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ORIGINAL ARTICLE

Genetic factors contributing to autism spectrum
disorder in Williams-Beuren syndrome

Marta Codina-Sola,* Mar Costa-Roger,' Debora Pérez-Garcia,' Raquel Flores,'

Maria Gabriela Palacios-Verdd,'"? lvon Cusco

ABSTRACT

Background The hallmark of the neurobehavioural
phenotype of Williams-Beuren syndrome (WBS) is
increased sociability and relatively preserved language
skills, often described as opposite to autism spectrum
disorders (ASD). However, the prevalence of ASD in WBS
is 6—10 times higher than in the general population.
We have investigated the genetic factors that could
contribute to the ASD phenotype in individuals with WBS.
Methods We studied four males and four females with
WBS and a confirmed diagnosis of ASD by the Autism
Diagnostic Interview-Revised. We performed a detailed
molecular characterisation of the deletion and searched
for genomic variants using exome sequencing.

Results A de novo deletion of 1.55Mb (6 cases) or
1.83Mb (2 cases) at 7q11.23 was detected, being in
7/8 patients of paternal origin. No common breakpoint,
deletion mechanism or size was found. Two cases

were hemizygous for the rare T allele at rs12539160

in MLXIPL, previously associated with ASD. Inherited
rare variants in ASD-related or functionally constrained
genes and a de novo nonsense mutation in the UBR5
gene were identified in six cases, with higher burden in
females compared with males (p=0.016).

Conclusions The increased susceptibility to ASD in
patients with WBS might be due to additive effects of
the common WBS deletion, inherited and de novo rare
sequence variants in ASD-related genes elsewhere in the
genome, with higher burden of deleterious mutations
required for females, and possible hypomorphic variants
in the hemizygous allele or cis-acting mechanisms on
imprinting.

INTRODUCTION

Williams-Beuren syndrome (WBS, OMIM#194050)
is a rare neurodevelopmental disorder resulting
from an heterozygous deletion of 25-27 genes at
chromosome 7q11.23, estimated to affect approx-
imately 1 in 7500 individuals." The WBS locus has
a complex genomic architecture with a single copy
region flanked by three large segmental duplica-
tions, each composed of three major blocks (A, B
and C), located in the centromeric (c), medial (m)
and telomeric (t) sides.” Two types of recurrent
rearrangements promoted by non-allelic homol-
ogous recombination (NAHR) can result in WBS
syndrome. The most frequent is a 1.55 Mb deletion
occurring between the medial and centromeric B
blocks in 87% of cases. Around 10% of patients
present a larger 1.83 Mb deletion due to a crossing
over between centromeric and medial A blocks. The
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remaining 3% of patients with WBS show atypical
deletions mediated by other mechanisms.” * The
WBS multisystemic phenotype is characterised by
cardiovascular disease, distinctive facies, connec-
tive tissue abnormalities and growth and endocrine
alterations, among others.” ° The main neurobe-
havioural hallmarks are mild to moderate intellec-
tual disability (ID), hypersociability and relative
language preservation.® Interestingly, the reciprocal
duplication of 7q11.23 (OMIM#609757) results
in a phenotype with speech delay, language impair-
ment, milder learning problems and clear social
interaction deficits often associated with autism
spectrum disorder (ASD).®”

Due to their associated behavioural manifes-
tations, ASD and WBS have often been described
as diametric opposite disorders, although this
consideration is an oversimplification of both
phenotypes.® * Moreover, several cases of WBS
with comorbid ASD have been reported and some
authors have suggested that ASD features should
be considered as part of the WBS phenotype.” ™
A recent meta-analysis of the comorbidity of ASD
features in several well-defined genetic syndromes
concluded that the prevalence of ASD features
among WBS individuals is as high as 1296." There-
fore, the frequency of ASD is 6-10 times higher in
individuals with WBS than in the general popula-
tion, a striking finding considering the typical WBS
neurocognitive profile.

