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ABSTRACT. Eighty areas with different structural and compositional characteristics made of 

bacterial inclusion bodies formed by the fibroblast growth factor (FGF-IBs) were 

simultaneously patterned on a glass surface with an evaporation-assisted method that relies on 

the coffee-drop effect. The resulting surface patterned with these protein nanoparticles enabled 

to perform a high-throughput study of the motility of NIH-3T3 fibroblasts under different 

conditions including gradient steepness, particle concentrations and area widths of patterned 

FGF-IBs, using for the data analysis a methodology that includes “heat maps”. From this 

analysis, we observed that gradients of concentrations of surface-bound FGF-IBs stimulate the 

total cell movement, but do not affect the total net distances travelled by cells. Moreover, cells 

tend to move towards an optimal intermediate FGF-IB concentration (i.e., cells seeded on areas 

with high IB concentrations moved towards areas with lower concentrations and vice versa 

reaching the optimal concentration). Additionally, a higher motility was obtained when cells 

were deposited on narrow and highly concentrated areas with IBs. FGF-IBs can be therefore 

used to enhance and guide cell migration, confirming that the decoration of surfaces with such 

inclusion body-like protein nanoparticles are promising biomaterials for regenerative medicine 

and tissue engineering. 
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1. INTRODUCTION 

Control over cell motility has many practical applications in the field of tissue regeneration and 

tissue engineering in medical implants,1 because cell migration is important for 

embryogenesis,2-4 immune surveillance5-6 and wound healing7 among other biological 

processes. Although it is a universal ability and can be performed by all nucleated types of cells 

at a given point of their development, it is executed in various manners and, very often, specific 

conditions are required.8 Indeed, cells operate within distinct contexts and respond to 

environments in different ways.8 In vivo cell motility depends on both external factors and 

intrinsic properties of cells. External factors, provided by the extra-cellular matrix (ECM), 

operate at every stage of the movement cycle, stabilizing protrusions and maintaining the 

direction of migration.9 Thus, cell shape and mobility are governed by the dimensionality of 

surface decoration (i.e., 3D, 2D, or 1D in case of a single fibre of collagen),10-13 density and 

orientation of the ECM ligands (i.e., nanoscale or microscale structure of the ECM),14-22 and 

stiffness (i.e., mechanical properties of the substrate).23 Although many efforts have been done 

to reproduce in vitro the complex aspects of physiological conditions,24 further advancements 

in nanofabrication and synthetic self-assembly are still needed.1 One relevant achievement in 

this field was the establishment of protocols to generate in vitro gradients of soluble bioactive 

factors on surfaces.25 There have emerged a few distinct techniques to produce gradients in 

controlled laboratory conditions on model substrates.26-28 The combination of microfluidics29 

and immersion techniques30 have become a successful approach for gradient generation and 

production of surface-bound gradients of such soluble molecules. Thus, various types of 

molecules have been used to form gradients for studying cell motility, such as chemokines,31-32 

antigens,33 drugs,18 RGD peptides,34 proteins,35 or calcium ions.36 In these studies, the 

directionality of cell movement can be assessed,37-38 by analyzing the directional persistence 

time (i.e., the time in which the cell movement persists in the same direction), the random 

motility coefficient (i.e., a coefficient analogous to a molecular diffusion coefficient) and the 



     

4 

 

chemotaxis index (i.e., a weighted ratio between the distance along a gradient and the total 

travelled distance). As examples of these studies we can mention the movement of 

Dictyostelium discoideum cells on PDMS substrates covered with various patterns of 

micropillars,39 a standard assay to test a drug efficiency,40 or cell movements in complex 

environments with chemical and topographical cues.2 Nevertheless, the development of new 

biomaterials that can guide migration of target cells into the injury site, stimulate their growth 

and/or differentiation and degrade in response to matrix remodeling enzymes released by the 

cells during the progress of tissue repair, are still highly needed.41 These biomaterials should be 

able to interact with specific adhesion and growth factor receptors expressed by target cells 

surrounding damaged tissues.  

