expression) were larger than in pre-meiotic cells and were over-

represented when compared to fibroblasts and Spg. Moreover,

the transformation of RSs into spermatozoa was accompanied

by the transcription of genes related to spermiogenesis and

sperm function located in newly created A compartments. This

agrees with a second burst of gene expression in RSs (da Cruz

et al., 2016) and supports the more recent idea that sperm are

not inactive cells (Jodar et al., 2016; Jung et al., 2017). In fact,

it was shown that a large number of sperm promoters are in an

active epigenetic state, suggesting that this genetic information

can influence embryo development upon fertilization (Jung et al.,

2017).

There was a remarkable reduction of TADs in sperm. One

strength of our approach that differs from others (Jung et al.,

2017; Wang et al., 2019) was the cell-sorting strategy, which

permitted the isolation of sperm from the rest of the germ cell

populations. Coupled with the Hi-C simulations, this permitted

us to attribute higher-order chromatin structures specifically

to sperm. Thus, the reduction of the TAD insulation score in

sperm can be linked to histone replacement by protamines.

Protamines replace most histones in sperm, with the help of

transition proteins and H2A histone variants, folding DNA into

toroidal subunits at the kbp level (Barral et al., 2017). Because

of the structural constraints of protamines, it is tempting to

speculate that the compact chromatin organization in sperm

is associated with the presence of A compartments at the

Mbp scale, which likely correlates with active histone marks in

sperm (Jung et al., 2017), but not with the formation of fine-scale

TAD structures (i.e., kbp).

The genomic atlas for CTCF and meiotic-specific cohesins

presented here provides an unprecedented view of the connec-

tion among chromatin remodeling, architectural proteins, and

gene expression. Strikingly, the vast majority of cohesin peaks

detected in primary spermatocytes were localized within pro-

moter regions of genes, with significantly higher expression

than non-cohesin-associated genes. The conflicting patterns

of RAD21L on the X chromosome, with reduced ChIP peak

numbers but increased super-resolution microscopy labeling

intensity, are counterintuitive. The increased labeling intensity

at the axis suggests that RAD21L has an important X chromo-

some scaffolding function, but the reduced number of peaks

(compared to the autosomes) indicates that the detected peaks

correspond to cohesins that do not interact directly with DNA at

the axis. In fact, REC8 and RAD21L bind to both head domains

of a structural maintenance of chromosome (SMC) heterodimer,

forming a ring-like protein structure topologically encircling sis-

ter chromatids to the SC, a core axis from which chromatin
364 Cell Reports 28, 352–367, July 9, 2019
loops emerge (Haering and Jessberger, 2012). This structure

could block REC8 and RAD21L access to chromatin, preventing

detection at the axis by ChIP-seq. Our data suggest that cohe-

sins associate with active promoters most probably located in

DNA loops out of the axes, hinting at a functional role that

adds to the well-known structural role of these cohesins in the

formation of meiotic chromosomal axes (Llano et al., 2012). In

fact, mice with REC8 and RAD21L deficiencies are infertile;

meiosis is arrested in early prophase I (Bannister et al., 2004;

Herrán et al., 2011), precluding analysis of potential regulatory

roles for cohesins during spermiogenesis.

Our results also point to the role of meiotic cohesins in regu-

lating gene expression after meiosis, which was characterized

by the occupancy of RAD21L at the TSSs of expressed genes

in RSs. We suggest that CTCF and cohesins could have a

synergistic role in establishing transcriptional hubs for early

embryonic development in meiotic prophase I (where the three

proteins co-localize), while also fine-tuning subsequent sper-

matogenesis progression. Moreover, cohesins in RSs appear

to correlate with the expression of genes implicated in early

embryonic development (e.g., Nanog), providing immediate

access to the major molecular pathways involved in organogen-

esis upon fertilization. These results suggest that some cellular

functional activity is predetermined in early spermiogenesis,

before RSs are differentiated into sperm, which raises the

intriguing possibility that cohesins play a role in such functional

predetermination.

Here, we extend initial observations (Alavattam et al., 2019;

Patel et al., 2019; Wang et al., 2019) of X chromosome remodel-

ing in prophase I to pre-meiotic and post-meiotic cells. Our

functional and structural analyses show that silencing of the

X chromosomes (MSCI) is accompanied by distinct changes

in the higher-order chromatin structure at different levels: (1)

more intra- than inter-chromosomal interactions, a pattern

already present in Spg; (2) strong compartmentalization; and

(3) a reduction in both the TAD number and signal once prophase

I initiates. Remarkably, architectural proteins were remodeled,

which included a reduction of cohesin peaks (compared to auto-

somes) and an almost complete depletion of CTCF. These data

demonstrate that a reduction of the cohesin load correlates with

an absence of chromosome X compartmentalization (A/B).

Despite MSCI, gene expression still takes place, which corre-

lates with meiotic cohesin occupancy but not with CTCF.

Altogether, these observations support a role for cohesin in

regulating gene transcription.

In summary, we have implemented a robust workflow to

provide an integrated structural and functional framework of

the 3D organization of the mouse genome in germ cells. We

detected a fine-tuned balance among chromatin remodeling,

architectural proteins, and gene expression during spermato-

genesis. Overall, our results provide insights into how the

structural organization of the genome influences cellular differ-

entiation, especially in the context of the dramatic chromatin

changes that take place during the formation and differentiation

of the mammalian male germline. Future functional perturbation

analyses will help us understand the mechanism by which 3D

genome folding changes shape transcriptional activity during

spermatogenesis.
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DNA Polymerase I, large (Klenow) Fragment New England Biolabs #M0210M
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Dynabeads MyOne Streptavidin T1 Life Technologies #65001
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Klenow Fragment 30- > 50 exo- New England Biolabs #M0212M

AMPure XP Beads Beckman-Coulter #A63880
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Trans-Blot� Turbo Transfer Packs Bio-Rad Laboratories #1704158