Potential modifiers of the common neurobe-
havioural phenotype of WBS include: (1) cis-acting
mechanisms due to variable breakpoints altering
flanking genes, although most patients described
present common deletions of identical size’ ';
(2) trans-acting factors present in the non-deleted
hemizygous allele; (3) genetic mutations and/or
structural variants elsewhere in the genome; (4)
environmental events with or without epigenetic
effects, including medical complications during
development and early life. All these factors can
have additive effects acting on a sensitised back-
ground caused by haploinsufficiency at the WBS
locus.'® ' Two individuals with WBS and co-occur-
ring ASD previously reported presented hyperse-
rotonaemia and were homozygous for the short (s)
allele in the promoter of the serotonin transporter
SLC6A4 (5-HTTLPR), suggesting a possible modi-
fier role of this locus.'*!”

In the present work, we have investigated the
genetic factors that could contribute to the ASD
phenotype of eight individuals with WBS and
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SEARCH FOR GENETIC MODIFIERS OF THE WBS PROFILE
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Figure 1  Strategy followed for the identification of second-hit genetic
factors. DGV, Database of Genomic Variants; LoF, loss of function; MAF,
minor allele frequency; SNV, single nucleotide variant.

comorbid ASD. We completed a detailed molecular character-
isation of the deletion, genotyped the reported polymorphism
at SLC6A4 and performed a genome-wide unbiased search of
second-hits by exome sequencing following the strategy depicted
in figure 1.

METHODS

Patient selection

From a cohort of 122 individuals with a diagnosis of WBS
and confirmed 7q11.23 deletion by molecular techniques, we
selected four males and four females aged 6-31 years with an
associated diagnosis of ASD. The diagnosis was based on the
direct observation by a trained psychologist and clinicians and
confirmed in all of them using the Autism Diagnostic Interview-
Revised (ADI-R). Written informed consent was obtained from
all parents or legal caregivers.

7q11.23 deletion characterisation

Blood samples from probands and parents were obtained and
genomic DNA was extracted using the Puregene DNA Purifica-
tion Kit (Gentra Systems, Big Lake, Minnesota, USA). The size
and parental origin of the deletion was established by the analysis
of multiple ligation-dependent probe amplification and several
single and multiple-copy microsatellites. Refined mapping of
deletion breakpoints was also performed by quantitative analysis
of paralogous sequence variants as previously described.®

SLC6A4 genotyping

The polymorphism in the serotonin transporter promoter
SLC6A4 (S-HTTLPR) was genotyped by PCR and agarose gel
electrophoresis, using primers previously described.'”

Exome sequencing and analysis
Exomes were captured using the SureSelect Human All Exon V5
capture kit (Agilent, Santa Clara, California, USA) and libraries
were sequenced on an Illumina MiSeq platform. Paired-end
sequences were obtained with a read length of 250bp.
Mapping, variant calling and filtering were performed using
BWA and GATK’s standard parameters. The hgl9 human
genome reference version was used. Variant annotation was
performed using ANNOVAR (http://www.openbioinformatics.
org/annovar/), considering the variant frequency in control data-
bases: dbSNP137 (http://www.ncbi.nlm.nih.gov/SNP/), ExAC
(http://exac.broadinstitute.org/), Kaviar (http://db.systemsbi-
ology.net/kaviar/) and an in-house database of 248 Spanish

controls. The nature of the changes was assessed by PolyPhen
and Condel (http://bg.upf.edu/fannsdb/) protein effect predic-
tion algorithms.

