The Journal of Supercomputing (2019) 75:1524-1550
https://doi.org/10.1007/s11227-018-2688-8

@ CrossMark

Designing a benchmark for the performance evaluation of
agent-based simulation applications on HPC

Andreu Moreno'? - Juan J. Rodriguez? - Daniel Beltran? - Anna Sikora? -
Josep Jorba3 - Eduardo César?

Published online: 17 November 2018
© The Author(s) 2018

Abstract

Agent-based modeling and simulation (ABMYS) is a class of computational models
for simulating the actions and interactions of autonomous agents with the goal of
assessing their effects on a system as a whole. Several frameworks for generating
parallel ABMS applications have been developed taking advantage of their common
characteristics, but there is a lack of a general benchmark for comparing the perfor-
mance of the generated applications. We propose and design a benchmark that takes
into consideration the most common characteristics of this type of applications and
includes parameters for influencing their relevant performance aspects. We provide an
initial implementation of the benchmark for FLAME, FLAME GPU, Repast HPC and
EcoLab, some of the most popular parallel ABMS platforms, and use it for compar-
ing the applications generated by these platforms. The obtained results are mostly in
agreement with previous studies, but the designed and implemented specification has
allowed for testing a wider set of aspects, such as the number of interacting agents,
the amount of interchanged data or the evolution of the workload and obtaining more
reliable results.

Keywords Agent-based modeling and simulation - Parallel applications -
Performance - Benchmark

1 Introduction

Agent-based modeling and simulation (ABMS) is a class of computational models
for simulating the actions and interactions of autonomous agents (both individual and
collective entities such as organizations or groups) with the goal of assessing their

This work has the support of the Ministerio de Economia, Industria y Competitividad MINECO-SPAIN
under contracts TIN2014-53234-C2-1-R and TIN2017-84553-C2-1-R and by the Generalitat de
Catalunya GenCat-DIUIE (GRR) with the Project 2017-SGR-313.

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2688-8&domain=pdf
http://orcid.org/0000-0002-9729-8557

Designing a benchmark for the performance evaluation of... 1525

effects on a system as a whole [1]. ABMS belongs to a category of models known as
discrete event simulations, which run with some set of starting conditions over some
period of time, allowing the programmed agents to carry out their actions until some
specified stopping criterion is satisfied, usually either a certain amount of time or a
specified system state [2].

An agent is an autonomous, dynamic rule-based entity within a defined environ-
ment. The behavior of the agents is encoded in algorithms, which may go from simple
deterministic rules to sophisticated algorithms including learning and adaptive strate-
gies. The agents determine the dynamics of the system as a whole by interacting with
each other. Being able to communicate with each other, the agents can influence the
behavior of other agents creating complex interactions within a system.

Depending on the complexity of the model and the number of agents participating
in the simulation, an ABMS application may consume a significant amount of compu-
tational resources. Consequently, in many cases these simulations can take advantage
of parallel techniques and HPC hardware. In addition, parallelizing this type of sys-
tems is feasible due to the underlying autonomous behavior of the agents, taking into
account the related synchronization and communication issues.

Several frameworks for generating parallel ABMS simulators have been developed
taking advantage of the common characteristics of these applications. Among them, we
can mention FLAME [3], FLAME GPU [4], Repast HPC [5], EcoLab [6], D-MASON
[71, Pandora [8] or Care-HPS [9]. They present differences in the way agents and
contexts are specified (e.g., C, C++, Java, XML, Tcl), in the way communications are
managed (e.g., explicit messages, agent replication), in the presence of aload balancing
mechanism, in the performance of the resulting simulator, etc. Consequently, how can
a potentially non-expert user decide which is the best framework to implement a given
agent-based model?

There are some comparative studies, such as [10,11] or [12], that can be very helpful
for taking this decision because they take into consideration aspects like development
effort, framework features and performance. However, only a few studies are focused
on parallel/distributed platforms, and sometimes, comparison criteria are subjective;
for example, development effort usually depends on the developers programming
background.

Moreover, as noticed by Open Agent Benchmark Initiative for Parallel and Dis-
tributed Benchmarking (OpenAB) [13], in the case of empirical studies, there is an
urgent need of a comprehensive common base application that allows for a fair plat-
form comparison. Benchmarking is the quantitative foundation of the software or
hardware devices developed in most research areas.

For this reason, defining a common benchmark for comparing the performance
of parallel ABMS generation platforms is the main motivation behind this work. We
are presenting the design of a benchmark that takes into consideration the model’s
computation load and distribution, communication load and pattern, and problem
size. The proposed benchmark is a generalization of the one already used in [11]. An
initial implementation of the benchmark has been developed in Repast HPC, FLAME,
FLAME GPU and EcoLab.

These implementations have been used to conduct a set of comparison experiments.
Part of these experiments reproduces the study presented in [11]; the obtained results

@ Springer

1526 A. Moreno et al.

are mostly coincident, but in several cases the new results extend and correct the
original ones. The rest of the experiments shows new results for all the considered
platforms.

The remainder of this work is organized as follows. Section 2 summarizes the ABMS
frameworks used for implementing and testing the benchmark. Next, Sect. 3 discusses
the decisions taken in the design and implementation of the proposed benchmark.
Section4 depicts the use of the benchmark for comparing well-known ABMS frame-
works, FLAME, FLAME GPU, Repast HPC and EcoLab. Section5 describes the
related work. Finally, conclusions are stated in Sect. 6.

2 Background

This work is focused on the design of a benchmark for comparing the performance of
the parallel simulators generated by different frameworks, and logically, we need to
test it using representative cases of study. In this section, we introduce a summary of
the most relevant characteristics of FLAME, FLAME GPU, EcoLab and Repast HPC,
which are the frameworks that have been used in these cases of study. We have focused
on these platforms because all of them are backed by several publications, have been
used for implementing real applications, offer stable and maintained versions of the
software, and have been specifically designed for HPC systems.

2.1 FLAME

FLAME [3] was developed at the University of Sheffield in collaboration with the
Science and Technology Facilities Council (STFC). FLAME has been used to solve
problems involving multiple domains such as economical, medical, biological and
social sciences. This framework allows for writing several agents models using a
common simulation environment and then performing simulations in a simple way on
different parallel architectures.

FLAME is a tool able to generate the necessary source code for the simulation. It
automatically generates the simulation code in C through a template engine.

The model specification is described by two types of files: XMML (X-Machine
Markup Language) files, which is a dialect of XML, and the implementation of the
agent functions contained in C files. This approach is similar to the one followed
by Repast [5] and Pandora [8], but in this case, instead of using an object oriented
language, agents state and data are specified using XMML.

The functionality of FLAME is based on finite-state machines called X-machines,
which consists of a finite set of states, transitions between states, messages between
agents and actions. To perform the simulation, FLAME holds each agent as an X-
machine data structure, whose state is changed via a set of transition functions.
Furthermore, transition functions may perform message exchanges between agents.

