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Abstract

We employ an ab-initio structure search algorithm to explore the configurational

space of bismuth in quasi-two dimensions. A confinement potential is introduced to

restrict the movement of atoms within a pre-defined thickness during structure search

calculations, within the minima hopping method, to find stable and metastable forms

of monolayer Bi. In addition to the two known low-energy structures (puckered mon-

oclinic and buckled hexagonal), our calculations predict three new structures. We call

these structures α, β, and γ phases, which are, respectively, 63, 72, and 83meV/atom

higher in energy than that of the monoclinic ground state. We study the structural,

electronic, and vibrational properties of the five aforementioned phases together with

a flat hexagonal phase. We report signatures of van Hove singularity in the buckled

hexagonal phase, and remark on the role of semicore 5d electrons on the electronic

properties of Bi. The predicted phases reveal that Bi provides a rich playground to

study distortion-mediated metal-insulator phase transitions in quasi-2D.
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Two dimensional (2D) materials made from group V elements of the periodic table (pnic-

togens = N, P, As, Sb, Bi) have attracted much attention due to their unique electronic

and topological properties.1–9 Experimental synthesis of phosphorene (a single layer of black

phosphorus), which was the first addition to the elemental 2D material family after graphene,

has further spurred research into group V elemental 2D materials.10–12 Recent theoretical

predictions as well as the experimental studies revealed the existence of stable 2D nitrogene,

arsenene, antimonene, and bismuthene.2,3,5–8,13–19 Among the pnictogens, Bi is particularly

interesting due to its strong intrinsic spin-orbit coupling (SOC) and thermoelectric proper-

ties. Large Rashba effect and non-trivial topological phases have been observed in Bi thin

films.20–27 Recently, Reis et al. reported the presence of quantum spin Hall effects together

with a large energy bandgap (∼0.8 eV) in honeycomb Bi films grown on SiC(0001),28 thus,

making Bi films a potential candidate for the high-temperature quantum spin Hall material.

Bi also shows enhanced thermoelectricity in reduced dimensions.29,30

The geometric structure of bulk Bi is based on a trigonal pyramid (R-3m space group).

The outermost shell of Bi atom has 6s26p3 electronic configuration and it tends to form

three covalent bonds with neighboring atoms to complete its shell. Hence, Bi atomic layers

are naturally expected to have a buckled hexagonal structure. However, recent experiments

and theoretical studies suggest that below 4 atomic monolayer thickness Bi prefers a puck-

ered monoclinic structure, similar to phosphorene.27,31–33 Moreover, a single atomic sheet

of Bi contains out-of-plane dangling bonds. These dangling bonds mutually saturate in a

two atomic layers stacking. Hence, even numbers of Bi layers are energetically more favor-

able than the odd ones.27 The aforementioned two facts, (i) dangling bonds and (ii) two

atomic layer stacking, yield a puckered monoclinic phase of monolayer Bi that has been ex-

perimentally synthesized on various substrates.27,31–33 However, depending upon the growth

conditions and choice of substrate, Bi atoms could also acquire distinct structural arrange-

ments in the 2D limit, which is yet puzzling.34,35 Therefore, it is important to understand

the energetics of different stable and metastable structures of Bi in quasi-two dimensions.
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Here, the first-principles structural search calculations could provide useful information re-

garding the potential energy landscape and relative energetic stability of different phases

of Bi in quasi-2D limit. Although, many global optimization methods have been developed

to perform structure search calculations for bulk materials,36–45 a few have been developed,

specifically, to carry out structural search in two dimensions.46–54 In recent years, several

databases have been deployed for 2D materials.55–61 However, these databases contain prin-

cipally known 2D materials and/or derivatives of the known 3D ones.

In the present work, we systematically explore the multidimensional potential energy

landscape of two atomic layers thick monolayer Bi, using a constrained minima hopping

method (cMHM). We predict three new phases (α, β, and γ), in addition to recovering the

two known phases of monolayer Bi: puckered monoclinic (p-mono) and buckled hexagonal

(b-hexa). Our calculations predict the p-mono phase as the ground state of monolayer Bi,

which is consistent with the previous studies.16,27,31,62 The b-hexa, α, β, and γ phases of

monolayer Bi are metastable (listed here in the increasing order of energy). The formation

energy comparison of the cMHM predicted phases with an already synthesized graphene-like

Bi monolayer phase (on SiC substrate)28 reveals that the predicted phases are considerably

lower in energy, and hence, these structures are within the reach of experimental synthesis.

In their free standing form, the p-mono, b-hexa, and β phases are dynamically stable and

semiconducting, whereas the metallic α and γ phases exhibit imaginary phonon frequencies

implying dynamical instability. We demonstrate that the γ-phase, which hosts a topologically

non-trivial Dirac nodal line, can be dynamically stabilized by tensile bi-axial strain and the

α-phase can be stabilized under the effect of epitaxy on a substrate. We also discuss the

structural, electronic, and vibrational properties of all the obtained low-energy structures in

detail, and provide a comprehensive description of the employed 2D structure search method.

Figure 1 shows the optimized crystal structures and formation energies of the five low-

energy configurations of monolayer Bi predicted by the cMHM. We also compare the ener-

getics of the predicted low-energy structures with that of a flattened hexagonal Bi monolayer
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(f -hexa), which has been recently synthesized on a SiC(0001) substrate.28 Our cMHM cal-

culations recover the reported p-mono as the ground state, and the b-hexa phase as the

first metastable structure.16,27,31,62 In addition, we predict three new phases of monolayer

Bi, which are 63, 72, and 83meV/atom higher in energy with respect to the lowest energy

p-mono phase. Generally, group V elements (N, P, As, Sb, Bi) tend to form a puckered

structure in 2D. Although bulk Bi prefers a rhombohedral structure with alternate stack-

ing of hexagonal buckled Bi monolayers, the b-hexa monolayer is energetically less favorable

compared to the p-mono phase by 36meV/atom.