For CNV detection, we applied ExomeDepth and compared
our samples with a matched aggregate reference set of 248
in-house exomes captured and sequenced using the same
protocol. CNVs were filtered based on their overlap with vari-
ants previously described in the Database of Genomic Variants
and DECIPHER.*

Rare variant analysis and validation

We selected exonic variants with a minor allele frequency (MAF)
lower than 0.002 according to several databases (previously
mentioned) for heterozygous variants following a dominant
inheritance model. For homozygous or compound heterozy-
gous variants, under a recessive inheritance model, we selected a
MAF =<0.01. Since second-hit variants would act in the presence
of a major hit and would not be expected to solely cause ASD,
they might be present in the general population and inherited
from unaffected progenitors. Moreover, given the high degree
of genetic heterogeneity of ASD, they could affect hundreds of
genes. Taking into account the prevalence of ASD in individuals
with WBS and the large number of genes involved, we reasoned
that the frequency of each individual variant should be relatively
rare and, consequently, set our MAF threshold for homozygous
or compound heterozygous variants at <0.01.

To validate variants and perform segregation studies in
parental samples, we used Sanger sequencing by capillary elec-
trophoresis (ABI PRISM 7900HT, Applied Biosystems, Foster
City, California, USA). Primers were designed with the PRIMER3
program (http://www.bioinformatics.nl/cgi-bin/primer3plus/
primer3plus.cgi/) and PCR reactions were carried following
standard conditions.

Epistatic effects of rare variants

To study the putative contribution of epistatic effects of rare
SNVs on gene expression deregulation in WBS, we compiled a
list of genes previously altered in WBS by various mechanisms,
including transcriptional dysregulation, differential methylation
and the direct GTF2I targets. We performed a systematic litera-
ture review and selected only high-quality studies done in human
subjects, obtaining 2251 candidate genes (online supplementary
table 1).217%

Analysis of ASD susceptibility loci

To study the potential contribution of common variants, we
selected loci previously associated with ASD by Genome-Wide
Association Studies (GWAS). Variants containing the term
‘Asperger’ or ‘Autism’ were extracted from the Genome-Wide
Repository of Associations between SNPs and phenotypes
(GRASP) database V.2.0 (online supplementary table 2).% Allele
frequency in the WBS cohort was then compared with non-
Finnish European (NFE) population data from ExAC by Fisher’s
exact test and g-value and false discovery rate (FDR) values were
calculated using the R package qvalue.”® To avoid population
stratification, EXAC allele frequencies were compared with that
reported in Spanish Variant Server, including data from 578
Spanish individuals (http://csvs.babelomics.org/).

RESULTS

Clinical characteristic of selected patients

The study was performed in eight Spanish patients with WBS
(four males and four females), which had periodic follow-up in
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Table 1 Clinical characteristics of the WBS individuals with associated ASD
WBS1 WBS2 WBS3 WBS4 WBS5 WBS6 WBS7 WBS8

Birth year 1987 1985 2000 2006 2002 2008 2001 2010
Gender F M M M F M F F
Relevant family history No No Yes* No No Yest No No
Age at WBS diagnosis 7y 3y 5m 3m 3m 2y 5y 1y
Age at ASD diagnosis 4y 10y 6y 5y 12y 5y 3y 5y
ADI-R

A 22 1 " 22 14 10 19 18

B (V) - 7 4 = - - - -

B (NV) 10 - - 12 7 4 14 9

C 8 4 6 8 8 6 9 5

D 5 4 1 3 4 4 5
1Q (WISC-R) 40 <40 41 <40
Other neurological symptoms ADHD ADHD Behavioural Epilepsy, ADHD ADHD

problems
Cardiovascular disease ND SVAS Coarctation of SVAS SVAS SVAS SVAS ND
aorta
Endocrine abnormalities ND ND ND ND Early puberty ND Early puberty  Subclinical
hypothyroidism

ADI-R scores: A. Social interaction (cut-off: 10); B. Communication and language, (V): verbal (cut-off: 8), (NV): non-verbal (cut-off: 7); C. Restricted and repetitive behaviours (cut-

off: 3); D. Developmental alterations earlier than 36 months (cut-off: 1).
*Paternal aunt with ASD and severe ID.
tFather committed suicide.

