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ABSTRACT Mycoplasma genitalium causes a common sexually transmitted infection
with a marked propensity to develop antimicrobial resistance. As few treatment op-
tions exist, this poses significant challenges to clinicians. Recent diagnostic advances
have resulted in tests that report the simultaneous detection of M. genitalium and
any resistance to macrolides, the first-line treatment. This allows for therapy to be
tailored to the individual, thereby optimizing treatment outcomes. However, resis-
tance to fluoroquinolones, the second-line treatment, is increasing in M. genitalium.
In this study, we describe a new assay, MG�parC (beta), which simultaneously reports
the detection of M. genitalium and five parC mutations that have been associated with
resistance to fluoroquinolones. These mutations affect the amino acid sequence of ParC
at residues S83R (A247C), S83I (G248T), D87N (G259A), D87Y (G259T), and D87H (G259C).
The study tested the MG�parC (beta) assay with 202 M. genitalium-positive clinical sam-
ples from Australia (n � 141) and Spain (n � 61). Compared to Sanger sequencing, the
assay performed with a kappa value of 0.985 (95% confidence interval [CI], 0.955 to
1.000), with a mutation detection sensitivity of 97.6% (95% CI, 87.4 to 99.9), and specific-
ity of 100.0% (95% CI, 97.7 to 100.0). Fluoroquinolone resistance-associated muta-
tions in parC targeted by the assay were more prevalent among the Australian co-
hort (23.4% [95% CI,16.3 to 31.8]) compared to the Spanish population (8.8% [95%
CI, 2.9% to 19.3%]) (P � 0.019). The MG�parC (beta) kit is a simple and reliable
method for simultaneous detection of M. genitalium and fluoroquinolone resistance-
associated mutations in clinical settings. This novel diagnostic tool may extend the
utility of the second line of antimicrobial therapies in M. genitalium infection.

KEYWORDS Mycoplasma genitalium, fluoroquinolone resistance, multiplex qPCR
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Mycoplasma genitalium causes a sexually transmitted infection (STI) that causes
urethritis in men and is associated with a number of genitourinary complications

in women, including pelvic inflammatory disease (PID) and preterm birth (1). M.
genitalium has a highly reduced genome, which is responsible for a limited metabolic
and structural complexity, making it susceptible to a very restricted range of antibiotics
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(2). Current international treatment guidelines recommend first-line treatment with the
macrolide azithromycin (extended regimen) and second-line treatment with the fluo-
roquinolone moxifloxacin (3). The fluoroquinolone sitafloxacin is used in Japan (3, 4)
and has been utilized by special import in Australia (5). However, resistance to both
these classes of antimicrobials has rapidly emerged worldwide (6, 7).

While macrolide resistance is strongly associated with single-nucleotide polymor-
phisms (SNPs) at positions 2071 or 2072 of the 23S rRNA gene (8), fluoroquinolone
resistance in M. genitalium is less well established. Mutations in the quinolone
resistance-determining region (QRDR) of the parC gene (encoding subunit A of topo-
isomerase IV) have been associated with in vitro and in vivo resistance to “fourth-
generation” fluoroquinolones, as moxifloxacin. In particular, several specific missense
SNPs affecting serine 83 (S83) and aspartic acid 87 (D87), which play a key role in
mediating quinolone-enzyme interactions (9), have been associated with moxifloxacin
failure in M. genitalium in clinical studies (6, 10). These include the amino acid changes
S83R, S83I, D87Y, D87H, and D87N, which have been identified in fluoroquinolone
treatment failures (6, 10–12) or determined to have elevated fluoroquinolone MICs in
vitro (13).

Since there are very few therapeutic alternatives available for M. genitalium infec-
tion, any strategy that prolongs the utility of existing treatments is extremely important.
Recently, a resistance-guided sequential therapy approach utilizing a novel technology
that reports both detections of the organism and macrolide resistance mutations
(ResistancePlus MG; SpeeDx Pty Ltd, Australia) was prospectively evaluated (5, 14). This
strategy, which allows the physician to prescribe the appropriate antibiotic in each
case, resulted in a remarkable cure rate of more than 92% in a population with high
levels of macrolide and fluoroquinolone resistance (5, 6). Furthermore, the selection of
antibiotic resistance in macrolide susceptible infections treated with sequential therapy
was minimized to less than 3% in the study (5). In this scenario, the success of
antimicrobial resistance-guided treatment could be extended through the develop-
ment of assays that also report the detection of fluoroquinolone resistance-associated
mutations in M. genitalium.