Table 1: Number of atoms per unit cell (nmono), lattice parameters, cell angles,
bond lengths, buckling height (h), formation energy (Eform), and relative forma-
tion energy (∆Eform) with respect to the p-mono phase

Structure nmono
lattice parameters cell angles bond length h Eform ∆Eform

a, b (Å) α, β, γ (degrees) (Å) (Å) (meV/atom) (meV/atom)

p-mono 8 6.722, 6.722 90, 90, 94 d = 3.11 3.10 106 0

b-hexa 2 4.598, 4.598 90, 90, 120 d = 3.12 1.63 142 36

α-phase 4 3.561, 5.778 90.7, 89.4, 86.7 d1 = 3.30, d2 = 3.48 3.16 169 63

β-phase 8 7.955, 7.945 90, 90, 65.9 d1 = 3.05, d2 = 3.15 2.14 178 72

γ-phase 8 7.613, 7.613 90, 90, 74.1 d1 = 3.10, d2 = 3.31 2.08 190 83

f -hexa 2 5.329, 5.329 90, 90, 120 d = 3.08 0.00 422 316

Crystallographic details and formation energy (Eform) of the studied phases are sum-

marized in Table 1. The optimized monolayer structures are provided in the supplemental

material (SM).63 We calculate Eform using the formula, Eform = Emono

nmono
−Ebulk

nbulk
, where Emono

(nmono) and Ebulk (nbulk) represent the total energy (number of atoms/cell) of the mono-

layer and bulk Bi (R-3m), respectively. The formation energy also gives us an estimate

of the interlayer strength in layered structures. For most of the synthesized single-layer

transition-metal dichalcogenides (TMDs), Eform ranges from 80 – 150 meV/atom,64 and for

the hexagonal group III–V single layer materials Eform ranges from 380 – 520meV/atom.65

For comparison, we compute the Eform of a Bi monolayer in graphene-like flat hexagonal

setting (f -hexa phase), which has recently been synthesized on a SiC substrate.28 As one

would expect for a fully planar honeycomb Bi monolayer, the f -hexa phase has a much
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higher formation energy, 316meV/atom above the p-mono phase. Therefore, we expect that

all the cMHM predicted structures are within the reach of experimental synthesis.

In order to test the dynamical stability of the different phases, we calculate their phonon

dispersion in 2D Brillouin zone (BZ), as shown in Fig. 2. We find that the p-mono (Fig. 2a),

b-hexa (Fig. 2b), and β (Fig. 2c) phases are dynamically stable. The very small dynamical

instabilities visible near the Γ point are purely numerical and linked to the 2D out-of-plane

acoustic mode (ZA) with quadratic dispersion, which is not perfectly reproduced for k →

0.9,66 The quadratic dispersion of the ZA phonon mode usually becomes linear in k under

strain.67

The instability of α and γ phases (see Fig. 2(d, e)) is not surprising as these phases

are associated with highly symmetric buckled rectangular-like lattices (Fig. 1): Bi has three

valence orbitals (px, py, pz), and should form three covalent bonds to saturate its valency.

This requirement is met in p-mono, b-hexa and β phases of monolayer Bi, but not in the α and

γ phases, where the coordination number is four for each Bi atom. Consequently, the phases

will be metallic and a structural instability is expected for the α and γ phases at ambient

conditions. However, structures with anomalous coordination numbers can be stabilized

under pressure or strain conditions:68–70 A small structural distortion or charge instability

can change the coordination of Bi atoms, and lead to a structural phase transition into one

of the lower symmetry phases of monolayer Bi. Deposition on a suitable substrate can also

stabilize the unstable phases, as demonstrated in Ref.28 for f -hexa phase. The f -hexa phase

exhibits an unstable phonon mode at the M-point of BZ (Fig. 2f). The stabilization of the

unstable ZA acoustic mode at the M-point yields puckering in the f -hexa phase. However,

upon deposition on a SiC substrate, Bi atoms bind to the substrate and stabilize this phase.

Strain can make γ-phase dynamically stable, as this phase does not exhibit any unstable

phonon mode at the high-symmetry points of BZ. In fact, we find that a tensile bi-axial

strain of 8% stabilizes the phonons in γ phase (see SM63). Deposition on a substrate, in-

stead, might stabilize α-phase due to the the presence of large imaginary phonon frequencies
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at the S-point (1
2
, 1

2
) of BZ. A list of potential substrates for epitaxial fabrication of α-phase is

given in the SM,63 where we report structures with the lowest strain obtained by performing

a search over the Open Quantum Materials Database (OQMD).71 The monolayer/substrate

matching search was performed by imposing a maximum difference in strain of 5%, a max-

imum area of 40Å2, and a maximum angle difference of 1°. The search was performed

using the implementation discussed in Ref.72 Study of the substrate effects on the studied

monolayer phases is beyond the scope of present work.

Each of the predicted structures presents very specific electronic properties, as illus-

trated in Figure 3. First-principles calculations with inclusion of SOC show that the p-mono

(Fig. 3a), b-hexa (Fig. 3b), f -hexa (Fig. 3f), and β (Fig. 3c) phases are semiconducting,

whereas α (Fig. 3d) and γ (Fig. 3e) phases are metallic. Without SOC (see SM63), we ob-

serve a direct energy bandgap (DFT-PBE) of 0.52, 0.43, and 0.80 eV in p-mono, b-hexa, and

β phases, respectively. The strong SOC of bismuth reduces the bandgap of the semiconduct-

ing phases to 0.34, 0.08, and 0.14 eV, and changes the direct gap nature of p-mono and β to

indirect (transition marked as a red arrow in Fig. 3 (a, c)). The f -hexa phase exhibits two

gapless Dirac points near the K point without-SOC (see SM63). However, inclusion of SOC

opens a wide mass gap at the Dirac points yielding an indirect bandgap of 0.51 eV near the

K-point, which is in agreement with data reported in Ref.28 The SOC induces a spin-splitting

of electronic bands in the non-centrosymmetric p-mono and β phases. No SOC-induced spin-

splitting occurs in the b-hexa, f -hexa, and γ phases due to the protected inversion-symmetry.

