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Abstract

We employ an ab-initio structure search algorithm to explore the configurational
space of bismuth in quasi-two dimensions. A confinement potential is introduced to
restrict the movement of atoms within a pre-defined thickness during structure search
calculations, within the minima hopping method, to find stable and metastable forms
of monolayer Bi. In addition to the two known low-energy structures (puckered mon-
oclinic and buckled hexagonal), our calculations predict three new structures. We call
these structures «, 3, and v phases, which are, respectively, 63, 72, and 83 meV /atom
higher in energy than that—ef the monoclinic ground state. We study the structural,
electronic, and vibrational properties of the five aforementioned phases together with
a flat hexagonal phase. We report signatures of van Hove singularity in the buckled
hexagonal phase, and remark on the role of semicore 5d electrons on the electronic
properties of Bi. The predicted phases reveal that Bi provides a rich playground to

study distortion-mediated metal-insulator phase transitions in quasi-2D.
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Two dimensional (2D) materials made from group V elements of the periodic table (pnic-
togens = N, P, As, Sb, Bi) have attracted much attention due to their unique electronic
and topological properties.!¥ Experimental synthesis of phosphorene (a single layer of black
phosphorus), which was the first addition to the elemental 2D material family after graphene,
has further spurred research into group V elemental 2D materials. 2 Recent theoretical
predictions as well as the experimental studies revealed the existence of stable 2D nitrogene,
arsenene, antimonene, and bismuthene.?%5 %1319 Among the pnictogens, Bi is particularly
interesting due to its strong intrinsic spin-orbit coupling (SOC) and thermoelectric proper-
ties. Large Rashba effect and non-trivial topological phases have been observed in Bi thin
films. 272" Recently, Reis et al. reported the presence of quantum spin Hall effects together
with a large energy bandgap (~0.8€V) in honeycomb Bi films grown on SiC(0001),*® thus,
making Bi films a potential candidate for the high-temperature quantum spin Hall material.
Bi also shows enhanced thermoelectricity in reduced dimensions. 2%

The geometric structure of bulk Bi is based on a trigonal pyramid (R-3m space group).
The outermost shell of Bi atom has 6s%6p® electronic configuration and it tends to form
three covalent bonds with neighboring atoms to complete its shell. Hence, Bi atomic layers
are naturally expected to have a buckled hexagonal structure. However, recent experiments
and theoretical studies suggest that below 4 atomic monolayer thickness Bi prefers a puck-
ered monoclinic structure, similar to phosphorene.?”3!"33 Moreover, a single atomic sheet
of Bi contains out-of-plane dangling bonds. These dangling bonds mutually saturate in a
two atomic layers stacking. Hence, even numbers of Bi layers are energetically more favor-
able than the odd ones.?” The aforementioned two facts, (i) dangling bonds and (ii) two
atomic layer stacking, yield a puckered monoclinic phase of monolayer Bi that has been ex-
perimentally synthesized on various substrates.?"3! 33 However, depending upon the growth
conditions and choice of substrate, Bi atoms could also acquire distinct structural arrange-
ments in the 2D limit, which is yet puzzling.3%3° Therefore, it is important to understand

the energetics of different stable and metastable structures of Bi in quasi-two dimensions.



Here, the first-principles structural search calculations could provide useful information re-
garding the potential energy landscape and relative energetic stability of different phases
of Bi in quasi-2D limit. Although, many global optimization methods have been developed

36-45 o few have been developed,

to perform structure search calculations for bulk materials,
specifically, to carry out structural search in two dimensions.*%%* In recent years, several
databases have been deployed for 2D materials.?> %! However, these databases contain prin-
cipally known 2D materials and/or derivatives of the known 3D ones.

In the present work, we systematically explore the multidimensional potential energy
landscape of two atomic layers thick monolayer Bi, using a constrained minima hopping
method (cMHM). We predict three new phases («a, 3, and ), in addition to recovering the
two known phases of monolayer Bi: puckered monoclinic (p-mono) and buckled hexagonal
(b-hexa). Our calculations predict the p-mono phase as the ground state of monolayer Bi,

