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Abstract
Self-oscillation is a phenomenon studied acrossmany scientific disciplines, including the engineering of
efficient heat engines and electric generators.We investigate the single electron shuttle, amodel nano-
scale system that exhibits a spontaneous transition towards self-oscillation, froma thermodynamic
perspective.We analyse themodel at three different levels of description: The fully stochastic level based
onFokker–Planck andLangevin equations, themean-field (MF) level, and a perturbative solution to the
Fokker–Planck equation thatworks particularlywell for small oscillation amplitudes.Weprovide
consistent derivations of the laws of thermodynamics for thismodel systemat each of these levels. At the
MF level, an abrupt transition to self-oscillation arises fromaHopf bifurcation of the deterministic
equations ofmotion.At the stochastic level, this transition is smeared out bynoise, but vestiges of the
bifurcation remain visible in the stationary probability density.At all levels of description, the transition
towards self-oscillation is reflected in thermodynamic quantities such asheatflow,work and entropy
production rate.Our analysis provides a comprehensive picture of a nano-scale self-oscillating system,
with stochastic and deterministicmodels linkedby a unifying thermodynamicperspective.

1. Introduction

Self-oscillation has been described as ‘the generation andmaintenance of a periodicmotion by a source of power
that lacks a corresponding periodicity’ [1]. As opposed to resonant systems, inwhich the driving source is
modulated externally, the energy required to sustain self-oscillations is supplied by a constant source. The
phenomenon is familiar from everyday life, e.g. the human voice and the sound of a violin string. Autonomous
oscillations appear in awide range of biological systems and chemical and biochemical processes [2–4]
controlling, e.g. the beating of the heart, circadian cycles in body temperature or the Belousov–Zhabotinsky
reaction. By converting direct current into stable oscillations, self-oscillatory systems provide a useful
transductionmechanism for the design of autonomousmotors and heat engines.

One particularly interesting system exhibiting self-oscillation is the electron shuttle,first proposed by
Gorelik et al [5], where themechanical oscillation of ametallic grain is achieved by sequential electron tunnelling
between the grain and two connecting leads. This coupled systemofmechanical and electronic degrees of
freedomhas drawn considerable theoretical and experimental attention since its original proposal. Theoretical
descriptions of the system range from full quantummechanicalmodels of the coherent dynamics [6–12] to
semiclassical [12–14] and completely classical descriptions [5, 15–17]. The electron shuttle has been
experimentally realized by a vibrational fullerenemolecule [18], gold grains [19–21] aswell as nanopillars [22] as
molecular junctions between two leads. Alsomacroscopic electron shuttles, consisting of a pendulumbetween
two capacitor plates, have been investigated [23]. Reviews on the electron shuttle can be found in [24–29].
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Classical self-oscillating systems have been analysed using the tools of deterministic nonlinear dynamics
[1, 30]. For the electron shuttle in particular, a sharp transition from stationarity to self-oscillation arises due to a
Hopf bifurcation as the voltage difference between the leads crosses a threshold value [12].While the dynamical
description is well understood, the electron shuttle has not yet been thoroughly investigated froma
thermodynamic perspective. Our aim in this paper is to provide such a perspective and lay out the groundwork
for further thermodynamic analysis of the electron shuttle as a paradigmatic isothermal engine that converts
direct electric current into periodicmechanicalmotion [31]. Because the electron shuttle is a nanoscale device,
fluctuations play a central role in our analysis, in contrast with deterministic classicalmodels.

In our analysis wewill apply the tools of stochastic thermodynamics, a framework that formulates the laws of
thermodynamics at the single-trajectory level and is particularly useful for investigating the thermodynamic
behaviour of nanoscale systems. As described in review articles andmonographs [32–38], stochastic
thermodynamics has been applied to awide range of topics, including far-from-equilibrium fluctuation
theorems, the operation of biomolecularmachines, feedback control of nanoscale systems, the thermodynamic
arrow of time, and the thermodynamic implications of information processing.

In recent years a number ofmodels of non-autonomous stochastic heat engines have been proposed and
investigatedwithin the stochastic thermodynamic framework [39–44]. In thesemodels, externally applied time-
periodic driving leads to the conversion of thermal fluctuations intowork. By contrast, autonomous nano-scale
engines are characterized by the absence of an externally imposed cycle. A variety of such autonomous engines
have recently drawn both theoretical and experimental attention. First, thermoelectric devices, which use the
interplay of thermal and chemical gradients to performuseful tasks, were proposed [45–50] and experimentally
realized using quantumdot (QD) structures [51–53]. Second, stochastic self-oscillatory engines were analysed,
including a Brownian gyrator [54, 55], a rotor engine [56, 57], a heat engine based on Josephson junctions [58],
solar cells [59–61] ormechanical resonators [55, 62], and an experimental realization of the Feynman’s ratchet-
and-pawlmechanism [63].While particular thermodynamic aspects such as nonequilibriumhot electron
transport [64], subresonance inelastic electronic transport [65, 66] and tip-induced cooling [67] have been
investigated, a systematic thermodynamic description of a nano-scale self-oscillating system, such as the onewe
provide for the electron shuttle, is stillmissing.

We investigate the electron shuttle at three different levels of description: the fully stochastic levelmodelled
by a Fokker–Planck equation (FPE) and the equivalent Langevin equation, amean-field (MF)model described
as a deterministic dynamical system, and an intermediate perturbativemodel based onmultiple scale (MS)
perturbation theory, containing both deterministic and stochastic elements.We study the dynamics and obtain
statements of the first and second laws of thermodynamics at all three levels of description. In doing so, we draw
a direct line between our stochastic thermodynamicmodel of the electron shuttle and the nonlinear dynamic
model of [5, 15].We find that the abrupt onset of self-oscillatory behaviour observed at the deterministic level,
appears at the stochastic level as a smoothed but nevertheless discernible transition from stationarity to self-
oscillation. At all three levels of description, this transition is reflected in thermodynamic quantities such as the
rates of heatflow and entropy production.

Outline: The article starts with a short review of the basic idea of an electron shuttle (section 2) followed by
mathematical descriptions of the system at the different levelsmentioned above (section 3): the fully stochastic
model in section 3.1, theMF approach in section 3.2, and the intermediate, perturbativemodel in section 3.3.
The dynamics at the different levels are discussed and compared in section 3.4. In section 4 thefirst and second
laws of thermodynamics are derived at the different levels of description (sections 4.1–4.3), followed by a
discussion of the thermodynamic behaviour of the electron shuttle (section 4.4). Finally, in section 5, we discuss
ourfindings and point out future applications.

2. Phenomenology

In this sectionwe explain the basicmechanismof the electron shuttle (see alsofigure 1) before introducing the
mathematical descriptions in section 3. The shuttle is composed of ametallic grain [19–21] ormolecular cluster
[22, 68] and a nanomechanical oscillator (e.g. a cantilever [69] or an oscillatingmolecule [18, 26]), which hosts
the grain or cluster and can oscillate. Furthermore, the shuttle is tunnel-coupled to two leads, such that electrons
can jump between the leads and the grain.Here, the rate of tunnelling depends on the position of the shuttle—
the closer the shuttle is to the lead, the larger is the rate of tunnelling. A bias voltage applied to the two leads then
generates an electric field. The shuttlemechanismworks as follows: when the shuttle is close to the reservoir with
higher chemical potential, electrons are loaded onto the grain. The electrostatic force due to the electric field
between the leads pushes the negatively charged shuttle towards the reservoir with lower chemical potential
similar to a charged particle in a capacitor (see figure 1 left). As the shuttle approaches the positively biased
reservoir with lower chemical potential, the electrons are unloaded from the grain, leaving it uncharged. Due to
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the oscillator restoring force the shuttle returns (see figure 1 right) and the cycle starts again. Above a critical
value of the applied bias voltage the damping due to friction is overturned by the electrostatic force. As a result,
oscillations of the shuttle are sustained and in each cycle a number of electrons are transported fromone lead to
the other.

3.Modelling

In this sectionwe discuss different levels of description of the electron shuttle, i.e. a fully stochastic description in
section 3.1, aMF approximate description in section 3.2 and a perturbative description based on time scale
separation in section 3.3.Wewill then compare and discuss the dynamics of the system at the different levels in
section 3.4.

In the literature there exist proposals to describe the electron shuttle fully quantummechanically [6–10, 12],
semiclassically [12–14] or fully classically [5, 15–17]. In this workwe describe the system classically, which is
justified if the intra-grain electronic relaxation time ismuch shorter than the tunnelling charge relaxation time
[25]. The latter is the case for an experimental realization of the shuttle with a gold grain [19] and is sometimes
referred to as classical shuttling of particles [25]. The underlyingmechanism (tunnelling of electrons via Fermi’s
golden rule), is nevertheless intrinsically quantum.

3.1. Fully stochastic description
Wehere introduce the specificmodel of an electron shuttle considered in this work. In contrast to the original
proposal [5]we idealize theQDby assumingCoulombblockade. That is, we assume theQDcan accept nomore
than a single excess electron, due toCoulomb repulsion.Hence theQD charge state can take the two values
q=0 (empty) and q=1 (occupied). In this scenario electrons can be transferred one by one between the two
reservoirs [70–72].We use this simplifiedmodel of a single electron shuttle for illustrational and numerical
purposes, but the phenomenology discussed in section 2 does not change ifmultiple electrons are allowed on
theQD.

TheQDwith on-site energy ε is hosted by a nanomechanical oscillator. In the followingwewill refer to this
combined systemofQD and oscillator as a ‘shuttle’.We describe themovement of the oscillator in one
dimensionwith position x Î and velocity v Î . The charge q of the shuttle (setting the electron charge
e≡1) can change due to electron tunnelling with one of the two electronic leads, left or right, with chemical
potentialsμL=ε+V/2 andμR= ε− V/2 for the left and right reservoir, respectively. The bias voltage
between the two fermionic reservoirs is then given byV L Rm m= - .