However, the top valence band in b-hexa inherits a Mexican-hat type dispersion near the Γ

point (inset of Fig. 3b) which leads to a van Hove singularity in the density of states near

the Fermi-level (EF ),73,74 as discussed later. This is particularly interesting because a small

amount of charge doping (hole doping) will trigger time-reversal symmetry breaking and may

give rise to emergent phenomena such as ferromagnetism, ferroelasticity, multiferroicity, or

superconductivity in two dimensions.73

We remark that the structural and electronic properties obtained for b-hexa differ from
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those reported by Aktürk et al.16 due to the explicit inclusion of semicore 5d10 electrons in

the pseudopotential used in our calculations. Considering the Bi 5d states in the core, the

bandgap predicted in Ref.16 is 0.547 eV, much larger than our 0.08 eV, and the optimized

lattice parameters are 4.38Å, perceptibly smaller than our 4.598Å. The bandgap reduction

is due to a lifting of the p-orbital degenerate crossing at Γ, pushing the top valence band

higher in energy. The shift results from the crystal field splitting of the d electrons (absent in

the pseudopotential’s frozen core) and their symmetry-breaking effect on the dangling bond

orbitals in the last two valence bands. In the SM63 we show that by keeping Bi 5d electrons in

the core we can replicate the results of Ref.16 Calculations with explicit d electrons produce

more accurate results, as has been reported for bulk Bi.75,76 As a final check, we have used

the all-electron ELK code77 to calculate the electronic band structure, and it agrees fully

with the results including d electrons in the valence (see SM63).

Our calculations for f -hexa monolayer, in which no crystal field splitting effects are

expected, reveal negligible difference in the electronic bandstructure calculated with and

without inclusion of Bi 5d electrons in the core.63 We note that the p-orbital splitting in

b-hexa due to the semi-core d is a considerable but quite subtle effect, and none of the other

phases are as sensitive to 5d states as the b-hexa phase. For p-mono phase, PBE+SOC

predicted bandgap changes only from 0.34 eV to 0.39 eV upon freezing the Bi 5d10 electrons

in the core.

Valley spin-splitting effects are observed in the electronic band structure of the dy-

namically stable β-phase along the Γ-X and Γ-Y directions. Figure 4 shows the spin-

projected electronic band structure of β-phase calculated with-SOC along −X → Γ → X

and −Y → Γ→ Y directions. The spin polarization is entirely contained in the x− y plane,

with two valleys polarized along −x + y and the other two polarized along +x − y due to

the C2 rotational symmetry. The conduction and valence band edges have opposite spin

polarization in both directions. The two lowest conduction and two highest valence bands

are all composed of pz orbitals. The dispersion and spin-texture of the lowest conduction
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band and two highest valence bands in Fig. 4 resemble the electronic band structure of single

layer transition metal dichalcogenides MX2 (M = {Mo,W}, and X = {S, Se}), in which

spin-valley effects have been observed.78–81 The broken inversion-symmetry and strong SOC

effects lift the spin degeneracy of bands everywhere except at the Kramer’s points of the

β-phase. The time-reversal symmetry further couples the spin and valley degrees of freedom

of valleys located at ±k, yielding valley-specific optical selection rules. This is similar to the

case of MX2 monolayers,78,79,81,82 but with in-plane instead of the out-of-plane spin texture,

which may yield novel spin-pseudospin and magnetic valley couplings. The corresponding

optical transitions can be probed in photoluminescence measurements using circularly po-

larized light.

In γ-phase, we observe signatures of interesting topological Lifshitz transitions with

changes in the chemical potential near the Fermi-level (see SM63). This suggests the oc-

currence of distinct topological phase transitions in the γ phase.83 Strikingly, we find that

the γ phase hosts topologically protected gapless type-I Dirac points (DPs) near the Fermi-

level, as shown in Fig. 3e along Γ→ X and Γ→ Y paths. The DPs result from an inverted

band-ordering of pz (conduction) and px,y (valence) bands near the Γ point (Fig. 5). Since

these bands belong to different 1D irreducible representations, they are allowed to cross

along the high-symmetry line, and these band-crossings near the Fermi-level are topologi-

cally protected by the mirror symmetries of the monolayer. The direct coordinates of DPs,

residing at energies EF−0.025 eV, in momentum space are (±0.167, 0, 0) and (0, ±0.167, 0).

These points belong to a Dirac nodal line centered at the Γ point, as shown in the SM.63

In order to further verify the nontrivial topological nature of γ-phase, we compute the Z2

topological invariant using the Fu-Kane parity approach.84 Our results indicate that γ-phase

is a strong topological insulator (technically, a Dirac semimetal) with Z2 = 1 owing to a

band-inversion at Γ point. The nontrivial topological features of γ-phase are also visible in

the edge states calculations shown in the SM.63 We also compute the Z2 topological invariant

for inversion-symmetric b-hexa and f -hexa phases, and obtain that b-hexa phase belong to a
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topological nontrivial class with Z2 = 1, whereas the f -hexa phase belongs to a topological

trivial class with Z2 = 0 (details in SM63). This indicates that the reported topological

phase in the f -hexa phase is induced by substrate proximity, as suggested by Reis et al.28

In presence of a substrate, the Bi-pz electrons, which are unsaturated in an isolated f -hexa

monolayer, saturate by hybridizing with the substrate orbitals, thus, leading to a nontrivial

topological phase in the monolayer/substrate heterosystem.

The orbital projected density of states (DOS) for all phases are provided in the SM.63 The

DOS plots confirm the semiconducting behavior of p-mono, b-hexa, f -hexa, and β phases,

and metallic behavior of the α and γ phases. Notably, we observe a sharp enhancement in

the DOS of b-hexa phase at the Fermi-level (Fig. 6), which originates due to the Mexican-

hat type shape of the highest valence band near the Γ point and is signature of van Hove

singularity. Such a divergence in the DOS can lead to an electronic instability, often resulting

in structural distortions, magnetism, or superconductivity at specific conditions.73 Here, we

note that this feature is also visible in the edge state spectrum of the b-hexa phase (see

SM63). Finally, we list the estimated bandgap values, obtained using the PBE and HSE06

approximations, in Table 2.