ADHD, attention deficit hyperactivity disorder; ADI-R, Autism Diagnostic Interview-Revised; ASD, autism spectrum disorder; F, female; 1Q, intellectual quotient; M, male; m, month;
ND, not detected by standard testing; SVAS, supravalvular aortic stenosis; WBS, Williams-Beuren syndrome; WISC-R, Wechsler Intelligence Scale for Children-Revised; y, year.

a multidisciplinary clinic and complete neurobehavioural evalu-
ation due to a comorbid diagnosis of ASD. Their main clinical
characteristics are summarised in table 1. All patients fulfilled
criteria in the social interaction and restrictive behaviour
domains while two of them (WBS2 and WBS3) did not reach the
verbal communication domain threshold. Family history of ASD
or psychiatric disorders was positive on the paternal side in two
cases (WBS3 and WBS6) and negative in the others (table 1).

Detailed characterisation of the 7q11.23 deletion

To define potential cis-acting factors in the deleted allele, we
characterised all deletions at the molecular level including deter-
mination of the parental origin. All rearrangements were de novo

and all but one (7/8) were of paternal origin (table 2). The most
common 1.55Mb deletion was found in 6/8 patients, whereas
2/8 carried the larger recurrent 1.83 Mb deletion mediated by
NAHR between A blocks (figure 2). In two patients (WBS1 and
WBS3), the common 1.55 Mb deletion had been mediated by an
inversion in the transmitting progenitor.

Since GTF2IRD2 has been postulated as a possible modulator
of WBS cognitive phenotype,”” we analysed the deletion break-
points to assess the number of functional copies of this gene
in the patients (figure 2). As expected, the deletions mediated
by A blocks included the entire medial B block with a copy of
GTF2IRD2, resulting in a loss of one functional copy (1M/2T:
1 medial (GTF2IRD2)/2 telomeric (GTF2IRD2B)). The two

Table 2 Summary of the main genetic findings per patient

Hemizygous
7911.23 deletion allele Genome-wide Genome-wide rare LoF SNVs
Individual Origin GTF2IRD2 Size (Mb) SNVs CNVs ASD candidate genes LoF intolerant genes
WBS1 Pat 1M/3T 1.55
WBS2 Pat 2MA2T 1.55 T at rs12539160
WBS3 Pat 1M/3T 1.55 SIK1 partial dup”
WBS4 Pat 1M2T 1.83 CC2D1A
c1357-2A>C"
WBS5 Pat 2M/2T 1.55 PYHINT p.(Arg373*)™ SEC24C c.2682+2A>GM
UBR5
p.(Arg633*)°N
WBS6 Pat 1ChAM/2T 1.55 T at rs12539160 AGAP1
¢1051-2A>T"
WBS7 Mat 2M2T 1.55 DUSP22 del™ USP45 p.(Glu220%)™ CXXC1 p.(Ser222Leufs*7)"
WBS8 Pat 1M2T 1.83 PIK3CG p.(Glu14Glyfs*147)"  MED26 c.147+2T>C"

EPHB1 p.(Ser435ProfsTer13)"

*Stop codon.

Ch, chimeric-type copies; DN, de novo; del, deletion; dup, duplication; LoF, loss of function; M, medial-type copies; MI, maternally inherited; Mat, de novo, maternal chromosome;
NM, not maternal (father not available); PI, paternally inherited; Pat, de novo, paternal chromosome; T, telomeric-type copies; WBS, Williams-Beuren syndrome.
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Figure 2 Schematic representation of the Williams-Beuren syndrome
(WBS) locus, showing the two most common deletions and the gene
content of the B block. The B block contains three genes: GTF2I, NCF1
and GTF2IRD2. Whereas GTF2/ and NCF1 have a single functional copy
located at the medial B block, GTF2/IRD2 has two functional copies,
located at the medial (GTF2/RD2) and telomeric (GTF2IRD2B) B blocks. The
1.55Mb deletion is mediated by B blocks and results in a chimeric medial-
centromeric block, with the number of functional copies of GTF2IRD2 and
NCF1 depending on the deletion breakpoint. In contrast, the 1.83Mb
deletion is mediated by A blocks, resulting in the loss of the medial and
centromeric B blocks with functional copies of GTF2IRD2 and NCF1.