TheQD charge state and themotion of the shuttle are coupled by the electricfield that is generated by the
bias voltage and assumed to be homogeneous between the leads [5]. Thus an electrostatic force Fel=αVq acts
on the shuttle when it is charged (q=1), pushing it towards the reservoir with lower chemical potential (see
figure 1 left). Hereα is an effective inverse distance between the leads.When there is no excess electron on the
shuttle (q= 0) this electrostatic force is absent.

Themechanical vibrations of theQD aremodelled as a harmonic oscillator with an effectivemassm
[5, 18, 25, 26]. From a classical point of view, this restoring force can be explained through interactions between
the shuttle, its anchor and the leads, which can be approximated by a harmonic potential [18]. The restoring
force acting on the shuttle is then given by F kxharm = - with spring constant k, and the shuttle is damped by

Figure 1. Illustration of themodel and shuttlingmechanism: a single-level dot is coupled to two electronic reservoirs with chemical
potentialsμL andμR and (inverse) temperaturesβL/R. If an electron tunnels into the dot (q = 1) the electrostatic force generated by the
bias voltage between the leads pushes the oscillator towards the right lead (left figure). If the dot is unoccupied (q = 0) only the
oscillator restoring force acts on the system, pushing the oscillator back towards the centre. Forweak friction the shuttlemay pass the
centre and approach the left lead, closing the cycle (rightfigure). The tunnelling rates into and out of the left and right reservoirs
depend exponentially on the position x of the shuttle, such that electrons tunnelmore likely between theQD and the closer lead (see
main text), as indicated by the thickness of the arrows. Additionally, the shuttle is subject to thermal noise (not shown).
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Fdamp=−γvwith friction coefficient γ.We assume underdampedmotion to enable the possibility of oscillatory
shuttling. Additionally, we connect the oscillator to its ownheat bath at inverse temperatureβosc stemming from
a dissipativemedium in equilibrium. The state of the shuttle is described by the triple (x, v, q). Combining the
electron jumpswith the underdamped oscillations and thermal fluctuations, we describe the dynamics of the
shuttle by a generalized FPE
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Here, p≡p(x, v, q, t) denotes the joint probability density tofind the shuttle at position x and velocity vwith
q 0, 1Î { }electrons at time t, andwe have introduced a velocity diffusion coefficient D mosc 2g b= ( ). Thefirst
termof equation (1) describes the underdamped evolution of the oscillator in the potentialU xq =( )
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and R x R xqq q q q q= -ån n
¢¹ ¢( ) ( ),which guarantees the conservationof probability.Here,Γdenotes the bare transition

rate,which for simplicitywe take tobe equal for the two fermionic reservoirs. Theprobability for quantum
mechanical tunnelling is exponentially sensitive to the tunnellingdistance, such that the tunnelling amplitudes are
modulatedby thedimensionless displacementx/λof the centre ofmass of the shuttle [5, 13, 73–75],whereλ is a
characteristic tunnelling length. Furthermore, the rates dependon theprobability of an electron (hole)with a
matching energy in the reservoir, i.e. on theFermidistribution f exp 1 1w b w mº - +n n n -( ) [ ( ( )) ] with inverse
temperatureβν.Note that the quantity Vxe a- enters the Fermi functions in equation (2), as the energyof the
shuttle depends onboth theQDenergy ε and the electrostatic potential−αVx (see also section4.1).

Equation (1) describes a system connected to three reservoirs at generally different temperatures: a thermal
reservoir of the oscillator at inverse temperatureβosc and two fermionic reservoirs with inverse temperatureβν

and chemical potentialμν.While the derivations in this work are general, when solving the dynamics
numerically wewill focus on the case of equal temperatures, oscb b b= =n . Nonequilibrium conditions then
arise solely due to the applied bias voltage, i.e. L Rm m¹ .

Since the space of dynamical variables defined by the triple (x, v, q) is large, solving equation (1)numerically
is expensive.We therefore turn to the trajectory representation of the single electron shuttle. The coupled
stochastic differential equations

x v td d , 3= ( )

m v kx v Vq t Dm B td d 2 d , 42g a= - - + +( ) ( ) ( )
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produce the FPE(1) at the ensemble level, as we show in appendix Aby explicitly looking at the evolution of
averages. In equation (4) the thermalfluctuations are taken into account by aWiener process dB(t)with zero
mean B td 0 =[ ( )] and variance B t td d2 =[( ( )) ] . Here, •[ ]denotes an average of the stochastic process.
Equations (3) and (4) represent for afixed q the Langevin equation of an underdamped particlemoving in the
shifted harmonic potentialUq(x). Equation (5) describes changes in the charge state q due to the stochastic
tunnelling of electrons. The independent Poisson increments N x td , 0, 1q q În

¢ ( ) { }obey the statistics:

N x t R x t

N x t N x t N x t

d , d ,

d , d , d , . 6

q q q q

q q qq q q q q


d d

=

=

n n

n n
nn

n
¢ ¢

¢ ¢ ¢

[ ( )] ( )

( ) ( ) ( ) ( )˜
˜

˜ ˜

Thefirst equation specifies that the average number of jumps into state q¢ from a state q in a time interval dt is
given by the tunnelling rate R xq q

n
¢ ( ). The second line in equation (6) enforces that only one tunnelling event per

time interval can occur, i.e. either all dN x t,q q
n
¢ ( ) are zero or N x td , 1q q =n

¢ ( ) for precisely one set of indices q, q¢
and ν.

Well-knownmodels emerge as a simple limit of our description. First, forα→ 0 themotion of the oscillator
becomes independent of the charge state q, and equations (3) and (4) describe a simple underdamped harmonic
oscillator. However, the tunnelling of electrons still depends on x (see equation (2)) and therefore theQD
remains coupled to the oscillator. Second, a complete decoupling of theQD and the oscillator is achieved in the
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limit l  ¥ andα→0. In that case theQD coupled to the fermionic leads describes thewell known single
electron transistor (SET) [76–78].

3.2.MF approximation
In order to understand the nonlinear dynamics of the compound systemofQDand oscillator, wefirst look at the
MF equations derived from the full stochastic evolution. From the FPE, equation (1), we obtain for the ensemble
averaged position xá ñand velocity vá ñ:

t
x v
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are the probabilities for theQD to be empty and occupied, respectively. Equation (7) are exact, but in order for
them to form a closed set we need an expression for dp1/dt. Integrating equation (1) over x and vwe obtain
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Due to the nonlinearity of the tunnelling rates with respect to x (see equation (2))we approximate

R x R x , 12qq qqá ñ » á ñn n
¢ ¢( ) ( ) ( )

andwe refer to this as theMF approximation. Note that if the tunnelling rates R xqq
n
¢( )were linear in x,

equation (12)would be an equality and equation (7)would be closedwithout theMF approximation.
TheMF approximation is thus described by the nonlinear differential equations
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where p pp ,0 1
º¯ ( ¯ ¯ ) and q p1º¯ ¯ . The entries of the ratematrix R xn ( ¯) are definded by equation (2), i.e.

R x R xqq qqºn n
¢ ¢[ ( ¯)] ( ¯). The overbars denote that the quantities are governed byMF equations.Within theMF

description, theQD is still described by a probability and therefore behaves stochastically, whereas the oscillator
is fully deterministic.

The temperature of the oscillator bath,βosc, does not appear in equations (13)–(15). In effect theMF
approximation describes amacroscopic system forwhich thermal fluctuations are negligible, as would be
expected in the limit of large oscillatormass. In this limit the oscillation period m k2p becomesmuch longer
than the time scale associatedwith changes in the charge state q, hence the charge state can be replaced by its
local-in-time average, as reflected in equation (14). Equations (13)–(15) are identical to those found in the
original proposal of Gorelik et al [5] for the case of one excess electron.

3.3.MSperturbation theory
To improve on theMF approximation, which only captures the average dynamics of the electron shuttle, we can
perturbatively solve the FPE, equation (1), by assuming a separation of time scales between the short dwell-time
of electrons and the slowmovement of the oscillator, and applyingMSperturbation theory [79–81]. Specifically,
we assume that during one oscillation there aremany electron tunnelling events: k mG  .We provide
details of theMS calculation in appendix B, and summarize the result here.
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Working tofirst order in the perturbationwe obtain

p x v q t x p x v t, , , , , , 16qp»( ) ( ) ˜ ( ) ( )

where the vector x x, T
0 1p p( ( ) ( )) denotes the stationary state of the ratematrix R x R x= ån

n( ) ( ), i.e. it is the
right eigenvector corresponding to the zero eigenvalue, normalized to unity: x 1q qpå =( ) . The probability
density tofind the oscillator at position xwith velocity v at time t is given by p x v t, ,˜( ), which obeys the FPE:
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As seen in equation (17), the effects of the electronic degrees of freedomon the evolution of the oscillator are
incorporated into an effective potentialUeff(x), alongwith position dependent friction and diffusion
coefficients:
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where x x2 coshc l= - G( ) ( ) is the non-zero eigenvalue ofR(x).
The zeroth order perturbation (see appendix B) corresponds to an adiabatic approximation, i.e. infinite time

scale separation, G  ¥. In that limit we have xg g˜ ( ) and D x D˜( ) , and equation (17) describes
underdamped Brownianmotion in an effective potentialUeff(x), at inverse temperature Dm2 oscg b=( ) . In
this situation, detailed balance is satisfied and the oscillator relaxes to an effective equilibrium state, with no self-
sustained oscillations. By contrast, in the first order perturbation represented by equation (17), the x-
dependence of Dm2g̃ ( ˜ ) breaks detailed balance, giving rise to non-equilibriumbehaviour and allowing for the
possibility of self-oscillations.

To solve equation (17) approximately, we parametrize x and v by the energy  and the oscillation phase θ,
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p t p t, , , q »ˆ ( ) ˆ ( ).With the transformations of equation (22) and the latter assumptionwefind a FPE for the
energy distribution by averaging over the angle θ (see appendix C):
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where p E t,ˆ ( ) is the transformed probability distribution p x v t, ,˜( ). The effective friction and diffusion
parameters take after the transformation the form
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Solving for the steady state of equation (23), i.e. p t 0¶ ¶ =ˆ , we get [83]
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0 2

 







ò
g

= -
¢
¢

¢
⎛
⎝⎜

⎞
⎠⎟ˆ ( ) ˆ ( )

ˆ ( )
( )

where  is a normalization constant.

