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ABSTRACT Predictive image coding systems yield a high-compression performance at low computational
complexity, and are therefore popular in standards and prominent coding techniques for both lossless
and near-lossless compression. However, few prediction-based coding techniques include rate-control
approaches because of the difficulty in properly combining the prediction feedback loop and the quantization.
None of the rate-control approaches for predictive image coding are focused on delivering homogeneous
quality along the whole image. The main objective of this paper is to define a novel rate-control approach
based on prediction that homogenises the quality over the entire image. The extensive experimental results,
on medical, remote sensing, and natural images, suggest that our proposal attains more regular image quality
and lower peak absolute error than the state-of-the-art approaches based on prediction and also transform-
based techniques such as JPEG2000 and CCSDS-122.

INDEX TERMS Prediction-based image coding, rate-control, constant-quality lossy compression.

I. INTRODUCTION
The vast amount of digital image data generated for ter-
rain analysis, military surveillance, personal use and other
applications make compression techniques crucial for saving
storage space and transmission time. Compression techniques
can be classified into transform- and prediction-based. Both
techniques have been employed in the last decade in image
compression standards and prominent coding techniques.

Regarding prediction-based coding standards for loss-
less image compression, JPEG-LS [1], proposed by the
Joint Photographic Experts Group [2], was the first stan-
dard devised principally for lossless compression of con-
tinous tone images. Its use within the medical community
is widespread because it is included in the DICOM stan-
dard [3]. CCSDS-123.0-B-1 [4] is a recent standard designed
for predictive coding of multi- and hyper-spectral scenes
defined by the Multispectral & Hyperspectral Data Com-
pression Working Group of the Consultative Committee for

The associate editor coordinating the review of this manuscript and
approving it for publication was Michele Nappi.

Space Data Systems (CCSDS) [5] (from now on, we refer to
CCSDS-123.0-B-1 as CCSDS-123).

Predictive techniques are common for lossless, near-
lossless and also for lossy compression, as witnessed by
the large amount of publications in the literature [6]–[20].
Predictive lossless coding utilizes a causal predictor based on
the original data followed by entropy coding of prediction
residuals, often yielding high compression ratios [6]–[10].
In predictive lossy and near-lossless coding, a similar archi-
tecture is normally employed, although recovered sample
data are used to predict new samples [1], and prediction
residuals are quantized prior to entropy coding [11]–[17].
A rate-control mechanism can be added to produce code-
streams for a given bit budget [21].

The main problem of rate control methods in prediction-
based coding systems is the intricate mathematical relation
between the rate and the quantized prediction residuals.
Motivated by this issue, three distinct rate control methods
that model the rate depending on the quantization step were
recently proposed [18]–[20]. All three contributions have
been evaluated with coding systems based on CCSDS-123,
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and the main difference among them is related to what type of
quantization structure is employed: [18] quantizes the data on
a block-by-block basis, [19] selects and applies the quantiza-
tion step on a slice-by-slice basis, and [20] quantizes the data
on a spectral-line-by-spectral-line basis –a spectral-line is a
line (row) of pixels with all its co-registered bands–. Although
these three contributions yield similar rate-distortion perfor-
mance, the third one provides the best average performance.
In that work, the first spectral-line is losslessly encoded, and
the quantization steps for the remaining spectral-lines are
adapted dynamically to fit the constrained rate. This dynamic
adjustment may lead to applying significantly different quan-
tization steps in consecutive spectral-lines, potentially intro-
ducing large differences in terms of quality in the decoded
image. Similar artifacts can occur with [18] and [19], since
different quantization steps can be applied at block or slice
level to reach the constrained rate. This effect is clearly
illustrated in Section V, where decoded images encoded with
the rate control proposed in [20] are depicted, along with
those from the scheme proposed here.

Our current work introduces a novel rate control method
designed to obtain homogeneous reconstruction quality in
all image regions. The new method is incorporated in
our previous contribution [17], which introduced a lossless
and near-lossless coding system based on the predictor of
CCSDS-123 followed by a lightweight binary contextual
arithmetic encoder. The inclusion of the proposed rate control
into [17] brings forward an original lossy compressor based
on prediction. The proposed rate control strategy is evaluated
against the state of the art [20] using images of different
nature and dynamic ranges from 8 to 16 bits.

The rest of the paper is structured as follows: Section II
reviews the CCSDS-123 coding system, a technique for con-
trolling the error in a coding system based on prediction,
the arithmetic coder introduced in our previous contribu-
tion [17], and the problem of optimal rate control; Section III
presents our rate control method; Section IV defines a
new coding system that employs the new rate control; and
Section V provides the experimental results and discussion.
Finally, Section VI concludes this work.

FIGURE 1. CCSDS-123 encoding scheme.

II. BACKGROUND
A. CCSDS-123
The purely lossless CCSDS-123 standard compressor
is constituted by three stages: Predictor, Mapper and
Entropy Encoder. Fig. 1 illustrates the encoding pipeline
of CCSDS-123. CCSDS-123 encodes a digital image x
(I columns, J rows, and K bands). The predictor esti-
mates the value of the current sample xi,j,k using previously
scanned samples. This predicted sample is denoted by x̃i,j,k .

The prediction residual (error) 3 is computed as

3i,j,k = xi,j,k − x̃i,j,k , (1)

and then mapped to a non-negative integer λi,j,k . The entropy
encoder produces a code that represents λi,j,k without loss.
In the CCSDS-123 standard, one can choose between a
sample- and a block-adaptive encoder.