Table 2: Energy bandgap (eV units) estimated from the PBE and HSE06 ap-
proximations

p-mono b-hexa α β γ f -hexa

PBE
with-SOC 0.34 0.08 metal 0.14 semimetal 0.51

without-SOC 0.52 0.43 metal 0.80 semimetal semimetal

HSE06
with-SOC 0.13 0.12 metal 0.47 semimetal 0.40

without-SOC 0.51 0.72 metal 1.16 semimetal semimetal

In summary, we study five low-energy phases of monolayer Bi that are obtained from

a systematic structural search in quasi-two dimensions along with an already synthesized

f -hexa phase.28 These phases reveal the multifunctional behaviour of Bi in quasi-2D. In the

lowest energy phase, Bi atoms prefer a puckered monoclinic structure instead of a hexagonal

buckled structure. In terms of the formation energy, the studied phases rank (from low to
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high) as follows: p-mono, b-hexa, α, β, γ, and f -hexa. The p-mono, b-hexa, and β phases

are dynamically stable, whereas the α and γ phases can be stabilized under the effect of

substrate epitaxy and strain. We find that the p-mono, b-hexa, β, and f -hexa phases are

semiconducting, whereas the α and γ phases exhibit metallic properties. Interestingly, we

notice the signatures of the van Hove singularity in the buckled hexagonal phase. Topolog-

ical nontrivial features are observed in the electronic spectrum of the b-hexa and γ phases.

The γ phase hosts a topological Dirac nodal line together with the signatures of intriguing

topological Lifshitz transitions occurring near the Fermi-level. Our results suggest that the

reported28 topological phase in the f -hexa phase is not intrinsic, rather it is induced by the

substrate proximity. We further comment on the essential role of semicore Bi-5d electrons in

the determination of electronic bandstructure near the Fermi-level. A structural distortion-

mediated metal-insulator phase transition can be realized in the reported Bi monolayers.

METHODS

Structure search algorithm:– The computational prediction of new structures for a given

atomic composition requires a systematic exploration of the multidimensional potential en-

ergy surface (PES), in order to find the global and local minima. In this work, we employ

the minima hopping method (MHM85,86) to carry out structural search calculations. This

method seeks local minima on the multidimensional PES, using an efficient dynamical algo-

rithm, combining Density Functional Theory (DFT) to evaluate energy and forces, and short

Molecular Dynamics (MD) simulations to help escape from a local minimum and explore new

regions of the PES. The initial velocities during MD simulations are aligned along the soft

mode direction to cross over low-energy barriers, thereby exploiting the Bell-Evans-Polanyi

principle.87,88 The MHM employs a feedback mechanism to avoid revisiting local minima

and to accelerate the search. More details of this method for structure search in 3D can be

found in Refs.,75,89–91 and the technical details for structure search in 2D are given below.
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In order to perform structure searches in two dimensions, we add a confinement potential,

to restrict the motion of atoms within a pre-defined thickness. Within this region, the

confinement potential is very weak compared to electronic energy levels, but it increases

quartically outside this pre-defined thickness, similar to a particle in a well problem. Thus,

the search is restricted to find the low-energy arrangements of atoms in a constrained quasi-

2D space. This approach has been successfully applied to identify two-dimensional forms of

TiO2.53 A two-dimensional confining potential C(e, rαi ) is added to the target energy function

to be optimized, where α denotes the axis α = {x, y, z} along the non-periodic direction,

ri are the Cartesian coordinates of the N atoms in the system, and e is the equilibrium

positions along α at which the potential is centered. As the confinement function we use a

C with piece-wise continuous derivative, which is zero within a cutoff region rc around e,

while it has a polynomial form of order n and amplitude A beyond rc:

Cα =
N∑
i=1

c(e, rαi ) (1)

where,

c(e, rαi ) =


A(|e− rαi | − rc)n, for |e− rαi | ≥ rc

0, otherwise
(2)

The derivatives with respect to the atomic coordinates fi = ∂Ci

∂ri
and the cell vectors

σi = ∂C
∂hi

were taken fully into account during the local geometry optimizations, the MD

escape trials, and for aligning the initial MD velocities along the soft mode directions, a

process that we call softening. Note that the above atomic positions are expressed in the

reduced coordinates ri = hsi, and h = (a,b, c) is the matrix containing the lattice vectors.

In our structural search runs we used a confinement potential centered along the lattice

vector c (i.e. α = z), with a cutoff rc = 0.3 Å, n = 4 and A = 0.1 eV. Confinement was

employed for the MD part, whereas DFT relaxation of atoms was completely free from any

constraint, allowing the thickness of monolayer to be larger than rc. We considered 4, 8, 12,
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and 16 atoms per unit cell in our structure search calculations. A total of 98, 51, 36, and

81 minima were found for 4, 8, 12, and 16 atoms/cell, respectively. The obtained minima

were further re-optimized using a tighter convergence criteria of k-mesh sampling and energy

cutoff for the plane wave basis set.

Ab-initio calculations:– Density Functional Theory (DFT) based first-principles cal-

culations were carried out using Projector Augmented Wave (PAW) method as implemented

in the VASP software.92 We considered fifteen valence electrons of Bi (5d106s26p3) in the

PAW pseudo-potential. The exchange-correlation energy was computed within the general-

ized gradient approximation using the PBE exchange-correlation functional as parametrized

by Perdew-Burke-Ernzerhof.93 SOC was included self-consistently. We used 600 eV as the

kinetic energy cutoff of the plane wave basis set and a 11× 11× 1 Monkhorst-Pack k-mesh

was used to sample the reciprocal space for structural optimization. The electronic density

of states (DOS) was calculated using a k-mesh of size 21×21×1. We used a Γ-type sampling

scheme for hexagonal structure and Monkhorst-Pack scheme was used to sample the Bril-

louin zone of all other structures. Structural relaxations were performed until all the atomic

forces were less than 10−3 eV/Å, and 10−8 eV was used as the energy convergence criterion for

self-consistent DFT calculations. Phonon calculations (with-SOC) were performed using the

finite-displacement approach, and the PHONOPY software94 was used to evaluate the force

constants. Depending upon the size of unit cell, supercells of size 3× 3× 1 or 4× 4× 1 were

used for phonon calculations. A vacuum of thickness larger than 14 Å was added to avoid any

periodic interaction between two adjacent Bi monolayers. The PYPROCAR code was used

to analyze the electronic band structures and spin-textures. The WannierTools package95

was used to analyze the topological properties.