3.4.Dynamics on the different levels of description
In this sectionwe discuss and compare the dynamical behaviour of the single electron shuttle on the different
levels of description introduced before. All numerical results in this section are obtained using the parameter
values specified in appendixD.
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3.4.1. Stochastic dynamics
We start by looking at the fully stochasticmodel, given by equation (1). Rather than solving the FPE directly, we
generated stochastic trajectories evolving under the Langevin equations (3)–(5). Figure 2 shows trajectory
segments x(t) for two different values of the applied bias voltage:βV=1.0 (figure 2(a)) andβV=40.0
(figure 2(b)). The twofigures showquite different behaviour of the stochastic position (orange) aswell as the
tunnelling of electrons schematically indicated by red (left lead) and blue (right lead) bars.Here, a negative value
of I q td dM =n n denotes the jumpof an electron from theQD into the reservoir ν ( qd 1= -n )whereas a positive
value indicates the reverse process ( qd 1=n ). Note that the stochastic current IM

n along a trajectory shows up as
delta-peaks. Infigures 2(a) and (b)weplot qd n for clearness of thefigures. For a small bias voltage (panel (a))
tunnelling events are frequent and the position x(t) oscillates irregularly around the equilibriumposition. In
contrast, figure 2(b) shows regular oscillations of the position and fewer tunnelling events. Also, the tunnelling
events infigure 2(b) are synchronizedwith the shuttling: during each period of oscillation, the empty shuttle
picks up one electron from the left reservoir (red bar) as itmoves past the origin in a leftward direction,
dx/dt<0, and it releases that electron to the right reservoir on its way back (blue bar), as itmoves past the origin
in a rightward direction, dx/dt> 0. (Typically, immediately after releasing the electron the shuttle picks up
another electron from the left reservoir and quickly delivers it to the right reservoir.)This behaviour reflects the
mechanismof single electron shuttling discussed in section 2.

Thedirected shuttlingof electrons coincideswith self-oscillation, as illustrated infigures 2(c) and (d),which show
the stationaryprobability densityof theoscillator, p x v p x v q, , ,q= å( ) ( ), obtainedby simulating a long trajectory
evolvingunder equations (3)–(5) andassuming ergodicity (see appendixD). For small bias voltage (panel (c)), the
probability density is peaked close to theorigin, showingno signof regular oscillations.When the applied voltage is

Figure 2.Top: exemplary trajectories of the position (orange) together with electron jumps between theQDand the left (red) and right
(blue) reservoir for (a) V 1.0b = and (b)βV=40.0 showing clearly the shuttling for a large bias voltage. Bottom: probability density
of the oscillator in phase-space for (c)βV=1.0 and (d)βV=40.0 simulated from equations (3)–(5) (see also appendixD). The
circular orbit indicates self-oscillations. Thewhite dot and circle correspond toMF solutions (see equations (13)–(15)).
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larger (panel d), theprobability density is concentrated arounda circular orbit, revealing self-oscillatoryharmonic
motionwith someamplitude andphasenoise.Thesebehaviours are consistentwith the trajectories shown in
figures 2(a) and (b), respectively, and they suggest that there exists a valueof the appliedbias voltageV abovewhich the
shuttle oscillates, aswewill discuss below. Similar oscillator distributions inphase spacehavebeenobserved forWigner
functions in semiclassical descriptionsof the single electron shuttle [9, 10].Note thatV enters the equations governing
thedynamics via the coupling to the electrostaticfieldand via the chemical potentials (see equation (2)).

3.4.2.MF dynamics
Wenow turn to theMFdynamics. Thewhite dot and circle infigures 2(c) and (d) correspond to the solutions of
theMFmodel given by equations (13)–(15). Aswe can see theMF solutions coincide verywell with the stochastic
phase-space distribution. As shown in previous extensive studies [12], when the parameterV crosses a critical
valueVcr¯ , theMF systemundergoes aHopf bifurcation from a stablefixed point to a stable limit cycle. For our
choice of parameters the bifurcation takes place at V 15.0crb =¯ (see appendix E). Three dynamical regimes can
be characterized, as we discuss below.

SET regime (I): the point x v Vq k, , 0fix fix a=( ¯ ¯ ) ( ¯ ) is afixedpoint of equations (13)–(14), and below the critical
value of the applied voltage thisfixed point is stable: fromany initial conditions the oscillator spirals into this point,
hence at steady state theMF systemdoes not oscillate (seefigure 2(c)). Infigure 3(a)wefind the steady state solution
for theMFposition at x x 0.006fix l= =¯ ¯ and electron currents I I 0.122M

L
M
R= - = G¯ , describing afixed

oscillator and a constantmatter current from left to right lead. The electrostatic force cannot overcome friction,
and the transition rates R xqq

n
¢( ¯) (see equation (2)) are constant since x̄ is constant at steady state. Thedynamics of

theQDare thendescribed by a simple rate equation equivalent to the classicalmaster equation of the SET [37],
leading to a net electron current I I I f Vx f Vx x2 sechM M

L
M
R L

fix
R

fix fixe a e a l= = - = G - - -¯ ¯ ¯ [ ( ¯ ) ( ¯ )] ( ¯ ).
Note that at the stochastic level (seefigure 2(a)) the oscillator is notfixed—only the average position and velocity
are equal to thefixedpoint values.

Shuttling regime (III): for a bias voltageV Vcr ¯ the system is self-oscillating and therefore acts as a shuttle
transporting one electron fromone lead to the other during each cycle (seefigures 2(b) and 3(c)).When the
shuttle is occupied by an electron, the electrostatic force is sufficient to overcome friction, leading to

Figure 3.MFposition x̄ (orange solid) aswell as right (blue dotted) and left (red dashed)matter current, IM
R¯ and IM

L¯ , during one period
in the asymptotic limit. From (a)–(c) the bias voltageV is increased. Below V 15.0crb =¯ the system is equivalent to a SET and
x Vq ka=¯ ¯ is constant as indicated also by the illustration in (a) (regime (I)). Above the critical voltage the system oscillates and after a
crossover regime (II) (panel (b)) the system acts as an electron shuttle (III) transporting one electron per cycle. The illustrations in
(c) indicate the position of the oscillator during the cycle.
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self-sustained oscillations. Note that perfect shuttling, i.e. transport of one electron per oscillation, only occurs at
very large bias voltages. For a bias of V 55.0b =¯ there are stillmore tunnelling events than from shuttling
electrons one by one, which infigure 3(c) can be seen from the fact that both currents IM

n¯ are finite when x≈0.
We also see this in the stochastic case very clearly (see figure 2(b)).

Crossover regime (II):whenV Vcr» ¯ the system exhibits both SET and shuttle behaviour. Above the critical
bias voltageVcr¯ theMF fixed point is unstable and a small perturbation to the system causes variations in the
charge of theQD. The electrostatic force acting on these charge variations provides positive feedback on the
oscillator and compensates for losses due to friction. The asymptoticMF state is characterized by periodic
oscillations of the position x̄ and velocity v̄—as in the shuttling regime—as well as charge q̄ andmatter currents
IM
n¯ (see figure 3(b)). However, throughout the entire period of oscillation theQD is able to exchange electrons
with both leads, as in the SET regime. As the bias voltage is increased, the amplitude of oscillations increases, and
the time duringwhich the shuttle exchanges electronswith the reservoirs decreases, and finally only one electron
is transferred per cycle, which corresponds to the pure shuttling regime.

3.4.3. Perturbative dynamics
To gain further insight into the transition to self-oscillation, we solve the full FPE, equation (1), perturbatively by
imposing a time scale separation between the rapid tunnelling events of electrons and the slowmovement of the
oscillator (see section 3.3). Infigure 4(a)we plot the steady state probability density pss ˜ ( ) obtained from this
calculation (see equation (25)) for different applied bias voltages (dotted).We also plot the corresponding energy
distributions p kx mv p x v x v2 2 , d dss ss

2 2 ò d= - -( ) ( ) ( ) determined fromnumerical simulations of the
full stochastic evolution (solid). The two sets of distributions show similar behaviour: for small voltages the
maximumoccurs at 0 = but for larger values ofV the distributions are peaked at non-zero values of the
energy, corresponding to self-oscillation as discussed earlier. For larger values of the voltage themaximumof the
probability density occurs at smaller values of the energy for the stochastic case, when comparedwith theMS
results. This deviation can be understood in terms of the underlying assumption of time scale separation for the
MSperturbation theory: as the bias voltage is increased the system transitions from the SET regime (with clear
time scale separation) to the shuttling regime (where time scales are comparable).

3.4.4. Comparison
Finally, we compare all three levels of description in terms of an order parameterA that quantifies themagnitude
of self-oscillation. In theMF case the position at long times performs oscillations of the form
x t A t xcos 0 fixw j= + +¯ ( ) ¯ ( ¯ ¯ ) ¯ , andwe choose A AMF = ¯ as our order parameter. In the stochastic case we
consider the probability density at v=0, i.e. p(x, v=0), which in the case of large self-oscillations resembles a
pair of well-separated peaks (see figure 2(d)).Wefit p(x, v= 0) to a normalized sumofGaussians,
g x N x c x x c xexp 2 exp 20

2 2
0

2 2s s= - - - + - - +( ) { [ ( ) ] [ ( ) ]}withfit parameters5σ2, c, and x0.We

Figure 4.Panel (a): numerical solutions of p Ess
ˆ ( ) (MS, dotted) together with the equivalent plots of the stochastic solution p(E) (FPE,

solid) as a function of the energy E of the oscillator. Amaximum larger than zero indicates that the system is oscillating. For large
values ofV theMS solution deviates from the stochastic solution due to the break down of the time scale separation. Panel (b): ‘order
parameter’A of the oscillations as a function ofV for the FPE (orange solid), theMF (red dashed) and theMSdescription (blue
dotted): all three descriptions predict an onset of oscillation and agree quite well for the chosen set of parameters. The inset shows a
zoom into the onset region.