B. ERROR CONTROL IN PREDICTIVE CODING SYSTEMS
For the encoder described above, the decoder can repro-
duce xi,j,k , without loss. The addition of a quantizer provides
higher compression ratios, but at the expense of some loss of
fidelity in the decompressed image.
One of the simplest strategies to design a prediction-

based compression algorithm that controls the maximum
error produced is to quantize the prediction error 3i,j,k with
a quantizer Q, resulting in quantized version 3̂i,j,k (and,
in consequence, λ̂i,j,k ). The associated quantization index and
its remapped version are denoted as 3Q

i,j,k and λ
Q
i,j,k , respec-

tively. Subsequent predictions x̃i,j,k are calculated using pre-
vious reconstructed (lossy) samples x̂i,j,k , which are obtained
by implementing a decoder in the encoder [15], [22]. The
decoder creates the reconstructed (lossy) image samples via:

x̂i,j,k = 3̂i,j,k + x̃i,j,k . (2)

Note that the errors in the reconstructed pixels are identical
to the errors introduced by the quantizer in the prediction
errors. That is, xi,j,k − x̂i,j,k = 3i,j,k − 3̂i,j,k . Thus, the errors
in reconstructed pixels can be precisely controlled by con-
trolling individual quantization errors. This is the basis of
‘‘near-lossless compression.’’

C. LIGHTWEIGHT BINARY ARITHMETIC CODER
WITH CONTEXT MODEL
In a previous contribution [17] we introduced a compression
system based on the CCSDS-123 predictor and a binary arith-
metic encoder. The proposed entropy encoder works with
binary symbols; let bni,j,k denote the n-th bit of the binary

representation of λQi,j,k , withN−1 ≥ n ≥ 0. Here,N is chosen

to provide a sufficient number of bits to represent all the λQi,j,k ,
with bN−1i,j,k being themost significant bit. The entropy encoder
makes use of context model patterns obtained using a context
window that contains symbols coded previously to the current
symbol. Further details can be found in [17].

D. RATE CONTROL
Bit allocation given a target bit-rate is a classical problem
solved by rate control techniques [18]–[21], which distribute
the bit budget for a collection of data elements in order tomin-
imize the distortion D of the decoded image. If two elements
are constrained to be encoded with Rtarget bits, the optimal
allocation problem is typically formulated as:

argmin
Q1,Q2

{D1(Q1)+ D2(Q2)} (3)

s.t. R1(Q1)+ R2(Q2) ≤ Rtarget , (4)
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FIGURE 2. Quantization structure comparison. Each gray intensity identifies a possibly different quantization step.

where Di, Qi and Ri represent the distortion, the quantization
step size and the bit-rate corresponding to the i-th element,
respectively. This formulation assumes independent quan-
tization. That is, the distortion (rate) of the first element
depends only on Q1, and the distortion (rate) of the second
element depends only on Q2.
The problem of bit allocation given a target bit-rate for a

dependent quantization coding system was proposed in [23]
and was formulated as

argmin
Q1,Q2

{D1(Q1)+ D2(Q1,Q2)} (5)

s.t. R1(Q1)+ R2(Q1,Q2) ≤ Rtarget. (6)

Note that the distortion (rate) of the first element only
depends on the quantization step employed for this element;
while the distortion (rate) of the second element depends on
the quantization step of the first and of the second element.

A solution to (6) can be obtained through Lagrange Multi-
pliers by defining:

J1(Q1) = D1(Q1)+ λR1(Q1) (7)

J2(Q1,Q2) = D2(Q1,Q2)+ λR2(Q1,Q2) (8)

and solving the following unconstrained minimization
problem:

argmin
Q1,Q2

{J1(Q1)+ J2(Q1,Q2)}, (9)

and adjusting λ to satisfy (6). This can be extended to more
than two dependent elements in the obvious way.

III. RATE-CONTROL HOMOGENIZING IMAGE QUALITY
Three rate control techniques have been recently designed
for predictive image coding systems and assessed with
CCSDS-123 coding. The first is [18], which divides the input
image in blocks and applies different quantization steps to
each block. The second is [19], in which quantization steps
are determined band by band, instead of block by block.
The third and most recent contribution is [20], which works
in a spectral-line-by-spectral-line mode, assigning at each

FIGURE 3. Monotonicity property of a Rate-Distortion function.

spectral line j a quantization step Qj. Note that these works
do not deal with ensuring constant error across all image
regions since the quantization steps are set sequentially at
the structure –block, band or spectral-line– level, employing
a model function that relates the quantization steps with the
rate, ignoring the image quality. Thus, adjacent structures are
often reconstructed with different quality producing annoy-
ing quality irregularities. Section V provides examples of
these irregularities. Figs. 2 (a), (b), and (c), depict the band-
by-band, block-by-block, and spectral-line-by-spectral-line
quantization, respectively.

In order to 1) homogenize the quality of the decoded image,
2) maximize the image quality at a given target bit-rate,
and 3) accurately yield effective bit rates close to Rtarget ,
a new rate control algorithm is proposed. The objective of the
algorithm is to code the current line, generating quantized and
entropy-coded versions of lines choosing those quantization
steps that minimize error variations between lines and fit with
the target bit-rate once all lines are processed.

For our proposed rate control algorithm, we smartly choose
the quantization steps thanks to the monotonically increasing
property between Q and D. This property relies on the fact
that if the quantization step is increased, i.e., Q1 < Q2,
then the distortion is also augmented, i.e., D1 < D2. On the
other hand, the relation between Q and R is monotonically
decreasing, for example, if the quantization step is increased,
i.e., Q1 < Q2, then the rate is decreased, i.e., R1 > R2. Fig. 3

103920 VOLUME 7, 2019



J. Bartrina-Rapesta et al.: Novel Rate-Control for Predictive Image Coding With Constant Quality

depicts the monotonic nature of a typical rate-distortion (RD)
function.