In response to this challenge, a novel multiplex real-time PCR (qPCR) assay has been
developed to detect the fluoroquinolone resistance-associated mutations in M. geni-
talium infections, which have been consistently associated with treatment failure
following moxifloxacin, namely, G248T (S83I), A247C (S83R) G259T (D87Y), G259A
(D87N), and G259C (D87H). The primary objective of this study was to evaluate this
assay (MG�parC beta; SpeeDx Pty Ltd, Australia) using two geographically and clini-
cally distinct populations. The performance of the assay was compared to the gold
standard, Sanger sequencing of the parC gene. The study also reported the prevalence
of specific mutations linked to fluoroquinolone resistance and treatment failure in these
two distinct settings.

MATERIALS AND METHODS
Sample selection. Samples from Australia were collected at the Melbourne Sexual Health Centre, as

part of a resistance-guided treatment study (5), from June 2016 to May 2017. From 167 patients with
macrolide-resistant M. genitalium infection who were undergoing sitafloxacin treatment, the analysis was
performed on 126 baseline samples and 15 test-of-cure (TOC) samples from 124 individuals (a total of 141
specimens). Samples included 85 first-void urine samples, 30 rectal swabs, 18 vaginal swabs, 7 endo-
cervical swabs, and 1 urethral swab. Demographic characteristics for the parent study group were
published elsewhere (5). Comprehensive analysis of the association between specific ParC and GyrA
mutations and sitafloxacin cure is the subject of another study and is not presented here.

Samples from Spain were processed at the Vall d’Hebron University Hospital in Barcelona as part of
another study (15). Samples were collected from asymptomatic individuals attending an STI screening
service (DraSexp) from October 2017 to January 2018. A total of 61 M. genitalium-positive baseline
specimens from 57 participants were included in the evaluation. Samples consisted of 16 first-void urine
samples, 38 self-collected rectal swabs, and 7 self-collected vaginal swabs.

Samples were stored at – 80°C prior to use, and DNA was stored at –20°C to –30°C.
Ethical approvals for the study were obtained from the Vall d’Hebron University Hospital Ethics

Committee in Spain (approval number 209/17) and the Royal Women´s Hospital Research and Ethics
Committees and the Alfred Hospital Ethics Committee in Australia (approval number 232/16).
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Laboratory procedures. Samples were initially tested using the ResistancePlus MG test according to
the manufacturer’s instructions. Briefly, 200 �l of sample was extracted using the MagNA Pure 96
instrument (Roche Diagnostics, USA) and eluted in a final volume of 100 �l with the DNA and Viral NA
small-volume extraction kit using the Pathogen Universal 200 protocol (Roche Diagnostics, USA). Then,
5 �l of DNA was amplified in a 20-�l reaction volume. Positive samples were then included in the
fluoroquinolone resistance assay evaluation study.

M. genitalium-positive samples were tested with the MG�parC (beta) assay as described by the
manufacturer. A 5-�l aliquot of DNA extract was added to each of two wells, each containing a 15-�l
reaction mix (10 �l Plex Mastermix, 1.0 �l of MG�parC mix 1 or 2, and 4.0 �l nuclease-free water), for
a final reaction volume of 20 �l, tested in 96 well plates. The PCR was performed on the LightCycler 480
Instrument II (Roche Diagnostic, USA). Cycling consisted of 95°C for 2 min (ramp speed, 4.4°C/s), followed
by 10 cycles of 95°C for 5 s and 61°C for 30 s (�0.5°C per cycle; ramp speed, 2.2°/s), 40 cycles of 95°C for
5 s (ramp speed, 4.4°C/s), and 52°C for 40 s (ramp speed, 2.2°C/s), followed by cooling (4°C, 30-s hold;
ramp speed, 2.2°C/s). Data acquisition was set for channels A (465 to 510 nm) and B (533 to 610 nm).
Analysis of the results was performed using the supplied software.