Ponceau S solution Sigma-Aldrich #P7170-1L

ClarityTM Western ECL Substrate, 500 ml Bio-Rad Laboratories #1705061

OneDay ChIP kit Diagenode C01010080

Unblocked protein A Diagenode C03020002

NEBNext� End Repair Module New England Biolabs E6050S

NEBNext� End Repair Reaction Buffer New England Biolabs B6052S

NEBNEXT� dA-tailing Reaction Buffer New England Biolabs B6059S

Deposited Data

Hi-C data This paper GEO:GSE132054

ChIP-seq data This paper GEO:GSE132054

RNA-seq data This paper GEO:GSE132054

SPO11-oligos hotspots Lange et al., 2016 GEO:GSE84689

H3K4me3 data Brick et al., 2012 GEO:GSE35498

Hi-C data from sperm Jung et al., 2017 SRR3225862 and SRR3225863

Experimental Models: Organisms/Strains

C57BL/6J Charles River Laboratories N/A
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BBDuk (version 10/2015) Bushnell, 2014 https://sourceforge.net/projects/bbmap/

TADbit (version 0.2.0.23) Serra et al. (2017 https://github.com/3DGenomes/TADbit

GEM (version 1.7.1) Marco-Sola et al., 2012 https://sourceforge.net/projects/gemlibrary/

HiCExplorer (version 1.8.1) Ramı́rez et al., 2018 https://github.com/deeptools/HiCExplorer

HiCRep (version 1.4) Yang et al., 2017 https://github.com/MonkeyLB/hicrep

BEDtools (version 2.17) Quinlan and Hall, 2010 https://github.com/arq5x/bedtools2

SAM tools Li et al., 2009 http://samtools.sourceforge.net/

Deep tools Ramı́rez et al., 2016 https://github.com/deeptools/deepTools

MACS2 Feng et al., 2012 https://github.com/taoliu/MACS

IGV tools Thorvaldsdóttir et al., 2013 https://igv.org/

ChIPseeker Yu et al., 2015 https://github.com/GuangchuangYu/ChIPseeker

KaryoploteR Gel and Serra, 2017 http://bioconductor.org/packages/release/bioc/

html/karyoploteR.html

RegioneR Gel et al., 2016 https://bioconductor.org/packages/release/bioc/

html/regioneR.html

Panther Mi et al., 2017 http://www.pantherdb.org/

AmiGo Carbon et al., 2008 http://amigo.geneontology.org

AIR This paper https://transcriptomics.cloud
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to, and will be fulfilled by, the Lead Contact: Aurora

Ruiz-Herrera (aurora.ruizherrera@uab.cat).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
C57BL/6J (B6) male mice at 8-17 weeks of agewere purchased from the Charles River Laboratories. Animal maintenance and exper-

imental procedures were carried out according to the Ethics Committee on Animal and Human Experimentation (CEEAH) guidelines

from Universitat Autònoma de Barcelona (UAB).

Cell lines
A primary fibroblast cell line derived form a male mouse (C57BL/6J strain) previously established in our lab (Sánchez-Guillén et al.,

2015), and cultured in DMEM medium supplemented with 10% fetal bovine serum and 1% PenStrep at 37�C and 5% CO2.

METHOD DETAILS

Fluorescence Activated Cell Sorting (FACS) of mouse male germ cells
Malemice were dissected by an inguinal incision to remove whole testis and cauda epididymis. Sperm cells were recovered from the

epididymis by pressing the deferent tube gently. Both decapsulated testis and epididymis weremechanically disaggregated together

with the ejaculate, incubated in GBSSwith collagenase type II (Life Technologies) (0.5 mg/ml) and DNase I (Sigma Aldrich) (1 ng/ml) at

33�C for 15min with agitation. Fetal bovine serum (ThermoFisher Scientific) was added to the mix at a proportion of 5% in order to

inactivate trypsin. The cell suspension was filtered through a 70 mm diameter cell strainer and subsequently centrifuged for 3 min at

1,800 xg. Cells were then dyed with 5 mg/ml of Hoechst 33342 (Life Technologies) for 30 min at 33�C with agitation, then held at 4�C
until sorting. Germ cells were sorted using a BD InfluxTM (BD Biosciences) coupled with an ultraviolet laser (355 nm). Subsequently,

three sorting strategies were followed in order to obtain a total of six highly enriched germ cell populations: (i) spermatogonia (2n, 2c),

(ii) spermatocytes at leptonema/zygonema (L/Z) stage (2n, 4c), (iii) spermatocytes at pachynema/diplonema (P/D) stage (2n, 4c), (iv)

secondary spermatocytes (1n, 2c), (v) round spermatids and (vi) sperm.

Strategy #1: Four main germ cell populations (spermatogonia, P/D, secondary spermatocytes and round spermatids) were first

isolated by plotting Hoechst Blue (UV355-460/50) versus Hoechst red (UV355-670/30) emissions to discriminate cells by both their

DNA content and their complexity (Figure S1A). The spermatogonia fraction (2n, 2c) represented a heterogeneous population of

undifferentiated and differentiating spermatogonia.
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Strategy #2: In order to discriminate primary spermatocytes in L/Z and P/D stages, an ‘‘in solution’’ immunofluorescence using

DMC1 (1:300, Santa Cruz Biotechnologies) and SYCP3 (1:1000, Abcam) antibodies was performed before sorting. Briefly, DMC1

(1:300, Santa Cruz Biotechnologies) and SYCP3 (1:1000, Abcam) antibodies were added to the cell suspension that resulted from

testis disaggregation. Cells showingDMC1(+)/SYCP3(+) staining corresponded to primary spermatocytes in L/Z stage, whereas cells

at P/D stage appeared with DMC1(-)/SYCP3(+) staining (Figure S1B).

Strategy #3: A third approachwas followed to obtain highly enriched populations of sperm and round spermatids as both cell types

have the same DNA content and can only be discriminated by morphology. We followed a re-gating approach since cell morphology

can be discriminated in the flow sorter by how cells project a side shadow (side scatter, SSC) and a forward shadow (forward scatter,

FSC), a plot for each initial gate was drawn (SSC versus FSC plot). With this approach, and applying a restrictive re-gating approach,

sperm and round spermatids were isolated with high enrichment (Figure S1C). This allowed us to exclude elongating spermatids from

these samples. Likewise, isolation of sperm from cauda epididymis was conducted by re-gating of the c fraction, resulting in isolated

sperm Figure S1D).