The transitions between the states of the agents are accomplished by keeping the X-
machines in linked lists. The simulation environment has one linked list for each state of
aspecific kind of agent. During the simulation, all agents’ X-machines are inserted into

@ Springer

Designing a benchmark for the performance evaluation of... 1527

Fig. 1 Parallel communication
and synchronization in FLAME Process 0 Process 1
via libmboard

msg board at 0 msg board at 1

Libmboard Parallel

Message Synchronisation
msg board at 3

msg board at 2

- —

Process 2 Process 3

the list associated with their initial state. Next, the corresponding transition function is
applied to each X-machine, and they are moved to the list associated with the agents’
next state. This process is repeated until all agents reach the last state, which determines
the end of the iteration.

When FLAME generates parallel code, this structure is replicated in all the nodes
participating in the simulation and the agents are distributed among these nodes.
In addition, a communication library called libmboard, which is build on MPI, is
used for managing communication between agents assigned to different nodes. This
library sends all messages to external agents through a coordinated communication
mechanism between different MPI processes. Figure 1 schematically shows how com-
munication takes place in FLAME.

In this way, FLAME provides a general communication mechanism that allows any
pair of agents to interchange messages without needing any replication of agents in
different nodes.

Distribution of agents among nodes in FLAME is based on two static partitioning
methods: geometric and round-robin partitioning.

FLAME also has some drawbacks that do not depend on the particular model being
defined and simulated. First, its current version does not include any mechanism
to enable the movement of agents between processes, and second, the centralized
communication scheme based on libmboard limits the scalability of the generated
simulators.

2.1.1 Extended FLAME

A set of works have proposed a methodology that enables dynamic and automatic
performance enhancements for FLAME-generated simulators implementing spatially
explicit ABMS [14-16]. The methodology introduces a tuning strategy which dynam-
ically minimizes the gaps of the computing and communication workloads between
simulation processes. The strategy adjusts the global simulation workload migrat-

@ Springer

1528 A. Moreno et al.

ing groups of agents among the simulation process according to their computation
workload and their interconnectivity modeled using a hypergraph. A hypergraph is
a graph generalization that, in this case, allows for more accurately modeling agent
system interactions. This hypergraph is lastly partitioned using a parallel partitioning
algorithm, implemented in Zoltan [17], to decide a proper workload distribution.

This strategy is divided in two phases: monitoring and tuning. In the monitoring
phase, the application workload is measured at runtime in order to identify load unbal-
ances and when necessary applying the load balancing strategy in the tuning phase.
The load balancing strategy consists of three steps:

1. Create an agent system representation (ASR), which uses a clustering algorithm
for representing the system agents as a global hypergraph.

2. Hypergraph partitioning, using Zoltan, in order to determine a more balanced
distribution.

3. Agent migration to adjust the global workload.

2.2 FLAME GPU

FLAME GPU [4,18] is an extension of the FLAME framework which provides a
mapping between the XMML + C agent specification and CUDA code, producing a
parallel simulator for running in NVIDIA GPU devices.

This framework allows developers to focus on specifying agent behavior and run
simulations without being concerned about CUDA programming or devising optimiza-
tion strategies. In addition, simulations performance is usually significantly improved
in comparison with the one obtained using only the CPU. This allows for the simulation
of larger models with less cost than cluster based simulations.

The FLAME GPU functionality is based on X-machines as in FLAME, with
some differences that are specified in the FLAME GPU documentation [19]. Initially,
FLAME GPU was developed for Windows platforms, but now there is a GNU/Linux
version of the framework.

FLAME GPU is based on a set of XSLT (eXtensible Stylesheet Language Trans-
formations) templates. As it needs an XSLT processor, we are using the XSLT Apache
Xalan [20] processor to generate the model code. FLAME GPU also needs the OpenGL
Extension Wrangler library [21] and the CUDA Data Parallel Primitives library [22]
to run the generated simulation.

The FLAME GPU-generated simulator has two main data structures: one for the
agents and the other for the messages. These structures are allocated into memory at
execution time and manipulated by CUDA kernels when the simulation is executed.
As in FLAME, the agent state is changed by iterating on a function set which makes
agents evolve.

The communication between agents is done through messages; however, unlike in
the case of FLAME, in FLAME GPU there is message partitioning instead of agent
partitioning. Each message is contained in a list and it consists of a name, a description,
a list of variables and the partitioning definition. There are three message partitioning

types:

@ Springer

Designing a benchmark for the performance evaluation of... 1529

1. Non-partitioned messages make possible interactions between any pair of agents,
as in the case of FLAME with libmboard. This is a very flexible but costly mech-
anism because when an agent wants to read a message it has to iterate over the
whole list of messages.

2. Discrete partitioned messages establish the maximum distance in a discrete 2D
space between interacting agents. Agents must define variables for their coordi-
nates (x and y), their position cannot change during the simulation, and the message
size must be a power of two.

3. Spatial partitioned messages establish the maximum distance in a continuous 3D
space between interacting agents. Agents must define variables for their coordi-
nates (X, y, z), and their position can change during the simulation. In this case, the
model must specify three space bounds that define the space where messages may
exist. The space within these bounds is divided in P partitions for each dimension,
according to the defined distance in the following way:

P = [((maxbound — minbound) -+ distance)]

These partitions are used to generate a partition boundary matrix which holds
indexes of messages from each partition in the whole space.

FLAME GPU has a restriction because messages can only use simple type variables
and graph communication. This is a problem when it is necessary to interchange
messages with multiple elements because arrays are not supported and it is necessary
to add multiple simple type variables.

2.3 Repast HPC

Repast for HPC (Repast HPC) [5] is an ABMS toolkit for high-performance dis-
tributed computing platforms that was released in 2012. It implements the core Repast
Simphony [5] concepts and features, and it is written in C++ using MPI for parallel
operations.

Agents are implemented as objects written in C++. An agents state is represented
by the field variables of those classes and agent behavior by methods in those classes.

The simulation proceeds using a schedule. Repast HPC implements a dynamic
discrete event scheduler with conservative synchronization. The user schedules events
to occur at a specific tick, and the ticks determine the relative order in which the events
occur.

A context is used to encapsulate the population of agents. As agents are created
they are added to a context and when they die, they are removed from a context.

The context has projections associated with it. A projection imposes a relational
structure on the agents in the context. For example, a grid projection puts agents into a
grid matrix type structure where each agent occupies some cell location in the grid. A
network projection allows agents to have network link relationships with each other.
Repast HPC implements 3 types of projections: grid, continuous space and network.

A Repast HPC simulation is thus composed of a set of agents, one or more contexts
containing these agents and zero or more projections relating them. Simulation exe-

@ Springer

1530 A. Moreno et al.

Fig.2 Parallel communication
and synchronization in Repast Process 0 Process 1
HPC

Shared buffer. Synchronized using MPI

| Process 2 Process 3

cution typically consists of getting the next scheduled event and executing that event
invoking some agent’s method.