Sanger sequencing was performed as the comparator assay. PCR amplicons were generated with
primers MG-parC124-F (5=-AAACCAGTACAAAGACGGATCT-3=) and MG-parC478-R (5=-GAGGTTAGGCAGT
AAGGTTGG-3=). For samples that primarily failed to amplify, internal primers MG-parC-A (5=-TGGGCTTA
AAACCCACCACT-3=) and MG-parC-B (5=-CGGGTTTCTGTGTAACGCAT-3=) were used to perform a nested
PCR (11). An M. genitalium G37 published genome was used as a reference (16).

Description of the MG�parC beta assay. The MG�parC (beta) test is a new two-well qPCR assay
that utilizes PlexZyme and PlexPrime technology to enable a high degree of multiplexing (17, 18). The
assay detects M. genitalium through the mgpB gene (MG191) in readout 1 of wells 1 and 2 (6-
carboxyfluorescein [6-FAM] dye [excitation wavelength {�ex}, 495 nm; emission wavelength {�em}, 516
nm]). Simultaneously, via readout 2, the assay detects the parC mutation G248T (Texas Red [�ex, 553 nm;
�em, 610 nm]) in well 1 and the presence of A247C, G259A, G259T, or G259C mutations (Texas Red [�ex,
553 nm; �em, 610 nm]) in well 2.

Statistical analyses. The clinical sensitivity and specificity for detection of fluoroquinolone-
resistance associated ParC mutations in M. genitalium for the MG�parC (beta) assay were calculated by
comparison with Sanger sequencing of the parC gene. Additionally, the kappa statistic (�) was used to
evaluate the agreement between the MG�parC (beta) test and Sanger sequencing. Statistical analyses
were performed with Stata (StataCorp, USA). Distributions of categorical variables were compared by
Chi-square (�2) or Fisher’s exact tests. The 95% confidence intervals (CI) were calculated by exact
methods and differences, with a P value of �0.05 considered statistically significant.

RESULTS
Evaluation of the MG�parC (beta) assay on clinical specimens. A total of 202

specimens were evaluated using the MG�parC (beta) assay in comparison to Sanger
sequencing. Results are displayed in Table 1, separated by cohorts. In a combined
analysis, the level of concordance of the MG�parC (beta) assay with the reference
method was 99.5% (95% CI, 97.3 to 100.0), with a kappa value of 0.985 (95% CI, 0.955
to 1.000). Additionally, overall sensitivity and specificity were 97.6% (95% CI, 87.4 to
99.9) and 100.0% (95% CI, 97.7 to 100.0), respectively. Notably, the only discordant
sample [G259T (D87Y), reported as nonmutant by the MG�parC (beta) commercial
assay], was found among the specimens from Australia and was unavailable for
discrepant analysis.

TABLE 1 Evaluation of mutation detection by the MG�parC (beta) assay compared to
Sanger sequencing of the parC genee

Sample
origin (n)

MG�parC
(beta)
assay

Sanger sequencing
results (no.)

Sensitivity
(% [95% CI])

Specificity
(% [95% CI])Nonmutant Mutanta

Spain (61) Nonmutant 56 0 100.0 (47.8–100.0) 100.0 (93.6–100.0)
Mutant 0 5b

Australia (141) Nonmutant 104 1c 97.3 (85.8–99.9) 100.0 (96.5–100.0)
Mutant 0 36d

aMutant category includes mutants targeted in the MG�parC (beta) assay with SNPs A247C (S83R), G248T
(S83I), G259T (D87Y), G259C (D87H), and G259A (D87N).

bThe sample set included 2 G248T (S83I) and 3 G259T (D87Y) mutants.
cMutant G259T (D87Y) was reported as nonmutant by the commercial assay. The sample was unavailable for
discrepant analysis.