5
Wehave to include a shift c because the the orbit is not exactly centred around the origin. This shift is the counterpart of xfix discussed in the

MF context in section 3.4.2.
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then define the self-oscillation amplitudeAFPE in terms of the value(s) x at which the function f x g x c= +( ) ( )
has amaximum:when x0  s , f (x) has a uniquemaximumat x=AFPE=0, andwhen x0>σ, f (x) has
distinctmaxima at x AFPE=  . Note that this definition is not sensitive to small oscillations of the stochastic
system, as it givesAFPE= 0when x0  s , even though the shuttlemay be self-oscillating. Finally, for theMS
perturbative solution, we define the self-oscillation amplitude as A k2MS max= , where max is the value of
 at which the function pss ˆ ( ) ismaximized (see equations (22) and (25)). Similarly toAFPE, and for the same
reason,AMS is not sensitive to small oscillations.

Infigure 4(b)we show the amplitudes of oscillationA for the different levels of description as a function of
the applied voltage: FPE (orange solid),MF (red dashed) andMS (blue dotted). All three descriptions show an
onset of oscillation at a critical value of the voltage. The specific values are given by V 15.0crb =¯ , V 13.2FPE*b =
and V 13.6MS*b = . These values are surprisingly close to each other, in particular theMS analysis accurately
reflects the onset seen in the full FPE simulations. Recall, however, that sinceAFPE andAMS are not sensitive to
small oscillations, the onset to self-oscillation in the FPE andMS casesmay not be as abrupt as suggested by the
data infigure 4(b).

AsV is increased, the perturbative solution deviates from the stochastic amplitude of oscillation due to the
lack of time scale separation, as discussed earlier (see section 3.4.3). On the other hand, for a large bias voltage the
MF and stochastic description coincide quite well, as the deterministic component of the dynamics becomes
dominant and thefluctuations become less important. Note that the onset of oscillations in the stochastic case
may vary somewhat according to the choice offitting function g(x). Also, due tofitting of the probability density,
AFPE is quite noisy close to the onset; see inset offigure 4(b). Despite these caveats, we see that a transition
towards self-oscillation can be identified at all three levels of description.Next, we investigate whether this
transition is reflected in thermodynamic quantities such as chemical work rate, heat flow, and entropy
production rate.

4. Thermodynamics

In this sectionwe formulate the first and second law of thermodynamics at the different levels of description
introduced above—stochastic,meanfield andmultiscale perturbative. In each case we introduce precise
definitions of essential thermodynamic quantities, namely heat, work, and entropy production.With these
definitions, we compare the thermodynamic behaviour of the electron shuttle at the different levels of
description, focusing on the thermodynamic signatures of the onset of spontaneous self-oscillation.

4.1. Stochastic thermodynamics
We start by looking at the full stochasticmodel. The total energy of the coupled system is given by

E
mv kx

q Vxq
2 2

, 26
2 2

e a= + + - ( )

where thefirst two terms correspond to the kinetic and potential energy of the harmonic oscillator and the third
term is the energy of theQD. The last termdescribes the interaction energy of the oscillatorwith theQD,which
is given by an electrostatic energy analogous to that of a charged particle in a capacitor with a constant
electrostatic field of strengthαV.

By thefirst law of thermodynamics, a change in the total energy of the system is due either to exchange of
heat or towork performed by (on) the system. The change of total energy in the electron shuttle is expressed
as [33]

E kx x mv v Vq x Vx qd d d d d , 27a e a= + - + -◦ ◦ ◦ ( ) ◦ ( )

where ◦ denotes Stratonovich-type calculus. In the last term, q qd d= ån
n and q q q N x td d ,q q q= å ¢ -n n

¢ ¢( ) ( )
denotes an electron jumpwith respect to reservoir ν. The second term involving the velocity can be re-expressed
bymultiplying equation (4)with v. This yields

mv v kxv v Vqv t v B t

kx x Vq x v t

v B t

d d 2 d

d d d

2 d . 28

2 osc

2

osc

g a g b
a g

g b

= - - + +

=- + -

+

◦ ( ) ◦ ( )
◦ ◦

◦ ( ) ( )

Inserting equations (28) into (27), we get

E Vx q v t v B t

Q Q W Q

d d d 2 d

. 29

2 osc

L R chem osc

e a g g b

d d d d

= - - +

= + + +

( ) ◦ ◦ ( )
( )
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Here, we have introduced the chemical work W qdchemd m= ån
n n and the heatflow to the oscillator from its

thermal reservoir due to friction and thermal noise Q v t v B td 2 dosc 2 oscd g g b= - + ◦ ( ) [33]. The
remaining terms in equation (29) are identified as heat exchangedwith the reservoir ν, defined as
Q Vx qdd e a m= - -n n n( ) ◦ .We use the convention that work performed on the system is positive as is heat
transferred from a reservoir into the system.With these definitions of heat andworkwe can derive a consistent
second law aswewill show later in this section.

The average change in total energy is given by averaging equation (29) overmany realizations, equivalently
by averagingwith respect to the probability density (see section 3.1 and appendix A):

E

t
Q Q W Q

d

d
. 30L R chem osc= á ñ + á ñ + á ñ + á ñ˙ ˙ ˙ ˙ ( )

Wenote that derivatives with respect to time
t

d

d( )denote exact (or complete) differentials whereas a dot (·)
denotes inexact ones. The average heat absorbed from reservoir ν is given by

Q I V xI . 31M Me m aá ñ = - á ñ - á ñn n n n˙ ( ) ( )

Here, I q td dM á ñ ºn n[ ] is thematter current from reservoir ν,

I x v R x p x v t R x p x v td d , , 0, , , 1, , 32M 10 01òá ñ = -n n n[ ( ) ( ) ( ) ( )] ( )

and

xI x vx R x p x v t R x p x v td d , , 0, , , 1, 33M 10 01òá ñ = -n n n[ ( ) ( ) ( ) ( )] ( )

represents the position-current correlation. The average chemical work is given by

W I , 34chem
Må má ñ = á ñ

n

n n˙ ( )

and the heat current entering from the reservoir of the oscillator is6

Q v
m

1
. 35osc 2

osc
g

b
á ñ = - á ñ -

⎛
⎝⎜

⎞
⎠⎟

˙ ( )

The latter equation is formally equivalent to the definition of heatflow for underdamped Langevin dynamics
[33]. Similarly, the definition of the chemical work flow (see equation (34)) is consistent with the corresponding
definition for the SET (see, e.g. [84] and [37] and references therein). However, the definition of heat with respect
to left and right leads (see equation (31)) differs by the additional contribution of V xIMa- á ñn , which stems from
the interaction ofQDand oscillator. Note that the above definitions of average chemical work flow and average
heatflows can also be derived by use of the FPE, equation (1).

To establish that the second lawholds, i.e. that the average total entropy production rate is non-negative, we
consider the evolution of the Shannon entropy

S t x v p x v q t p x v q td d , , , ln , , , , 36
q

ò å= -( ) ( ) ( ) ( )

where p(x, v, q, t) is the solution of the FPE, equation (1). Taking the time derivative of S(t), introducing the
shorthandnotation p(q)≡ p(x, v, q, t), p q p x v q t, , ,¢ º ¢( ) ( ), and x vd d qò òº å⨋ , and using the conservation
of probability as well as partial integration (assuming vanishing boundary contributions, xplimx =¥

vplim 0v =¥ )we obtain

t
S t J x v q t p q R x p q p q

d

d
, , , ln ln , 37v

q
qqå= ¶ - ¢

n

n

¢
¢( ) ⨋[ ( )] ( ) ⨋ ( ) ( ) ( ) ( )

where

J x v q t
m

vp q D p q, , , 38v
g

= - - ¶( ) ( ) ( ) ( )

is a probability current. Letting S t1̇( ) and S t2
˙ ( ) denote the two terms on the right side of equation (37), we

integrate by parts to rewrite the first term as follows:

S t
m

v p q D
p q

p q
. 39v

v
1

2g
= ¶ +

¶⎧⎨⎩
⎫⎬⎭

˙ ( ) ⨋ ( ) [ ( )]
( )

( )

6
This can be seen by the connection v B v v Bd d 2 d= +◦ ( ) · , where · refers to It-type calculus.
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From equation (35)we obtain

Q v p q
m

v p q0 . 40v
osc osc osc 2b b g

g
= á ñ + + ¶

⎡
⎣⎢

⎤
⎦⎥˙ ⨋ ( ) ( ) ( )

Summing equations (39) and (40)we arrive at

S t Q , 411
osc osc

contb= á ñ + S˙ ( ) ˙ ˙ ( )

where

vp q Dm p q

Dm p q
0. 42v

cont

2

2
g

S =
+ ¶˙ ⨋[ ( ) ( )]

( )
( )

Next, we rewrite the second termon the right side of equation (37) as follows:

S t R p q p q R p q p q
1

2
ln ln . 43

q
qq q q2 å= - ¢ + ¢

n

n n

¢
¢ ¢

˙ ( ) ⨋ [ ( ) ( ) ( ) ( )] ( )

From the property of (local)detailed balance obeyed by the electron tunnelling rates (see equation (2)), i.e.