Recently, a positive impact of protein nanoparticles consisting of bacterial inclusion bodies 

(IBs) formed by fibroblast growth factors (FGF) on cell proliferation and guidance has been 

confirmed.42-45 IBs are intriguing functional, protein-based materials produced by recombinant 

bacteria that have broad applications in catalysis, tissue engineering and biomedicine,45 acting 

as stable depots of functional proteins.46-47 With a regular pseudospherical shape and a size on 

the frontier of nano and micro scales, usually between 50 and 800 nm, these particles can be 

tailored to act as functional topographies in tissue engineering and regenerative medicine,48 

with a broad spectrum of emerging applications such as wound healing.49 Surface-bound 

gradients of IBs consisting of the green fluorescence protein (GFP) have also been recently 

shown to influence cell motility.50 Encouraged by the latter results, which were only based on 

physical cues (i.e., topography, geometry and roughness), we decided to study the effects of 

FGF-based IBs (FGF-IBs) that introduce a biochemical activity together with the physical cues 

to the substrate for promoting cell migration. Thus, cells not only could be stimulated by the 

topography of the substrate, but also by the biochemical activity of these inclusion body-like 

protein nanoparticles. More specifically, we planned to prepare simultaneously different 

patterns of FGF-IBs using a recently reported process based on an evaporation-assisted method 
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that relies on the coffee-drop effect.50 In brief, the surface to be patterned is placed into a 

temperature-controlled cuvette filled with the nanoparticle suspension. Material deposition 

occurs locally on the three phase line where liquid-air interface meets the substrate surface and 

it is governed by a programmable peristaltic pump. This allows engineering surfaces with 2D 

custom concentration variations over large areas.  

 

 

 

2. RESULTS AND DISCUSSION 

Here we report the use of this device for preparing an orthogonally stripped inclusion body-like 

protein nanoparticles (FGF-IBs) pattern with gradients of controlled widths and heights as well 

as with controlled constant FGF-IBs nanoparticles concentrations on the same surface to 

perform high-throughput cell culture studies. 

With the resulting patterned surface, we studied in the same experiment the influence of factors 

like: A) constant vs. gradient concentrations of FGF-IBs, B) the steepness of the FGF-IB 

gradients, C) the different absolute concentrations of FGF-IBs, and D) the impact of broad vs. 

narrow paths, (i.e., cell movement constraining on cell motility (Figure 1) on cell migration). 

Thus, we account a high-throughput method enabling to investigate diverse factors influencing 

the cell motility in a fast way reducing the time and resources needed, as well as the batch-to-

batch variability that sometimes occurs in the IB production.51 
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Figure 1. Scheme depicting the diverse parameters compared in the patterns of FGF-IBs and 

their influence on cell motility studied with the high-throughput methodology. A) Constant 

concentrations versus gradients, B) the steepness of gradients, C) absolute constant FGF-IB 

concentrations, and D) presence or absence of narrow paths. X and Y axes correspond to 

distance in the 200-500 μm range and concentrations in the range of 60,000- 150,000 IB/μm2, 

respectively. 

 

As shown before,50 a surface with areas surrounded by concentrations of GFP-IBs higher than 

500,000 particles·mm-2 deposits act as “corrals” for cell movement. Thus, using these high 

FGF-IB concentrations as cell barriers we patterned FGF-IBs consecutively in perpendicular 

directions on the same substrate using different deposition conditions (Table 1). In this way a 

patterned surface with 10 columns and 8 rows defining 80 areas with different FGF-IB 

concentrations and gradients were obtained in which each area is characterized by a unique 

combination of concentration (ci) and gradient (di, hi) parameters (Figure 2).  