dThe sample set included 32 G248T (S83I), 2 G259A (D87N), and 2 G259T (D87Y).
eCI, confidence interval.
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Prevalence of fluoroquinolone resistance-associated mutations in parC. The
characteristics of the 57 individuals studied in the Spanish cohort are described in Table 2.
Overall, the prevalence of fluoroquinolone resistance-associated mutations targeted in
the MG�parC (beta) assay was 8.8% (95% CI, 2.9% to 19.3%). Mutants consisted of 2
G248T (S83I) and 3 G259T (D87Y). All infections harboring these potential resistance
mutations occurred in men who have sex with men (MSM). Additionally, 2 samples had
SNPs in position G248A (S83N), which are not targets of the current assay but will be
present in a subsequent version.

The prevalence of ParC fluoroquinolone resistance-associated mutants targeted in
the commercial assay among the 124 participants (baseline samples) screened in the
Australian cohort was 23.4% (95% CI, 16.3 to 31.8), including 25 G248T (S83I), 2 G259T
(D87Y), and 2G259A (D87N). Additionally, there were 3 samples with mutations present
that are not targeted by the assay, A247T (S83C), T249G (S83R), and G248A (S83N).

DISCUSSION

This study is an evaluation of the MG�parC (beta) diagnostic assay, which detects
five M. genitalium mutations associated with fluoroquinolone resistance (6, 10, 11, 13).
The performance was analyzed in two distinct settings, Australia and Spain, involving
both symptomatic and asymptomatic men and women and specimens of M. genitalium
coming from different anatomical sites (first-void urine samples, rectal swabs, vaginal
swabs, endocervical swabs, and urethral swabs). For all patients with multisite infec-
tions, ParC results were concordant within the patient. Overall, the MG�parC (beta) kit
performed very well (kappa value of 0.985) for detection of fluoroquinolone resistance-
associated mutations compared with Sanger sequencing of the parC gene. The high
level of performance suggests that there was no issue with sample degradation during
storage. The single discordant sample was unavailable for discrepant analysis. No
false-positive results were reported in the evaluation.

Unlike macrolide resistance in M. genitalium, the presence of missense SNPs in parC

TABLE 2 Prevalence of parC fluoroquinolone resistance-associated mutations in M.
genitalium infections in Spaine

Patient characteristics

M. genitalium

parC mutanta Nonmutant

N; % 95% CI N; % 95% CI

Spanish cohort (n � 57) 5b; 8.8 2.9–19.3 52c; 91.2 80.7–97.1

Sexual preferencef

WSM 0; 0.0 0.0–52.2 10; 19.2 9.6–32.5
MSW 0; 0.0 0.0–52.2 9; 17.3 8.2–30.3
MSM 5; 100.0 47.8–100.0 33; 63.5 49.0–76.4

HIV status
Positive 1; 20.0 0.5–71.6 9; 17.3 8.2–30.3
Negative 4; 80.0 28.4–99.5 43; 82.7 69.7–91.8

Macrolide resistance status
Resistant 4; 80.0 28.4–99.5 26; 50.0 35.8–64.2
Susceptible 1; 20.0 0.5–71.6 26; 50.0 35.8–64.2

Location
Genital 1; 20.0 0.5–71.6 22d; 42.3 28.7–56.8
Rectum 4; 80.0 28.4–99.5 34; 65.4 50.9–78.0

aMutant category includes the mutants targeted in the MG�parC (beta) assay—A247C (S83R), G248T (S83I),
G259T (D87Y), G259C (D87H), and G259A (D87N)— confirmed with Sanger sequencing.