16.27.3162 The p-hexa, a, f, and v phases of

which is consistent with the previous studies.
monolayer Bi are metastable (listed here in the increasing order of energy). The formation
energy comparison of the cMHM predicted phases with an already synthesized graphene-like
Bi monolayer phase (on SiC substrate)?® reveals that the predicted phases are considerably
lower in energy, and hence, these structures are within the reach of experimental synthesis.
In their free standing form, the p-mono, b-hexa, and [ phases are dynamically stable and
semiconducting, whereas the metallic o and v phases exhibit imaginary phonon frequencies
implying dynamical instability. We demonstrate that the y-phase, which hosts a topologically
non-trivial Dirac nodal line, can be dynamically stabilized by tensile bi-axial strain and the
a-phase can be stabilized under the effect of epitaxy on a substrate. We also discuss the
structural, electronic, and vibrational properties of all the obtained low-energy structures in
detail, and provide a comprehensive description of the employed 2D structure search method.

Figure 1 shows the optimized crystal structures and formation energies of the five low-

energy configurations of monolayer Bi predicted by the cMHM. We also compare the ener-

getics of the predicted low-energy structures with that of a flattened hexagonal Bi monolayer



(f-hexa), which has been recently synthesized on a SiC(0001) substrate.?® Our cMHM cal-
culations recover the reported p-mono as the ground state, and the b-hexa phase as the

16.27,31,62 T addition, we predict three new phases of monolayer

first metastable structure.
Bi, which are 63, 72, and 83 meV /atom higher in energy with respect to the lowest energy
p-mono phase. Generally, group V elements (N, P, As, Sb, Bi) tend to form a puckered
structure in 2D. Although bulk Bi prefers a rhombohedral structure with alternate stack-

ing of hexagonal buckled Bi monolayers, the b-hexa monolayer is energetically less favorable

compared to the p-mono phase by 36 meV /atom.

Table 1: Number of atoms per unit cell (n,,,,,), lattice parameters, cell angles,
bond lengths, buckling height (~), formation energy (E;,,), and relative forma-
tion energy (AEy,,,) with respect to the p-mono phase

Structure  mmone lattice parameters cell angles bond length h Eform AEform
a, b (A) a, B, v (degrees) (A) (A)  (meV/atom) (meV/atom)

p-mono 8 6.722, 6.722 90, 90, 94 d=3.11 3.10 106 0
b-hexa 2 4.598, 4.598 90, 90, 120 d=3.12 1.63 142 36
a-phase 4 3.561, 5.778 90.7, 89.4, 86.7 di = 3.30,dy = 3.48 3.16 169 63
B-phase 8 7.955, 7.945 90, 90, 65.9 di = 3.05,d2 = 3.15 2.14 178 72
~-phase 8 7.613, 7.613 90, 90, 74.1 di = 3.10,d2 = 3.31 2.08 190 83
f-hexa 2 5.329, 5.329 90, 90, 120 d = 3.08 0.00 422 316

Crystallographic details and formation energy (Ef,.m,) of the studied phases are sum-
marized in Table 1. The optimized monolayer structures are provided in the supplemental
material (SM).% We calculate Efopp, using the formula, E o = %—%, where F,,ono
(Nmono) and Epgr (npur) represent the total energy (number of atoms/cell) of the mono-
layer and bulk Bi (R-3m), respectively. The formation energy also gives us an estimate
of the interlayer strength in layered structures. For most of the synthesized single-layer
transition-metal dichalcogenides (TMDSs), Ef,my, ranges from 80 — 150 meV /atom, % and for
the hexagonal group III-V single layer materials E,., ranges from 380 — 520 meV /atom. %
For comparison, we compute the Ey,.,, of a Bi monolayer in graphene-like flat hexagonal

setting (f-hexa phase), which has recently been synthesized on a SiC substrate.?® As one

would expect for a fully planar honeycomb Bi monolayer, the f-hexa phase has a much



higher formation energy, 316 meV /atom above the p-mono phase. Therefore, we expect that
all the cMHM predicted structures are within the reach of experimental synthesis.