The patterned surface was obtained using a mixture containing 95% of FGF-IBs and 5% of 

GFP-IBs at a total concentration of 4.5·1011 FGF-IB particles·ml-1. The small percentage of 

GFP-IBs was used to visualize and identify the patterns by fluorescence microscopy and served 

as quality control measurement required for the multiple-iterations needed to develop the 

protocol for producing optimal gradients (Figure 3 and section S1 of SI).[28] We check that the 

presence of small amount (i.e., 5%) of GFP-IBs does not change the action of pure FGF-IBs in 

cell motility experiments performed with surfaces decorated with constant IB concentration. 
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The designed profile is not perfectly followed by the obtained substrate. However, the range of 

obtained slopes and concentration of deposited material is consistent over the entire deposition 

area, providing the prefect environment to study cell movement. The parameters describing the 

actual gradient’s heights, lengths and slopes as well as the resulting concentrations of the 80 

areas of the patterned surface are given in Figure 2 and in section S1 of the SI. 

The criteria to choose the dimensions of the grid follow the design proposed in Figure 2 and 

Table 1. The design presents less distance for high steepness and higher distances for lower 

steepness. For a constant concentration, the dimension is constant. In general, for all the grids, 

the dimensions are big enough to be sure that the number of cells is enough to get statistically 

relevant data to be able to be evaluated without confluence. 

 

 

Figure 2. IB concentration profiles used to deposit FGF-IBs on the surface. The “column” 

profile consisted of 10 areas, each one with a different pattern (6 distinct gradients and 4 plain 

areas). Gradients are denoted with “G” and are characterized by their heights (h) and widths (d). 

Constant FGF-IB concentration areas, i.e. plain areas marked with “P” have various FGF-IB 

concentrations (ci). The “row” profile consisted of 8 areas, 4 with narrow tracks “N” and 4 with 

broad areas “B”. Each non-gradient subarea is characterized by 4 different FGF-IB 

concentration (c1>c2>c3>c4). Concentrations (in thousands IBs per µm2) c1=66.8, c2=92.5, 

c3=93.7, c4=150.2, heights (concentration at the peak of slope in thousands FGF-IBs per µm2): 

h1= 270.0, h2=135, distances (in micrometers): d1=200, d2=400, d3=500. 
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Figure 3. Confocal microscopy image of the substrate engineered with FGF-IBs for cell 

motility studies. The resulting 80 different areas are limited by white dashed lines. For 

convenience each area is marked with a number corresponding to Table 1. The image is 

cropped so that last row (areas 71-80) appears on top of the first row (areas 1-10). This aspect 

has no impact on the results, as the pattern has translational symmetry in 2D. Scale bar = 1 mm.  

 

 

 

 

Table 1. Descriptors for FGF-IBs concentrations and gradients of the patterned surface. G: 

column with a concentration gradient, P: column with a constant concentration, named as plain 

area, N: row with narrow tracks, B: row with a broad area, h: gradient height, d: gradients width, 

c: FGF-IB concentrations (c1<c2<c3<c4). Each of the 80 areas has its unique descriptor (in black) 

and is characterized by the combination of parameters inherited from the columns (blue) and 

rows (red). 
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Once the design and the preparation of the patterned substrate with FGF-IBs was successfully 

achieved, we used it to culture NIH-3T3 fibroblast cells, as model cells widely and recently 

used for tissue engineering applicability studies,52-54 which were seeded at a density of 10.000 

cells·cm-2 and studied their migration by time-lapse confocal microscopy (see Figures S3 and 

S4 in the SI).  

The averaged total distance values travelled by the cells in each area and the distribution of 

such distances are presented in Table 2 and Figure 4. Parameters defining the travelled 

distances by cells are given in Figure S7 of the SI. 