This property allows to employ an iterative method to
choose the appropriate quantization steps for each line, since
we can set a quantization step for the first line Q0,0 and adapt
the step size for the rest of the lines Qj,k with j > 0 and
k > 0 in order to homogenize the quality. If the produced
codestream has a rate different than the target rate, Q0,0 will
be adapted, and the Qj,k for j and k > 0 will be modified
producing a reconstructed quality as close as possible toQ0,0.
Thus, if the produced rate is higher or lower than the target
rate, then Q0,0 will be, respectively, increased or decreased.
To provide high image quality homogenization and rate

accuracy, the proposed method deals with lines instead of
bands, blocks, or spectral-lines. Lines are visited following
the band interleaved by line order. That is, given a multi-band
image, the first line of the first band is visited followed by
the first line of the second band and so on. Scanning then
proceeds to the second line of the first band.

A. RATE CONTROL ALGORITHM
Algorithm 1 describes the proposed rate-control strategy
assuming the monotonically increasing property. It is based
on three functional blocks: Predict(xj,k ,Qj,k ), GetError(3̂j,k )
and Encode(3̂j,k ). The Predict(xj,k ,Qj,k ) function is in charge
of predicting the samples in line xj,k and quantizing the
associated prediction error with a quantization step Qj,k , and
returning 3̂j,k . The GetError(3̂j,k ) and Encode(3̂j,k ) func-
tions provide the error and the coding bit-rate and respectively
return values MSEj,k and Rj,k . The error measure saved in
MSEj,k is the Mean Square Error (MSE), calculated as

MSEj,k =
1
I

I−1∑
i=0

(xi,j,k − x̂i,j,k )2. (10)

To recover an image with a very similar error among all the
lines, the quantization steps must be selected carefully. This
selection is introduced in the proposed algorithm through the
following methodology:

1) The error of the first line (k = 0 and j = 0) obtained
with a quantization step Q0,0 is stored in MSE0,0 (see
lines 11-13).

2) For the remaining lines, Qj,k is adapted accordingly
to obtain MSEj,k as close as possible to MSE0,0. (see
lines 16-29).

3) Once the quantization steps have been chosen for all the
lines, the total achieved rate R is computed (line 33).

4) If R is close enough to the target rate – according to an
error tolerance – the algorithm stops.

5) Otherwise, the algorithm continues in line 2. In this
case, the quantization step size of the first line is
increased or decreased according to the target rate
and R, (see lines 4-7).

After the Algorithm is finished, the set of quantization step
sizes Qj,k are employed to encode the image. Fig. 4 displays
a band of a remote sensing image (left), the quantization

Algorithm 1 Proposed Rate-Control Algorithm
Inputs: Rtarget, tolerance

1: R = ∞,Q0 = 0
2: QSTEPS = {512, 256, 128, 64, 32, 16, 8, 4, 2, 1}
3: for qstep = 0, . . . ,QSTEPS.length− 1 do
4: if R < Rtarget then
5: Q0← Q0 − QSTEPS[qstep]
6: else
7: Q0← Q0 + QSTEPS[qstep]
8: end if
9: for j = 0, . . . , J − 1 do
10: for k = 0, . . . ,K − 1 do
11: if j = 0 and k = 0 then
12: 3̂0,0 = Predict(x0,0,Q0,0)
13: MSE0,0 = GetError(3̂0,0)
14: R0,0 = Encode(3̂0,0)
15: else
16: for qline = 0, . . . ,QSTEPS.length− 1 do
17: if qline = 0 then
18: Qj,k ← QSTEPS[qline]
19: else
20: ifMSEj,k > MSE0,0 then
21: Qj,k ← Qj,k − QSTEPS[qline]
22: else
23: Qj,k ← Qj,k + QSTEPS[qline]
24: end if
25: end if
26: 3̂j,k = Predict(xj,k ,Qj,k )
27: MSEj,k = GetError(3̂j,k )
28: Rj,k = Encode(3̂j,k )
29: end for
30: end if
31: end for
32: end for
33: R←

∑K−1
k=0

∑J−1
j=0 Rj,k

34: if |R− Rtarget| < tolerance then
35: break execution
36: end if
37: end for

steps sizes determined by our rate-control method (middle),
and a more detailed discrimination of the step sizes (right).
For the quantization steps plot, the vertical and horizontal
axis represent the row and QSTEPS, respectively. As can be
seen, our proposal applies larger step sizes to those regions
containing regular textures (top areas) than those with greater
intensity variations (bottom areas.)

It is worth noting that the proposed algorithm is devised
to determine the best solution in terms of constant quality,
not to minimize computational load. However, some aspects
can be considered to speed up the execution. The contents of
QSTEPS are selected in order to have a step size large enough
to achieve the desired target rate. For high bit-rates, the values
in QSTEPS can be reduced, containing only small step sizes.
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FIGURE 4. Graphical illustration of how quantization step sizes vary depending on the line to be encoded.

In addition, the higher the value of ‘‘tolerance,’’ the earlier
the execution can be stopped (see line 34).