13



Acknowledgments

The authors are grateful to Sangeeta Sharma and Kay Dewhurst for their assistance with the

ELK code. We also acknowledge the support by Pedram Tavazohi on the substrate search

candidates for epitaxial growth. This work used the Extreme Science and Engineering Dis-

covery Environment (XSEDE), which is supported by National Science Foundation grant

number OCI-1053575. Additionally, the authors acknowledge support from Texas Advances

Computer Center (TACC), Bridges supercomputer at Pittsburgh Supercomputer Center and

Super Computing Systems (Spruce and Mountaineer) at West Virginia University (WVU).

AHR and SS acknowledge support from National Science Foundation (NSF) DMREF-NSF

1434897, NSF OAC-1740111, and DOE DE-SC0016176 projects. SS acknowledges support

from the Dr. Mohindar S. Seehra Research Award and the Distinguished Doctoral Scholar-

ship at West Virginia University. ZZ acknowledges financial support by the Ramon y Cajal

program (RYC-2016-19344), the CERCA programme of the Generalitat de Catalunya (grant

2017SGR1506), and by the Severo Ochoa programme (MINECO, SEV-2017-0706). MA

acknowledges support from the Novartis Universität Basel Excellence Scholarship for Life

Sciences and the Swiss National Science Foundation (Project No. P300P2-158407, P300P2-

174475). MJV acknowledges funding by the Belgian FNRS (PDR G.A. T.1077.15-1/7),

ULiege and the Communauté Française de Belgique (ARC AIMED G.A. 15/19-09), and

computational resources from the Consortium des Equipements de Calcul Intensif (CECI,

FRS-FNRS G.A. 2.5020.11) and Zenobe/CENAERO funded by the Walloon Region under

G.A. 1117545.

Supplemental Information Available

Supplemental Material contains details related to the role of semicore Bi-5d electrons on

the electronic bandstructure of monolayer Bi, DFT optimized structures, electronic band-

structure calculated without SOC, strain-stabilized phonon spectrum of γ phase, topological

14



characterization, atomic orbitals resolved electronic bandstructure for f -hexa and γ phases,

spin-textures calculated at constant energy surfaces for γ phase, potential substrates for α

phase, and calculated density of states for all studied phases.

Authors Information

Corresponding Authors

Sobhit Singh: sobhit.singh@rutgers.edu

Aldo H. Romero: Aldo.Romero@mail.wvu.edu

ORCID iD

Sobhit Singh: 0000-0002-5292-4235

Zeila Zanolli: 0000-0003-0860-600X

Maximilian Amsler: 0000-0001-8350-2476

Jorge O. Sofo: 0000-0003-4513-3694

Matthieu J. Verstraete: 0000-0001-6921-5163

Aldo H. Romero: 0000-0001-5968-0571

References

(1) Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.;

Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F. et al. Progress, Challenges, and

Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7,

2898–2926.

(2) Zhu, Z.; Tománek, D. Semiconducting Layered Blue Phosphorus: A Computational

Study. Phys. Rev. Lett. 2014, 112, 176802.

15



(3) Rivero, P.; Yan, J.-A.; García-Suárez, V. M.; Ferrer, J.; Barraza-Lopez, S. Stability

and properties of high-buckled two-dimensional tin and lead. Phys. Rev. B 2014, 90,

241408.

(4) Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc.

Rev. 2014, 43, 6537–6554.

(5) Özçelik, V. O.; Aktürk, O. U.; Durgun, E.; Ciraci, S. Prediction of a two-dimensional

crystalline structure of nitrogen atoms. Phys. Rev. B 2015, 92, 125420.

(6) Wu, Q.; Shen, L.; Yang, M.; Cai, Y.; Huang, Z.; Feng, Y. P. Electronic and transport

properties of phosphorene nanoribbons. Phys. Rev. B 2015, 92, 035436.

(7) Kou, L.; Chen, C.; Smith, S. C. Phosphorene: Fabrication, Properties, and Applica-

tions. The Journal of Physical Chemistry Letters 2015, 6, 2794–2805.

(8) Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental analogues of

graphene: silicene, germanene, stanene, and phosphorene. Small 2015, 11, 640–652.

(9) Singh, S.; Romero, A. H. Giant tunable Rashba spin splitting in a two-dimensional

BiSb monolayer and in BiSb/AlN heterostructures. Phys. Rev. B 2017, 95, 165444.

(10) Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. Phosphorene:

An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8,

4033–4041.

(11) Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y.

Black phosphorus field-effect transistors. Nature Nanotechnology 2014, 9, 372–377.

(12) Churchill, H. O. H.; Jarillo-Herrero, P. Phosphorus joins the family. Nature Nanotech-

nology 2014, 9, 330–331.

16



(13) Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. Phosphorene:

An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8,

4033–4041.

(14) Kamal, C.; Ezawa, M. Arsenene: Two-dimensional buckled and puckered honeycomb

arsenic systems. Phys. Rev. B 2015, 91, 085423.

(15) Özçelik, V. O.; Aktürk, O. U.; Durgun, E.; Ciraci, S. Prediction of a two-dimensional

crystalline structure of nitrogen atoms. Phys. Rev. B 2015, 92, 125420.

(16) Aktürk, E.; Aktürk, O. U.; Ciraci, S. Single and bilayer bismuthene: Stability at high

temperature and mechanical and electronic properties. Phys. Rev. B 2016, 94, 014115.

(17) Ersan, F.; Aktürk, E.; Ciraci, S. Stable single-layer structure of group-V elements. Phys.

Rev. B 2016, 94, 245417.

(18) Zhang, Q.; Schwingenschlögl, U. Emergence of Dirac and quantum spin Hall states in

fluorinated monolayer As and AsSb. Phys. Rev. B 2016, 93, 045312.

(19) Pumera, M.; Sofer, Z. 2D Monoelemental Arsenene, Antimonene, and Bismuthene:

Beyond Black Phosphorus. Advanced Materials 2017, 29, 1605299.