When run in parallel, each process is responsible for executing a set of local agents
(those assigned to the process). When agents assigned to a certain process (e.g., agent
A at Process 0) interact with other agents assigned to a different process (e.g., agent
C at Process 2), the relevant agents in Process 0 are replicated and copied to Process
2 as shown in Fig.2. Repast HPC employs user-provided methods for serializing/de-
serializing the agents and MPI for communicating them.

As in the case of FLAME, Repast HPC has some drawbacks that do not depend
on the particular model being defined and simulated. Communication among agents
implies replication of objects in several processes, thus incrementing memory require-
ments, forcing users to explicitly synchronize replicas and making bidirectional
communication more difficult.

2.4 EcoLab

EcoLab [6] is an ABMS framework designed for C++ programmers that allows for
implementing agent-based models in C++ and simulating them using Tool Command
Language (Tcl) [23]. EcoLab supports parallel simulation of agents distributed over
an arbitrary topology graph through Graphcode and Classdesc libraries [24].

Similarly to Repast HPC, agents are implemented as objects in C++. Each agent is
assigned to a node in a graph that defines the relationships between agents (similarly
to Repast HPC context and projections). This graph is managed from a global model
class.

The simulation process is implemented through a Tcl script that is responsible for
creating the initial set of agents, distributing them in the graph and calling the model
methods that perform the actual simulation.

When executed in parallel, each simulation process executes the Tcl script, which
means that it creates a subset of the system’s agents and is responsible for simulating

@ Springer

Designing a benchmark for the performance evaluation of... 1531

its local agents. As in the case of Repast HPC, interactions between agents assigned to
different processes are managed by replicating the relevant agents in both processes.
However, EcoLab automatically provides the serialization/deserialization methods for
the agents and agents’ containers (Classdesc). A library called Graphcode is used for
performing the communication based on MPI, but this library provides more than a
communication mechanism; it uses ParMETIS [25] for balancing the load of the whole
system.

As in the case of the other frameworks, EcoLab has some drawbacks. Interaction
among agents implies replication of objects in several processes, thus incrementing
memory requirements, forcing users to take care of synchronization and repartitioning.
In addition, the provided load balancing approach is centralized in one process, which
is responsible for gathering the current configuration of the agents graph, calling the
ParMETIS partitioning function and distributing its results among the other processes.

3 Benchmark description

A Benchmark must be representative of the target applications being assessed. Conse-
quently, the first step for creating a benchmark for parallel ABMS applications should
be to define a set of requirements extracted from common ABMS cases. Next, a bench-
mark must be designed for satisfying the detected requirements, and finally, it shall
be implemented on the platforms being assessed.

Therefore, in this section, we present the main contribution of this work, which is
covering these three phases for creating a benchmark for assessing parallel ABMS
applications.

3.1 Benchmark requirements

In the first place, probably the most relevant features of an ABMS is the possibility of
defining interactions between agents because it is the main source of emerging behavior
in these systems. Usually, the frameworks for generating parallel ABMS simulators
offer some kind of abstraction for allowing programmers to express these interactions
at the agent level. For example, FLAME and FLAME GPU offer an explicit message
passing mechanism, while Repast HPC and EcoLab allow an agent to get a list of
objects representing its neighbors and then call these objects methods.

This abstraction is implemented using a mechanism that allows to communicate
and synchronize threads and/or processes on the target hardware system. For exam-
ple, FLAME, EcoLab and Repast HPC use Message Passing Interface (MPI) [26]
for implementing their communication abstractions, while FLAME GPU uses shared
memory for communicating agents. Logically, any communication and synchroniza-
tion mechanism used in a parallel application introduces an overhead, which depends
on the parallel programming model (shared memory, message passing). This overhead
must be measured for assessing the application’s performance.

In most ABMS, agents interact with their neighbors frequently and interchanging a
small amounts of information (e.g., crowd evacuation, traffic or tissue growth simula-

@ Springer

1532 A. Moreno et al.

tions), but, in other cases, agents interactions can be between any pair of agents (e.g.,
social networks, or economy simulations) or interchange larger amounts of informa-
tion (e.g., stock exchange simulation).

Consequently, the benchmark must be able to replicate the most usual interaction
patterns among agents and allow to configure these interactions (pattern, frequency,
size) in order to determine their influence in the communication and synchronization
overhead.

In the second place, besides interactions among them, another relevant factor affect-
ing performance is the computation performed by the agents. This computation is
always expressed in the form of functions or methods in the considered frameworks.
The overall ABMS performance can be influenced by the global workload, its distri-
bution and its ratio against communication/synchronization.

Usually, the amount of computation performed by an agent between consecutive
interactions is relatively small, for example, computing the agent’s next position in
accordance with its neighbors position or exerted force. However, in other cases the
amount of computation can be significant, such as in the case of complex sociological
simulations involving many input factors.

Therefore, in order to evaluate its impact on the application’s performance, the
benchmark must be also able to represent different workloads, agent distribution and
communication/computation ratio.

Finally, analyzing the scalability and efficiency of a parallel application is a sig-
nificant element of its performance evaluation. Consequently, the benchmark must
not impose limitations on the number of agents or resources that can be used in the
evaluation, beyond of those imposed by the generation framework or the underlying
hardware.

3.2 Benchmark design

In accordance with the requirements established in the previous section, the user must
be able to configure the following simulation aspects:

1. Communication volume, frequency and pattern For evaluating the impact of
these factors, the benchmark includes the following parameters of the agents inter-
actions:

— Number of extra bytes involved in each interaction (num_bytes).
— Number of agents that will be involved in each interaction (num_agents).
— The maximum distance between interacting agents (distance).

2. Amount of computation For controlling the amount of computation performed
by the simulator, the benchmark includes a parameter to set the amount of extra
work done by each agent in each iteration (table_sz).

3. Distribution and evolution of the workload In order to control the workload dis-
tribution, the benchmark includes, two parameters which indicate the probability
of generating and eliminating agents, respectively, and the location in the space
where these probabilities hold (these probabilities decrease linearly as the agents
move away from these locations).

@ Springer

Designing a benchmark for the performance evaluation of... 1533

O walk 8 Pos
B xPos :int
erson yPos :int

radius vint

O interact isMoving : boolean *

walk(dest: Pos)

1

interact() -

compute(int dimension) Environment
Sicomputs gridwidth - int
————— gridHeight :int

Fig.3 AML representation of the base agent model [11]

4. Size of the test For controlling the size of each test, the initial number of agents,
the size of the environment, number of iterations of the simulation and the number
of computing elements are parameters of the benchmark.

The benchmark design is based in the adaptation done in [11] of the prisoner’s
dilemma implementation used in a Repast HPC demo. Figure 3 shows the agent model
language (AML) representation of this base agent model.

The agent behavior is divided in the three following states, executed in each simu-
lation iteration:

1. The walk state allows agents to move in a random direction on the environment,
to one of its 8 Moore neighbor cells in the grid.

2. The interact state allows agents to interact with num_agents agents in their percep-
tion field (determined by distance). The message is composed of the agent id and
an integer value plus a num_bytes number of arbitrary bytes. This state simulates
communications between agents for assessing the communication impact on each
platform.