B. RATE ACCURACY
The rate control described in Algorithm 1 prioritizes uniform
reconstruction quality over target rate accuracy. This effect
is achieved by ensuring that all lines have similar quality
before the global rate is evaluated. We refer to this rate
control asMode 1. Unfortunately, at high rates the achievable
codestream lengths become sparser than at low rates, making
it difficult to generate a final bitstream with an accurate
rate with Mode 1. With the goal of obtaining higher rate
accuracy, we introduce a variation in the algorithm referred
to as Mode 2. Mode 2 works during the entropy encoder
and after the Algorithm 1 is executed. In particular, Mode 2
measures how many bits have been used to encode previous
lines and how many will be employed for the rest of the lines
and adjusts the step sizes for the next lines to achieve the
global target rate. This is detailed in Algorithm 2 below.
Algorithm 2 tracks the current real rate, referred as

RealRate, to adapt Qj,k of the coming line according to
the stepinc as follows: once the current line xj,k is pre-
dicted and entropy coded, the final rate Rtotal is estimated
by the addition of RealRate –data already stored in the final
bitstream– and Rj′,k ′ , where j′ and k ′ refer to the remaining
lines not yet processed (see lines 6-11); then, depending on
Rtotal and Rtarget, Qj,k is adapted according to stepinc (see
lines 13-17). So as not to excessively increase the error dif-
ference between lines, stepinc is set to 1.

AlthoughMode 2 provides a finer rate accuracy, it can pro-
duce slight variations of the error between lines, not produced
with Mode 1.

IV. ADOPTED CODING APPROACH
The novel rate control method may be incorporated in any
coding system based on prediction; here, we incorporate
it in the compressor pipeline of [17]. The new lossy and
near-lossless coding system based on prediction is defined
as follows. Once a line is scanned, predicted, and mapped
to positive values, it is entropy encoded on a bitplane-by-
bitplane basis employing a lightweight contextual arithmetic

Algorithm 2 Proposed Rate-Control Algorithm With High
Rate Accuracy

Inputs: Rtarget, stepinc, tolerance

1: RealRate← 0
2: for j = 0, . . . , J − 1 do
3: for k = 0, . . . ,K − 1 do
4: Rtotal← RealRate
5: k∗← k
6: for j′ = j, . . . , J − 1 do
7: for k ′ = k∗+, . . . ,K − 1 do
8: Rtotal← Rtotal + Rj′,k ′
9: end for
10: k∗← 0
11: end for
12: if j = 0 and k = 0 then
13: if |Rtotal − Rtarget| > tolerance then
14: Qj,k ← Qj,k − stepinc
15: else
16: Qj,k ← Qj,k + stepinc
17: end if
18: else
19: if |Rtotal − Rtarget| > tolerance then
20: if Rtotal < Rtarget and MSE0,0 < MSEj,k then
21: Qj,k ← Qj,k − stepinc
22: end if
23: if Rtotal > Rtarget and MSE0,0 > MSEj,k then
24: Qj,k ← Qj,k + stepinc
25: end if
26: end if
27: end if
28: 3̂j,k = Predict(xj,k ,Qj,k )
29: RealRate← RealRate+ Encode(3̂j,k )
30: MSEj,k = GetError(3̂j,k )
31: end for
32: end for

coder. The rate control presented here uses the quantized and
dequantized predicted lines to know the current error of the
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FIGURE 5. Proposed coding scheme.

FIGURE 6. Illustration of context model used to encode bn
i,j,k . bn

i,j−1,k is
used as contextual data to estimate the probability.

line, and the entropy coder to figure out the number of bits
needed for the current line. Thus, the rate control can adapt
the step size to homogenize the image quality at a target bit-
rate. It is worth noting that the proposed rate control can be
employed with any predictor, quantizer or entropy encoder.
Fig. 5 displays our proposed coding scheme.

The proposed coding scheme incorporates a Uniform
Scalar Deadzone Quantizer (USDQ) that quantizes 3i,j,k to
obtain a quantized index according to

3
Q
i,j,k = sign(3i,j,k )

⌊
|3i,j,k |

Qj,k

⌋
, (11)

where the quantization step isQ. The operation to reconstruct
3̂i,j,k from its quantization index is expressed as

3̂i,j,k = sign(3Q
i,j,k )(Qj,k + δ)3

Q
i,j,k , (12)

with δ equal to 0.5 forQj,k > 1. USDQ has been selected due
to its straightforward implementation and excellent perfor-
mance, e.g., in the JPEG 2000 standard [24]. USDQpartitions
the range of input values into intervals all of size Qj,k , except
for the interval that contains zero, which is of size 2Qj,k .
This results in all absolute pixel errors | xi,j,k − x̂i,j,k | being
bounded above by Qj,k .
Like the entropy encoder presented in [17], we make use of

a context model to estimate the conditional probability with
which the current bit bni,j,k is encoded. According to [17],
we only consider the sample above the bit to be encoded as
contextual information. This is indicated in Fig. 6. The initial
probability model for the context is set to a value of 0.66.
Further details of the context model and conditional prob-

ability estimation are described in [17].

V. EXPERIMENTAL RESULTS
For the experiments conducted in this work, we have selected
a set of varied data formed by remote sensing, medical and
natural images. Their names and main features are listed
in Table 1. The first order entropy represents the entropy of
individual pixels, without accounting for any dependencies
among pixels within or between bands.
In [25], the impact of different CCSDS-123 parameters

that control the operation of the prediction and the entropy
encoder were evaluated, suggesting that a correct parameter
selection has more impact on the predictor stage than in
the entropy encoder stage. Concerning the prediction, local
sum type, prediction mode, number of prediction bands, and
predictor adaption were the most critical parameters. Exten-
sive experimental evaluations were conducted to find suitable
configurations. In the current manuscript, leaning on results
of [25] and after conducting also an extensive evaluation,
experimental results are produced for the following parameter
configuration: predictor mode and local sum type depend
on the acquisition sensor for the remote sensing images,
whereas for medical and natural data the same configuration
is utilized. When K > 1, the number of prediction bands P
is set to 3, the predictor adaptation rate νmax is set to 3, since,
in general, it yields the best performance.
For the proposed rate control technique, the tolerance