Irrespective of the sorting strategy, all cell populations were collected after sorting in 1x PBS, centrifuged for 5min at 1,800 xg. The

supernatant was discarded, and cell pellets were flash-frozen at �80�C until use. Sorts were typically 3-6 hours to collect between

0.2 3 106 and 3.2 3 106 cells, depending on the germ cell population.

Cell enrichment of each flow-sorted population was evaluated by immunofluorescence using specific meiotic proteins and DAPI

morphology (Figure S1). Spermatogonia were distinguished using an anti-CD90 (Thy-1+) (1:10) antibody and DAPI morphology. For

primary spermatocytes, prophase-I stages (leptonema, zygonema, pachynema and diplonema) were identified based on SYCP3

(1:400) and ɣH2AX patterns (1:300). For secondary spermatocytes, immunofluorescence using anti-H3K9me3 (1:500), anti-actin

(1:400) and anti-tubulin (1:1000) was performed. Cell enrichment of round spermatids and sperm fractions was determined based

on nucleus morphology and DAPI pattern. Cells were fixed on slides and then mounted with DAPI diluted in Vectashield (Vector Lab-

oratories). In all cases, slides were analyzed using a fluorescence microscopy (Axiophot, Zeiss) coupled with a ProgRes�CS10plus,

Jenoptik camera. Representative imageswere capturedwith ACOXY (A. Coloma, OpenMicroscopy). Between 50 and 100 cells were

counted for each flow-sorted population. Only sorted populations with enrichment above 80% were considered for subsequent

experiments.

Fibroblast cell culture
The mouse primary fibroblast cell line was cultured to 100% confluence. A cell fraction was kept for quality controls (see below) and

the rest were fixated accordingly to the crosslink step of the Hi-C method (see in nuclei Hi-C section) for adherent cells.

Quality controls consisted of generating a modal karyotype and flow cytometry cell cycle analysis. Chromosome spreads were

obtained using standard protocols. Briefly, cells were arrested in metaphase by adding 80 mL of Colcemid (10 mg/ml) (Sigma) to

10ml of medium for 2h and then trypsinised. Cells were spun down at 600 xg for 7 minutes and resuspended in 5ml of hypotonic

solution (0.075M KCl) for 20 minutes at 37�C. Chromosomes were then fixed by addition of fixative solution (3:1 methanol/acetic

acid) and metaphase spreads were obtained by dropping 15 ml of cell suspension onto a cleaned dry slide. Slides were kept

at �20�C until use. Metaphases were stained homogenously with Giemsa solution for analysis of the modal karyotype. An optical

microscope (model Zeiss Axioskop) equipped with a charged coupled device camera (ProgResR CS10Plus, Jenoptik) was used

for the microscope analysis. Good-quality metaphases were captured with the program Progress Capture 2.7.7 and analyzed for

each specimen, obtaining the modal karyotype.

For the cell cycle analysis, fibroblasts were cultured until cells reached 100% confluence. Next, cells were fixated with 1% form-

aldehyde for 10’ at RT and incubated with glycine 0.125M for 50 at RT and for 15’ at 4�C to stop the crosslinking reaction. Subse-

quently, cells were scrapped off the flask, pelleted and resuspended in 1x PBS to finally be stained with Hoechst 33342. Cell cycle

was analyzed using aBD InfluxTM (BDBiosciences) coupledwith an ultraviolet laser (355 nm) to reveal that over 74%of the cells were

in G1-phase (Figure S1).

In nuclei Hi-C
The generation of Hi-C libraries was optimized from the protocol developed by Rao et al. (2014). Different approaches were used

depending on the cell type analyzed (somatic and germ cells, see below). Two replicates for each FACS-sorted population were ob-

tained (with the exception of primary spermatocytes at L/Z stage where one single experiment was performed) from a total of 7.73

106 spermatogonia, 1.73 106 primary spermatocytes at L/Z stage, 20.93 106 primary spermatocytes at P/D stage, 15.73 106 sec-

ondary spermatocytes, 107.7 3 106 round spermatids and 113.8 3 106 sperm.

Somatic cells: Fibroblasts were grown until reaching confluence in supplemented DMEM medium. Cells were then washed with

PBS and fixed with 1% formaldehyde for 10’ at RT. Cells were then incubated with glycine 0.125M for 50 at RT and for 15’ at 4�C
to stop the crosslinking reaction. Following, 2 mL Trypsin (Fischer Scientific) were added, and cells were incubated for 8’ at RT

and then washed twice with PBS. Cells were scraped and collected in a tube and centrifuged for 5 minutes at a maximum speed

of 1,800 xg.

Germ cells: Germ cells at a concentration of 1 million per 500 ml were incubated in formaldehyde (1%) for 10min with agitation prior

to FACS. Glycine (Sigma Aldrich) was added at a final concentration of 0.125 M and incubated with agitation at room temperature for
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5 min and then at 4�C for 15 min. Cells were then centrifuged for 10 min at 290 xg at 4�C and resuspended in 3 mL 1x PBS in case of

direct Hoechst staining, or in the according volume of block solution if immunofluorescence was the following step.

Each crosslinked cell aliquot was resuspended with lysis buffer and incubated on ice for 30’ and then centrifuged for 50 at 1,800 xg.

Pellets were washed with 1x NEB2 buffer (twice) and resuspended with NEB2 buffer with 10% SDS at RT and incubated for 10’ at

65�C with agitation (300 rpm). NEB2 buffer with 10% Triton X-100 solution was added and cells were incubated for 30’ at 37�C.
Following, cells were centrifuged for 50 at 1,800 xg (4�C) and washed with 1x NEB2 buffer twice. An aliquot for ND (Non-Digested)

control was taken from the sample to be processed and incubated at 37�C together with the digested sample. 400 U of

MboI were added to the rest of the samples and chromatin was digested O/N at 37�C with agitation. An aliquot from the

digested samples was taken for digestion controls. The full samples were kept at 37�C while the digestion control was performed.

