Supplementary Table 1. Properties of bacterial IBs adjustable through process conditions (extended version of Table 1). | | | Recombinant | S vs. | IB. at all fact are | D. (| |------------------------|---|--|-----------|--|--| | Parameter | Culture conditions | protein
(<i>E. coli</i> strain) | IS
(%) | IBs structural features | Ref. | | Culture time | Bioreactor, fed-batch (37 °C),
IPTG induction | β-lactamase
(K12, HMS174-
DE3) | 5-95 | IBs increased in median diameter from 325 nm to 410 nm, 2 and 6 h after induction. | (Margreiter,
et al., 2008) | | | Batch (37 °C), IPTG induction | hGH (M15) | N.D. | IB size incremented from 200 up to 800 nm after 4 h of induction. IBs showed strong binding with CR and Th-T, and were more resistant to proteolysis and denaturation. | (Upadhyay,
et al., 2012) | | | Bioreactor, batch (37 °C),
IPTG induction | Sphingomyelin
ase-D (BL21-
Gold-DE3) | 3–
97 | IBs Increased in a median diameter from 450 nm (1 h post-induction) to 600 nm (3 h post-induction). | (Castellanos
-Mendoza,
et al., 2014) | | Inductor concentration | Bioreactor, fed-batch (37°C),
1.0 μM IPTG / g dry biomass | β-lactamase
· (K12, HMS174-
DE3) | 2–
98 | Similar aggregation, increasing ~25 % RP content in IBs. | (Margreiter,
et al., 2008)
(Jhamb &
Sahoo,
2012) | | | Bioreactor, fed-batch (37°C),
20 μM IPTG / g dry biomass | | 5–
95 | Similar aggregation, lower RP content in IBs. | | | | Shake flask, batch (37 °C)
0.01 mM IPTG | - XynB (BL21) | 13-
87 | Decreased aggregation. | | | | Shake flask, batch (37 °C) 1.0 mM IPTG | | 4-96 | Increased IB formation. | | | | Batch (37°C), 0.1 mM IPTG | GFP | N.D. | Lower hydrodynamic diameter. | (Luo <i>, et al.,</i>
2006) | | | Batch (37°C), 2.0 mM IPTG | | N.D. | Hydrodynamic diameter increased from 550 to 645 nm. | | | Growth rate | Shake tubes, batch (37 °C) | EGFP (DH5-
alfa) | N.D. | ~5-10 times more RP are in IBs at the fastest growth rate. | (Iafolla, et
al., 2008) | | | Batch (30 °C), <i>trp</i> promoter | IFN-α2
(HB101) | 73-
27 | Less RP aggregation | (Schein &
Noteborn,
1988) | | | Batch (37 °C), <i>trp</i> promoter | | 5-95 | Increase in temperature promoted RP aggregation | | | | Batch (30 °C), trp promoter | IFN-γ (C600/λ-
lys) | 95-5 | Less RP aggregation | | | Temperature | Batch (37 °C), <i>trp</i> promoter | | 18-
82 | Increase in temperature promoted RP aggregation | | | | Bioreactor, batch (30°C in growth phase), thermoinduction at 39°C | SpA-β gal (RR1
lacZAM15) | N.D. | Lower IBs formation at initial post-induction time. | (Strandberg
& Enfors,
1991) | | | Bioreactor, batch (30°C in growth phase), thermoinduction at 42°C | | N.D. | The highest accumulation of IBs, formed mainly during the first hours after induction. | | | | Shake flask, batch (30°C), 0.1
mM IPTG | | 99–
1 | Less RP aggregation. | | | | Shake flask, batch (37 °C), 0.1
mM IPTG
Shake flask, batch (42°C), 0.1
mM IPTG | OmpA-β-
lactamase
(RB791) | 60-
40
83-
17 | Impurities were lower in IBs from cultures at 37 °C vs. 42 °C. The highest IBs concentration. Temperature increase promoted IB formation. | (Valax &
Georgiou,
1993) | |-----------|---|---|------------------------|--|--| | | Batch (37 °C by 4 h), after 1
mM IPTG cultures were set
to 18 °C | Αβ42(F19D)-
- GFP | N.D. | Less RP aggregation and high specific fluorescence. | (de Groot &
Ventura,
2006) | | | Batch (37 °C by 4 h), after 1
mM IPTG cultures were set
to 25 °C | | N.D. | The formed fluorescent IBs were solubilized and denatured faster by proteases and chaotropic agents, than those from cultures at 42 °C. | | | | Batch (37 °C by 4 h), after 1
mM IPTG cultures were set
to 37 °C | | N.D. | Increase in temperature promoted IB formation and decreased their fluorescence | | | | Batch (37 °C by 4 h), after 1
mM IPTG cultures were set
to 42 °C | | N.D. | Increase in temperature promoted IB formation and depleted their fluorescence. | | | | | G-CSF | 2–
98 | Proteins inside IBs formed at 25°C presented similar structure as the | (Jevsevar, et | | | Shake flask, batch (25°C), 0.4 mM IPTG | GFP | 33-
77 | native versions, with increased extractability in mild detergents, | al., 2005,
Peternel, et
al., 2008) | | | | His7dN6TNF-α | 60-
40 | compared with those from 37°C and 42°C. | | | рН | Bioreactor, batch (30°C in growth phase, thermoinduction at 39°C) | SpA-βgal (RR1
lacZAM15) | N.D. | When pH decreased to ~5.5, IB accumulation was triggered, reaching up to 30 % of cell dry weight. | (Strandberg
— & Enfors,