Table 2. Average total distance (D̅total in m) travelled by the cells in each area calculated for 

translations over a period of 22 h of image acquisition. Colors are added for classifying the D̅total 

values in three ranges. Red, yellow, and green correspond to low (<270 μm), moderate (270-

315 μm), and high (>315 μm) average total distances, respectively. The position of values in 

this table corresponds to the layout shown in Table 1. 
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A) 

 

 

B)  
 

 



     

11 

 

 

Figure 4. A) Distribution of average total distances, D̅total, travelled by cells in each area. This 

is the sum of all distances covered by cells during the experiment averaged by the number of 

cells in each area. A multimodal distribution can be observed with three distinct population of 

cells with low (<270 μm, red), medium (270-315 μm, yellow) and high (>315 μm, green) 

average total distances. B) Significance P-value heat map of non-parametric Kruskal-Wallis 

ANOVA test performed by pairs of areas. The total distance covered by cells in each one of the 

areas has been compared with the results obtained for cells in all the other areas. The indices 

on top and left of each table indicate which areas are compared, following the numbering of 

Table1. The colour of the squared bins at the intersection between areas indicates whether or 

not the difference is statistically significant between the two analysed areas. Green bins with 

borders denote pairs of areas where p < 0.05, (meaningful statistical difference). Yellow and 

red bins denote no statistically significant difference in cell movement. Only areas from the 

same row or column of Table 1 are presented, as only these bins share at least one characteristic. 

A complete heat map is given in Figure S3 of the SI. Table S2 of SI shows the number of cells 

studied in each of the 80 areas. 

 

 

The shortest distances were travelled by cells seeded over plain areas with constant FGF-IB 

concentrations. Indeed, these cells showed smaller migration distances than cells seeded on 

areas with gradients, especially when the gradients are steep. On the other hand, cell movement 

was further stimulated in narrow areas, tendency that was more pronounced in the FGF-IB 

gradient areas than in the plain ones.  

Figure 4B shows that cell motility on areas with pattered gradients (areas X1-X6;) are 

significantly different than cells moving over areas with constant concentration (areas X7-X10); 

i.e. area 17 represent a cell behavior which is significantly different from area 11. The effect is 

even more pronounced for broad areas with low concentrations (areas 4X and 5X); i.e. area 53 

represent a cell behavior which is significantly different from area 58. Figure 4B it also shows 

that gradient steepness’ and the width of the areas does not influence cell motility when the 

total concentration of FGF-IB’s is very high (areas 7X, 8X and X0); i.e. area 72 represent a cell 

behavior which is significantly different from area 80. It is worth mentioning that differences 

in motility are also statistically different for broad vs narrow areas (especially for areas X3); i.e 

area 13 represent a cell behavior which is significantly different from area 43.  

This comparison can be easily visualized when the average values for each column or row are 

all juxtaposed (Figure 5). Thus, steeper gradients, and narrower areas promote larger cell 
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movements in a statistically significant manner. In contrast, high absolute concentrations of 

FGF-IBs on broad areas seem not to have impact on motility patterns in a statistically significant 

way. Thus, we can conclude that it is not the quantity of movement cues that trigger the 

significant differences, but their distribution on the micrometre scale. 

Specifically, Figure 5C depicts that there is statistical difference in cell motility over gradient 

vs. plain areas, especially for steeper gradients (h1). The slope has also impact on cell total 

distance (h1 vs. h2) for wider distances. It can also be observed that there is no significant 

difference between cell movement within plane areas or areas with calm slopes but steeper 

slopes do present statistically significant impact on cell behaviour. 

Figure 5D show that there is statistically significant difference for cells moving within narrow 

areas in contrast to the broad ones where the absolute concentration does not have statistically 

significant impact on cell motility. 

All above suggest that steep changes in cell environment (i.e. the presence of steep gradients, 

the presence of “corrals” in form of narrow areas) have more impact on cell motility than the 

absolute FGF-IBs concentration. Thus, it is not the quantity of movement cues that trigger this 

change, but their distribution on the micrometre scale. 

 

In the next step, the averaged effective distance values travelled by cells, (i.e., the distance 

between the initial and the final cell position during the time-lapse imaging, see Figure S7), for 

each area were analyzed and results summarized on Table 3. 

A) B) 
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C) D) 

 

Figure 5. Summary of the averaged total distances from Table 1 for a total number of n = 1462 

cells. A) Histograms of total distances of cells where areas of the same columns (i.e. 1, 11, 21, 

…, 81) have been lumped into one population. Error bars indicate standard errors. B) 

Histograms of total distances of cells where areas of the same rows (i.e. 1, 2, 3, …, 10) have 

been lumped into one population. Error bars indicate standard errors. C) and D) present the 

statistical significance of total distances travelled by cells in each column or row, respectively. 