3. The compute state simulates the workload generated by running the agent inner
algorithms. This state computes a one-dimensional forward discrete Fourier trans-
form (DFT) [27] on a table of size table_sz.

We are aware that a complete formal specification of the benchmark model and
parameters must be provided in order to assure its fairness and effectiveness. In addi-
tion, a clear set of validation checks must be defined to ensure that the benchmark has
been properly implemented. However, the goal of this work is to propose a general
benchmark analysis and design, providing enough evidence to support our hypothesis
and decisions, and to present and discuss it with the ABMS community. Next, if a
consensus is reached, it will be worth taking the effort to work on the benchmark
detailed specification and validation.

@ Springer

1534 A. Moreno et al.

walk —»@—» cooperate —»@—» play —»@—» compute

ausmLocatmn ~ agenlCooperale ~

layer 0 layer 1 layer 2 layer 3

Fig.4 State diagram of the agent model implemented in FLAME

3.3 Benchmark initial implementation

This section introduces the main aspects of an initial implementation of the benchmark
using FLAME, FLAME GPU, EcoLab and Repast HPC, some of the most well-known
parallel ABMS generation platforms. !

3.3.1 FLAME

Figure 4 shows the state diagram of an agent in the benchmark implementation using
FLAME. The behavior of every agent in each simulation iteration can be described in
the following way accordingly to this state diagram:

1. walk Move randomly to one of its 8§ Moore neighbor cells and send a message
(agentLocation) to the board indicating its new position.

2. cooperate Read all the messages on the board and determine num_agents agents
within its perception field (defined by distance). Send a message (agentCooperate)
to the board for each agent in the perception field. Each message includes the source
agent id (the one looking for cooperation), the destination agent id (the one in its
perception field), the cooperation decision (1 = cooperate, O = do not cooperate)
and num_bytes extra bytes.

3. play Using an input message filter, process every message sent to the agent and
compute the payoff according to the its cooperation decision and the one of the
source agents.

4. compute Compute a one-dimensional DFT on a table of size table_sz. Moreover,
in this state the parameters for controlling the workload evolution are taken into
consideration. The agent computes the probability of creating a new agent (Pb)
and the probability of dying (Pd) according to its distance to the positions with the
maximum probability for creating a new agent or dying, respectively. Both proba-
bilities decrease linearly with the distance to the maximum probability positions.
Next, a new agent is created with a Pb probability and the agent dies with a Pd
probability.

The diagram in Fig.4 has been extracted directly from the XML specification of
the agents, and each transition described in the behavior has been programmed in C.

! The implementations for FLAME, FLAMEGPU and Repast HPC are, respectively, available in https://
github.com/HPCA4SE-UAB/ABMS-Benchmark-FLAME, https://github.com/HPCA4SE-UAB/ABMS-
Benchmark-FLAMEGPU, https://github.com/HPCA4SE-UAB/ABMS-Benchmark-Repast.

@ Springer

https://github.com/HPCA4SE-UAB/ABMS-Benchmark-FLAME
https://github.com/HPCA4SE-UAB/ABMS-Benchmark-FLAME
https://github.com/HPCA4SE-UAB/ABMS-Benchmark-FLAMEGPU
https://github.com/HPCA4SE-UAB/ABMS-Benchmark-FLAMEGPU
https://github.com/HPCA4SE-UAB/ABMS-Benchmark-Repast

Designing a benchmark for the performance evaluation of... 1535

3.3.2 FLAME GPU

The FLAME GPU model has the same structure as the FLAME model. The evolution

of

1.

2.

3.

the model is represented by the following functions:

walk Move randomly to one of its 8 Moore neighbor cells and create a message
(agentLocation) indicating its new position.

cooperate Read all messages (agentLocation) and determine num_agents agents
within its perception field (defined by distance). Send a message (agentCooperate)
for each agent in the perception field. Each message includes the source agent id
(the one looking for cooperation), the destination agent id (the one in its perception
field), the cooperation decision (1 = cooperate, 0 = do not cooperate) and num_bytes
extra bytes. This has been implemented in a different way than in FLAME because
arestriction of FLAME GPU. This restriction is that FLAME GPU does not support
data arrays and any extra byte needed on the messages has to be implemented with
simple type variables.

play Using an input message filter, process every message sent to the agent and
compute the payoff according to the its cooperation decision and the one of the
source agents.

compute Compute a one-dimensional DFT on a table of the same size than in
the FLAME benchmark version, table_sz. FLAME computes this DFT with the
libfftw3 library which does not exist in CUDA. In its place, CUDA has cuFFT
library, the NVIDIA CUDA fast Fourier transform product [28]. We have combined
the cuFFT with the CUDA Streams [29] to improve performance. Given that
cuFFT library works as a CUDA kernel, before doing the DFT implementation
we have done some tests to be able to see what number of CUDA Streams offers
better performance using cuFFT for DFT calculation. Finally, we decided to use
three CUDA Streams combined with cuFFT library because this number of CUDA
Streams shows better performance when simulating a significant number of agents.

The first three functions have been directly translated from the FLAME model

taking into account the FLAME GPU particularities, while the compute function has
been fully restructured according to the requirements of the cuFFT CUDA library.

3.3.3 Repast HPC

The initial Repast HPC implementation of the benchmark includes two classes: Model
and Agent.

The Model class:

Creates the environment (context in Repast terminology) using a discrete space
projection for defining the grid where the agents interact,

Implements the methods for packing and unpacking agents, needed for replicating
and migrating agents in/to other simulation processes.

Creates the agents assigned to each simulation process.

Sets the events that will be executed by the simulator scheduler.

@ Springer

0N WN =

[—
N = O O

13
14
15

17
18

20
21

1536 A. Moreno et al.

Listing 1 Model method implementing agents behavior and synchronization among simulation processes
in Repast HPC

void Model::doSomething () {
int whichRank = 0;

vector <Agent*> agents;

context.selectAgents (..., countOfAgents, agents);
vector <Agent*>::iterator it = agents.begin () ;
while (it != agents.end()) {

(*it) ->play (&context, discreteSpace) ;
(*it) ->compute () ;

it++;
}
it = agents.begin () ;
while (it != agents.end ()) {
(*it) ->move (discreteSpace) ;

it++;
}

discreteSpace->balance () ;

RepastProcess::instance () ->synchronizeAgentStatus (
context, ...);

RepastProcess::instance () ->synchronizeProjectionInfo (
context, ...);

RepastProcess::instance () ->synchronizeAgentStates (...) ;

— Implements methods to be executed in each event. In particular, it implements the
doSomething method shown in Listing 1 that is executed once in each simulation
iteration. This method performs the play—compute—walk behavior for every agent
assigned to a simulation process (lines 4—16), and also, calls the methods that auto-
matically synchronize all simulation processes (lines 17-20). It is worth noticing
that these are the methods that fire inter-process communications.