R

R
e , 44Vx01

10

=
n

n
b e a m- -n n ( )( )

wederive the identity

Q R p q R p q
R

R
0

1

2
ln , 45

q
qq q q

q q

qq
å åb= á ñ - ¢ -
n

n n

n

n n
n

n
¢

¢ ¢
¢

¢

˙ ⨋ [ ( ) ( )] ( )

where thefirst termon the right relates to heat exchangewith the fermionic leads (see equations (31)–(33)).
Summing equations (43) and (45) and rearranging terms, we obtain

S t Q , 462 discå b= á ñ + S
n

n n˙ ( ) ˙ ˙ ( )

where

R p q R p q
R p q

R p q

1

2
ln 0. 47

q
qq q q

qq

q q
disc åS = ¢ -

¢

n

n n
n

n
¢

¢ ¢
¢

¢

˙ ⨋ [ ( ) ( )]
( )
( )

( )

Here, non-negativity follows from the log-sum inequality.
Adding equations (41) and (46), we find that the rate of change of the system’s Shannon entropy is given by

t
S t S

d

d
, 48e= + S( ) ˙ ˙ ( )

with

S Q Q 49e
osc osc åb b= á ñ + á ñ

n

n n˙ ˙ ˙ ( )

0. 50cont disc S = S + S˙ ˙ ˙ ( )

Here, the entropyflow rate Sė is the rate at which the total entropy of the reservoirs decreases due to heat exchange
with the system [85]. The quantity

t
S Q Q

d

d
51osc osc åb bS = - á ñ - á ñ

n

n n˙ ˙ ˙ ( )

is the total entropy production rate, which can be expressed as the sumof two independently non-negative
contributions (equation (50)), from the continuous (equation (42)) and discrete (equation (47)) degrees of
freedom. The non-negativity of Ṡ, equation (50), shows that the second lawholds in our system.

Wenote that the two separate parts of the total entropy production rate (see equations (42) and (47)) are
formally equivalent to the definitions derived for an independent underdamped harmonic oscillator and an

independent SET [37, 84]. However, as is apparent especially at steady states, where S t 0
t

d

d
=( ) , the entropy

production rate involves the heat flows (see equation (51)), for which the definitions for the independent systems
differ from the definition for the electron shuttle (see equations (31) and (35)).
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4.2.MF thermodynamics
At themean field level, the total energy of the system (denoted by an overbar) corresponding to equations (13)–
(15) is given by

E
mv kx

q Vxq
2 2

, 52
2 2

e a= + + -¯ ¯ ¯ ¯ ¯ ¯ ( )

and its rate of change is

E

t
mv

v

t
kxv I VxI Vqv

d

d

d

d
, 53M Me a a= + + - -

¯
¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ( )

where

I
q

t
R p R p I

d

d
. 54M 10 0 01 1 Må å= = - º

n

n n

n

n¯ ¯ ( ¯ ¯ ) ¯ ( )

Note that I 0M >n¯ denotes theflowofmatter from reservoir ν into the system, and vice versa for I 0M <n¯ . Using
equations (13)–(15), the first law of thermodynamics takes the form

E

t
Vx I I v

Q Q W Q

d

d

. 55

M M
2

L R
chem

osc

å e a m m g= - - + -

= + + +

n

n n n n¯
( ¯ ) ¯ ¯ ¯

¯̇ ¯̇ ¯̇ ¯̇ ( )

Here

Q Vx I 56Me a m= - -
n n n¯̇ ( ¯ ) ¯ ( )

is the heatflow into theQD from reservoir ν,

W I 57
chem

Må m=
n

n n¯̇ ¯ ( )

is the rate at which chemical work is performed on the system, and

Q v 58
osc 2g= -¯̇ ¯ ( )

is the heatflow into the oscillator from its bath.Note that Q
osc¯̇ is always negative, in contrast to the stochastic

case (see equation (35)).
To establish the second lawwithin theMF approximation, wemust first define the system entropy at this

level of description. In theMF equations ofmotion, the state of the harmonic oscillator x v,( ¯ ¯) evolves
deterministically under equations (13)–(14), while theQD is represented by a probability distribution

p pp , T
0 1=¯ ( ¯ ¯ ) evolving under amaster equation, equation (15).We therefore define the entropy of the system to

be the Shannon entropy of theQDprobability distribution:

S t p t p tln . 59
q

q qå= -¯ ( ) ¯ ( ) ¯ ( ) ( )

As in section 4.1, the total entropy production rate is the sumof the rates of change of the entropies of the system
and the reservoirs:

t
S Q Q

d

d
. 60osc osc åb bS = - -

n

n n¯̇ ¯ ¯̇ ¯̇ ( )

Wenow analyse the three terms on the right side of this equation.
The rate of change of the system entropy is given by

t
S R p p R p R p

p

p

d

d
ln ln . 61

q q
qq q q

,
10 0 01 1

0

1
åå å= - = -
n

n

n

n n

¢
¢ ¢

¯ ¯ ¯ ( ¯ ¯ )
¯
¯

( )

By equation (58), the second term on the right side of equation (60) is equal to vosc 2gb ¯ . To analyse the third term
we use equations (44), (54) and (56) towrite

Q Vx I R p R p
R

R
ln . 62M 10 0 01 1

01

10

b b e a m= - - = -n n n n n n n
n

n
¯̇ ( ¯ ) ¯ ( ¯ ¯ ) ( )

Combining results, we obtain

R p R p
R p

R p
vln 0, 6310 0 01 1

10 0

01 1

osc 2 å gbS = - +
n

n n
n

n
¯̇ ( ¯ ¯ )

¯
¯

¯ ( )

in agreementwith the second law.
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4.3. Perturbative thermodynamics based onMFs
MFperturbation theory gives the following result for the shuttle probability density (see section 3.3):

p x v q t x p x v t, , , , , , 64qp»( ) ( ) ˜ ( ) ( )

whereπq(x)denotes the instantaneous equilibriumdistribution of theQDand p x v t, ,˜( ) is the solution to
equation (17). Equation (64) represents an approximate solution of the FPE, equation (1). Therefore, to compute
thermodynamic quantities such as heatflows and chemical work at this level of approximation, we use
equation (64) to evaluate the relevant averages introduced in section 4.1.

Note that an alternative attempt, whichwewill not followhere, could be to derive the laws of
thermodynamics based on the effective FPE, equation (17). This effective FPE goes, however, beyond a simple
adiabatic approximation and hence, its associated entropy production rate does notmatch the original entropy
production rate evaluatedwith the approximated solution [86].

To evaluate the heatflow into the oscillator, equation (35), we first write

v x v v p x v q t x v v p x v t vd d , , , d d , , , 65
q

2 2 2 2
MSò òåá ñ = » = á ñ( ) ˜ ( ) ( )

where • MSá ñ denotes an average takenwith the density p x v t, ,˜( ). Using the transformation to energy  and
oscillation phase θ given by equation (22), and assuming p t p t, , , q »ˆ ( ) ˆ ( ) (see section 3.3), we get

v
m

p t
m

d
1

,
1

, 662
MS MS   òá ñ = = á ñˆ ( ) ( )

after averaging over θ. Here, p t,ˆ ( ) is the solution to equation (23), which at steady state is given by
equation (25).

For the chemical work and the heat exchangeswith fermionic reservoirs, we need thematter currents IMá ñn

and position-current correlations, xIMá ñn . Substituting equations (64) into (32)we get

I R x x R x x . 67M 10 0 01 1 MSp pá ñ » á - ñn n n[ ( ) ( ) ( ) ( )] ( )

Transforming to , q( )-space and averaging over θ gives

I R p t Rd , 68M MS MS   òá ñ = = á ñn n nˆ ( ) ˆ ( ) ˆ ( ) ( )

with

R R x x R x x
1

2
d . 69

0

2

10 0 01 1 òp
p p q= -n p

n nˆ ( ) [ ( ) ( ) ( ) ( )] ( )

For the position-current correlations, we similarly get

xI xR 70M MSá ñ » á ñn n ( ) ( )

with

xR x R x x R x x
1

2
d . 71

0

2

10 0 01 1 òp
p p q= -n p

n n ( ) [ ( ) ( ) ( ) ( )] ( )

Combining results with equations (31), (34) and (35)we obtain

Q R V xR , 72MS MS MSe m aá ñ = - á ñ - á ñn n n n˙ ( ) ˆ ( )

W R , 73chem
MS MSå má ñ = á ñ

n

n n˙ ˆ ( )

Q
m

1
. 74osc

MS MS osc


g
b

á ñ = - á ñ -
⎛
⎝⎜

⎞
⎠⎟

˙ ( )

As in section 4.1, the first law is expressed by equation (30), but the heatflows and chemical work are now given
by equations (72)–(74).

Using equation (64), the system entropy (equation (36)) becomes a sumof distinct contributions from the
harmonic oscillator and theQD:

S t p Sln , 75QD MS» á- + ñ( ) ˜ ( )

where S x x xlnq q qQD p p= -å( ) ( ) ( ).
The decomposition S Se= + S˙ ˙ ˙ (see equation (48)) remains valid in theMS approximation. To show that

the entropy production rate Ṡ is non-negative at this level of approximation, wefirst look at the contribution
from the continuous degrees of freedom. Replacing p(x, v, q, t) by x p x v t, ,qp ( ) ˜( ) in equation (42), wefind
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Transforming to , q( )-space and averaging over θ then results in

p D m p

Dm p
d 0. 77cont,MS

2 2

3


   ò
g

S =
+ ¶˙ [ ˆ ˆ ]

ˆ
( )

Applying a similar analysis for the discrete degrees of freedom (see equation (47))we get

R R
R

R
p

1

2
ln , 78

q
qq q q q q

qq q

q q q
disc å p p

p

p
S » -

n

n n
n
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¢
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which after transforming to , q( )-space and averaging over θ becomes

p t
1

2
d , 0, 79disc,MS    ò sS =˙ ( ) ˆ ( ) ( )

where

R R
R

R

1

2
d ln . 80
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qq q q q q

qq q

q q q0
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p
q p p

p

p
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p
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¢
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disc,MSṠ is non-negative since 0 s ( ) by the log-sum inequality, and p t, 0 ˆ ( ) is a probability density.
Combining results, we get

0, 81MS cont,MS disc,MS S = S + S˙ ˙ ˙ ( )

again in agreementwith the second law.

4.4.Discussion
Having derived the general laws of thermodynamics at the different levels, we nowdiscuss the thermodynamic
properties of themodel at hand and compare the stochastic,MF andMS solutions, focusing on the transition
towards self-oscillation. All numerical results are obtained using the parameters specified in appendixD.