Populations were compared with each other using a pairwise Kruskall-Wallis ANOVA 

statistical analysis. Green and orange colour denote populations’ behaviour which are 

statistically different (p<0.05) or not, respectively.  

 

 

 

 

 

 

 

 

Table 3. Values of averaged effective distance (D̅eff in m) travelled by cells in each area. The 

position of values in this table corresponds to the layout presented in Table 1. The color code 

used is for group cells with low (<69 mm, in yellow), medium (60-90 mm, in orange) and high 

(>90mm, in green) average effective distances and they are in accordance with the color scale 

used in Figure 4 assuming the same variation of both populations. 
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The directionality of cell migration was also analyzed on the different patterned areas. Thus, 

the angle of cell movement, αi, was defined as the angle between a reference horizontal line –

parallel to direction of the patterning- and the line passing through the cell position on two 

consecutive confocal images (see Figure S7 in the SI). Similarly, the effective angle, αeffective, 

is given by the angle formed between the reference line and a line defined by the initial and 

final cell position (see Figure S7 in the SI). The superposition of plots of partially pooled data 

from rows illustrated the preference of cells to move along the direction of narrow areas, given 

that a spindle-like distribution were obtained for cells in comparison with the random 

distributions found on broader areas (see Figures 6 and S7 and S8 in SI). However, the average 

distributions for columns with high and low slope gradients as well as in the plain areas were 

similar. Thus, the presence or absence of gradients does not seem to influence cell directionality 

(Figures 6 and S7 and S8 in SI).  
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Figure 6. Momentary angular distributions calculated from the initial and final positions of 

cells during a 5 h cell migration experiment. Results were pooled for columns and rows and 

normalized with respect to cell number in each area (Figure S4 and Table S1 of SI). 

 

To study how cells move inside the areas with FGF-IB concentration gradients we first 

determined the average local FGF-IB concentrations in all areas of the patterned substrate 

whose values are given Table S1 and Figure S2 of SI. Then, using time-lapse imaging we 

analyzed the movements of individual cells on each area along time finding that the migration 

did not show any clear trend, as exemplified for a few representative cases in Figure S10 of SI. 

Thus, we decided to develop a method to analyze the data using the “probability heat maps” 

which provide information on the preferences of cells moving inside areas containing FGF-IB 

concentrations. To describe such “probability heat maps” we used the following notation in 

which the concentration of FGF-IBs around the cells at an initial position was denoted as xi, 
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whereas the number of cells that moved from xi to xj, their final destination, was denoted as ni,j. 

The latter value was divided by the total number of cells Ni (see Table S2 and S5 in the SI) at 

the studied area giving ni,j/Ni which describes the probability that a cell would move from a 

position with an FGF-IB concentration of xi to another of xj. Thus, a plot of ni,j/Ni for every 

final concentration xj represents the probability to find cells at the final  positions, i.e. to those 

positions where cells prefer to move starting from an initial point i with a given FGF-IB 

concentration of xi (see Figure S11 in the SI). This analysis highlights the preferences of cells 

moving within the patterned areas with different FGF-IB concentrations; thus allowing us to 

determine whether cells tend to move from low to high FGF-IB concentrations or vice versa. 

The resulting “probability heat maps” obtained for each area resembled tilted ovals, whose 

length (long axis along the diagonal) correspond to the range of FGF-IB concentrations present 

in each patterned area. If these areas had a gradient, cells could move within regions of both 

high and low FGF-IB concentrations and therefore the oval obtained was elongated along the 

diagonal. Conversely, the ovals of the plain areas are small, indicating that all concentrations 

were found within a narrow range, as expected. The width of an oval (short axis perpendicular 

to the diagonal) corresponds to the steepness of the gradients presented in the different areas. 