variable of Mode 1 and the stepinc of Mode 2 are fixed to
0.01 and 1, respectively.
In order to yield a fair comparison between the proposed

rate-control technique and the latest rate-control contribution
designed for encoding systems based on prediction [20],
we substituted the rate-control technique (blue box) of the
proposed coding scheme, depicted in Fig. 5, by the rate-
control technique proposed in [20]. In this way, assessment
of both rate-control techniques is equitable since both employ
the same predictor, quantizer and entropy encoder. We named
this new method [20]′.
To compare the proposed prediction-based coding system

with transform-based coding systems, we also provide results
for JPEG2000 [26] and CCSDS-122 [27]. We have employed
the Reversible Karhunen-Loeve transform (RKLT) to decor-
relate the spectral dimension yielding as fair a comparison as
possible among the four evaluated coding techniques.
The rest of this section appraises the performance of our

proposal in terms of 1) rate accuracy, 2) minimization of the
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TABLE 1. Data used in the experimental results. Image name, its abbreviation, bit-depth and first-order entropies (in bps). The last two columns indicate
the predictor mode and the local sum used in the proposed coding system for each sensor.

TABLE 2. Output Rates comparison between Mode 1 and Mode 2. For the
guitar image the target rates are doubled. (*): Lossless.

error gap between lines, 3) rate-distortion performance; and
4) visual inspection.

A. RATE ACCURACY EVALUATION
These results serve to evaluate the accuracy of the rate control
in terms of output rate. This test is conducted for a set of
images from distinct scenarios and four different target bit-
rates with Mode 1 and Mode 2. Table 2 reports the output
rates achieved for four target bit-rates. Though Mode 1 is
less accurate than Mode 2, it can still obtain output rates with
suitable precision for most of the target rates. Mode 2 always
has remarkably good accuracy due to the information col-
lected by the rate control algorithm in Rj,k , which permits to
adapt the current quantization step and better estimate future
output rates. In Mode 2, larger stepinc values can produce
output rates with higher accuracy, at the expense of generating
major error differences between adjacent lines. It can be seen

that the algorithm performs equally well independently of
the image corpus, either remote sensing, medical or natural
images. And, in addition, Mode 1 and Mode 2 produce a
maximum error in the output rates of 14% –portrait at 4 bps–
and 3% –CT30 at 1 bps–, respectively.

B. CONSTANT QUALITY EVALUATION
These experiments demonstrate that the bit budget allocated
by our proposal produces homogeneous quality recovery.

The first experiment reported is displayed in Fig. 7. This
figure plots the MSE for each line and band employing a
color scale. The horizontal and vertical axis denote bands and
lines, respectively. The MSE is represented by a color scale,
with yellow and black for, respectively, the highest and the
lowest MSE values. Fig. 7 provides results at four different
target bit-rates (one per column). The first three rows of the
figure correspond to a remote sensing image, whereas the
last three correspond to a medical image. For each bit-rate,
results are reported for [20]′, and our proposal employing
either Mode 1 or Mode 2. Note that the color scale is different
for each image and bit-rate but the same between schemes.
From these results, we can appreciate that:

1) Mode 1 obtains the image quality with the highest
homogeneity.

2) Mode 1 and Mode 2 attain much lower MSE variation
than [20]′. The large differences in [20]′ are produced
because in the rate control defined in [20], the first row
(j = 0) is encoded without loss, then the quantization
steps are adapted to reach the desired target bit rate.

3) Mode 2 has a higher MSE fluctuation compared with
Mode 1. This is produced since Mode 2 sets the stepinc
to 1, adapting the quantization step with +/− 1 to
achieve the target bit-rate with higher accuracy. Nev-
ertheless, the error variation is still much lower than
for [20]′.

Equivalent results are obtained for the other types of images
tested in our experiments.

The second experiment provides theMean Unsigned Devi-
ation (MUD) of the MSE metric. MUD provides the average
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FIGURE 7. Error (in MSE) plotted for each row j and band k at target rates of 1, 2, 3, and 4 bps. Results are showed for [20]′ , Mode 1 and Mode 2.
Plots from (a) to (l) and from (m) to (x) belong to yellowstoneU and Angio_1, respectively.
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TABLE 3. MUD comparison of the row-by-row MSE between Mode 1,
Mode 2, and [20]′ . For the bananas image the target rates are doubled.
(*): Lossless.

of the absolute MSE deviations from the mean MSE. It is
computed in a row-by-row way as

MUD =
1

J × K

J−1∑
j=0

K−1∑
k=0

|MSE−MSEj,k |, (13)

where MSEj,k is computed as (10) and MSE is computed as

MSE =
1

J × K

J−1∑
j=0

K−1∑
k=0

MSEj,k . (14)

For the MUD metric, lower is better.
Table 3 reports the MUD metric for images from different

scenarios at different rates. It can be observed that:
1) Mode 1 obtains the lowest MUD value, followed by

Mode 2.
2) At lower bit-rates, the differences between the three

techniques are larger than at higher bit-rates. This trend
is emphasized for images with higher entropy such as
yellowstoneU, angio_1, and guitar.

3) Although at higher rates the MUD differences between
our proposal and [20]′ are reduced substantially, our
proposal gets the best results in all cases.