bMutants included 2 G248T (S83I) and 3 G259T (D87Y).
cNonmutant infections included 2 with missense SNPs in position G248A (S83N).
dFour patients (3 MSM and one woman) had both genital and rectal M. genitalium infections.
eCI, confidence interval.
fMSW, men who have sex with women; MSM, men who have sex with men; WSM, women who have sex
with men.
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do not always translate into treatment failures with fluoroquinolones, and the data
associating a number of these mutations with clinical outcomes are quite limited (6, 10,
13). However, there is a clear need to develop diagnostic tests that will detect
fluoroquinolone resistance and optimize the first-line selection of antimicrobials
(14). So, the novel MG�parC (beta) assay includes detection of three fluoroquin-
olone resistance mutations that have been consistently associated with treatment
failure following moxifloxacin, the most widely available fluoroquinolone in use for M.
genitalium, namely, G248T (S83I), A247C (S83R), and G259T (D87Y) (6, 10, 13), and also
included the G259A (D87N) mutation, which has been associated with elevated moxi-
floxacin MICs in 3 strains (J. S. Jensen, personal communication) and G259C (D87H), for
which there is some evidence for moxifloxacin resistance (10, 12), but this requires
further investigation. Importantly, this current version of the test does not target
another mutation in S83, G248A (S83N), which is being included in a newer version of
the assay in a separate channel (SpeeDx Pty Ltd, personal communication), since this
mutation is unlikely to contribute to moxifloxacin treatment failure as estimated from
in vitro MICs from 4 isolates (19; J. S. Jensen, personal communication). However, it
could help to monitor the development of additional mutations, and this addition may
prove clinically relevant.

The present study included samples from two geographically and clinically distinct
populations. The prevalence of fluoroquinolone resistance-associated mutations cov-
ered by the MG�parC (beta) assay was 23.4% in Australia and 8.8% in Spain (P � 0.019).
Including mutations not detected by the assay (S83N, the alternative T249G encoding
S83R, and S83C— of unknown impact on antibiotic resistance) increased prevalence to
25.8% and 12.3%, respectively (P � 0.040). Previously reported levels of ParC mutation
were 13.6% at the Australian site for samples collected in 2012 and 2013 (6) and 8.3%
at the Spanish site for samples collected in 2013 and 2014 (7). The study provides
further evidence that fluoroquinolone resistance is already a major issue in the Asia-
Pacific region, where the use of these agents is more common, while it is emerging in
Europe, particularly among MSM (6, 7, 12). It should be noted that the Australian
samples are from M. genitalium-infected patients with existing macrolide resistance
mutations, and fluoroquinolone resistance mutations are more commonly detected in
conjunction with macrolide resistance and are considered multidrug-resistant
strains (6, 7).

The described qPCR assay is more efficient and potentially less expensive than
performing Sanger sequencing, although, unlike Sanger sequencing, it has a limitation
in that it detects only a defined set of mutations. The novel MG�parC (beta) assay does
not require specialized instrumentation and can be easily implemented in routine
diagnosis. The test offers the first commercial kit to date that is capable of simultane-
ously detecting M. genitalium and fluoroquinolone resistance-associated mutations in
parC. Although the current version of this test detects the relevant mutations men-
tioned above, only G248T (S83I) in well 1, the mutation most consistently linked with
fluoroquinolone resistance, is individually reported by the assay. The other SNPs, A247C
(S83R), G259A (D87N), G259T (D87Y), and G259C (D87H), are reported in the same
channel as resistant genotypes. Importantly, future assay development may have a
revised format and include additional mutations (SpeeDx Pty Ltd, personal communi-
cation) according to ongoing and future resistance surveillance studies from our
research group and others.

With the incipient introduction of assays detecting both M. genitalium and macro-
lide resistance mutations, the MG�parC (beta) test or future versions of this assay may
also be used to further refine the diagnostic algorithms based on the resistance-guided
therapy approach and, ultimately, to optimize antimicrobial stewardship (5, 20). While
the ParC mutations included in this assay have been associated with moxifloxacin
treatment failure and/or reduced susceptibility to moxifloxacin and/or sitafloxacin in in
vitro studies, more data are needed to fully establish the contribution of specific ParC
mutations to treatment outcomes with these agents. Furthermore, additional research
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is needed to find therapeutic alternatives against multidrug resistant infections (e.g.,
novel antimicrobials or combinations of existing treatments).

In conclusion, the MG�parC (beta) kit is a rapid, simple, and accurate assay for
simultaneous detection of M. genitalium and fluoroquinolone resistance-associated
mutations in clinical settings. The application of this novel diagnostic tool is likely to
improve patient management in clinical practice in the future.
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