Figure 7 presents a matrix of “probability heat maps” for all individual areas as well as their 

partial and total averages obtained for columns and rows, thus permitting us to visualize the 

movement of all analyzed cells at all times. 

The main key finding is that the highest probabilities were obtained around the diagonal of each 

heat map, indicating that cells mostly move between points with very similar FGF-IB 

concentrations. However, every pixel outside the diagonal evidences that there were cells that 

changed their position between points of different FGF-IB concentrations, i.e. the farther the 

pixel from the diagonal, the larger the absolute difference between the FGF-IB concentration 

around the cell in the initial and final points. However, one of the key findings of the heat maps 

obtained is based on the symmetry of the matrix with respect to the diagonal which suggests 
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that the probability of a cell to move from a high to a low FGF-IB concentration area is the 

same than moving in the opposite direction.  

 

 
 

Figure 7. Matrix of “probability heat maps” for every area as well as the partial and total 

averages for columns and rows. Each heat map represents concentration range from 70,000 to 

600,000 IBs/mm2. 

 

To confirm or reject the latter point another kind of matrix, named as “preference heat maps”, 

were prepared (see Figure S12 in the SI). In this representation, horizontal and vertical axis 

represented the initial xi and the resulting xj concentrations, respectively, as previously shown. 

However pixels held values of (ni,j/Ni)-(nj,i/Nj) in order to compare the probability of cells 

shifting their position from a concentration of xi to xj with the probability of moving in the 

opposite direction, (i.e., from xj to xi, Figure S12 in the SI). Figure 8 shows the matrix of 
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“preference heat maps” of all individual areas as well as their partial and total averaged values 

obtained for columns and rows. 

 
 

Figure 8. Matrix of “preference heat maps” for every area as well as partial and total averages 

for columns and rows. Each heat map represents concentration range from 70,000 to 600,000 

IBs/mm2. 

 

Thus, the interpretation of the oval shapes is identical to the previous probability heat maps. 

However, in this case the color code denotes cell preferences. Given that these plots are 

diagonally anti-symmetric, the data represented above the diagonal is a mirror image of the data 

below it with reversed colors. The following analysis was therefore carried out using only one 

side of the ovals, specifically the one below the diagonal. In this part, green represented the 

preference of cells to move towards higher FGF-IB concentrations, red showed the preference 

of cells to move towards lower FGF-IB concentrations, yellow indicated that cells only present 

mild preferences, and black indicated no cell preferences or no data. A close examination of the 
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“preference heat maps” revealed that the coloring of the ovals followed a certain general 

simplified pattern shown in Figure S13 in the SI. For low initial FGF-IB concentrations, there 

is a group of green pixels indicating that cells prefer to move towards higher concentrations. 

Moreover, the absence of colored pixels in the diagonal indicates that cells do not have a 

tendency to move towards areas of different concentrations. Alternatively, cells that are seeded 

on high initial FGF-IB concentrations preferred to move to lower concentrations, as shown by 

the red pixels close to the diagonal. These results are therefore suggesting that there is a 

preferred FGF-IB concentration that cells migrate until reached. This concentration is between 

160,000 and 210,000 IBs/mm2.  Thus, 3T3 cells that were seeded on higher or lower 

concentrations of FGF-IBs than the optimal one, were migrating and ended up on areas within 

this range. Whereas cells that were already seeded over this optimal concentration spent the 

majority of their time in this range of concentrations. 

Conversely, no clear influence of the steepness of the gradient on cell directionality was 

detected. These results are in agreement with our previous data, which showed that cells were 

freely moving inside corrals formed by IB-deposited surfaces surrounded by walls consisting 

of extremely high FGF-IB concentrations (500,000 particles/mm2).50 

 

3. CONCLUSIONS 

In conclusion, we studied cell motility of fibroblasts in a high throughput manner, using a 

substrate that contained up to 80 different areas regarding structural and compositional 

characteristics, which was produced with a recently described method based on an evaporation-

assisted methodology.50 From such a study, we observed that gradient concentrations of 

surface-bound IBs stimulate total cell movement, but do not affect total net distances travelled 

by the cells. However, cells tend to move towards areas with an optimal IB concentration, i.e. 

cells seeded on high FGF-IB concentrations migrated to lower concentrations, whereas cells 

deposited on areas with low FGF-IB concentrations moved to areas with higher ones till 
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reaching an optimal concentration that range between 160,000 and 210,000 IBs/mm2. 