C. RATE-DISTORTION EVALUATION
The tests reported in this section are aimed to evaluate the
rate-distortion performance of Mode 1 and Mode 2 of our
proposal with respect to the near-lossless coding technique
introduced in [17]. Fig. 8 shows the rate SNR and rate MUD
curves for a remote sensing and a medical image compressed
with Mode 1, Mode 2 and [17]. As [17] is a near-lossless
compressor, images are encoded and decoded at different
quantization steps, then the rate and the SNR and MUD are
computed and used to interpolate the curves. All results are
produced using the same predictor and entropy encoder con-
figuration. The following definition of SNR (SNR Energy) is
employed in this work:

SNR = 10 log10

∑I−1
i=0

∑J−1
j=0

∑K−1
k=0 xi,j,k

2∑I−1
i=0

∑J−1
j=0

∑K−1
k=0 (xi,j,k − x̂i,j,k )2

, (15)

measured in dB, where x and x̂ denote the original and
reconstructed samples, respectively.
From Fig. 8 we can see that: 1) Modes 1 and 2 pro-

vide nearly the same rate-distortion performance as the near-
lossless technique (Fig. 8 (a) and (c)). 2) For MUD plots
(Fig. 8 (b) and (d)) Mode 1 obtains the best performance. 3)
Again for MUD plots, for bit-rates larger than 1.5 and 0.5 bps
for globalA and angio_1 images, respectively, all evaluated
techniques produce almost the same performance. And, 4) the
curves of Mode 1 and [17] for globalA at rates larger than
1.2 bps provide lossless recovery. This is produced because
in [17] there is no control of the final rate, whereas for
Mode 1 the selection of the quantization steps prioritizes the
image quality instead of building code-streams with high-rate
accuracy, and with a target rate of 2 bps, lossless compression
is obtained.
The last experiment in this section compares the per-

formance of Mode 2 and [20]′ against wavelet transform
coding techniques in terms of rate accuracy, Peak Absolute
Error (PAE) and SNR quality metrics. Table 4 reports a
comparison between Mode 2, [20]′, RKLT+JPEG2000 and
RKLT+CCSDS-122. The best results for PAE and SNR
between the rate control proposed here and [20]′ are high-
lighted in bold font. This evaluates the same predictive
coding employing different rate control techniques. The
best results between our proposal, RKLT+JPEG2000 and
RKLT+CCSDS-122 are underlined. These results suggest
that:

1) Mode 2 yields the lowest PAE in all cases. For the gui-
tar image, our proposal reaches gains superior to 300,
220, and 145 units compared with, respectively, [20]′,
RKLT+JPEG2000, and RKLT+CCSDS-122.

2) Our proposal gets higher SNR than [20]′ for all rates
and images, achieving gains of more than 12 dB for
globalA at 2 bps.

3) Coding techniques based on transform produce better
SNR for most rates and images, but with significantly
larger PAE values than the proposed Mode 2.
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FIGURE 8. Rate SNR and Rate MUD-MSE curves for angio_1 ((a) and (b)), and globalA ((c) and (d)).

TABLE 4. Output rates, PAE and SNR image quality comparison. Results are provided for Mode 2 of our proposal, [20]′ , RKLT+JPEG2000, and
RKLT+CCSDS-1222. Target rates evaluated are 1, 2, 3 and 4 bps, except for guitar, where rates are doubled.

D. VISUAL INSPECTION
The last experiment provides a visual comparison from an
image encoded at 0.25 bps with Mode 2 and [20]′. Although
Mode 1 provides better homogenized global error, we have

employed Mode 2 in this experiment to attain the best tar-
get bit-rate accuracy. The original image is portrayed as a
reference. Fig. 9, Fig. 10, and Fig. 11 show a band for a
remote sensing, a medical, and a natural image, respectively.
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FIGURE 9. Visual comparison for the yellowstoneU image. (a) Original, (b) original (crop), (b) proposed approach - Mode 2 at 0.25 bps
(SNR = 30.06 dB.), and (d) [20]′at 0.25 bps (SNR = 28.54 dB.).

FIGURE 10. Visual comparison for the angio_2 image. (a) Original, (b) original (crop), (c) proposed approach - Mode 2 at 0.25 bps
(SNR = 36.56 dB.), and (d) [20]′ at 0.25 bps (SNR = 32.79 dB.).

FIGURE 11. Visual comparison for the portrait image. (a) Original, (b) original (crop), (c) proposed approach - Mode 2 at 1.5 bps (SNR = 31.60 dB.),
and (d) [20]′ at 1.5 bps (SNR = 29.81 dB.).

The reader is invited to zoom in to see the specific visual
artifacts arising from the different compression methods.

Although for the remote sensing and medical images
we have encoded the images at low bit-rates, the differ-
ence of Fig. 9 and Fig. 10 between the original and the

images encoded with our proposal are hard to appreciate
visually. On the other hand, we can appreciate visual vari-
ations between our proposal and [20]′. These differences are
more relevant in the firsts lines –top of the image–, which is
motivated because of the adaptation of the quantization steps.
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For the natural image, reconstructions at 1.5 bps are por-
trayed. Two different crop regions are showed. For the top-
crop we can appreciate that [20]′ produces a degradation of
the image quality, this behavior in the first lines forces [20]′

to more aggressively quantize the coming lines –bottom-
crop– to achieve the target bit-rate. As seen, our proposal
recovers the full image with homogeneous quality, higher
fidelity and lower artifacts than [20]′.