(20) Koroteev, Y. M.; Bihlmayer, G.; Gayone, J. E.; Chulkov, E. V.; Blügel, S.;

Echenique, P. M.; Hofmann, P. Strong Spin-Orbit Splitting on Bi Surfaces. Phys. Rev.

Lett. 2004, 93, 046403.

(21) Hirahara, T.; Nagao, T.; Matsuda, I.; Bihlmayer, G.; Chulkov, E. V.; Koroteev, Y. M.;

Echenique, P. M.; Saito, M.; Hasegawa, S. Role of Spin-Orbit Coupling and Hybridiza-

tion Effects in the Electronic Structure of Ultrathin Bi Films. Phys. Rev. Lett. 2006,

97, 146803.

(22) Ast, C. R.; Henk, J.; Ernst, A.; Moreschini, L.; Falub, M. C.; Pacilé, D.; Bruno, P.;

17



Kern, K.; Grioni, M. Giant Spin Splitting through Surface Alloying. Phys. Rev. Lett.

2007, 98, 186807.

(23) Koroteev, Y. M.; Bihlmayer, G.; Chulkov, E. V.; Blügel, S. First-principles investigation

of structural and electronic properties of ultrathin Bi films. Phys. Rev. B 2008, 77,

045428.

(24) Kim, H.-J.; Cho, J.-H. Giant spin-orbit-induced spin splitting in Bi zigzag chains on

GaAs(110). Phys. Rev. B 2015, 92, 085303.

(25) Ma, Y.; Li, X.; Kou, L.; Yan, B.; Niu, C.; Dai, Y.; Heine, T. Two-dimensional inversion-

asymmetric topological insulators in functionalized III-Bi bilayers. Phys. Rev. B 2015,

91, 235306.

(26) Singh, S.; Garcia-Castro, A. C.; Valencia-Jaime, I.; Muñoz, F.; Romero, A. H. Predic-

tion and control of spin polarization in a Weyl semimetallic phase of BiSb. Phys. Rev.

B 2016, 94, 161116.

(27) Lu, Y.; Xu, W.; Zeng, M.; Yao, G.; Shen, L.; Yang, M.; Luo, Z.; Pan, F.; Wu, K.;

Das, T. et al. Topological Properties Determined by Atomic Buckling in Self-Assembled

Ultrathin Bi(110). Nano Letters 2015, 15, 80–87.

(28) Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.;

Schäfer, J.; Claessen, R. Bismuthene on a SiC substrate: A candidate for a high-

temperature quantum spin Hall material. Science 2017, 357, 287–290.

(29) Heremans, J.; Thrush, C. M. Thermoelectric power of bismuth nanowires. Phys. Rev.

B 1999, 59, 12579–12583.

(30) Dresselhaus, M.; Chen, G.; Tang, M.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.-

P.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Advanced

Materials 2007, 19, 1043–1053.

18



(31) Nagao, T.; Sadowski, J. T.; Saito, M.; Yaginuma, S.; Fujikawa, Y.; Kogure, T.;

Ohno, T.; Hasegawa, Y.; Hasegawa, S.; Sakurai, T. Nanofilm Allotrope and Phase

Transformation of Ultrathin Bi Film on Si(111)−7 × 7. Phys. Rev. Lett. 2004, 93,

105501.

(32) Scott, S.; Kral, M.; Brown, S. A crystallographic orientation transition and early stage

growth characteristics of thin Bi films on HOPG. Surface Science 2005, 587, 175 – 184.

(33) Fang, A.; Adamo, C.; Jia, S.; Cava, R. J.; Wu, S.-C.; Felser, C.; Kapitulnik, A. Burst-

ing at the seams: Rippled monolayer bismuth on NbSe2. Science Advances 2018, 4,

eaaq0330.

(34) Sharma, H. R.; Fournée, V.; Shimoda, M.; Ross, A. R.; Lograsso, T. A.; Gille, P.;

Tsai, A. P. Growth of Bi thin films on quasicrystal surfaces. Phys. Rev. B 2008, 78,

155416.

(35) Hirahara, T.; Fukui, N.; Shirasawa, T.; Yamada, M.; Aitani, M.; Miyazaki, H.; Mat-

sunami, M.; Kimura, S.; Takahashi, T.; Hasegawa, S. et al. Atomic and Electronic

Structure of Ultrathin Bi(111) Films Grown on Bi2Te3(111) Substrates: Evidence for

a Strain-Induced Topological Phase Transition. Phys. Rev. Lett. 2012, 109, 227401.

(36) Pickard, C. J.; Needs, R. J. High-Pressure Phases of Silane. Phys. Rev. Lett. 2006, 97,

045504.

(37) Martoňák, R.; Laio, A.; Parrinello, M. Predicting Crystal Structures: The Parrinello-

Rahman Method Revisited. Phys. Rev. Lett. 2003, 90, 075503.

(38) Pannetier, J.; Bassas-Alsina, J.; Rodriguez-Carvajal, J.; Caignaert, V. Prediction of

crystal structures from crystal chemistry rules by simulated annealing. Nature 1990,

346, 343–345.

19



(39) Wales, D. J.; Scheraga, H. A. Global Optimization of Clusters, Crystals, and

Biomolecules. Science 1999, 285, 1368–1372.

(40) Zhu, Q.; Oganov, A. R.; Lyakhov, A. O. Evolutionary metadynamics: a novel method

to predict crystal structures. CrystEngComm 2012, 14, 3596–3601.

(41) Bush, T. S.; Catlow, C. R. A.; Battle, P. D. Evolutionary programming techniques for

predicting inorganic crystal structures. J. Mater. Chem. 1995, 5, 1269–1272.

(42) M. Woodley, S.; D. Battle, P.; D. Gale, J.; Richard A. Catlow, C. The prediction of

inorganic crystal structures using a genetic algorithm and energy minimisation. Phys.

Chem. Chem. Phys. 1999, 1, 2535–2542.

(43) Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary

techniques: Principles and applications. The Journal of Chemical Physics 2006, 124,

244704.

(44) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal structure prediction via particle-swarm

optimization. Phys. Rev. B 2010, 82, 094116.

(45) Avendano-Franco, G.; Romero, A. H. Firefly Algorithm for Structural Search. Journal

of Chemical Theory and Computation 2016, 12, 3416–3428.