The Agent class includes the methods for moving the agent (move), interact with its
neighbors (play) and compute. Most of the benchmark parameters are considered in this
class, the play method takes into consideration the distance and num_agents param-
eters and the compute method uses the rable_sz parameter. Finally, the num_bytes
parameter is used to define a buffer in this class, which artificially increases the size
of the instantiated objects (actual agents).

3.3.4 EcoLab

The initial implementation of the benchmark in EcoLab is composed of a set of classes,
which hierarchy is shown in Fig. 5, and a Tcl script.

The Agent class includes the methods that implement the agent’s behavior (compute
and cooperate) and the variables that define its state. The benchmark parameters
table_sz and num_bytes are used in this class to control the amount of computation
of each agent (compute method) and the amount of bytes communicated (defining
a buffer that artificially increases the agent’s size). Moreover, Classdesc is used for

@ Springer

Designing a benchmark for the performance evaluation of... 1537

Fig.5 Benchmark Class Ve ™
hierarchy in EcoLab Model
tot_agents
grid_size
init()

doSomething()

l

/ Grid \

addAgent()
move()
reDistribute()
step()

- D

Point

add_agent()
del_agent()

l

Agent

id
buffer[num_bytes]

compute(table_sz)
cooperate(num_agents, distance)

automatically generating the serialization/deserialization functions for objects of this
class.

The Point class that implements the graph nodes where the agents are placed. This
class inherits from the Graphcode object class, and consequently, EcoLab provides
methods for migrating objects of this class.

The Grid class represents the graph where the agents are placed (similar to the
Repast HPC context). It allows the Model to iterate through the graph and access the
agents in each node (grid cell). For this reason, the method that implements the play—
compute—walk behavior for every agent assigned to a simulation process belongs to
this class (step). The benchmark parameters num_agents and distance are used in this
class to determine the set of agents that will interact among them. Additionally, this
class inherits from the Graphcode graph class, which includes methods for distributing
and redistributing the graph among the simulation processes.

The Model class, which inherits from Grid, holds the initial model parameters and
is used to initialize the environment and to create the agents. It includes a method to let
the simulation go step by step (doSomething). In addition, using Classdesc, this class
is declared to be accessible from the Tcl script that controls the simulation process.

Finally, the Tcl script calls the initialization function included in the Model class,
which creates the environment and the initial agent population, and then executes the

@ Springer

1538 A. Moreno et al.

specified number of simulation iterations. Consequently, the benchmark parameters
that control the test size are considered in this script.

4 Benchmark evaluation

This section shows four different case studies using the implementations described
in Sect. 3.3: first, results obtained from the comparison between FLAME and Repast
HPC; next, the effect on performance of extending FLAME with an automatic and
dynamic load balancing mechanism; then, the comparison between FLAME GPU and
FLAME; and finally, the comparison between Repast HPC and EcoLab.

In all the experiments, 100 simulation steps have been executed at least five times.
The results shown in each case correspond to the average of these executions.

The experiments have been executed in different hardware platforms:

— Wilma: 12 nodes with 2 AMD Opteron 4180 processors (6 cores/processor, 128 KB
of L1, 512KB of L2 and 6 MB of L3 shared) and 8 GB of main memory.

— Batman: 2 nodes with an AMD Opteron 6376 processors (16 cores/processor,
768 KB of L1, 16 MB of L2 shared and 16 MB of L3 shared) and 256 GB of main
memory.

— Gpt: one node with 2 Intel Haswell Xeon E5-2620 version 3 processors (6
cores/processor with Hyperthreading, 64 KB of L1, 256KB of L2 and 15MB
of L3 shared) and 64 GB of main memory, and 2 Nvidia GPUs, one GTX 1080
(8 GB main memory and 2560 CUDA cores), and one GTX Titan Black (6 GB
main memory and 2880 CUDA cores).

4.1 FLAME versus Repast HPC

First, we have conducted a set of experiments on Batman in order to evaluate the
scalability of the simulators generated by these frameworks. For the strong scalability
test, the number of processes and cores has been variated from 4 to 32, using a fixed
number of 10,000 agents (num_agents), an extra size of 256 B for each interaction
(num_bytes), a distance of 10 units in world of 300 x 300 units and an extra amount
of work for each agent corresponding to the computation of a FFT on a table of 16 KB
(table_sz). Figure 6a shows that Repast HPC presents a slightly better scalability than
FLAME (speedup of 6.64 vs. 5.54, respectively, when increasing the number of cores
from 4 to 32), which is likely caused by the significantly lower (2 orders of magnitude)
communication load shown in Fig. 6b.

For the weak scalability test, the agents’ parameters are kept the same (distance,
num_bytes and table_sz), the number of processes/cores has been fixed to 32, and
the number of agents has been variated from 2000 to 10,000 (num_agents). Figure 7a
shows that for Repast HPC a fivefold increase in the workload leads to a 4.7 x increase
in the execution time (linear increase), while for FLAME it leads to a 38.6 x increase
(quadratic increase). Again, the communication overhead seems to explain this differ-
ence. Figure 7b illustrates that the communication load is 2 orders of magnitude higher
for FLAME and that it grows faster than the one for Repast. However, FLAME is sig-

@ Springer

Designing a benchmark for the performance evaluation of... 1539

1.1e+07
1e+07 |
9e+06
8e+06
7e+06
6e+06
5e+06
4e+06

Execution time (msec)

3e+06

2e+06

le+06 L
4 8 16 32

Number of processes/cores

(a)

le+12
FLAME —+—

le+1l

le+10

Total bytes sent

1le+09

1e+08 L
4 8 16 32

Number of processes/cores
(b)

Fig.6 FLAME versus Repast HPC: scalability results from 4 to 32 cores. a Execution time, b total bytes
sent

nificantly more efficient doing the computation (approximately 10x), which explains
its better results for smaller workloads.

Next, we have conducted two experiments in order to study the influence of com-
munication in both platforms. In the first experiment, executed on Batman, all the
parameters have been fixed (10,000 agents, 32 processes/cores, 16 for table_sz and
a distance of 10) except for num_bytes, which has been assigned 16, 32 and 256 B.
Figure 8a shows how the increase in the size of agent interactions is sharply affecting
FLAME's execution time (2.5 x increase), while barely affecting Repast HPC (only an
increment of 10%). The reason can again be explained by results in Fig. 8b, FLAME
is communicating a least 100 times more bytes than Repast HPC, and in addition,
increasing the size of agents interactions has a bigger effect in FLAME. (From 16 to

@ Springer

1540 A. Moreno et al.

2e+06
FLAME —— |
1.8e+06
1.6e+06
1.4e+06
1.2e+06
le+06

800000

Execution time (msec)

600000
400000

200000

0 Il
2000 4000

Il Il
6000 8000 10000

Number of agents

(a)

le+12 T
: : : FLAME ——
Repast —x— {1

le+1l

1e+10 |

Total bytes sent

1le+09

2000 4000 6000 8000 10000
Number of agents

(b)