1991) | | | Bioreactor, batch (30°C in growth phase, thermoinduction at 42°C) | | | When pH decreases to ~5.5, IBs formation increased vs. 39°C, reaching up to 75 % of cell dry weight. | | | | Bioreactor, batch (37 °C), 0.1 mM IPTG. pH 7.5 | Sphingomyelin
ase-D (BL21-
Gold-DE3) | 0-
100 | IBs were more resistant to proteolysis and denaturation. | (Castellanos
-Mendoza,
et al., 2014) | | | Bioreactor, Batch (37 °C), 0.1
mM IPTG. pH uncontrolled
(reach pH 8.5) | | 0-
100 | IBs grown faster and were less resistant to proteolysis and denaturation. | | | | Bioreactor, batch (37 °C), 0.1
mM IPTG. pH 7.5, and set to
8.5 after induction | Phospholipase
A2 (Origami [™]) | 0-
100 | IBs presented more α -helices, were solubilized faster by proteinase-K and bonded less Th-T. | (Calcines-
Cruz <i>, et al.,</i> | | | Bioreactor, batch (37 °C), 0.1
mM IPTG. pH 7.5, and set to
6.5 after induction | Phospholipase
A2 (Origami [™]) | 0-
100 | IBs presented less α -helices, were less solubilized by proteinase-K and bonded more Th-T. | 2018) | | Agitation | Shake flask, batch (37 °C), 0.1 mM IPTG, orbital (200 rpm) | Phospholipase
A2 (BL21-Gold-
DE3) | 0-
100 | IBs showed sizes of ~400 nm with less α -helices fraction, compared with those formed under resonant acoustic. | (Valdez-
· Cruz <i>, et al.,</i> | | | Shake flask, batch (37 °C), 0.1 mM IPTG, resonant acoustic (20 g) | | 0-
100 | Diffused protein clusters were seen inside cells. IBs at 20 g were the most degraded after 120 min. | 2017) | Human interferon–α2 (IFN–α2); Interferon–γ (IFN–γ); Human growth hormone (hGH); Xylanase (XynB); Alzheimer-related peptide Ab42 mutant fused to green fluorescent protein (Ab42(F19D)-GFP); Green fluorescent protein (GFP); Protein A from *Staphylococcus aureus* and β-galactosidase (SpA β-gal); Isopropyl β-D-1-thiogalactopyranoside (IPTG); Not determined (N.D.); guanidinium chloride. (GnCl); CR: Congo red, Thioflavin-T (Th-T); S vs. IS: Soluble versus insoluble protein fractions; Inclusion bodies (IBs); Recombinant protein (RP). ## References Calcines-Cruz C, Olvera A, Castro-Acosta RM, Zavala G, Alagon A, Trujillo-Roldan MA & Valdez-Cruz NA (2018) Recombinant-phospholipase A2 production and architecture of inclusion bodies are affected by pH in Escherichia coli. *Int J Biol Macromol* **108**: 826-836. Castellanos-Mendoza A, Castro-Acosta RM, Olvera A, *et al.* (2014) Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli. *Microb Cell Fact* **13**: 137. de Groot NS & Ventura S (2006) Effect of temperature on protein quality in bacterial inclusion bodies. *FEBS Lett* **580**: 6471-6476. Iafolla MA, Mazumder M, Sardana V, Velauthapillai T, Pannu K & McMillen DR (2008) Dark proteins: effect of inclusion body formation on quantification of protein expression. *Proteins* **72**: 1233-1242. Jevsevar S, Gaberc-Porekar V, Fonda I, Podobnik B, Grdadolnik J & Menart V (2005) Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. *Biotechnol Prog* **21**: 632-639. Jhamb K & Sahoo DK (2012) Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. *Bioresour Technol* **123**: 135-143. Luo J, Leeman M, Ballagi A, Elfwing A, Su Z, Janson JC & Wahlund KG (2006) Size characterization of green fluorescent protein inclusion bodies in E. coli using asymmetrical flow field-flow fractionation-multi-angle light scattering. *J Chromatogr A* **1120**: 158-164. Margreiter G, Messner P, Caldwell KD & Bayer K (2008) Size characterization of inclusion bodies by sedimentation field-flow fractionation. *J Biotechnol* **138**: 67-73. Peternel S, Grdadolnik J, Gaberc-Porekar V & Komel R (2008) Engineering inclusion bodies for non denaturing extraction of functional proteins. *Microbial Cell Factories* **7**. Schein C & Noteborn M (1988) Formation of Soluble Recombinant Proteins in Escherichia Coli is Favored by Lower Growth Temperature. *Bio/Technology* **6**: 4. Strandberg L & Enfors SO (1991) Factors Influencing Inclusion Body Formation in the Production of a Fused Protein in Escherichia-Coli. *Applied and Environmental Microbiology* **57**: 1669-1674. Upadhyay AK, Murmu A, Singh A & Panda AK (2012) Kinetics of Inclusion Body Formation and Its Correlation with the Characteristics of Protein Aggregates in Escherichia coli. *Plos One* **7**. Valax P & Georgiou G (1993) Molecular characterization of beta-lactamase inclusion bodies produced in Escherichia coli. 1. Composition. *Biotechnol Prog* **9**: 539-547. Valdez-Cruz NA, Reynoso-Cereceda GI, Perez-Rodriguez S, *et al.* (2017) Production of a recombinant phospholipase A2 in Escherichia coli using resonant acoustic mixing that improves oxygen transfer in shake flasks. *Microb Cell Fact* **16**: 129.