patients with inversion-mediated deletions had a 1M/3T geno-
type, originated from the loss of a medial copy and a gain of a
telomeric copy of GTF2IRD2. Among the patients with 1.55 Mb
deletions, three had breakpoints before GTF2IRD2, with no
change in the number of functional copies (2M/2T), whereas in
one patient the breakpoint occurred within GTF2IRD2, creating
a chimeric copy (Ch) between the medial gene and the centro-
meric pseudogene (1Ch/1M/2T) (table 2). The breakpoints also
affect the number of NCF1 copies, by either deleting or not one
of the functional copies.

Hemizygous variants in the 7q11.23 region

To look for trans-acting factors in the 7q11.23 allele present in
hemizygosity, we analysed the entire captured region within the
WBS common deletion locus (chr7:72 700 000-74 250 000)
looking for over-represented rare and common variants, shared
haplotypes and rare deleterious SNVs. For over-represented
variants, we compared allele frequencies of all described
hemizygous variants (n=32) in our cohort to those reported
in ExAC for European population. Variants with significantly
different frequencies in ExAC and Spanish Variant Server were
excluded to avoid population stratification. Due to the small
sample, none of the variants reached statistical significance, but
we identified a nearly significant association (p=0.076) with
rs12539160, which was present in two individuals (WBS2 and
WBS6). This synonymous variant located near an exon-intron
boundary of MLXIPL had been previously associated with
ASD in a GWAS.?® Taking advantage of the hemizygosity of
SNPs in the deleted single-copy region, we extracted phased
haplotypes in this interval to study if a common haplotype was
shared between individuals. Two linkage disequilibrium blocks
were identified from rs1128349 to rs13227841 (DNAJC30
to WBSCR28) and from rs17851629 to rs2074667 (located
in GTF2IRD1). Allele frequencies of the tag markers did not
differ significantly from those in the general population and
no common shared haplotype was identified in our cohort. In
addition, we looked for rare SNVs in the single-copy region of
the WBS locus. Only hemizygous variants with a MAF <0.01
were selected. After filtering for exonic variants and excluding

synonymous SNVs with no functional effect, we remained with
two non-synonymous variants in genes MLXIPL and TBL2
predicted as tolerant by various protein effect prediction algo-
rithms ((SIFT (sorting intolerant from Tolerant), PolyPhen
(Polymorphism Phenotyping) and Condel)). No rare variants
were identified at GTF2I, NCF1 and GTF2IRD2, the genes in
the flanking segmental duplications.

Genome-wide analysis of rare variants

Copy number variants

We also studied the presence of additional rearrangements that
could explain the autistic symptoms in our cohort. In addition
to the WBS 7q11.23 deletion, we observed an average of 25
CNVs per patient ranging from 170bp to 334 kb. None of the
additional rearrangements overlapped with known genomic
disorders or was previously associated with neurodevelopmental
disorders and all overlapped with previous CNVs described in
the general population.”” Only two CNVs comprised ASD candi-
date genes (SIK1 and DUSP22) (online supplementary table 3).>
The CNV involving SIK1 was a partial duplication affecting the
last two exons of the gene, paternally inherited in patient WBS3.
The heterozygous deletion completely containing DUSP22 was
found in patient WBS7 and not in her mother, but paternal
sample was unavailable.

Rare single nucleotide variants

We prioritised deleterious variants present in a list of candi-
date genes from -Simons Foundation Autism Research Initiative
(SFARI) (n=791) (online supplementary table 3) and/or highly
constrained genes, as previous studies have shown that genes
predisposing to ASD carry a low burden of disrupting mutations
in the general population.’” *! Constrained genes were defined
as those with a probability of being loss of function (LoF) intol-
erant (pLI >0.9) according to ExAC.** LoF and missense vari-
ants predicted as damaging by both SIFT and PolyPhen were
considered deleterious variants.