Fig. 7 FLAME versus Repast HPC: scalability results from 2000 to 10,000 agents. a Execution time, b
total bytes sent

256 B, in FLAME overall communication grows 10x, while in Repast HPC one only
grows 4x.)

The second experiment, executed on Wilma, tries to stress Repast HPC communica-
tion approach. FLAME’s performance problem with communication is a consequence
of its centralized communication library (libmboard). However, this approach has the
advantage of allowing to communicate any pair of agents disregarding their placement.
On the contrary, Repast HPC is handling communication efficiently, but communi-
cating any arbitrary pair of agents is not as straight forward. One way for increasing
the number of potential communicating agents in Repast HPC consists in increasing
the size of the overlapping buffer between neighbor simulation processes, which is
related to the distance parameter of the benchmark. Therefore, we have executed the
simulation setting distance to 50, 100, 150, 200 and 250 units, which corresponds

@ Springer

Designing a benchmark for the performance evaluation of... 1541

2e+06

FLAME —+—

1.8e+06

1.6e+06

1.4e+06

1.2e+06

le+06

Execution time (msec)

800000 |-

600000 !
16 64 256

Extra bytes involved in each iteration (bytes)
(a)

le+12

FLAME —+—

le+1l

le+10

Total sent (bytes)

le+09

1le+08
16

Extra bytes involved in each iteration (bytes)

(b)

Fig. 8 FLAME versus Repast HPC: results variating the extra communication load (num_bytes) from 16
to 256 B. a Execution time, b total bytes sent

to overlapping buffers of 25, 50, 75, 100 and 125 units, respectively. The number of
processes/cores has been set to 16 and the other parameters have not changed.

Figure9 shows that execution time and total sent bytes increase sharply when
increasing the overlapping buffer, although the number of bytes sent is still signif-
icantly smaller than the one for FLAME. In addition, the figure also shows that the
overlapping buffer only affects processes that are direct neighbors because there is no
penalty beyond a size of 75 units, which is the area that is assigned to each process. (An
area of 300 x 300 units divided among 16 processes leads to an area 75 x 75 units/pro-
cess.) Consequently, we are not actually achieving the possibility of communicating
any pair of agents.

In general, Repast HPC shows a better performance than FLAME because of its
lower communication overhead. FLAME uses a centralized communication mecha-
nism that allows communication of any pair of agents a higher cost. On the other hand,

@ Springer

1542 A. Moreno et al.

5e+06

T Repast —+—

456406 [iy Lo S— ‘ .
e —— B e — ; :
ECTEY,) E— R N — 1 .

3406 |- T N — : .

Execution time (msec)

25 50 75 100 125
Buffer zone size

(a)

5.5e+09

5e+09

4.5e+09

4e+09

3.5e+09

3e+09

Total sent (bytes)

2.5e+09

2e+09

1.5e+09

1e+09 | : : :
25 50 75 100 125
Buffer zone size

(b)

Fig.9 FLAME versus Repast HPC: results variating the buffer zone size from 25 to 125 units. a Execution
time, b total bytes sent

Repast HPC has a communication mechanism based on the replication of agents in
different nodes, which is significantly more difficult to program, but which efficiently
manages communication.

4.2 Extended FLAME versus FLAME

This section presents a set of experiments, executed on Wilma, for assessing the
impact of the mechanism for automatic and dynamic load balancing incorporated in
the FLAME extension described in Sect.2.1.1.

The number of processes and cores has been fixed to 32, the number of agents to
4000 (num_agents), an extra size of 256 B for each interaction (num_bytes) and an
extra amount of work for each agent corresponding to the computation of a FFT on a

@ Springer

Designing a benchmark for the performance evaluation of... 1543

600

L 1 I NSNS TS SR SR SAHIS NS SR S

Number of agents per process
w
o
o
T
1

100

teespese Tl

0 1 1 1 1 1 1 1 1 1 1 1

1 10 20 30 40 50 60 70 80 90 100
Step
(a)
600
a
3 500 |
1%}
I
85 B00 [T .
o
%]
]
S 300 | |
o
@
-
o
200 [|
[
o]
§
2 100 - |
o 1
1 10 20 30 40 50 60 70 80 90 100
Step
(b)

Fig. 10 Extended FLAME versus FLAME: evolution of the number of agents per process. a Extended
FLAME, b FLAME

table of 16 KB (table_sz). In addition, we have added two parameters which indicate
(1) the maximum probability of generating and eliminating agents, set to 2%, and (2)
the location in the space where these probabilities hold, set to (50, 50) for elimination
and (150, 150) for generation. These probabilities decrease linearly as the agents move
away from these locations.

Figure 10 shows the statistical distribution, using boxplots, of the number of agents
per process every 10 simulation steps. It clearly demonstrates the positive effect of
the automatic and dynamic load balancing mechanism of Extended FLAME because
the number of agents is more balanced among processes in this case. This better load
balancing is noticed in the simulation execution time, which decreases from 1199.312s
in FLAME to 981.312s in Extended FLAME, reaching a global improvement of
18.2%.

@ Springer

1544 A. Moreno et al.

4.3 FLAME GPU versus FLAME

This section presents a set of experiments, executed on Gpt, to evaluate the perfor-
mance of the benchmark generated by FLAME GPU (massive parallel processing on
GPUs) using different message partition strategies, different communication loads and
different devices. In addition, we compare the results obtained by FLAME GPU with
the ones generated by FLAME (distributed parallelism using MPI).

For these experiments, we have used an agent number range from 1000 to 10,000
agents (num_agents), with or without an extra communication load of 64 B for each
interaction (num_bytes), a distance of 10 units in a world of 300 x 300 units and an
extra amount of work for each agent corresponding to the computation of a FFT on a
table of 16 KB (table_sz).

In the first set of experiments, executed on both available GPUs, we have used the
benchmark for evaluating the effect of message partitioning for different communi-
cation loads. The test consists in running the benchmark using non-partitioned and
partitioned messages and with or without an extra load of 64 B on each message. The
size of the original message is 32 B because it only contains the source and destination
agent ids and the cooperation decision.

Figure 11a shows, in the first place, the positive impact of using spatial partitioned
space to process messages without introducing additional communication load. The
difference between using non-partitioned and partitioned messages is smaller (2.07 x
or 3x) when the simulation is executed with a small number of agents, but it increases
(up to 4.24x) as the number of agents increases. In addition, it can be seen that for
non-partitioned space the GTX 1080 GPU is consistently outperforming the Titan
Black GPU. This can be explained by the faster clock rate of the GTX 1080 GPU
for computation and memory access. However, in the partitioned space case it is the
other way around from above 4000 agents. Finally, these figures show that in all cases
a linear increase in the workload causes a linear increase in the execution time. In
the case of non-partitioned messages, increasing the work load 10 times produces a
10.5x increase in the execution time, while for partitioned space, the same workload
increase causes a 5.2 x and 6.9 x execution time increase for the Titan Black GPU and
the GTX 1080 GPU, respectively.