In order to test the dynamical stability of the different phases, we calculate their phonon
dispersion in 2D Brillouin zone (BZ), as shown in Fig. 2. We find that the p-mono (Fig. 2a),
b-hexa (Fig. 2b), and § (Fig. 2c) phases are dynamically stable. The very small dynamical
instabilities visible near the I' point are purely numerical and linked to the 2D out-of-plane
acoustic mode (ZA) with quadratic dispersion, which is not perfectly reproduced for k —
0.956 The quadratic dispersion of the ZA phonon mode usually becomes linear in k¥ under
strain. 7

The instability of o and « phases (see Fig. 2(d, e)) is not surprising as these phases
are associated with highly symmetric buckled rectangular-like lattices (Fig. 1): Bi has three
valence orbitals (p,, py, p.), and should form three covalent bonds to saturate its valency.
This requirement is met in p-mono, b-hexa and 3 phases of monolayer Bi, but not in the o and
~ phases, where the coordination number is four for each Bi atom. Consequently, the phases
will be metallic and a structural instability is expected for the o and v phases at ambient
conditions. However, structures with anomalous coordination numbers can be stabilized
under pressure or strain conditions:®® " A small structural distortion or charge instability
can change the coordination of Bi atoms, and lead to a structural phase transition into one
of the lower symmetry phases of monolayer Bi. Deposition on a suitable substrate can also
stabilize the unstable phases, as demonstrated in Ref.?® for f-hexa phase. The f-hexa phase
exhibits an unstable phonon mode at the M-point of BZ (Fig. 2f). The stabilization of the
unstable Z A acoustic mode at the M-point yields puckering in the f-hexa phase. However,
upon deposition on a SiC substrate, Bi atoms bind to the substrate and stabilize this phase.

Strain can make y-phase dynamically stable, as this phase does not exhibit any unstable
phonon mode at the high-symmetry points of BZ. In fact, we find that a tensile bi-axial
strain of 8% stabilizes the phonons in v phase (see SM®). Deposition on a substrate, in-

stead, might stabilize a-phase due to the the presence of large imaginary phonon frequencies



at the S-point (%, %) of BZ. A list of potential substrates for epitaxial fabrication of a-phase is
given in the SM, % where we report structures with the lowest strain obtained by performing
a search over the Open Quantum Materials Database (OQMD).™ The monolayer /substrate
matching search was performed by imposing a maximum difference in strain of 5%, a max-
imum area of 40A2, and a maximum angle difference of 1°. The search was performed
using the implementation discussed in Ref.™ Study of the substrate effects on the studied
monolayer phases is beyond the scope of present work.

Each of the predicted structures presents very specific electronic properties, as illus-
trated in Figure 3. First-principles calculations with inclusion of SOC show that the p-mono
(Fig. 3a), b-hexa (Fig. 3b), f-hexa (Fig. 3f), and 8 (Fig. 3c) phases are semiconducting,
whereas o (Fig. 3d) and v (Fig. 3e) phases are metallic. Without SOC (see SM %), we ob-
serve a direct energy bandgap (DFT-PBE) of 0.52, 0.43, and 0.80 €V in p-mono, b-hexa, and
B phases, respectively. The strong SOC of bismuth reduces the bandgap of the semiconduct-
ing phases to 0.34, 0.08, and 0.14 eV, and changes the direct gap nature of p-mono and ( to
indirect (transition marked as a red arrow in Fig. 3 (a, c¢)). The f-hexa phase exhibits two
gapless Dirac points near the K point without-SOC (see SM®). However, inclusion of SOC
opens a wide mass gap at the Dirac points yielding an indirect bandgap of 0.51 eV near the
K-point, which is in agreement with data reported in Ref.?® The SOC induces a spin-splitting
of electronic bands in the non-centrosymmetric p-mono and 3 phases. No SOC-induced spin-
splitting occurs in the b-hexa, f-hexa, and v phases due to the protected inversion-symmetry.
However, the top valence band in b-hexa inherits a Mexican-hat type dispersion near the I'
point (inset of Fig. 3b) which leads to a van Hove singularity in the density of states near
the Fermi-level (Er),”™™ as discussed later. This is particularly interesting because a small
amount of charge doping (hole doping) will trigger time-reversal symmetry breaking and may
give rise to emergent phenomena such as ferromagnetism, ferroelasticity, multiferroicity, or
73

superconductivity in two dimensions.

We remark that the structural and electronic properties obtained for b-hexa differ from



those reported by Aktiirk et al.'® due to the explicit inclusion of semicore 5d'° electrons in
the pseudopotential used in our calculations. Considering the Bi 5d states in the core, the
bandgap predicted in Ref.!® is 0.547 eV, much larger than our 0.08 ¢V, and the optimized
lattice parameters are 4.38 A, perceptibly smaller than our 4.598 A. The bandgap reduction
is due to a lifting of the p-orbital degenerate crossing at I', pushing the top valence band
higher in energy. The shift results from the crystal field splitting of the d electrons (absent in
the pseudopotential’s frozen core) and their symmetry-breaking effect on the dangling bond
orbitals in the last two valence bands. In the SM % we show that by keeping Bi 5d electrons in

f.16 Calculations with explicit d electrons produce

the core we can replicate the results of Re
more accurate results, as has been reported for bulk Bi.™™ As a final check, we have used
the all-electron ELK code™ to calculate the electronic band structure, and it agrees fully
with the results including d electrons in the valence (see SM%).