4.4.1. Entropy production rate
Wefirst look at the steady state entropy production rates as a function of the applied bias voltageV. Figure 5
shows the entropy production rate for the stochastic case (orange solid), theMF case (red dashed–dotted) and
theMSdescription (blue dotted). Also shown is the SET entropy production rate SETṠ (green thin), i.e.
equation (47) for the case where the position x isfixed at the origin [37, 84] or, alternatively, in the completely
decoupled limit 0,a l  ¥ (see section 3.1).

The steady state entropy production rate at theMF and the stochastic level is equal to the chemical work,
aside from a factorβ. To see this in the stochastic case, note that in the steady state the system’s Shannon entropy
and average energy are constant: S t E td d 0 d d= = á ñ. Combining this observationwith equations (30), (34)
and (51), andwith our choice of setting all reservoir temperatures to be equal, oscb b b= =n , we obtain

Figure 5.Entropy production rate for the full stochastic description (equation (50), orange solid), theMF approximation
(equation (63), red dashed–dotted), theMS analysis (equation (81), blue dotted), and for the SET (thin green, equation (47)with

0,a l  ¥), as a function of bias voltage. TheMF entropy production shows a clear signature of the underlying bifurcation at
the critical value V 15.0crb =¯ . TheMS entropy production rate deviates from (specifically, underestimates) the full entropy
production rate asV is increased, due to the breakdown of time scale separation.
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W V I V I . 82chem
M
L

M
Rb b bS = á ñ = á ñ = - á ñ˙ ˙ ( )

The last equality follows from the preservation of electron number, I I 0M
R

M
Lá ñ + á ñ = . In theMF case, we arrive

at the analogous result using equations (55), (57) and (60).
At theMF level, we see infigure 5 that below V 15.0crb =¯ the entropy production rate Ṡ̄ is essentially the

same as for the SET. This is understandable: below the bifurcation, the system evolves to a stable fixed point, with
theQDat rest near the origin (see section 3.4.2). Above the bifurcation the shuttle oscillates, hence the resulting
entropy production deviates from that of the SET. The sharp transition to self-oscillation is clearly reflected in

the deviation of Ṡ̄ from SETṠ forV Vcr> ¯ .
Interestingly, we see infigure 5 that self-oscillation lowers the rate of entropy production, relative to the

value it would have taken had theQD remained at rest; that is, SETS < S¯̇ ˙ forV Vcr> ¯ . In effect, above the critical
voltage, when facedwith a ‘choice’ between twomodes of behaviour—oscillatory or at rest—the shuttle adopts
the one that generates entropymore slowly. To understand this point quantitatively, note that the entropy
production rate is determined by thematter currentflowing from left to right through the device, equation (82).
ForβV?1 the SET current approaches I 2M

SET = G , as our choice of chemical potentials produces a SET
steady state inwhich p0=p1=1/2. For theMF case, recall that forV Vcr ¯ our system approaches the perfect
shuttling regime inwhich one electron is transferred per oscillation period, which implies I 2M w p=¯ , whereω
is the oscillation frequency. Our parameter choices give I 0.5M

SET = and I 0.1M »¯ , hence the SET generates
entropy at a rate aboutfive times that of theMF shuttle, in the high-bias limit. These results are consistent with
the asymptotic slopes of the SET andMF entropy production rates shown infigure 5. By the same token, if the

parameters were chosen such that I IM M
SET>¯ (roughly, if k mw p= > G), thenwewould get SETS > S¯̇ ˙ .

In the stochastic case the oscillator undergoes thermalmotions in the steady state, thematter current
through theQD is lower than the corresponding SET current, and as a result SETS < S˙ ˙ . Note that the onset of
oscillations is not as clearlymarked as in theMF case, rather the entropy production rate transitions smoothly
fromone regime to the other. Fromfigure 5we see that for both small and large bias voltages, theMF and
stochastic entropy production rates agree quite well: both approach the SET valuewhenV Vcr ¯ , andwhen
V Vcr ¯ theMF value only slightly underestimates the entropy production rate. However, around the
bifurcation atVcr¯ the stochastic entropy production rate deviates substantially from theMFprediction. Here, the
system shows bistable behaviour, that is, it jumps between oscillating and resting state. Therefore, fluctuations
are not small and cannot be neglected, i.e. theMF assumption is no longer valid. Similar behaviour has been
observed for the dissipatedwork of a network of units, for which a sharp transition of aMFbifurcation is
smoothed out for small system sizes and the sharpMF transition is only recovered for large network sizes [87].

Wefinally note that the stochastic entropy production rate is well approximated by theMS results, up to
V Vcr» ¯ . As argued in section 3.4, forV Vcr> ¯ the key assumption of time scale separation is no longer valid and
the perturbative solution breaks down. This is seen in the large deviation of MSṠ from Ṡ infigure 5.

4.4.2. Heat flows
Nextwe look at the heatflows between the shuttle and the three reservoirs at steady state. At steady state the
average energy of the system is constant at all levels, i.e. E t E t E td d d d d d 0MSá ñ = = á ñ =¯ , as we have
verified numerically. Infigure 6we show the left and right steady state heatflows. At all three levels of description
the heatflows between theQDand the left and right reservoirs are nearly indistinguishable. This is a
consequence of our parameter choices of smallα and V 2m e= n , as can be seen from equation (31):
Q I V xIM Me m aá ñ = - á ñ - á ñn n n n˙ ( ) . By the conservation of thematter, the first termon the right is the same for
the left and the right reservoir and differences arise only from the correlation of x and IM

n . Sinceα=0.06=1,
the difference is barely noticeable infigure 6.Note that all heatflows are negative while the chemical work is
positive, indicating that chemical work is performed on the system, and energy is transferred as heat into all three
reservoirs.

Aswith the case of entropy production (figure 5), at theMF level the onset of oscillations at Vcrb ¯ is clearly

reflected in the heatflows Q
n¯̇ (figure 6) and Q

osc¯̇ (figure 7). The latter vanishes below the bifurcation (where the
shuttle is at rest), but becomes negative above the bifurcation, where the shuttle’s oscillatorymotion gives rise to
dissipation due to friction. Below the bifurcation, theMFheatflows agreewith the corresponding SET values, as
expected.

In the stochastic case the transition to self-oscillation is gradual rather than sharp, as seen in the behaviours
of QLá ñ˙ , QRá ñ˙ and Qoscá ñ˙ . Away from the transition—that is, for small and large values ofV—these heatflows are
well approximated by theMF values, as was the case for the entropy production rate.

For theMS solutionwe see that Q Qosc osc
MSá ñ » á ñn n˙ ˙ at small values ofV. At larger values of the applied

bias voltage theMSheatflows deviate from the full stochastic heatflows, due to the breakdown of time scale
separation as previously discussed.
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To summarize this section, the thermodynamic quantities we have studied—the entropy production rate
and the heat exchanges with reservoirs—all bear the signature of the onset of self-oscillation. In particular, all of
these quantities deviate substantially from the corresponding SET values above the critical voltageVcr¯ , as the
system approaches the pure shuttling regime and its oscillatorymotion influences the exchange of energy and
matter. The transition is abrupt in themeanfield approximation, but gradual in the fully stochastic case.

5. Conclusion and future applications

Wehave provided a classical stochastic description of the single electron shuttle based on coupled Langevin
equations including thermal and Poissonian noise terms The average dynamics can bewell approximated byMF
equations away from the onset of self-oscillations for our specific choice of parameters. However, we expect
deviations between the stochastic andMFdescription iffluctuations are strong, i.e. for a systemwith a smaller
mass.Within theMF approximation the systemundergoes aHopf bifurcation from a stablefixed point to a
stable limit cycle by changing the applied bias voltage, where a limit cycle corresponds to self-oscillation of the
shuttle.

By introducing a time scale separation between the frequent tunnelling events and the slow dynamics of the
oscillator wewere able to perturbatively solve the FPE corresponding to the coupled Langevin equations. This
MS solution approximates the full stochastic solution verywell below and around the critical bias voltage of the

Figure 6.Heat flows between the fermionic reservoirs and theQD as a function of the bias voltageV: Solid lines correspond to heat
flowof the left reservoir, dotted lines to heatflowof the right reservoir.We plot the full stochastic heatflows (orange, equation (31)),
theMFheat flows (red, equation (56)) aswell as the heatflows derived byMSperturbation theory (blue, equation (72)). For
comparisonwe also plot the heatflows of the SET (thin green). TheMFheatflows show a clear signature of the underlying bifurcation
whereas the full stochastic and theMSheatflows transition smoothly between the two regimes of operation.

Figure 7.Heat flowbetween the oscillator and its respective heat bath as a function of the bias voltageV: the solid (green) line
corresponds to fully stochastic heatflow see equation (35), the (red) dashed–dotted line shows theMFheatflow (see equation (58))
and the dotted (blue) line shows the effective heatflowby use ofMS (see equation (74)). Again theMFheatflow shows a clear signature
of the underlying bifurcationwhereas the full stochastic and theMSheatflow transition smoothly between the two regimes of
operation.
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MFdescription. However, as the applied bias voltage is increased and the system starts shuttling, the underlying
assumption ofmany jumps per cycle is not valid anymore and the perturbation approach breaks down. An order
parameter defined in terms of amean amplitude of oscillation shows clear signatures of theHopf bifurcation
found in the deterministicMFdescription. This order parameter is not sensitive to small oscillations of the
shuttle in the stochastic andMS approaches, hence the system transitions smoothly towards self-oscillation in
those cases, and the abrupt onset is realized only in theMF case.

In the classical description chosen here, we identify three different regimes: below the bifurcation, i.e. for

V Vcr< ¯ the shuttle acts as a SETwith additional noise. For very large bias voltages V Vcr ¯ the systemoscillates
and transports one electron from the reservoir with higher chemical potential to the reservoir with lower
chemical potential per period. In this regime the system truly serves as a shuttle for single electron transport.
Between the two limits there is a crossover regime.