Proteinase K (10 mg/ml) (ThermoFisher) was added and the aliquoted samples were incubated for 45’-60’ at 65�C followed by

Phenol:Chloroform purification. The quality of the sample was checked by running on an 0.8% agarose gel.

After digestion, a small aliquot from the samples was kept as a Non-Ligated control and another aliquot was directly ligatedwithout

reparation (ligation control). Samples were centrifuged for 50 at 1,800 xg. Samples were thenwashedwith 1x NEB2 buffer, twice. After

the second wash, samples were directly resuspended with the reparation mix (1x NEB2 buffer, 0.05 mM dCTP, 0.05 mM dTTP,

0.05 mM, 50 mM biotin-dATP (ThermoFisher), 50U Kleenow (NEB, M02010M), H2O). Samples were incubated for 45’ at 37�C and

for 10’ at 65�C and centrifuged for 50 at 1,800 xg and then resuspended with ligation buffer [1x NEB T4 ligase buffer, 10% Triton

x-100, 0.1 mg/ml BSA, 5 ml (10000 U cohesive) ligase (2000 U/ ml) (NEB, M0201M), 963 ml H2O]. Samples were incubated at 16�C
for at least 4h or O/N with mixing, then centrifuged for 50 at 1,800 xg and resuspended in 1x NEB2 buffer. Samples were incubated

with RNaseA (10 mg/ml) (ThermoFisher) for 15 minutes at 37�C. The mix was incubated with Proteinase K (10 mg/ml) at 65�C O/N to

reverse the cross-link. Sampleswere cooled to RT and purifiedwith Phenol/Chloroform/Isoamyl alcohol. DNA content wasmeasured

on a Qubit. Samples were sonicated: 20 s time ON, 60 s time OFF, 8 cycles. Samples were then loaded in an electrophoresis gel of

1.2% agarose to check fragment size.

Samples were incubated for 30’ with rotation at RT with DynabeadsMyOne Streptavidin T1 beads (Life Technologies) and 2x Bind-

ing Buffer (10 mM TrisHCl, 1mM EDTA, 2M NaCl). Beads were washed twice with Binding Buffer and resuspended in the end repair

mix [1x NEB T4 DNA ligase buffer with 10 mM ATP, 25 mM dNTPmix, 10U/ml NEB T4 PNK (NEBM0201), 3U/ml T4 DNA polymerase I

(NEB M0203), 5U/ml NEB DNA polymerase I (Klenow) (NEB 0210)]. Samples were incubated for 30’ at RT. Beads were washed with

1x Binding Buffer, twice. Beads were subsequently resuspended in the dATP attachment master mix (1x NEBuffer 2, 0.5mM dATP,

5U/ml NEB Klenow exominus (NEB, M0212), H2O). Samples were incubated at 37�C for 30’. The beads were washed with 1x Binding

Buffer, twice and resuspended with 1x NEB Quick ligation buffer (NEB, B6058).

NEB T4DNA ligase and Illumina indexed adapters were added and thoroughlymixed. Samples were incubated for 15’ at RT, beads

were captured, and the supernatant was discarded. Beads were then washed with 1x Binding Buffer, twice. The beads were resus-

pended in Tris buffer (Elution buffer). PCR (5ml beads + 5.5 ml H2O, 1.25 ml primer P5 25 mM, 1.25 ml primer P7 25 mM, 12,5 cocktail

mastermix NEB) was performed (98�C30 s, 98�C10 s, 60�C30 s x 8 cycles, 72�C30 s, 72�C50). After PCR, beadswere captured on a

magnet and the PCR was transferred to a new tube. The library was quantified using a Qubit fluorometer. 5ml from the PCR products

were run in a 1.2% agarose electrophoresis gel to confirm range of sizes. A 1:1 amount of AmpureBeads (Beckman Coulter) was

added to the samples and incubated for 10’ at RT. The beads were washed twice with 70% ethanol without mixing. The beads

were then eluded and incubated at RT, for 50. AmpureBeads were separated on amagnet, and the solution was transferred to a fresh

tube. 5ml of each sample was loaded to an electrophoresis gel of 1.2% agarose for a final size check. DNA quantity was measured

with the Qubit fluorometer. Libraries were submitted for Illumina sequencing (paired-end 75bp each side on HiSeq 2500, v4).

Hi-C data processing, binning and normalization
Quality check and trimming were conducted using BBDuk (version 10/2015) (Bushnell, 2014). Setting aminimum read length of 35 bp

and a minimum Phred quality score of 20, adapters and low-quality reads were removed while preserving their longest high-quality

regions. Then, reads were processed with TADbit (version 0.2.0.23) (Serra et al., 2017), which makes use of the GEM (version 1.7.1)

mapper (Marco-Sola et al., 2012) to iterativelymap them against themouse genome (versionmm10). Readsweremapped from 15 bp

toward using a step size of 5 bp. The filters used in order to remove possible artifacts were the following: ‘‘self-circle,’’ ‘‘dangling-

end,’’ ‘‘error,’’ ‘‘extra dangling-end,’’ ‘‘too short,’’ ‘‘too large,’’ ‘‘duplicated,’’ and ‘‘random breaks.’’ The maximum molecule length

parameter was set at 2 times the 99.9 percentile of the insert size distribution, returned by the ‘‘insert_size’’ from TADbit. The

maximum distance of a read to a cleavage site was set to the 99.9 percentile of the insert size distribution.

An in-house script was used for binning and data normalization. This script imported the ‘‘HiC_data’’ module of TADbit, read the

map files generated after the artifacts filtering step, binned the reads into a squarematrix of 50 Kbp, and stored thematrix into a file in

NPZ format (raw matrix). Afterward, HiCExplorer (version 1.8.1) (Ramı́rez et al., 2018) was used to normalize with the ICE (Iterative

Correction and Eigenvector decomposition).