Our calculations for f-hexa monolayer, in which no crystal field splitting effects are
expected, reveal negligible difference in the electronic bandstructure calculated with and
without inclusion of Bi 5d electrons in the core.%® We note that the p-orbital splitting in
b-hexa due to the semi-core d is a considerable but quite subtle effect, and none of the other
phases are as sensitive to 5d states as the b-hexa phase. For p-mono phase, PBE+SOC
predicted bandgap changes only from 0.34eV to 0.39¢V upon freezing the Bi 5d'° electrons
in the core.

Valley spin-splitting effects are observed in the electronic band structure of the dy-
namically stable (-phase along the I'-X and I'-Y directions. Figure 4 shows the spin-
projected electronic band structure of S-phase calculated with-SOC along - X — I' — X
and =Y — I' = Y directions. The spin polarization is entirely contained in the x — y plane,
with two valleys polarized along —x + y and the other two polarized along +x — y due to
the Cy rotational symmetry. The conduction and valence band edges have opposite spin

polarization in both directions. The two lowest conduction and two highest valence bands

are all composed of p, orbitals. The dispersion and spin-texture of the lowest conduction



band and two highest valence bands in Fig. 4 resemble the electronic band structure of single

layer transition metal dichalcogenides M X, (M = {Mo,W}, and X = {5, Se}), in which

d.™ 8! The broken inversion-symmetry and strong SOC

spin-valley effects have been observe
effects lift the spin degeneracy of bands everywhere except at the Kramer’s points of the
[-phase. The time-reversal symmetry further couples the spin and valley degrees of freedom
of valleys located at £k, yielding valley-specific optical selection rules. This is similar to the
case of M X, monolayers, ®"8182 hut with in-plane instead of the out-of-plane spin texture,
which may yield novel spin-pseudospin and magnetic valley couplings. The corresponding
optical transitions can be probed in photoluminescence measurements using circularly po-
larized light.

In v-phase, we observe signatures of interesting topological Lifshitz transitions with
changes in the chemical potential near the Fermi-level (see SM®). This suggests the oc-
currence of distinct topological phase transitions in the v phase.®® Strikingly, we find that
the v phase hosts topologically protected gapless type-I Dirac points (DPs) near the Fermi-
level, as shown in Fig. 3e along I' — X and I' — Y paths. The DPs result from an inverted
band-ordering of p, (conduction) and p,, (valence) bands near the I' point (Fig. 5). Since
these bands belong to different 1D irreducible representations, they are allowed to cross
along the high-symmetry line, and these band-crossings near the Fermi-level are topologi-
cally protected by the mirror symmetries of the monolayer. The direct coordinates of DPs,
residing at energies Fr—0.025€eV, in momentum space are (+0.167, 0, 0) and (0, £0.167, 0).
These points belong to a Dirac nodal line centered at the I' point, as shown in the SM.%

In order to further verify the nontrivial topological nature of v-phase, we compute the Z,
topological invariant using the Fu-Kane parity approach.® Our results indicate that ~-phase
is a strong topological insulator (technically, a Dirac semimetal) with Z5 = 1 owing to a
band-inversion at I point. The nontrivial topological features of y-phase are also visible in
the edge states calculations shown in the SM.% We also compute the Z, topological invariant

for inversion-symmetric b-hexa and f-hexa phases, and obtain that b-hexa phase belong to a



topological nontrivial class with Z, = 1, whereas the f-hexa phase belongs to a topological
trivial class with Z, = 0 (details in SM®). This indicates that the reported topological
phase in the f-hexa phase is induced by substrate proximity, as suggested by Reis et al.?®
In presence of a substrate, the Bi-p, electrons, which are unsaturated in an isolated f-hexa
monolayer, saturate by hybridizing with the substrate orbitals, thus, leading to a nontrivial
topological phase in the monolayer/substrate heterosystem.