Additionally, we performed a thermodynamic analysis of the shuttlingmechanism.Using stochastic
thermodynamics we derived the first and second law at the stochastic as well as theMF level. At the perturbative
level, we used the solution fromMSperturbation theory to perform ensemble averages in order to define
effective thermodynamic quantities. The thermodynamic quantities as entropy production rate, heat flows and
chemical work rate show clear signatures of the underlying bifurcationwithin theMF approximation. The
corresponding stochastic andMSquantities lack such an abrupt transition fromnoisymovement to self-
oscillation, but show a smoothed transition, which suggest that the abrupt transition seen in the dynamical
description is an artefact of the chosen order parameter. However, the thermodynamic quantities do reflect the
transition towards pure shuttling if compared to the SET.

The thermodynamic analysis of the electron shuttle provides an exemplary discussion of the
thermodynamics of self-sustained oscillations, especially for highlyfluctuating systems at the nano-scale, and
which is also experimentally realizable. The combined systemofQDand oscillator has rich dynamics and is
capable of realizing various thermodynamic objectives. Our thermodynamic analysis fromdifferent
perspectivesmay be used as the starting point to analyse the performance of the shuttle as a heat pumpor
refrigerator, with applied chemical work used to transfer heat from cold fermionic reservoirs to the hot reservoir
of the oscillator (βν>βosc). A quantumheat engine using the electron shuttle has recently been discussed in
[88]. Alternatively, the shuttle can be transformed into an engine, which uses the chemical gradient in order to
performmechanical work. Such an enginemight be constructed as a nanoscale rotor driven by single electron
tunnelling, as proposed in [89] and [31]. Similarly, one can then use themechanicalmotion in order to pump
electrons and generate amatter current against an externally applied electric field [31]. The thermodynamic
analysis of such a device is the subject of our further research in this direction.With the present work, we hope to
pave theway for proper thermodynamic analyses for realistic engines based on the concept of the electron
shuttle and stimulate further discussion about the thermodynamic possibilities of such devices.
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AppendixA. Equivalence of FPE and stochastic differential equations

In this sectionwewill show that the FPE, equation (1), and the stochastic differential equations (3)–(5) describe
the same system, i.e. both representations reproduce the same expectation values up to order td( ). Taking an
arbitrary differentiable scalar function f one finds for the expectation value of f (q, x, v) by employing the FPE,
equation (1), (assuming that boundary contributions vanish, i.e. f (q, x, v)p(x, v, q, t)→ 0 as x  ¥ or
v  ¥)
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where x vd d qò òº å⨋ . Our aim is to show that equation (A.1) is also obtained by the use of the stochastic
differential equations (3)–(5). In terms of the stochastic process defined by equations (3)–(5)we canwrite for the
expectation value of the increment of the arbitrary scalar function f the following (using Itô’s Lemma):
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wherewe have used the statistical properties of theWiener increment, i.e. B td 0 =[ ( )] and B t td d2 =[( ( )) ] .
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Here, •[ ]denotes averages of the stochastic process.We now evaluate the sum in equation (A.2): since all
powers of the Poisson increment are of order dt, we have to evaluate the sum exactly. Since
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where the last equality follows from a general identity of point/Poisson processes (see, e.g., equation (B.54) in
[90]). Hence, up to order td( )wewrite
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Since equation (A.1) is equivalent to equation (A.4)we can conclude that, for the same initial conditions,
expectation values of an arbitrary function fwith respect to the probability density andwith respect to
realizations of the stochastic process evolve equally. Hence, the FPE, equation (1), and the stochstic differential
equations (3)–(5) describe the same process.

Appendix B.MFperturbation theory

In this sectionwe derive equation (17) from the full FPE, equation (1). The idea ofMS perturbation theory is to
impose a time scale separation of the frequent electron tunnelling events and the slow evolution of the oscillator
and, furthermore, to demand that those terms of the approximated solution that growwith time, vanish. By
imposing the latter conditionwe ensure that theMS solution of the full probability density will be valid on the
long time scale.

First wewill state some useful properties of thematrix R x R x= ån
n( ) ( ) (see equation (2)), whichwewill

use throughout the derivation. SinceR(x) is a 2×2 ratematrix it has two eigenvalues: 0 andχ<0.
Accordingly, there are two (right) eigenvectors, xp ( ) andc, for which R x x 0p =( ) ( ) and R x c cc=( ) holds,
respectively. Here,
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We start the derivation of equation (17) by considering equation (1) inmatrix representation, i.e.

t
v

x v

k

m
x

m
v

V

m v
D

v
R x

p
p

p p
p0 0

0 1
, B.6

2

2

g a¶
¶

= -
¶
¶

+
¶
¶

+ +
-

¶
¶

+
¶
¶

+⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( ) ( ) ( )

where p x v t p x v tp , , , , ,0 1
= ( ( ) ( )) . Introducing the differential operator 

L v
x v

k

m
x

m
v

V

m v
D

v
0 0
0 1

. B.7
2

2

g a
= -

¶
¶

+
¶
¶

+ +
-

¶
¶

+
¶
¶

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( ) ( )

Equation (B.6) takes the compact form

t
x v t x v t R x v t

p
p p, , , , , , . B.8

¶
¶

= +( ) ( ) ( ) ( )

Since the fast time scale describes the dynamics of the two state system,we treat the -part as perturbation and
introduce the bookkeeping parameter ò= 1 such that we can rewrite equation (B.8) as

t
R

p
p p. B.9

¶
¶

= + ( )

The idea ofMS perturbation theory is now to introduce two time scales, a fast one (t̃ ) and a slow one tt = ˜
such that the probability density is a function of both times scales, i.e. x v t x v tp p, , , , ,t =˜ ( ˜ ) ( ). The temporal
derivative transforms to a sumprovided by the chain rule:

t t
. B.10

t
¶
¶

=
¶
¶

+
¶
¶˜

( )

Then, equation (B.9) is given by

t
R

p p
p p. B.11 

t
¶
¶

+
¶
¶

= +
˜
˜

˜ ˜ ˜ ( )

From this point on, wewill refer to t̃ as t and to x v tp , , , t˜ ( ) as tp , t( ). Assuming that we can express p as a
series of orders of ò,

t t t tp p p p, , , , , B.120 1 2 2 3  t t t t= + + +( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

wefind a hierarchy of equations for the different orders of ò. The goal of theMSperturbation theory is now to
find an approximate solution, such that, after setting ò to 1, it holds

t t tp p p, , , . B.130 1t t t» +( ) ( ) ( ) ( )( ) ( )

We start with the governing equation for 0( ):

t
t R t

p
p, , . B.14

0
0t t

¶
¶

=( ) ( ) ( )
( )

( )

The simplest solution of the ordinary differential equation (B.14) is given by assuming that the left hand side of
equation (B.14) is equal to 0, i.e. assuming that the probability density at zeroth order is independent of the fast
time scale t: tp p,0 0t t=( ) ( )( ) ( ) . Thismeans p 0 t( )( ) must be the eigenvector ofRwith eivenvalue 0, i.e.
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x pp . B.150 0pt t=( ) ( ) ( ) ( )( ) ( )

Here, p 0 t( )( ) is a scalar functionwhich represents the probability density of the oscillator alone, i.e. tracing out
the charge state q of x vp , ,0 t( )( ) results in

x p x v x p x v p x v, , , , , , , B.160
0

1
0 0p t p t t+ =( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

which is the probability density tofind the oscillator at position xwith velocity v at time τ (at zeroth order). The
specific formof p 0 t( )( ) will be determined by the first order of the perturbation hierarchy. Note that, if we stop
the perturbation theory here, equation (B.15) implies an infinite time scale separation, which is equivalent to an
adiabatic approximation.

The equation ofmotion of tp , t( ) at ( ) is given by

t
t R t

p p
p p, , . B.17

1 0
0 1t

t
t

t t
¶
¶

= -
¶

¶
+ +( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

Since x vp , ,0 t( )( ) is independent of t (see equation (B.15)), the solution of the latter equation is formally
given by

t sp p
p

p, e e e d , B.18Rt Rt
t

Rs1 1

0

0
0òt t

t
t

t= + -
¶

¶
+-

⎡
⎣⎢

⎤
⎦⎥( ) ˜ ( ) ( ) ( ) ( )( ) ( )

( )
( )

where p 1 t˜ ( )( ) is a probability vectorwhichdoesnot dependon the fast time scale tbut is unspecified at thismoment.
Next we look at the integral of equation (B.18): we can expand the exponential of the ratematrix by use of the

eigenvalues and eigenvectors ofR (see equations (B.1)–(B.5)), i.e.

s x se d e d . B.19
t

Rs
t

s

0 0
ò ò p p cc= + c- -( ) ( )† †

Evaluating the integral gives

s x te d
e 1

. B.20
t

Rs
t

0
ò p p cc

c
= -

-c
-

-
( ) ( )† †

Inserting equations (B.20) into (B.18)we find that there are terms in the solutionwhich grow linearly with t for
long times, i.e.

e x t
p

p . B.21Rt
0

0p p
t

-
¶
¶

+
⎡
⎣⎢

⎤
⎦⎥( ) ( )†

( )
( )

Those terms, whichwill subsequently be referred to as secular terms, prohibit a steady state solution of the
perturbation hierarchy.We therefore demand the secular terms to vanish such that wefind a stable solution.