We detected a total of 38 rare deleterious SNVs in 34 candi-
date genes (online supplementary table 4). All LoF variants
(n=6) were validated and segregation studies were performed
on all samples, showing a de novo variant in the UBRS gene
in case WBSS (table 2). De novo variants in the UBRS gene,
two missense and one LoF, have been previously described in
ASD individuals.*** WBS5 is a severely affected female who
presented an obsessive ritualistic behaviour, hypersensitivity to
noise and physical stimuli, had not developed language and did
not show eye contact.

As for highly constrained genes, excluding candidate genes,
we detected 68 SNVs in 65 genes, including four LoF mutations
(table 2). All genes selected on the basis of being LoF intolerant
but harbouring a LoF in our cohort were brain-expressed and
some had been previously associated with psychiatric and neuro-
developmental disorders, such as SEC24C, CXXC1 and EPHBI,
which was mutated in two patients with WBS.**

Epistatic effects of rare variants

To study if second-hit variants could be disrupting genes already
altered in WBS and act by an epistatic effect, we intersected a
manually curated list of genes with altered expression in WBS
with the list of mutated genes (figure 3). The results showed
that 20 of mutated genes were also altered in WBS. Two of them
harboured a LoF in our cohort: AGAP1 and EPHB1 in two cases.
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CACNA1C, CDH8, TSC2, ZNF407

Figure 3  Overlap between candidate and functionally constrained genes
mutated in our cohort and genes altered in Williams-Beuren syndrome
(WBS).

Burden of rare deleterious mutations, increased in females

In total, six patients with WBS with ASD carried, in addition
to the specific de novo 7q11.23 deletion, one to three strong
candidate rare genetic variants (CNV and/or SNV) that could
contribute to the ASD phenotype, either inherited or de novo
(table 2).

Since ASD is four times more prevalent in males than females,
it has been suggested that females have a higher risk threshold
and require a higher genetic load to develop the disorder.*’
To examine if females in our cohort carried a higher genetic
burden, we compared the frequency of rare deleterious vari-
ants in ASD candidate genes between males (n=4) and females
(n=4) (figure 4). The results showed a statistically significant
increase (p=0.016) in the number of total mutations per patient
in females (x = 6, SD=1.7) compared with males (x = 3,
SD=1.2). This effect was not seen when comparing the burden
of all rare variants between genders (p=0.51).

Association study with candidate ASD genes

To study the potential role of common variants, we analysed the
loci previously associated with ASD and compared their varia-
tion frequency in our cohort with that of NFE ExAC popula-
tion. A total of 645 single-nucleotide markers located in coding
regions were analysed, of which only 13 obtained a significant
p value (p<0.05) and none passed FDR correction. For 10 of
the significantly over-represented SNVs in our cohort, the

A Deleterious SNVs in candidate gens B All rare variants

0,016
P 400 p=0,51

y ol
18

T T
Males Females

Number of variants
w
o
o
1

Number of variants

o
o
1

T T
Males Females

Figure 4 Gender (male vs female) comparison of the average number
of rare variants in Williams-Beuren syndrome-autism spectrum disorders
cases. Statistical significance in all tests was calculated using a two-sided
Student’s t-test, excluding SNVs of the X and Y chromosomes from the
analysis. (A) Deleterious variants in candidate genes. (B) All rare variants.
SNV, single nucleotide variant.

Cognitive and behavioural genetics

over-represented allele corresponded to the risk allele, whereas
it was the protector allele for the 3 remaining. Three of the
markers had been previously described as Expression Quantita-
tive Trait Loci (eQTL) in brain, with rs2275477 associated with
increased expression of OSCP1 and rs4823086 and rs5749088
with transcript RP1.130H16.16/CCDC157.*' We also identified
a nominally significant increase in the frequency of rs2135720,
a non-synonymous SNP within PCDH15 associated with lipid
traits.*

Finally, we also genotyped two promoter variants at SLC6A4
not captured in exome data that had been proposed as modifiers
for the phenotypic outcome in WBS in two patients with autistic
symptoms and hyperserotonaemia. In our cohort, the genotype
frequencies were similar to those found in population of Euro-
pean origin, with 3/8 individuals homozygous for the major long
variant (/), 4/8 presenting an heterozygous genotype (I/s) and 1/8
individual being homozygous for the s allele.