Correlation coefficient analysis
Pairwise comparisons between biological replicates were performed using HiCRep (version 1.4) (Yang et al., 2017), under a smooth-

ing parameter of 5 and a considered distance over 10 Mbp. Since HiCRep only handles intra-chromosome raw matrices, each pair-

wise comparison yielded 20 correlation scores (19 autosome chromosomes + sex chromosome X). The Y chromosome was
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excluded from the analysis due to the lower number of interactions detected in our analysis (less than 1% of the overall detected

interactions) and the highly repetitive nature of this chromosome. The correlation between 2 replicates was defined as the mean

of the 20 correlation scores.

Averaged contact probability P(s)
ICE-normalizedmatrices were scaled with a factor of 1/sum(matrix). The resultingmatrices were then input to ‘‘hicPlotDistVsCounts’’

from the HiCExplorer package in order to obtain the contact probability P(s).

Inter-/intra-chromosome interaction ratio
ICE-normalized data stored in matrices were exported with HiCExplorer to the GInteractions format, which consists of 7 columns:

chromosome, start and end from bin 1, chromosome, start and end from bin 2, and the amount of interaction. The GInteractions

tables were imported in R for further quantification of intra-chromosome and intra-chromosome interactions and plotting.

Inter-subtelomeric interaction quantification
ICE-normalized matrices were scaled with a factor of 1,000,000/sum(matrix) and exported with HiCExplorer to GInteractions format.

The GInteractions tables were imported in R for this inter-telomere interaction quantification. Since the telomeric and centromeric

regions (annotated from the beginning of each chromosome to 2.9 Mbp according to the UCSC Table Browser) were masked

due to the low-count filtering step prior to ICE normalization, we only considered inter-chromosome interactions between loci located

within genomic positions 3 to 3.5 Mbp in each chromosome. Differences in the subtelomeric interaction frequencies between cell

types were assessed with the Wilcoxon test.

Sperm simulations
In order to validate our enriched sperm population, we simulated six Hi-C sperm datasets of 100 3 106 reads with different

proportions, from 0 to 100%by steps of 20%, of fibroblast reads. Both sperm and fibroblasts reads were derived from our generated

libraries. Previously published data on sperm (SRR3225862 and SRR3225863 accessions from Jung et al. (2017) were also down-

loaded. These datasets underwent a quality check, Hi-C data processing, binning and normalization steps as described above. The

resulting raw Hi-C matrices were used for correlation coefficient analysis while the ICE-normalized matrices were used to calculate

the averaged contact probability P(s) (Figure S5).

A-B compartments and TAD calling
Rawmatrices were used for the definition of A-B compartments. Columns with a low number of counts were filtered out using TADbit,

setting the parameter min_count to 10. Since TADbit fits the column count distribution into a polynomial distribution, columns with a

number of counts smaller than the first antimode of the distribution, which cannot be smaller than themin_count parameter, are filtered

out. Then, the genome-wide matrices were normalized by the expected interactions at a given distance and by visibility by means of

one-iteration of the ICE method. The correlation analysis was also performed with TADbit. In-house scripts computed A-B compart-

ments from the first eigenvector, using 0 as threshold to differentiate both compartments and the gene density to label them.

TADs were identified using an in-house script that imported the ‘‘Chromosome’’ module of TADbit and added the raw and the ICE-

normalized matrices of each chromosome separately. Filtered bins, due to low counts, were included in order to mask them when

calling TADs. TAD insulation scores were obtained by first normalizing the different matrices for read depth in order for the scores to

be comparable. Each matrix was then scaled to have 100M reads. Afterward, TAD insulation scores were obtained from the output

given by the ‘‘hicFindTADs’’ program from HiCExplorer.

Compartment switching
BED files with a resolution of 50 Kbp were available from the compartments definition step. Each genomic bin of 50 Kbp had its cor-

responding compartment attributed. Pairwise comparisons between cell types -genome-wide and per-chromosome- were per-

formed; the ratio of compartment switching was calculated as the number of genomic bins with a compartment change (A > B or

B > A) divided by the total number of bins. From these files, a matrix file was created with 50 kbp-binned genomic coordinates as

rows and cell types as columns, filled by the corresponding compartment labeling in each bin and cell type. Cell-specific A compart-

ments were defined as those bins being compartment A in a cell type and compartment B in the remaining cell types.

3D-FISH and confocal microscopy
A total of 10 commercially available Bacterial Artificial Chromosomes (BACs) (Source BioScience) frommouse chromosomes 12 and

14 were selected according to their genomic location in A or B compartments (5 BACs for each compartment) (Table S4). The

selected probes were separated by a range of genomic distances ranging from 66 kbp and 1.45 Mbp. Probes were selected based

on their mappability and repetitive content in the mm10 genome assembly using the UCSC browser (https://genome.ucsc.edu/).

Probes were labeled with either dUTP-Dig (Sigma Aldrich) or dUTP-Cy3 (Enzo LifeSciences) by Nick Translation (Abbot Molecular).

The 3D fluorescence in situ hybridization (3D-FISH) protocol was performed on mouse fibroblasts as following. Briefly, fibroblasts

were cultured on slides overnight, whereas the germ cell suspension obtained after testis disaggregation was placed on slides
e5 Cell Reports 28, 352–367.e1–e9, July 9, 2019

https://genome.ucsc.edu/


and incubated 1h at 37�C for cells to adhere on the surface. Slides were then fixedwith 4%paraformaldehyde, washed in 1X PBS and

then incubated in 60% Glycerol for 30-60 min, then finally snap-frozen in liquid nitrogen and kept in 50% formamide/2x SSC. As

required, slides were thawed, treated with pepsin (0.01N HCl with 0.005% pepsin), washed with saline solutions (2x SSC, 50 mM

MgCl2, 1x PBS) and post-fixed with 1% paraformaldehyde. After 1h incubation in 50% formamide/2x SSC, the hybridization solution

was placed on the slides. Both slides and probes were simultaneously denatured at 75�C for 2 min and then incubated for 48h at

37�C. Slides were washed in 2xSCC at 37�C and in 0.1x SSC at 60�C and dUTP-Dig was detected followed incubation with anti-

Dig FITC (1:150) for 45 min at 37�C. Finally, slides were washed with 4x SSC with 0.2% Tween-20 and mounted with DAPI diluted

in Vectashield. Germ cells from four males were subject to the protocol simultaneously.