At thefirst order perturbation the latter condition is satisfied if

p
p 0. B.22

0
0p

t
-
¶
¶

+ =
⎡
⎣⎢

⎤
⎦⎥ ( )†

( )
( )

Inserting p 0( ) (see equation (B.15)) yields

x
p

x p 0. B.23
0

0p p p
t

-
¶
¶

+ =
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )†

( )
( )

It holds that x 1p p =( )† (see equations (B.1) and (B.4)). Therefore

p
x p 0. B.24

0
0p p

t
-

¶
¶

+ =( ) ( )
( )

† ( )

Evaluating the action of the differential operator  on xp ( ) results in

x v
x v

k

m
x

m
v

V

m
q x

v
D

v
, B.25eq

2

2
p p g a

= -
¶
¶

+
¶
¶

+ -
¶
¶

+
¶
¶

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )†

where q x xeq 1p=( ) ( ). Furthermore, we have used that (see equations (B.1) and (B.4))

x
x

x
x

x
1 0. B.26p p p p¶

¶
=

¶
¶

=
¶
¶

=( ) ( ) ( )† †

The condition for secular terms to vanish in thefirst order perturbation (see equation (B.22)) is now given by

p
v

x
p

v

k

m
x

m
v

V

m
q x p D

v
p . B.27

0
0

eq
0

2

2
0

t
g a¶

¶
= -

¶
¶

+
¶
¶

+ - +
¶
¶

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( ) ( ) ( )

The latter equation is a FPE for p x v, ,0 t( )( ) describing the underdamped evolution in an effective potential
Ueff(x)with U kx Vq xx eff eqa¶ = - ( ). This corresponds to our ansatz for the 0th order, wherewe have assumed
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that theQD is in its instantaneous equilibrium state at all times. The harmonic potential is therefore altered and
the effective FPEdescribing the oscillator is simple diffusionwithin the effective potential.

We now return to the perturbation of ( ) (equation (B.18)): after removing the secular terms, the first
order solution is given by

p p
p

pe e
1 e

. B.28Rt Rt
t

1 1
0

0cc
c t

= +
-

-
¶
¶

+
c- ⎡

⎣⎢
⎤
⎦⎥˜ ( )( ) ( ) †

( )
( )

The exponential of the ratematrixR can again be expressed in terms of the eigenvectors,

xe e . B.29Rt tp p cc= + c( ) ( )† †

Inserting equations (B.29) into (B.28) results in

x xp p p
p

p

p
p

e
1 e

e 1
, B.30

t
t

t

1 1 1
0

0

0
0





p p cc p p cc

cc

c t

c t

= + +
-

-
¶
¶

+

+
-

-
¶
¶

+

c
c

c

- ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ˜ ˜ ( )

( )

( ) † ( ) † ( ) † †
( )

( )

†
( )

( )

wherewe have used that 1c c =† (see equations (B.2) and (B.5)). In the long-time limit terms proportional to
eχtwill approach zero, sinceχ<0.Using the latter as well as the fact that 0p c =† , equation (B.30) simplifies to

x pp
p

p
1

, B.311 1
0

0p cc
c t

= - -
¶
¶

+
⎡
⎣⎢

⎤
⎦⎥( ) ( )( ) ( ) †

( )
( )

where p p1 1pº ˜( ) † ( ). Substituting now p 0 t( )( ) by x p 0p t( ) ( )( ) (see equation (B.15)) and the differential operator
 by its definition (see equation (B.7))we can approximate the first order solution (equation (B.28)) by

x p v
x

x

V

m x v
pp

1 0
, B.321 1

1

0p cc p
c

a
p= - -

¶
¶

+ -
¶
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⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭( ) ( )
( ) ( )( ) ( ) † ( )

using x 0c p =( )† (see equations (B.1) and (B.5)).
We nowdefine a new vector

v
x

x

V

m x v
p

0
B.33

1

0k p a
pº -

¶
¶

+ -
¶
¶

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
( )

( ) ( )( )

such that equation (B.32) becomes

x pp
1

. B.341 1p cc k
c

= -( ) ( )( ) ( ) †

Note that 0c k ¹† in general.
Similar to the procedure for the zeroth order perturbationwe now look at the second order of p and demand

secular terms to vanish. By this conditionwewillfind a differential equation for p 1( ), which describes the
effective evolution of the oscillator at a first order perturbation level without taking the electronic degrees of
freedom specifically into account. The governing equation at 2( ) is similar to equation (B.17) and reads

t
R

p p
p p . B.35

2 1
1 2

t
¶
¶

= -
¶
¶

+ + ( )
( ) ( )

( ) ( )

Again, the general solution can bewritten as

sp p
p

pe e e d . B.36Rt Rt
t

Rs2 2

0

1
1ò t

= + -
¶
¶

+-
⎡
⎣⎢

⎤
⎦⎥˜ ( )( ) ( )

( )
( )

With the same calculation as abovewe find that in order for the secular terms in the second order to vanish, the
following conditionmust hold:

p
x p

p
p 0

1
0. B.37

1
1

1
1



 

p

p p p cc k

t

t c

-
¶
¶

+ =

-
¶
¶

+ - =

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

†
( )

( )

( )
† ( ) † †

The term xp p ( )† appears again and is given by equation (B.25).We now evaluate the third termon the left
hand side of equation (B.37):first we note that 0p c =† (see equations (B.2) and (B.4)). Therefore, we only have
to evaluate the action of  onc in equation (B.37), which is
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V

m v
0
1

, B.38c a
=

¶
¶( ) ( )

becausec is a constant vector (see equation (B.2)). It then holds (see equation (B.4) and (B.5))
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† † † †
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Lastly, we look at the derivative of kwith respect to v, that is

v x
x

v
vp

V

m

p

v
0 . B.400

1

2 0

2
k p a

p
¶
¶

= -
¶
¶

¶
¶

+ -
¶
¶

⎜ ⎟⎛
⎝

⎞
⎠ ( )( ) ( ) ( )( )

( )

Using q11 0 eqp p= - = , one can show that
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Furthermore it holds that q x q x0 1 eq eq
2p p = -( ) ( ).With the latter two simplifications we can rewrite (see

equation (B.5)):
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Putting everything together, the condition for the secular terms of the solution at second order in the
perturbation (see equation (B.37)) is given by
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v
x v

k

m
x

m
v

V

m
q D

v
. B.440 eq

2

2


g a
º -

¶
¶

+
¶
¶

+ - +
¶
¶

⎜ ⎟⎛
⎝

⎞
⎠ ( )

Putting zeroth andfirst order together (see equations (B.27) and (B.43)), i.e. p x v, , t =˜( )
p x v p x v, , , ,0 1t t+( ) ( )( ) ( ) and setting ò to 1 (τ=òt→ t), we find that the full probability density p(x, v, q, t)
can be approximated by

p x v q t x p x v t, , , , , , B.45qp»( ) ( ) ˜ ( ) ( )

where p x v t, ,˜( ) is the probability density of solely the oscillator, obtained by tracing out the fast electronic
degrees of freedom. The dynamics of p(x, v, t) is governed by a FPE:

p
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where the effective friction and diffusion coefficients are nowposition dependent and are given by

x
V q x
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D x D
V q x
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q x
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¶
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( ( )) ( )

Thefinal equation (B.46) is equivalent to equation (17) of themain text.

AppendixC. Transformation to energy space

In this sectionwe derive the transformed FPE, equations (23), from (17).Wefirst rewrite equation (17) as
follows:

p
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x

m
p
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m
x

x

m
v

V

m
q x

p

v
D x
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v
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+ + + -
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+
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⎝

⎞
⎠

˜ ˜ ˜ ( ) ˜ ˜ ( ) ( )
˜ ˜ ( )

˜
( )

Using the transformation of equation (22) as well as the assumption p t p t, , , q »ˆ ( ) ˆ ( ), wefind that
derivatives with respect to x and v transform as follows:
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In energy space, equation (C.1) then takes the form
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where x k2 sin q= . Upon averaging over θ, the termproportional to cos q will vanish: as qeq(x) is an
analytic function of x it can be Taylor expanded in a power series and the individual contributions of all terms

vanish due to sin cos d 0n
0

2
ò q q q =

p
( ) ( ) for all n Î . By inspection of equation (24) and partial integration one

can show that the following relations hold:
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Then, averaging equation (C.3) results in equation (23).

AppendixD. Computationalmethods

For all numerical investigations we set 1oscb b b= = ºn aswell asΓ≡1 andλ≡1. The other parameters
used in this work are given in units of the latter three:αλ=0.06,mλ2Γ2β=12.0, kλ2β=5.0 and
γλ2Γβ=0.2.

Since the probability space of the coupled systemof harmonic oscillator andQD is very large, we assume that
the system is ergodic, such thatwe can sample the steady state probability density of the systemby a single long
trajectory. Additionally thismeans that an ensemble average of an arbitrary quantityA in the steady state is
calculated by

A
T

A t
1

, D.1
T

0
òá ñ = ( ) ( )

which is exact for ergodic systems in the limit ofT  ¥.We simulate the trajectories after a relaxation time of
Γt=1000 untilΓT=5000 000, wherewe have also checked that further relaxation time or simulation time
does not change the probability density or averaged quantities. Note that we have also investigated different
initial conditions and have not seen any dependency of the outcome on the initial conditions (after the relaxation
time). Finally we note that the time step used in the simulations isΓΔt=0.0001.

Appendix E.Hopf bifurcation of theMFmodel

In order to determine the critical valueVcr¯ , for which the electron shuttle bifurcates from a stablefixed point into
a stable limit cycle, we perform a linear stability analysis around thefixed point of theMF equations (13)–(15):

x v

v
k

m
x

m
v

V

m
p

p R x p R x p

,

,

1 , E.1

1

1 10 1 01 1å

g a
=

=- - +

= - -
n

n n

¯̇ ¯

¯̇ ¯ ¯ ¯

¯̇ ( ¯)( ¯ ) ( ¯) ¯ ( )

wherewe have eliminated one equation compared to equations (13)–(15) by use of probability conservation, i.e.
p p 10 1+ =¯ ¯ .

The stability of the fixed point is determined by the eigenvalues of the Jacobian J0 of the right hand side of the
latter equation evaluated at steady state (x 0=¯̇ , v 0=¯̇ , p 01 =¯̇ ): If one ormore eigenvalues have positive real
part thefixed point is unstable. Figure E1 shows the real part (left) and imaginary part (right) of the three
eigenvalues as a function of the applied bias voltage. There exists a pair of conjugate eigenvalues (solid red and
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dotted blue)which become purely imaginary at a critical value V 15.0crb =¯ . At this point theHopf bifurcation
sets in and theMF systemundergoes the transition from a stable fixed point to a stable limit cycle.
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