DISCUSSION

We have performed a genome-wide comprehensive analysis to
investigate possible genetic factors in eight individuals presenting
with both diagnoses of WBS and ASD. To date, the analysis of
exome data failed to reveal genetic variants that could explain
the variance of the social behaviour phenotype in a cohort of 85
patients with WBS without comorbid ASD,* and the only locus
suggested to act as a modifying factor was the serotonin trans-
porter SLC6A4 (S-HTTLPR), based on two individuals with
WBS and ASD who had hyperserotonaemia and were homozy-
gous for the ss polymorphism at the gene promoter.”” However,
the results in our cohort show genotype frequencies similar to
those of the general population and do not support a role of
SLC6A4.

The characterisation of the deletion showed no atypical rear-
rangements and different breakpoints in the patients, excluding
the alteration of flanking genes as a major cause. In the studied
patients the deletion had originated in the paternal allele in
seven of eight, suggesting that epigenetic control mechanisms
could influence ASD risk in WBS. This parental bias was not
present in our larger cohort of WBS without comorbid ASD
(n=374 trios) as the origin of the deletion was 50% maternal
and 50% paternal. There are some evidences supporting the
imprinting of the 7q11.23 region based on expression of FKBP6
and GTF21.%** However, in a recent study of six patients with
WBS and ASD, the deletion was of maternal origin in four out of
six patients.”” Collectively, there is suggestive evidence regarding
a possible role of genetic imprinting, but not enough data to
confirm it, which demands characterisation of the deletion and
parental origin in additional individuals with WBS and ASD to
confirm whether imprinting can influence phenotypic variability.

Besides deletion origin and breakpoints, hemizygous variants
unmasked in the deleted region could also act as second-hit
modifying factors. The detailed analysis of SNVs did not reveal
any common haplotype or any rare variant in the coding regions
of GTF2I or GTF2IRD2. However, the analysis of common vari-
ants revealed an over-representation of a relatively rare hemizy-
gous variant previously associated with ASD (rs12539160).% It
has a MAF of 0.06 in European population and of 0.03 in the
Spanish population but it was found in two patients (0.25) of our
cohort, representing an eightfold increase in frequency.*> While
not meeting strict criteria for statistical significance (p=0.076),
this finding deserves additional investigation in future studies.
In a recent study, exome data of 85 patients with WBS was anal-
ysed in order to search for common and rare variants that could
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account for the variance in the social behaviour of these patients.*?
Together with the genotyping of our cohort of non-autistic WBS,
this variant (rs12539160) was found with a frequency of 0.0573
among 157 WBS individuals which is similar to general popula-
tion. Although this variant lies in the intronic region of MLXIPL,
mainly involved in lipid abnormalities, deregulation of the same
or other nearby gene either by this SNP or other risk variants in
linkage disequilibrium not detected by exome sequencing might
contribute to ASD risk in WBS.

We also studied genetic variation at a genome-wide level.
Regarding CNVs, no additional large (>500kb) or pathogenic
rearrangement was identified. Likewise, previous studies eval-
uating second-hit CNVs in genomic disorders showed that
additional rearrangements were more frequent in disorders of
variable expressivity than in syndromic entities. In fact, only 5%
of individuals with WBS carried a second event, similar frequency
than in the control population, suggesting that additional large
CNVs may cause a more severe phenotype and/or be incompat-
ible with life.* However, relatively small CNVs altering ASD
candidate genes and therefore potential contributors to the ASD
phenotype were found in two patients, a partial duplication of
the last two exons of SIK1, and a complete heterozygous dele-
tion of DUSP22.