(46) Wang, Y.; Miao, M.; Lv, J.; Zhu, L.; Yin, K.; Liu, H.; Ma, Y. An effective struc-

ture prediction method for layered materials based on 2D particle swarm optimization

algorithm. The Journal of Chemical Physics 2012, 137, 224108.

(47) Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. C. Two-Dimensional Boron

Monolayer Sheets. ACS Nano 2012, 6, 7443–7453.

(48) Lu, H.; Mu, Y.; Bai, H.; Chen, Q.; Li, S.-D. Binary nature of monolayer boron sheets

from ab initio global searches. The Journal of Chemical Physics 2013, 138, 024701.

20



(49) Luo, W.; Ma, Y.; Gong, X.; Xiang, H. Prediction of Silicon-Based Layered Structures

for Optoelectronic Applications. Journal of the American Chemical Society 2014, 136,

15992–15997.

(50) Zhao, Y.; Zeng, S.; Ni, J. Superconductivity in two-dimensional boron allotropes. Phys.

Rev. B 2016, 93, 014502.

(51) Zhou, X.-F.; Oganov, A. R.; Wang, Z.; Popov, I. A.; Boldyrev, A. I.; Wang, H.-T.

Two-dimensional magnetic boron. Phys. Rev. B 2016, 93, 085406.

(52) Revard, B. C.; Tipton, W. W.; Yesypenko, A.; Hennig, R. G. Grand-canonical evolu-

tionary algorithm for the prediction of two-dimensional materials. Phys. Rev. B 2016,

93, 054117.

(53) Eivari, H. A.; Ghasemi, S. A.; Tahmasbi, H.; Rostami, S.; Faraji, S.; Rasoulkhani, R.;

Goedecker, S.; Amsler, M. Two-Dimensional Hexagonal Sheet of TiO2. Chemistry of

Materials 2017, 29, 8594–8603.

(54) Singh, A. K.; Revard, B. C.; Ramanathan, R.; Ashton, M.; Tavazza, F.; Hennig, R. G.

Genetic algorithm prediction of two-dimensional group-IV dioxides for dielectrics. Phys.

Rev. B 2017, 95, 155426.

(55) Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; So-

hier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from

high-throughput computational exfoliation of experimentally known compounds. Na-

ture Nanotechnology 2018, 13, 246–252.

(56) Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt, P. S.; Hinsche, N. F.;

Gjerding, M. N.; Torelli, D.; Larsen, P. M.; Riis-Jensen, A. C. et al. The Computational

2D Materials Database: high-throughput modeling and discovery of atomically thin

crystals. 2D Materials 2018, 5, 042002.

21



(57) Rasmussen, F. A.; Thygesen, K. S. Computational 2D Materials Database: Electronic

Structure of Transition-Metal Dichalcogenides and Oxides. The Journal of Physical

Chemistry C 2015, 119, 13169–13183.

(58) Choudhary, K.; Kalish, I.; Beams, R.; Tavazza, F. High-throughput Identification and

Characterization of Two-dimensional Materials using Density functional theory. Scien-

tific Reports 2017, 7, 5179.

(59) Midwest Nano Infrastructure Corridor 2D Database hosted by University of Minnesota,

Minneapolis, USA. Available from: http://apps. minic.umn.edu/2D/result.php.

(60) Ashton, M.; Paul, J.; Sinnott, S. B.; Hennig, R. G. Topology-Scaling Identification of

Layered Solids and Stable Exfoliated 2D Materials. Phys. Rev. Lett. 2017, 118, 106101.

(61) Paul, J. T.; Singh, A. K.; Dong, Z.; Zhuang, H.; Revard, B. C.; Rijal, B.; Ashton, M.;

Linscheid, A.; Blonsky, M.; Gluhovic, D. et al. Computational methods for 2D mate-

rials: discovery, property characterization, and application design. Journal of Physics:

Condensed Matter 2017, 29, 473001.

(62) Zhang, S.; Xie, M.; Li, F.; Yan, Z.; Li, Y.; Kan, E.; Liu, W.; Chen, Z.; Zeng, H.

Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier

Mobilities. Angewandte Chemie International Edition 2016, 55, 1666–1669.

(63) Supplemental Material contains information related to the optimized structures, DOS,

atomic orbitals resolved electronic bandstructures, spin-textures calculated at constant

energy surfaces for the γ phase, topological characterization, role of semicore Bi-5d

electrons on the electronic bandstructure, strain-stabilized phonon spectrum of γ phase,

and potential substrates for α phase.

(64) Zhuang, H. L.; Hennig, R. G. Computational Search for Single-Layer Transition-

Metal Dichalcogenide Photocatalysts. The Journal of Physical Chemistry C 2013, 117,

20440–20445.

22



(65) Zhuang, H. L.; Singh, A. K.; Hennig, R. G. Computational discovery of single-layer

III-V materials. Phys. Rev. B 2013, 87, 165415.

(66) Singh, S.; Espejo, C.; Romero, A. H. Structural, electronic, vibrational, and elastic

properties of graphene/MoS2 bilayer heterostructures. Phys. Rev. B 2018, 98, 155309.

(67) Soni, H.; Jha, P. K. Ab-initio study of dynamical properties of two dimensional MoS2

under strain. AIP Advances 2015, 5, 107103.

(68) Takarabe, K. Optical Properties of InS under High Pressure. physica status solidi (b)

1988, 145, 219–225.

(69) McMillan, P. F. High pressure synthesis of solids. Current Opinion in Solid State and

Materials Science 1999, 4, 171 – 178.

(70) Lapidus, S. H.; Halder, G. J.; Chupas, P. J.; Chapman, K. W. Exploiting High Pres-

sures to Generate Porosity, Polymorphism, And Lattice Expansion in the Nonporous

Molecular Framework Zn(CN)2. Journal of the American Chemical Society 2013, 135,

7621–7628.

(71) Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.;

Wolverton, C. The Open QuantumMaterials Database (OQMD): assessing the accuracy

of DFT formation energies. npj Computational Materials 2015, 1, 15010.