Figure 11b shows, in the first place, the advantage of using spatial partitioned space
to process messages which size has been increased by 64 B. The impact of increasing
the size of agent interactions is negligible in the executions using the GTX 1080
GPU. However, a significant performance degradation appears when executing the
benchmark on the Titan Black GPU for higher number of agents. This may be explained
by the fact that the Titan Black GPU has 15 SM with 192 CUDA cores each, while
the GTX 1080 GPU has 20 SM with 128 CUDA cores each. As we increase the
number of agents, the message structure is bigger and this can degrade global and
share memory efficiency. Nevertheless, new tests increasing the number of agents and
the communication load must be done to be able to confirm this hypothesis.

Finally, we have compared the execution time obtained for the worst case in FLAME
GPU (non-partitioned messages and extra communication load of 64 B) with the results
obtained with FLAME on Batman using 32 simulation processes. Figure 12a shows

@ Springer

Designing a benchmark for the performance evaluation of... 1545

70
60
S 50
(]
&2
()
= 40
c
S 30
e |
(=]
5
3 20
10
0 n L 1 I
1000 2000 4000 6000 8000 10000
Number of agents
GTX 1080 - Partitioned —+—
GTX 1080 - Non Partitioned —s«—
GTX TB - Partitioned —#—
GTX TB - Non Partitioned —e—
(a)
110 - - - -

Execution time (sec.)

0 L
1000 2000 4000 6000 8000 10000

Number of agents

GTX 1080 - Partitioned —+—
GTX 1080 - Non Partitioned —s«—
GTX TB - Partitioned ——

GTX TB - Non Partitioned —a—

(b)

Fig. 11 FLAME GPU versus FLAME: scalability results from 1000 to 10,000 agents. a Execution time
without extra communication load, b execution time with extra communication load

that the performance improvement is significantly higher as the number of agents
increases, i.e., for bigger workloads the GPU version of the simulation is giving much
better results than the multi-CPU version. Figure 12b shows the ratio of improvement
for both GPUs, GTX 1080 and Titan Black, with respect to the FLAME version.
For example, running the simulators for 10,000 agents, an extra communication load

@ Springer

1546

A. Moreno et al.

1800
1600 | 4
V'
/
1400 +
s
§ 1200f :
/
o
£ 1000 - H
c
o 800 /
=1
[} P
@ 600
w e
400 |
200 | e]
/ —
0 * 1
2000 4000 6000 8000 10000
Number of agents
GTX 1080 —+— Titan Black —«— Flame —«—
(a)
30
25 + /.
s)
= 20+ s
o) A+
> S
3 »
o
£ 15+t
©
(2] //
.% 10 + e
(0
0 1 " 1
2000 4000 6000 8000 10000
Number of agents

GTX 1080 —+—

(b)

Titan Black —s«—

Fig. 12 FLAME GPU versus FLAME: execution time comparison. a Execution time. b Improvement ratio

of 64B, FLAME GPU obtains 70 seconds with GTX 1080 GPU and 100 seconds
for Titan Black GPU, while FLAME reaches 2000 seconds with 32 processes; that
is, Titan Black GPU and and GTX 1080 GPU deliver 20x and 25.8x performance
improvement, respectively. These results corroborate the claim made by FLAME GPU
authors about the performance advantages when using simulators generated for GPUs

(see Sect.2.2).

@ Springer

Designing a benchmark for the performance evaluation of... 1547

le+06 T L
: : : Repast —+—
900000 oo L s - Ecolab .
800000

700000
600000
500000
400000
300000

Execution time (msec)

200000F -
100000

0 1 1
2000 4000 6000 8000 10000

Number of agents

Fig. 13 EcoLab versus Repast HPC: scalability results from 2000 to 10,000 agents

4.4 EcolLab versus Repast HPC

The EcoLab version of the benchmark has been the last one to be developed, and hence,
it is still necessary to conduct more validation checks to be sure that it complies with
the specification. However, the preliminary tests show promising results.

For example, Fig. 13 illustrates the results of executing the benchmark implemented
in EcoLab in comparison with the results obtained with Repast HPC. In this test, we
evaluate the weak scalability applying the configuration described in Sect. 4.1, namely
running on 32 cores in Wilma, an extra size of 256 B for each interaction (num_bytes),
an extra amount of work for each agent corresponding to the computation of a FFT on
a table of 16 KB (table_sz), a distance of 10 units and variating the number of agents
from 2000 to 10,000 (num_agents). It can be seen that, for the parameter values used
in this test, performance of the benchmark implemented in EcoLab is at least 2 times
better than the one implemented in Repast HPC.

5 Related work

We have already mentioned several comparative studies [10,11] or [12], which, in some
cases, use a specific model for testing the considered platforms. This approach has two
main problems: On the one hand, the implemented model usually tests only some of
the features of the compared platforms, and in the second place, the implementation
could have some errors that may influence the results. This is the case for example of
[11], which uses a modified version of one of the Repast HPC tutorials for evaluation
purposes.

To the best of our knowledge, the most serious attempts to create a benchmark for
assessing parallel ABMS applications performance comes from the OpenAB group
[13] and were published in [30,31].

The first proposal, based in one of the FLAME demos, has been implemented for
FLAME GPU [4], MASON [7] and REPAST Simphony [5]. Although this is a very
nicely formalized proposal, it is limited to fixed radius near neighbor ABMS.

@ Springer

1548 A. Moreno et al.

The second proposal, which consists in modeling a set of molecules following
Brownian dynamics methods, has been implemented for FLAME GPU. This bench-
mark introduces the variation of the system workload during the execution, which has
been also considered in our design. However, the model is still more restrictive than
the one proposed in this work because it does not consider parameters such as the
message size, the amount of computation or the number of agents that interact within
a certain distance.

6 Conclusions and future work

In this work, we have proposed and designed a benchmark for assessing the perfor-
mance of parallel ABMS applications. This benchmark takes into consideration the
most common characteristics of this type of applications and includes parameters for
influencing their relevant performance aspects. In this way, the user can control: (1)
communication features, such as the communication pattern and message size and fre-
quency, (2) application total workload and its distribution among simulating processes
and (3) the size of each test.

We have also provided an initial implementation of the benchmark for FLAME,
FLAME GPU, Repast HPC and EcoLab, and used them for comparing the performance
of the simulators generated by these platforms. The obtained results are mostly in
agreement with previous studies, but the designed and implemented specification has
allowed for testing a wider set of aspects and obtaining more reliable results.