The analysis of rare deleterious SNVs on ASD candidate
and functionally constrained genes uncovered several brain-
expressed genes that harbour LoF variants in our cohort. Among
those, we detected a de novo stop mutation affecting UBRS, an
E3 ubiquitin-protein ligase in a severely affected female. There-
fore, the presence of WBS and ASD in this individual is probably
due to the co-occurrence of two mechanistically unrelated de
novo events, the WBS deletion and the UBRS mutation.

However, the increased prevalence of ASD features in WBS
and the low frequency of de novo events suggest that other
genetic factors of smaller effect may be influencing the ASD risk
in most cases. In fact, we have identified several rare variants in
ASD candidate genes. Two of the genes harbouring LoF muta-
tions, EPHB1 and AGAP1, have been found deregulated in WBS,
suggesting a possible epistatic effect. AGAP1 was hypermethyl-
ated in patients with WBS compared with individuals with the
reciprocal duplication, which is associated with a phenotype of
language impairment, anxiety and increased risk of ASD and
schizophrenia.?* ¥! EPHB1 was underexpressed in patients
with WBS and individuals with atypical deletions and low IQ.
Inherited mutations in those genes would result in further dereg-
ulation of the expression already altered by the WBS deletion®'
and higher risk for a more severe phenotype.

Globally, six of the eight patients with WBS with ASD carried,
in addition to the specific de novo deletion at the 7q11.23 locus,
one to three rare genetic variants (CNV and/or SNV) altering
candidate genes that could contribute to the ASD phenotype.
Consequently, a proportion of cases of WBS with associated
ASD could be explained by the same factors influencing ASD
risk in the general population with a threshold model. Given the
increased risk for ASD in WBS, the WBS deletion would act as a
predisposing factor facilitating the role of other genetic (inher-
ited or de novo) and/or environmental factors by acting on an
already sensitised background.

Interestingly, the average number of rare deleterious vari-
ants in candidate genes was significantly higher in females than
males, an effect not observed when considering all rare variants.
Although our small sample size requires caution interpreting the
results, this difference could support the higher risk threshold
requiring higher genetic load in females to develop ASD, or
could just be explained by the fact that females in our cohort had

a more severe presentation than males. Further studies assessing
the difference in prevalence and severity of ASD features
between genders in individuals with WBS will help clarify if the
female protective effect has a role in the expressivity of disorders
of full penetrance.

Finally, we assessed the contribution of common variation by
looking for over-represented variants previously associated with
ASD. Although none of the variants passed FDR correction, three
markers with nominal p values had been previously described as
eQTLs in brain and may have a direct functional effect. However,
our study is limited by the fact that most common variation is
not covered by exome sequencing, as it resides in non-coding
regions. Currently, common variation seems to explain at least
20% of ASD liability.”* Therefore, further studies regarding the
role of common variants in autism will provide a necessary basis
for future studies.

In summary, our work represents a thorough assessment of
second-hit modifier genetic factors in individuals with WBS
and associated ASD. Similar to previous reports, patients did
not differ in deletion breakpoints, discarding the role of atyp-
ical rearrangements. However, in seven of eight the deletion
had originated in the paternal allele, a factor that had not been
addressed in previous studies. In addition, two individuals
carried a relatively rare hemizygous variant previously associ-
ated with ASD, representing an eightfold increase with respect
to the general population. Inherited rare variants and a de novo
nonsense mutation in ASD-related or functionally constrained
genes were identified in six cases, with higher burden in females
compared with males. Taken together, these results suggest that
imprinting mechanisms, frans-acting factors in the remaining
allele and inherited or de novo rare sequence variants elsewhere
in the genome may play a role in the susceptibility to ASD in
WBS. Therefore, similar factors influencing ASD risk in the
general population also shape phenotypic variability in disorders
with full penetrance.
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