Physical distances between hybridization signals were evaluated using a confocal microscopy (Leica SP5) using a 63x objective

lens. Stacks of 0.34 mm-wide slices were captured for each cell nucleus, with a mean number of 20 stacks per nuclei. Images were

reconstructed and analyzed using IMARIS (IMARIS Image Analysis Software), establishing nucleus volume (mm3), physical distances

between signals (mm) and relative physical distance between signals and nucleus surface (mm). For the data analysis, pairwise

distances were computed for particular nuclei.

In total, we imaged 10 different loci (5 located in A compartments and 5 loci located in B compartment) across chromosomes 12

and 14. For each pair of probes, we measured the correlation between physical distances (in mm) and genomic distance (kbp) in

pre-meiotic (fibroblasts and spermatogonia) and post-meiotic cells (round spermatids) (Figure S4; Table S4). A total of 527 measure-

ments between seven pairs of probes were performed (Figure S6).We observed a positive correlation between physical and genomic

distance (Spearman p value < 0.05) (Figure S4). But more importantly, we detected a differential pattern for both types of compart-

ments (A and B) in round spermatids when compared to spermatogonia and fibroblasts (Figure S4). Lineal regressions were almost

identical in spermatogonia and fibroblasts. In round spermatids, however, physical distances between pairs of probes were greater,

confirming different chromatin organization in late spermatogenesis.

Western blot analysis of CTCF and cohesins in germ cells
Proteins from adult mice testis and fibroblast were extracted with RIPA buffer (NaCl 150mM, Triton X-100 1%, Sodium deoxycholate

0.5%, SDS 0.1% and Tris-HCl 50 mM pH = 8.0). After protein quantification with the PierceTM BCA Protein Assay Kit (ThermoFisher

Scientific), 6 replicates of both fibroblast and testis extract (three replicates of 30 mg and three of 40 mg protein) were denaturalized

with 2x Laemmli and loaded into an 8%polyacrylamide gel until proteins reached the end of the gel [determined by the Precision Plus

ProteinTM Dual Color Standards (Bio-Rad)]. Proteins were then transferred to a nitrocellulose membrane using the Trans-Blot�
TurboTM Transfer System from Bio-Rad (10 minutes of transfer time). Next, membranes were stained with the Ponceau S solution

(Sigma-Aldrich) to ensure that proteins had correctly transferred to the membrane. Then, the membranes were washed and

incubated with blocking solution (TBS 1x with 0.1% Tween-20, 5% fat-free milk and 1x PBS) for at least an hour. Each set of testis

and fibroblast protein extracts were incubated overnight at 4�C with anti-rabbit CTCF (1:2500), anti-rabbit RAD21L (1:2000) and

anti-rabbit REC8 (1:2000) respectively, and all were simultaneously incubated with anti-rabbit ßTubulin (1:5000) as a control. Anti-

bodies were detected the following daywith 1-hour incubation with anti-rabbit HRP-PO (1:15000). Finally, membraneswere detected

with ClarityTM Western ECL Substrate and the results captured with the Molecular Imager VersadocTM (Bio-Rad).

Spermatocyte spreads and immunofluorescence analysis of CTCF and cohesins
Spermatocyte spreads were obtained from frozen mouse testis. Testes were mechanically disaggregated until obtaining a cell

suspension in 1x PBS. The cell suspension was then distributed into different slides and incubated with 1% Lypsol for 16 minutes

followed by a 20-minute incubation with 4% paraformaldehyde. Then slides were left to dry and washed with twice PhotoFlo 1%

(Kodak) and then blocked with PBS-Tween-20 (0.005%). Slides were incubated overnight at 4�C with the following antibodies:

anti-rabbit CTCF (1:50), anti-rabbit RAD21L (1:20) and anti-rabbit REC8 (1:20); one per slide and all of them combined with anti-

mouse SYCP3 (1:400). Primary antibodies were detected with anti-rabbit Cy3 (1:200) combined with anti-mouse FITC (1:200). Slides

were finally mounted with DAPI and analyzed with a fluorescencemicroscopy (Axiophot, Zeiss) coupled with a ProgRes�CS10plus,

Jenoptik camera. Representative images were captured with ACO XY (A. Coloma, Open Microscopy).

Stimulated emission depletion (STED) microscopy
Fab fragments were used for blocking and double labeling of REC8 and RAD21L antibodies (both raised in rabbit). STEDmicroscopy

(SP8, Leica) was used to generate the super-resolution images of REC8 and RAD21L foci along the chromosome axes. Secondary

antibodies for STED imaging were conjugated to Alexa 555 and 488 (Invitrogen). Slides were mounted in Prolong Antifade Gold

without DAPI. Fluorescence signals (red to green ratio) were measured along the 19 autosomal and XY axial elements of pachytene

cells using the LAS X software from Leyca. Signal intensities were standardized and the overlay profiles of RAD21L and REC8 were

plotted. Regression analysis was performed to determine the correlation between their profiles. The values of the coefficients of

determination R2 are shown in the scatterplots.