We expect to share and discuss this proposal with the OpenAB community to
enhance it, produce a detailed specification of the benchmark, and develop new and
improved versions for the most relevant parallel ABMS generation platforms.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Macal CM, North MJ (2009) Agent-based modeling and simulation. In: Proceedings of the 2009 Winter
Simulation Conference (WSC), pp 86-98

2. National Research Council (2014) Advancing land change modeling: opportunities and research
requirements. The National Academies Press, ISBN 978-0-309-28833-0

3. Coakley S, Gheorghe M, Holcombe M, Chin S, Worth D, Greenough C (2012) Exploitation of high
performance computing in the FLAME agent-based simulation framework, high performance com-
puting and communication 2012. In: IEEE 9th International Conference on Embedded Software and
Systems (HPCC-ICESS), pp 583-545

4. Richmond P, Coakley S, Romano DM (2009) A high performance agent based modelling frame-
work on graphics card hardware with CUDA. In: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS °09), vol 2, pp 1125-1126

5. Collier N, North M (2013) Parallel agent-based simulation with repast for high performance computing.
Simulation 89(10):1215-1235

6. Standish RK (2008) Going stupid with EcoLab. Simulation 84(12):611-618

@ Springer

http://creativecommons.org/licenses/by/4.0/

Designing a benchmark for the performance evaluation of... 1549

7.

10.
11.
12.
13.

14.

16.

17.

18.
19.
20.
. The OpenGL Extension Wrangler Library. http://glew.sourceforge.net/. Accessed 16 Nov 2018
22.
23.
24.
25.
26.
27.
28.
29.
30.

31

Cordasco G, De Chiara R, Mancuso A, Mazzeo D, Scarano V, Spagnuolo C (2013) Bringing together
efficiency and effectiveness in distributed simulations: the experience with D-MASON. Simulation
89(10):1236-1253

. Rubio-Campillo X (2014) Pandora: a versatile agent-based modelling platform for social simulation.In:

Proceedings of SIMUL 2014, The Sixth International Conference on Advances in System Simulation,
PP 29-34

. Borges F, Gutierrez-Milla A, Luque E, Suppi R (2017) Care HPS: a high performance simulation tool

for parallel and distributed agent-based modeling. Future Gener Comput Syst 68:59-73

Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and develop-
ment recommendations. Simulation 82(9):609-623

Rousset A, Herrmann B, Lang C, Philippe L (2016) A survey on parallel and distributed multi-agent
systems for high performance computing simulations. Comput Sci Rev 22:27-46

Abar S, Theodoropoulos GK, Lemarinier P, OHare GMP (2017) Agent based modelling and simulation
tools: a review of the state-of-art software. Comput Sci Rev 24:13-33

Open Agent Benchmark Initiative for Parallel and Distributed Benchmarking. www.openab.org.
Accessed 16 Nov 2018

Marquez C, César E, Sorribes J (2013) Agent migration in HPC systems using FLAME, Euro-Par
2013: Parallel Processing Workshops, pp 523-532

. Mirquez C, César E, Sorribes J (2015) Graph-based automatic dynamic load balancing for HPC

agent-based simulations, Euro-Par 2015: Parallel Processing Workshops—Euro-Par 2015 International
Workshops, pp 405-416

Kang G, Mérquez C, Barat A, Byrne AT, Prehn JHM, Sorribes J, César E (2017) Colorectal tumour
simulation using agent based modelling and high performance computing. Future Gener Comput Syst
67:397-408

Devine K, Boman E, Heaphy R, Bisseling R, Catalyurek U (2006) Parallel hypergraph partitioning for
scientific computing. In: 20th International Parallel and Distributed Processing Symposium, IPDPS
2006, p 10

Richmond P, Walker D, Coakley S, Romano D (2010) High performance cellular level agent-based
simulation with FLAME for the GPU. Brief Bioinform 11(3):334-347

FLAMEGPU Documentation and User Guide. http://docs.flamegpu.com/en/latest/. Accessed 16 Nov
2018

The Apache XML project, Xalan-Java. https://xml.apache.org/xalan-j/. Accessed 16 Nov 2018

CUDA Data Parallel Primitives Library. http://cudpp.github.io/. Accessed 16 Nov 2018

Tool Command Language. http://www.tcl.tk/. Accessed 16 Nov 2018

Standish RK, Madina D (2006) Classdesc and Graphcode: support for scientific programming in C++,
CoRR. arXiv:cs/0610120. Accessed 16 Nov 2018

Karypis G (2011) METIS and ParMETIS, encyclopedia of parallel computing. Springer, Berlin, pp
1117-1124

Message Passing Interface (mpi-forum.org)

Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216-231
The NVIDIA CUDA Fast Fourier Transform library. https://docs.nvidia.com/cuda/cufft/index.html.
Accessed 16 Nov 2018

The NVIDIA CUDA Streams. https://developer.download.nvidia.com/CUDA/training/StreamsAnd
Concurrency Webinar.pdf. Accessed 16 Nov 2018

Chisholm R, Richmond P, Maddock S (2016) A standardised benchmark for assessing the performance
of fixed radius near neighbour, Euro-Par 2016: Parallel Processing Workshops, pp 311-321
Alzahrani E, Richmond P, Simons AJH (2017) A formula-driven scalable benchmark model for ABM,
applied to FLAME GPU, Euro-Par 2017: Parallel Processing Workshops, pp 703-714

@ Springer

www.openab.org
http://docs.flamegpu.com/en/latest/
https://xml.apache.org/xalan-j/
http://glew.sourceforge.net/
http://cudpp.github.io/
http://www.tcl.tk/
http://arxiv.org/abs/cs/0610120
https://docs.nvidia.com/cuda/cufft/index.html
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

1550 A. Moreno et al.

Affiliations

Andreu Moreno'? . Juan J. Rodriguez? - Daniel Beltran? - Anna Sikora? -
Josep Jorba3 - Eduardo César?

B Eduardo César
eduardo.cesar@uab.cat

Andreu Moreno
amoreno @euss.cat

Juan J. Rodriguez
juanjose.rodriguezg @uab.cat

Daniel Beltrdn
daniel.beltranm @e-campus.uab.cat

Anna Sikora
anna.sikora@uab.cat

Josep Jorba

jjorbae @uoc.edu

Escola Universitaria Salesiana de Sarria (EUSS), Passeig Sant Joan Bosco, 74, 08017 Barcelona,
Spain

Computer Architecture and Operating Systems Department, Universitat Autbnoma de Barcelona,
Bellaterra, Spain

Estudis d’Informatica, Multimedia i Telecomunicaci6, Universitat Oberta de Catalunya,
Barcelona, Spain

@ Springer

http://orcid.org/0000-0002-9729-8557

	Designing a benchmark for the performance evaluation of agent-based simulation applications on HPC
	Abstract
	1 Introduction
	2 Background
	2.1 FLAME
	2.1.1 Extended FLAME

	2.2 FLAME GPU
	2.3 Repast HPC
	2.4 EcoLab

	3 Benchmark description
	3.1 Benchmark requirements
	3.2 Benchmark design
	3.3 Benchmark initial implementation
	3.3.1 FLAME
	3.3.2 FLAME GPU
	3.3.3 Repast HPC
	3.3.4 EcoLab

	4 Benchmark evaluation
	4.1 FLAME versus Repast HPC
	4.2 Extended FLAME versus FLAME
	4.3 FLAME GPU versus FLAME
	4.4 EcoLab versus Repast HPC

	5 Related work
	6 Conclusions and future work
	References