The orbital projected density of states (DOS) for all phases are provided in the SM.% The
DOS plots confirm the semiconducting behavior of p-mono, b-hexa, f-hexa, and § phases,
and metallic behavior of the a and ~ phases. Notably, we observe a sharp enhancement in
the DOS of b-hexa phase at the Fermi-level (Fig. 6), which originates due to the Mexican-
hat type shape of the highest valence band near the I'" point and is signature of van Hove
singularity. Such a divergence in the DOS can lead to an electronic instability, often resulting
in structural distortions, magnetism, or superconductivity at specific conditions. ™ Here, we
note that this feature is also visible in the edge state spectrum of the b-hexa phase (see
SM%3). Finally, we list the estimated bandgap values, obtained using the PBE and HSE06

approximations, in Table 2.

Table 2: Energy bandgap (eV units) estimated from the PBE and HSE06 ap-
proximations

P-Mono b-hexa « I} v f-hexa
PBE with-SOC 0.34 0.08 metal 0.14 semimetal 0.51
without-SOC 0.52 0.43 metal 0.80 semimetal semimetal
HSEO6 with-SOC 0.13 0.12 metal 0.47 semimetal 0.40
without-SOC 0.51 0.72 metal 1.16 semimetal semimetal

In summary, we study five low-energy phases of monolayer Bi that are obtained from
a systematic structural search in quasi-two dimensions along with an already synthesized
f-hexa phase.?® These phases reveal the multifunctional behaviour of Bi in quasi-2D. In the
lowest energy phase, Bi atoms prefer a puckered monoclinic structure instead of a hexagonal

buckled structure. In terms of the formation energy, the studied phases rank (from low to
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high) as follows: p-mono, b-hexa, «, 3, 7, and f-hexa. The p-mono, b-hexa, and /3 phases
are dynamically stable, whereas the a and 7 phases can be stabilized under the effect of
substrate epitaxy and strain. We find that the p-mono, b-hexa, 5, and f-hexa phases are
semiconducting, whereas the o and v phases exhibit metallic properties. Interestingly, we
notice the signatures of the van Hove singularity in the buckled hexagonal phase. Topolog-
ical nontrivial features are observed in the electronic spectrum of the b-hexa and v phases.
The v phase hosts a topological Dirac nodal line together with the signatures of intriguing
topological Lifshitz transitions occurring near the Fermi-level. Our results suggest that the
reported?® topological phase in the f-hexa phase is not intrinsic, rather it is induced by the
substrate proximity. We further comment on the essential role of semicore Bi-5d electrons in
the determination of electronic bandstructure near the Fermi-level. A structural distortion-

mediated metal-insulator phase transition can be realized in the reported Bi monolayers.

METHODS

Structure search algorithm:— The computational prediction of new structures for a given
atomic composition requires a systematic exploration of the multidimensional potential en-
ergy surface (PES), in order to find the global and local minima. In this work, we employ
the minima hopping method (MHM?®%8%) to carry out structural search calculations. This
method seeks local minima on the multidimensional PES, using an efficient dynamical algo-
rithm, combining Density Functional Theory (DFT) to evaluate energy and forces, and short
Molecular Dynamics (MD) simulations to help escape from a local minimum and explore new
regions of the PES. The initial velocities during MD simulations are aligned along the soft
mode direction to cross over low-energy barriers, thereby exploiting the Bell-Evans-Polanyi
principle. "% The MHM employs a feedback mechanism to avoid revisiting local minima
and to accelerate the search. More details of this method for structure search in 3D can be

75,89-91

found in Refs., and the technical details for structure search in 2D are given below.
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In order to perform structure searches in two dimensions, we add a confinement potential,
to restrict the motion of atoms within a pre-defined thickness. Within this region, the
confinement potential is very weak compared to electronic energy levels, but it increases
quartically outside this pre-defined thickness, similar to a particle in a well problem. Thus,
the search is restricted to find the low-energy arrangements of atoms in a constrained quasi-
2D space. This approach has been successfully applied to identify two-dimensional forms of
TiO,.5 A two-dimensional confining potential C'(e, r$') is added to the target energy function
to be optimized, where « denotes the axis a = {z,y, 2} along the non-periodic direction,
r; are the Cartesian coordinates of the N atoms in the system, and e is the equilibrium
positions along « at which the potential is centered. As the confinement function we use a
C with piece-wise continuous derivative, which is zero within a cutoff region r,. around e,

while it has a polynomial form of order n and amplitude A beyond r.:

c* = Zc(e,rf‘) (1)

where,
Alle = r$| —r)™, for |e—r$| >,
cle,rf) = (2)
0, otherwise
The derivatives with respect to the atomic coordinates f; = % and the cell vectors

o, = % were taken fully into account during the local geometry optimizations, the MD

escape trials, and for aligning the initial MD velocities along the soft mode directions, a
process that we call softening. Note that the above atomic positions are expressed in the
reduced coordinates r; = hs;, and h = (a, b, c¢) is the matrix containing the lattice vectors.
In our structural search runs we used a confinement potential centered along the lattice
vector ¢ (i.e. @ = z), with a cutoff 7, = 0.3 A, n = 4 and A = 0.1 éV. Confinement was
employed for the MD part, whereas DF'T relaxation of atoms was completely free from any

constraint, allowing the thickness of monolayer to be larger than r.. We considered 4, 8, 12,
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and 16 atoms per unit cell in our structure search calculations. A total of 98, 51, 36, and
81 minima were found for 4, 8, 12, and 16 atoms/cell, respectively. The obtained minima
were further re-optimized using a tighter convergence criteria of k-mesh sampling and energy
cutoff for the plane wave basis set.

Ab-initio calculations:— Density Functional Theory (DFT) based first-principles cal-
culations were carried out using Projector Augmented Wave (PAW) method as implemented
in the VASP software.?? We considered fifteen valence electrons of Bi (5d'%6s%6p®) in the
PAW pseudo-potential. The exchange-correlation energy was computed within the general-
ized gradient approximation using the PBE exchange-correlation functional as parametrized
by Perdew-Burke-Ernzerhof.?* SOC was included self-consistently. We used 600eV as the
kinetic energy cutoff of the plane wave basis set and a 11 x 11 x 1 Monkhorst-Pack k-mesh
was used to sample the reciprocal space for structural optimization. The electronic density
of states (DOS) was calculated using a k-mesh of size 21 x 21 x 1. We used a I'-type sampling
scheme for hexagonal structure and Monkhorst-Pack scheme was used to sample the Bril-
louin zone of all other structures. Structural relaxations were performed until all the atomic
forces were less than 1072 eV /A, and 1078 eV was used as the energy convergence criterion for
self-consistent DFT calculations. Phonon calculations (with-SOC) were performed using the
finite-displacement approach, and the PHONOPY software® was used to evaluate the force
constants. Depending upon the size of unit cell, supercells of size 3 x 3 x 1 or 4 x 4 x 1 were
used for phonon calculations. A vacuum of thickness larger than 14 A was added to avoid any
periodic interaction between two adjacent Bi monolayers. The PYPROCAR code was used
to analyze the electronic band structures and spin-textures. The WannierTools package®’

was used to analyze the topological properties.
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Figure 1: (Color online) Energetic ordering and relaxed structures (side and top views) of
the five low-energy phases of monolayer Bi obtained from the cMHM calculations, and one
(f-hexa) phase obtained from Ref.?® The energy differences between phases are given relative
to the formation energy of the p-mono phase. Note that the f-hexa phase is 316 meV /atom
above the energy of the reference p-mono phase.
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Figure 2: (Color online) Monolayer phonons calculated along the high-symmetry directions
in momentum space. The « phase slightly breaks the acoustic sum rule due to numerical
differences between the cMHM and PHONOPY calculations.
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Figure 3: (Color online) Electronic bandstructure calculated with inclusion of SOC for Bi
monolayers (see the SM% for bandstructure without-SOC). Dashed magenta lines indicate
the Fermi-level and A denotes energy bandgap in the semiconducting monolayers. The value
of direct and indirect gaps are indicated in green and red, respectively. Light colors highlight
the spin-degeneracy of bands near the Fermi-level, and circles mark the Dirac points in (e).
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Figure 4: (Color online) Spin projected electronic band structure for 5 phase. Red/Blue
color depicts spin up/down states.

15 without-SOC with-SOC

o
in

Energy (eV)
=
o

LI ITI LI
Energy (eV)

-1.5

Figure 5: (Color online) Atomic orbital projected electronic band structure of v phase cal-
culated without-SOC (left panel) and with-SOC (right panel).
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Figure 6: (Color online) Atomic orbitals resolved density of states calculated with-SOC using
a k-mesh of size 21 x 21 x 1 for b-hexa phase.
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