ChIP-sequencing
For chromatin immunoprecipitation, antibodies for CTCF (10 ml per sample) and cohesins RAD21L and REC8 (30 ml per sample) were

used. Two biological replicates of ChIP-sequencing (ChIP-seq) were performed using FACS-sorted primary spermatocytes at P/D
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stage (14million of cells) and round spermatids (20million of cells) from adult mice. In short, cells were incubated on ice in lysis buffer I

(5 mM PIPES, 85 mM KCl, 0.5% NP-40, Protease Inhibitors) and lysis buffer II (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, Protease

Inhibitors). Samples were then sonicated with the Biorruptor pico (30 s ON, 30 s OFF, 10 cycles) to obtain fragments around

200 bp. Sonicated lysates were centrifuged, and the supernatant was diluted in cold IP buffer (Diagenode). A small aliquot of

each sample was kept as input and the remaining was divided in three aliquots, where antibodies for CTCF, RAD21L and REC8

were added (one in each aliquot) and then incubated overnight at 4�C. The antibody-chromatin pull-down was performed with

Unblocked Protein A beads (Diagenode) and beads were then eluded with elution buffer (1% SDS, 0.1M NaHCO3). After elution

samples were centrifuged, and the supernatant was incubated with 200 mM NaCl at 65�C overnight to reverse the crosslink. Finally,

proteins were digested and the DNA purified with phenol:chloroform:isoamyl alcohol. Libraries were prepared for each sample,

repairing fragment ends by incubating the samples for 30 minutes with the NEBNext end repair mix (New England Biolabs). Then

samples were purified with AMPure beads. Samples were then incubated with the A-tailing NEBNext mix (New England Biolabs)

and purified again with AMPure beads. Then, adaptors were ligated to the sample, which was subsequently purified with AMPure

beads (0.8X). Libraries were PCR-enriched using NEBNext indexed primers, 12 PCR cycles for RAD21L and CTCF samples and

14 cycles for REC8 samples. Libraries were finally purified with AMpure beads (0.7X).

ChIP-seq peak calling and annotation
Quality check and trimming were performed using BBDuk. Setting a minimum read length of 35 bp and a minimum Phred quality

score of 20, adapters and low-quality reads were removed while preserving their longest high-quality regions. Single end reads

were obtained for CTCF ChIP and paired end reads for the cohesin ChIP. Reads were trimmed and mapped to the mouse reference

genome (mm10) using a Galaxy server. After mapping, non-unique mapped reads with a mapping quality less than 30 were filtered

out with SAMtools (Li et al., 2009). Then, to assess read coverage distribution across the genome, bigWig files for each sample were

generated with DeepTools (Ramı́rez et al., 2016). Following the server recommendations, filtered files were merged with Picard

(Broad Institute) and split again with SAMtools before peak calling. Peak calling was performed using MACS2 (Feng et al., 2012).

To find the optimal parameters for running the peak call function, a cross-correlation analysis between reads mapping to plus

and minus strands was performed, and the d parameter was estimated for each sample. Peaks were called using as extension

size the d estimated for each sample respectively. Coverage, reads and peaks were visualized with IGVtools (Thorvaldsdóttir

et al., 2013).

BED peak files were imported to Rstudio and annotated to the reference mouse genome (mm10) using the R/bioconductor

package ChIPseeker (Yu et al., 2015) together with the knownGene table from the UCSC resources (TxDb.Mmusculu-

s.UCSC.mm10.knownGene). The number of peaks overlapping between CTCF and cohesins and between cell types was obtained

by using the bioconductor package ChIPpeakAnno (Zhu et al., 2010). ChIP-seq data was represented using the packages ggplot2

(Wickham, 2016) and karyploteR (Gel and Serra, 2017) in combination with ChIPseeker and ChIPpeakAnno.

RNA-sequencing
Full-length single-cell RNA sequencing libraries were prepared using the Smart-seq2 protocol (Picelli et al., 2014) with minor

modifications. Pools containing between 20,000 and 40,000 cells were obtained by FACS-sorting for four cell types (spermatogonia,

primary spermatocytes at P/D, round spermatids and sperm) from adult mice. Four independent biological replicated were included

in the analysis. Briefly, cells were sorted into 1.5ml eppendorfs containing lysis buffer. Reverse transcription was performed using

SuperScrpit II (Invitrogen) in the presence of oligo-dT30VN, template-switching oligonucleotides and betaine. The cDNA was

amplified using the KAPA Hifi Hotstart ReadyMix (Kappa Biosystems), ISPCR primer and 16 cycles of amplification. Following

purification with Agencourt Ampure XP beads (Beckmann Coulter), product size distribution and quantity were assessed on a

Bioanalyzer using a High Sensitvity DNA Kit (Agilent Technologies). Amplified cDNA was fragmented using Nextera� XT (Illumina)

and amplified with indexed Nextera� PCR primers. Products were purified twice with Agencourt Ampure XP beads and quantified

again using a Bioanalyzer High Sensitivity DNA Kit. Sequencing of Nextera� libraries was carried out on a HSeq2500 (Illumina) to

obtain > 30 million pair ends reads per sample.

RNA profiling
The Artificial Intelligence RNA-seq Software as a Service (SaaS) platform (https://transcriptomics.cloud) was used to analyze RNA-

seq data. AIR accepts raw next generation sequencing Illumina FastQ data as input. RNA-seq data was uploaded to the site and

validated in order to automatically pair forward and reverse files (in case of paired-end samples) as well as to check its format

and integrity. Quality was assessed using FastQC. A new analysis was defined from the ‘‘new analysis’’ screen, where the samples

to be included were selected for analysis, along the reference genome (> 120,000 available genomes from NCBI, Ensembl and JGI).

The analysis included quality trimming, Differential Gene Expression (DGE) followed by a Gene Ontology Enrichment Analysis

(GOEA). Once the analysis was launched, bad quality reads were removed using BBDuk by setting a minimum length of 35 bp

and a minimum Phred-quality score of 25. Afterward, high quality reads were mapped against the reference genome with STAR

(Dobin et al., 2013) using the end-to-end alignment mode and gene expression quantification was performed with featureCounts

(Liao et al., 2014).
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The statistical analysis started by filtering lowly expressed genes using HTSFilter (Rau et al., 2013). Four statistical methods were

then used for the identification of differentially expressed genes: DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010), EBSeq

(Leng et al., 2013) and NOISeq (Tarazona et al., 2011). Data normalization was performed with the TrimmedMean of M-values (TMM)

method. Finally, GOEA was performed with in-house scripts based on hypergeometric tests (Tian et al., 2017). Multiple testing

corrections controlling false positives from high-throughput experiments were also performed with the Benjamini-Hochberg method.