VI. CONCLUSIONS
Though rate control techniques are easy to be enforced in
transform coding techniques, this is not true in predictive
image coding systems because of the intricate mathemat-
ical relation between the rate and the quantized residuals.
There exist few contributions aimed at controlling the rate
for image predictive coding systems; they estimate the rate
given a quantization step through a modeling function, how-
ever they can not secure constant quality along the image.
This manuscript introduces an iterative rate control algo-
rithm for image coding systems based on prediction with
the main goal of yielding constant quality for the entire
reconstructed image. To provide constant quality, we propose
an iterative rate control strategy that sets a quantization for
the first line and adapts the further steps to yield uniform
quality. In the case that the target bit-rate is not achieved,
the step size of the first line is updated and the procedure is
repeated. Our method obtains superior performance in terms
of constant quality Peak Absolute Error (PAE) compared
with the latest rate control technique for predictive image
coding systems [20] and compared with transform coding
methods such as JPEG2000 and CCSDS-122 (both preceded
by the Reversible Karhunen-Loeve transform). Furthermore,
our contribution provides higher Signal Noise Ratio (SNR)
than [20] and, in some cases, it also outperforms JPEG2000
and CCSDS-122.

REFERENCES
[1] JPEG-LS Lossless and Near-Lossless Compression for Continuous-Tone

Still Images, Standard ISO/IEC 14495-2:2003, 1999.
[2] Joint Photographic Experts Group (JPEG). Accessed: Jul. 2019. [Online].

Available: http://www.jpeg.org
[3] Digital Image and Communication in Medicine. (Jan. 2019). DICOM.

[Online]. Available: http://medical.nema.org/
[4] Lossless Multispectral & Hyperspectral Image Compression, docu-

ment CCSDS-123.0-B-1 Blue Book, May 2012.
[5] Consultative Committee for Space Data Systems (CCSDS).

Accessed: Jul. 2019. [Online]. Available: http://www.ccsds.org
[6] F. Rizzo, B. Carpentieri, G. Motta, and J. A. Storer, ‘‘Low-complexity

lossless compression of hyperspectral imagery via linear prediction,’’ IEEE
Signal Process. Lett., vol. 12, no. 2, pp. 138–141, Feb. 2005.

[7] J. Song, Z. Zhang, and X. Chen, ‘‘Lossless compression of hyperspectral
imagery via RLS filter,’’ Electron. Lett., vol. 49, no. 16, pp. 992–994,
Aug. 2013.

[8] W. Jiaji, K. Wanqiu, M. Jarno, and H. Bormin, ‘‘Lossless compression
of hyperspectral imagery via clustered differential pulse code modulation
with removal of local spectral outliers,’’ IEEE Signal Process. Lett., vol. 22,
no. 12, pp. 2194–2198, Dec. 2015.

[9] F. Gao and S. Guo, ‘‘Lossless compression of hyperspectral images
using conventional recursive least-squares predictor with adaptive
prediction bands,’’ J. Appl. Remote Sens., vol. 10, no. 1, 2016,
Art. no. 015010.

[10] N. Amrani, J. Serra-Sagristà, V. Laparra, M. W. Marcellin, and J. Malo,
‘‘Regression wavelet analysis for lossless coding of remote-sensing data,’’
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5616–5627,
Sep. 2016.

[11] E. Magli, G. Olmo, and E. Quacchio, ‘‘Optimized onboard lossless and
near-lossless compression of hyperspectral data using CALIC,’’ IEEE
Geosci. Remote Sens. Lett., vol. 1, no. 1, pp. 21–25, Jan. 2004.

[12] G. Carvajal, B. Penna, and E. Magli, ‘‘Unified lossy and near-lossless
hyperspectral image compression based on JPEG 2000,’’ IEEE Geosci.
Remote Sens. Lett., vol. 5, no. 4, pp. 593–597, Oct. 2008.

[13] C.-W. Chen, T.-C. Lin, S.-H. Chen, and T.-K. Truong, ‘‘A near lossless
wavelet-based compression scheme for satellite images,’’ in Proc. WRI
World Congr. Comput. Sci. Inf. Eng., vol. 6. Mar. 2009, pp. 528–532.

[14] S.-C. Tai, T.-M. Kuo, C.-H. Ho, and T.-W. Liao, ‘‘A near-lossless compres-
sion method based on CCSDS for satellite images,’’ in Proc. Int. Symp.
Comput., Consum. Control, 2012, pp. 706–709.

[15] I. Blanes, E. Magli, and J. Serra-Sagrista, ‘‘A tutorial on image compres-
sion for optical space imaging systems,’’ IEEEGeosci. Remote Sens. Mag.,
vol. 2, no. 3, pp. 8–26, Sep. 2014.

[16] J. Beerten, I. Blanes, and J. Serra-Sagristà, ‘‘A fully embedded two-stage
coder for hyperspectral near-lossless compression,’’ IEEE Geosci. Remote
Sens. Lett., vol. 12, no. 8, pp. 1775–1779, Aug. 2015.

[17] J. Bartrina-Rapesta, I. Blanes, F. Aulí-Llinàs, J. Serra-Sagristà, V. Sanchez,
and M. W. Marcellin, ‘‘A lightweight contextual arithmetic coder for
on-board remote sensing data compression,’’ IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 8, pp. 4825–4835, May 2017.

[18] D. Valsesia and E. Magli, ‘‘A novel rate control algorithm for onboard
predictive coding of multispectral and hyperspectral images,’’ IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 10, pp. 6341–6355, Oct. 2014.

[19] M. Conoscenti, R. Coppola, and E. Magli, ‘‘Constant SNR, rate control,
and entropy coding for predictive lossy hyperspectral image compres-
sion,’’ IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7431–7441,
Dec. 2016.