(72) Mathew, K.; Singh, A. K.; Gabriel, J. J.; Choudhary, K.; Sinnott, S. B.; Davydov, A. V.;

Tavazza, F.; Hennig, R. G. MPInterfaces: A Materials Project based Python tool for

high-throughput computational screening of interfacial systems. Computational Mate-

rials Science 2016, 122, 183–190.

(73) Seixas, L.; Rodin, A. S.; Carvalho, A.; Castro Neto, A. H. Multiferroic Two-Dimensional

Materials. Phys. Rev. Lett. 2016, 116, 206803.

23



(74) Özdamar, B.; Özbal, G.; Ç ınar, M. N. m. c.; Sevim, K.; Kurt, G.; Kaya, B.; Sevinçli, H.

Structural, vibrational, and electronic properties of single-layer hexagonal crystals of

group IV and V elements. Phys. Rev. B 2018, 98, 045431.

(75) Singh, S.; Ibarra-Hernandez, W.; Valencia-Jaime, I.; Avendano-Franco, G.;

Romero, A. H. Investigation of novel crystal structures of Bi-Sb binaries predicted

using the minima hopping method. Phys. Chem. Chem. Phys. 2016, 18, 29771–29785.

(76) Singh, S.; Valencia-Jaime, I.; Pavlic, O.; Romero, A. H. Elastic, mechanical, and ther-

modynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling. Phys. Rev. B

2018, 97, 054108.

(77) Krieger, K.; Dewhurst, J. K.; Elliott, P.; Sharma, S.; Gross, E. K. U. Laser-Induced De-

magnetization at Ultrashort Time Scales: Predictions of TDDFT. Journal of Chemical

Theory and Computation 2015, 11, 4870–4874.

(78) Yao, W.; Xiao, D.; Niu, Q. Valley-dependent optoelectronics from inversion symmetry

breaking. Phys. Rev. B 2008, 77, 235406.

(79) Sallen, G.; Bouet, L.; Marie, X.; Wang, G.; Zhu, C. R.; Han, W. P.; Lu, Y.; Tan, P. H.;

Amand, T.; Liu, B. L. et al. Robust optical emission polarization in MoS2 monolayers

through selective valley excitation. Phys. Rev. B 2012, 86, 081301.

(80) Mak, K. F.; He, K.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer

MoS2 by optical helicity. Nature Nanotechnology 2012, 7, 494–498.

(81) Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Coupled Spin and Valley Physics in

Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108,

196802.

(82) Singh, S.; Alsharari, A. M.; Ulloa, S. E.; Romero, A. H. Handbook of Graphene; John

Wiley Sons, Ltd, 2019; Chapter 1, pp 1–28.

24



(83) Volovik, G. E. Topological Lifshitz transitions. Low Temperature Physics 2017, 43,

47–55.

(84) Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007,

76, 045302.

(85) Goedecker, S. Minima hopping: An efficient search method for the global minimum of

the potential energy surface of complex molecular systems. The Journal of Chemical

Physics 2004, 120, 9911–9917.

(86) Amsler, M.; Goedecker, S. Crystal structure prediction using the minima hopping

method. The Journal of Chemical Physics 2010, 133, 224104.

(87) Roy, S.; Goedecker, S.; Field, M. J.; Penev, E. A Minima Hopping Study of All-Atom

Protein Folding and Structure Prediction. J. Phys. Chem. B 2009, 113, 7315–7321.

(88) Jensen, F. Introduction to Computational Chemistry ; Wiley, England, 1998.

(89) Amsler, M. K. Crystal structure prediction based on density functional theory. Ph.D.

thesis, University of Basel, 2014.

(90) Pavlic, O.; Ibarra-Hernandez, W.; Valencia-Jaime, I.; Singh, S.; Avendaño-Franco, G.;

Raabe, D.; Romero, A. H. Design of Mg alloys: The effects of Li concentration on the

structure and elastic properties in the Mg-Li binary system by first principles calcula-

tions. Journal of Alloys and Compounds 2017, 691, 15 – 25.

(91) Singh, S. K. Structural Prediction and Theoretical Characterization of Bi-Sb Binaries:

Spin-Orbit Coupling Effects. Ph.D. thesis, West Virginia University, 2018.

(92) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-

wave method. Phys. Rev. B 1999, 59, 1758–1775.

(93) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made

Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

25



(94) Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr.

Mater. 2015, 108, 1–5.

(95) Wu, Q.; Zhang, S.; Song, H.-F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-

source software package for novel topological materials. Comput. Phys. Commun. 2018,

224, 405 – 416.

26



Figures

p-monoclinic

h

d

b-hexagonal

h

d

γ-phase

h

d2

d1

β-phase

h

d2
d1

α-phase

d1

d2

h

f-hexagonal

ΔEform (meV/atom)
0 36 63 72 83 316

Figure 1: (Color online) Energetic ordering and relaxed structures (side and top views) of
the five low-energy phases of monolayer Bi obtained from the cMHM calculations, and one
(f -hexa) phase obtained from Ref.28 The energy differences between phases are given relative
to the formation energy of the p-mono phase. Note that the f -hexa phase is 316meV/atom
above the energy of the reference p-mono phase.
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Figure 2: (Color online) Monolayer phonons calculated along the high-symmetry directions
in momentum space. The α phase slightly breaks the acoustic sum rule due to numerical
differences between the cMHM and PHONOPY calculations.
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Figure 3: (Color online) Electronic bandstructure calculated with inclusion of SOC for Bi
monolayers (see the SM63 for bandstructure without-SOC). Dashed magenta lines indicate
the Fermi-level and ∆ denotes energy bandgap in the semiconducting monolayers. The value
of direct and indirect gaps are indicated in green and red, respectively. Light colors highlight
the spin-degeneracy of bands near the Fermi-level, and circles mark the Dirac points in (e).
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Figure 4: (Color online) Spin projected electronic band structure for β phase. Red/Blue
color depicts spin up/down states.
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Figure 5: (Color online) Atomic orbital projected electronic band structure of γ phase cal-
culated without-SOC (left panel) and with-SOC (right panel).
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Figure 6: (Color online) Atomic orbitals resolved density of states calculated with-SOC using
a k-mesh of size 21× 21× 1 for b-hexa phase.
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