The statistics section included: the Principal Component Analysis (PCA) clusterization of the samples, general plots for the interpre-

tation of the experiment and several tabs in which theDifferential ExpressedGenes (DEG) andGOEAdata is shown in different tables.

Specifically, we selected themouse genome (GRCm38) from the Ensembl release 89. NOISeq was used to explore the DEG due to

the variability of biological replicates. Raw expression and FPKM (Fragments Per KilobaseMillion) valueswere downloaded fromAIR.

The Principal Component Analysis (PCA) was performed using the noise correction function from the NOISeq package. The raw

expression values were converted to Counts Per Million (CPM) using edgeR and, afterward, expression values for each cell type

were averaged for further analyses.

Analysis of correspondence between compartments and gene expression
Cell-specific A-B compartments were intersected with BEDTools (version 2.26) against a BED file with the TSS of genes derived from

the GRCm38 gene annotation from Ensembl (release 89). Genes in each compartment were grepped (Bash command) with the table

of FPKM values downloaded from AIR (see above), producing the expression profiles represented as boxplots for each cell type and

compartment. Statistical significance among pairwise comparisons was tested using the Wilcoxon test.

For GOEA in cell-specific A-compartments we extracted gene Ontology (GO) terms from expressed genes (CPM > 1) located in A

compartments. GOEAwas performed following the approach used by AIR on the DEG. It consists of a series of hypergeometric tests

carried out for each GO term thus identifying significant enriched GO terms relative to the expected genome background. P values

were corrected with the Benjamini-Hochberg procedure to reduce false positives. We considered as significantly enriched the terms

with corrected P values % 0.01. Results were displayed using bubble plots.

Moreover, expressed genes with peaks on their promoters were classified according to cell type and protein (CTCF, RAD21L and

REC8). Genes were then analyzed with PANTHER (Mi et al., 2017) using the online tool AmiGO (Carbon et al., 2008).

Local insulation, cohesin occupancy and gene expression
The GRCm38 gene annotation from Ensembl (release 89) was downloaded in GTF format. It was parsed with an in-house script to

extract in BED format the promoter regions 2 kbp upstream the Transcriptional Start Site (TSS) for each gene. Afterward, ChIP-seq

peaks were intersected with BEDTools to obtain gene lists with ChIP-seq peaks in their promoters. These gene lists were grepped

(Bash command) with the downloaded table with the expression values from the AIR platform (see below).

Protein peaks were associated with changes in the corresponding TAD insulation score or gene expression using the function

meanInRegions of the R package regioneR (version 1.10) (Gel et al., 2016). This package generates an expected distribution from

10.000 permutations from the values (e.g., TAD insulation score or FPKM values) observed in random genomic locations, thus

calculating the Z-score of the TAD insulation score or the gene expression observed on ChIP peaks. Z-scores from flanking regions

(+/� 250 Kbp) of peaks were calculated with the function localZScore.

Meta-border plots were created using ICE-normalized matrices normalsed by the number interactions expected at a given

distance with ‘‘hicFindEnrichedContacts’’ program from the HiCExplorer package (parameters: ‘‘–method obs/exp,’’ ‘‘–perchr’’).

Subsequently, sub-matrices of interaction counts 5 Mbp up and downstream of specific regions (e.g., TAD boundaries or protein

peaks) were generated and averaged among them. The interaction counts underwent a log10 transformation and were plot with

‘‘hicPlotTADs’’ program from HiCExplorer.

X chromosome evolutionary strata and ampliconic regions
Mouse X strata were extrapolated from the human X chromosome using synteny information (https://www.ensembl.org/

Mus_musculus/Location/Synteny?r=X). Likewise, the boundaries of each amplicon in the current assembly were defined by flanking

paralogs (Table S7).

QUANTIFICATION AND STATISTICAL ANALYSIS

All sequencing data was checked and trimmedwith BBDuk (Bushnell, 2014). Hi-C data was processed with TADbit (version 0.2.0.23)

to obtain raw interaction matrices, compartments and TADs. HiCExplorer was used to: (i) normalize raw interaction matrices, (ii)

create interaction heatmaps, (iii) predict averaged contact probabilities P(s) and (iv) obtain TAD insulation scores. Correlation values

between biological replicates were performed using HiCRep (Yang et al., 2017). Normalized interaction matrices were exported with

HiCExplorer to the GInteractions format and imported in R to calculate the inter-intra-chromosome interaction ratio. Normalized

interaction matrices were scaled with a factor of 1,000,000/sum(matrix) with a custom Python script, exported with HiCExplorer

to GInteractions format and imported in R to create boxplots. Differences between cell types were assessed with the Wilcoxon

test (p value < 0.05).
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ChIP-seq data was processed using the Galaxy server. BigWig files for each sample were generated with DeepTools (Ramı́rez

et al., 2016) and peaks were called using MACS2 (Feng et al., 2012). BED peak files were imported to R and annotated using

the R/Bioconductor package ChIPseeker (Yu et al., 2015) and UCSC resources (TxDb.Mmusculus.UCSC.mm10.knownGene).

ChIPpeakAnno (Zhu et al., 2010) was used for peak intersection. Changes in the insulation score on peaks were statistically assessed

using the function meanInRegions of the R package regioneR (version 1.10) (Gel et al., 2016).

RNA-seq data was processed with the Artificial Intelligence RNA-seq (AIR) Software as a Service (SaaS) platform (https://

transcriptomics.cloud). In this case, raw expression values were converted to Counts Per Million (CPM) using edgeR, and averaged

for each cell type. FPKM values were averaged for each cell type and BEDTools (version 2.26) was used to intersect genomic

coordinates to relate gene expression with compartments, insulation scores and ChIP-seq marks. Differences in gene expression

in the intersected regions between cell types were assessed by means of Wilcoxon tests (p value < 0.05).

DATA AND CODE AVAILABILITY

The accession number for the Hi-C, RNA-seq and ChIP-seq data reported in this paper is GEO: GSE132054.
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