[20] D. Valsesia and E. Magli, ‘‘Fast and lightweight rate control for onboard
predictive coding of hyperspectral images,’’ IEEE Geosci. Remote Sens.
Lett., vol. 14, no. 3, pp. 394–398, Mar. 2017.

[21] Y. Shoham and A. Gersho, ‘‘Efficient bit allocation for an arbitrary set of
quantizers [speech coding],’’ IEEETrans. Acoust., Speech, Signal Process.,
vol. 36, no. 9, pp. 1445–1453, Sep. 1988.

[22] N. S. Jayant and P. Noll,Digital Coding ofWaveforms. Upper Saddle River,
NJ, USA: Prentice-Hall, 1984.

[23] K. Ramchandran, A. Ortega, and M. Vetterli, ‘‘Bit allocation for depen-
dent quantization with applications to multiresolution and MPEG video
coders,’’ IEEE Trans. Image Process., vol. 3, no. 5, pp. 533–545,
Sep. 1994.

[24] Information Technology—JPEG 2000 Image Coding System—Part 1: Core
Coding System, Standard ISO/IEC 15444-1:2000, Dec. 2000.

[25] E. Augé, J. E. Sánchez, A. B. Kiely, I. Blanes, and J. Serra-Sagrista,
‘‘Performance impact of parameter tuning on the CCSDS-123 lossless
multi- and hyperspectral image compression standard,’’ J. Appl. Remote
Sens., vol. 7, no. 1, 2013, Art. no. 074594.

[26] D. S. Taubman and M. Marcellin, JPEG2000: Image Compression Funda-
mentals, Standards and Practice. Norwell, MA, USA: Kluwer, 2002.

[27] Image Data Compression, document CCSDS-122.0-B-1, Blue Book,
Nov. 2005.

JOAN BARTRINA-RAPESTA received the B.Sc.,
B.E., M.S., and Ph.D. degrees in computer sci-
ence from the Universitat Autònoma de Barcelona
(UAB), Spain, in 2002, 2004, 2006, and 2009,
respectively. He received the M.S. and Ph.D.
degrees (Hons.) from UAB. He has received a
Doctoral Fellowship from UAB. He has coau-
thored numerous papers in journals and confer-
ences. He has guided Ph.D. students. Since 2012,
he has been an Associate Professor with the

Department of Information and Communications Engineering, UAB. His
research interest includes a wide range of image coding topics, comput-
ing, and transmission. He participates as a Reviewer for magazines and
symposiums.

VOLUME 7, 2019 103929



J. Bartrina-Rapesta et al.: Novel Rate-Control for Predictive Image Coding With Constant Quality

MICHAEL W. MARCELLIN (S’81–M’87–
SM’93–F’02) received the B.S. degree in electri-
cal engineering from San Diego State University,
in 1983, and the M.S. and Ph.D. degrees in elec-
trical engineering from Texas A&M University,
in 1985 and 1987, respectively. Since 1988, he has
been with the University of Arizona, where he cur-
rently holds the title of Regents’ Professor. He is
also the International Foundation for Telemetering
Chaired Professor. His research interests include

digital communication and data storage systems, data compression, and
signal processing. He has authored or coauthored over 300 publications in
his research areas. He has received numerous honors including ten teaching
awards.

JOAN SERRA-SAGRISTÁ (S’97–M’05–SM’11)
received the Ph.D. degree in computer science
from the Universitat Autònoma de Barcelona
(UAB), Spain, in 1999. He is currently an Asso-
ciate Professor (Habilitation Full professor) with
the Department of Information and Communi-
cations Engineering, UAB. From 1997 to 1998,
he was with the University of Bonn, Germany, sup-
ported by theDAAD.His current research interests
include data compression, with special attention

to image coding for remote sensing applications. He has coauthored over
100 publications. He was a recipient of the Spanish Intensification Young
Investigator Award, in 2006. He serves or has served as Associate Editor
for the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING and the IEEE
TRANSACTIONS ON IMAGE PROCESSING. He has served as the Committee Chair
for Data Compression Conference.

MIGUEL HERNÀNDEZ-CABRONERO received
the B.Sc. degree in computer science in mathe-
matics from the Universitat Autónoma de Madrid,
in 2010, and the M.Sc. and Ph.D. degrees (cum
laude) in computer science from the Universitat
Autònoma de Barcelona (UAB), in 2011 and 2015,
respectively. He has carried Postdoctoral research
stages with the University of Warwick, U.K., and
the University of Arizona, USA. He is currently
with the Department of Information and Com-

munications Engineering, UAB. His research interests include data com-
pression, with a focus on task-oriented coding of visual contents, and
compression standards. He is an active contributor and aReviewer in research
areas of knowledge.

103930 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	CCSDS-123
	ERROR CONTROL IN PREDICTIVE CODING SYSTEMS
	LIGHTWEIGHT BINARY ARITHMETIC CODER WITH CONTEXT MODEL
	RATE CONTROL

	RATE-CONTROL HOMOGENIZING IMAGE QUALITY
	RATE CONTROL ALGORITHM
	RATE ACCURACY

	ADOPTED CODING APPROACH
	EXPERIMENTAL RESULTS
	RATE ACCURACY EVALUATION
	CONSTANT QUALITY EVALUATION
	RATE-DISTORTION EVALUATION
	VISUAL INSPECTION

	CONCLUSIONS
	REFERENCES
	Biographies
	JOAN BARTRINA-RAPESTA
	MICHAEL W. MARCELLIN
	JOAN SERRA-SAGRISTÁ
	MIGUEL HERNÀNDEZ-CABRONERO