Additionally, cells moved more when growing on narrower than broader areas, but the 

steepness of the gradient did not have a clear influence on the motility. This work demonstrates 

the use of a high-throughput method for a proper surface decoration with protein nanoparticles, 

such as FGF-IBs, which can be used to enhance and guide cell motility, confirming that FGF-

IBs and its processing on surfaces is a promising biomaterial and platform to perform further 

experiments with primary cells towards applications in regenerative medicine as well as for 

tissue engineering. 

 

 

4. MATERIALS AND METHODS 

Preparation of Phosphate Buffered Saline (PBS) Solution. PBS is prepared by dissolving NaCl 

(5.494 g), Na2HPO4 (0.44 g), and NaH2PO (0.108 g) in MilliQ water (1 l). Sodium hydroxide 

was used to obtain pH 7.4. Solution was diluted 10 times before use.  

Bacterial Cells, Plasmids, and IB Production. The IBs are obtained and purified as previously 

described.43 In summary, IBs were produced in the E. coli strain JGT20 (dnak756 thr::Tn10), a 

derivative of the pseudo-wild type MC4100. Bacterial cells were transformed with plasmid 

pTVP1GFP (ApR), coding an expressible green fluorescent protein (GFP) fusion. At its amino 

terminus, the fluorescent protein accommodates VP1, a hydrophobic structural protein from 

foot and-mouth disease virus. IBs formed by FGF were instead synthetized in E. 

coli BL21(DE3), from the plasmid vector pET29c- (þ)-hFGF-2. In both cases, gene expression 

was induced by culturing cells in shake flasks in LB medium and by adding 1 mM IPTG at 37 

ºC (VP1GFP) and 25 ºC (FGF) at an OD550 of 0.5. Samples were taken 3 h after IPTG addition. 

  

IB Purification. Lysozyme and PMSF at 1 mg/mL and 0.4 mM respectively were added to 

harvested bacterial cells, that were incubated for 2 h at 37 ºC. These mixtures were frozen at -
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80 ºC to release IBs that were further washed in Triton X-100 1% (v/v) for 1 h at room 

temperature. After that, samples were frozen again at -80 ºC prior a secondary washing step 

with Nonidet P-40 0.03% (v/v) for 1 h at 4 ºC. Then, DNA was removed from IBs with 1 μg/mL 

DNase in 1 mM MgSO4 for 1 h at 37 ºC. Finally, IB preparations were frozen/thawed until no 

viable bacteria were observed.  

 

Surface Modification. The surface to be patterned is modified to enhance IB deposition. A glass 

slide is cleaned using sonications in ethanol, utrapure water, and again ethanol. Then, the slides 

were exposed to vapors of hexamethyldisilazane (Sigma-Aldrich) for 12 h to obtain a 

hydrophobic surface.  

Preparation and Characterization of IB Colloidal Suspensions.[28] Production and purification 

of GFP- and FGF-derived IBs was performed as previously described.[24b] IB aliquots were 

resuspended in Milli-Q water. The suspensions were sonicated for 10 min and left for 48 h at 

4 °C. Then, the suspension was harvested discriminating the deposited sediment which consist 

of larger aggregates. Then, the storage suspension is diluted with Milli-Q water reaching the 

needed particle concentration. Before using, the suspensions were sonicated and degased for 10 

min with argon. Nanoparticle tracking analysis (LM20 unit, Malvern Instruments) has been 

used to determine the concentration of particles (240 μg mL− 1 or otherwise stated). 

Device for Surface-Bound Gradient Deposition of pNPs from Colloidal Suspensions. The 

custom-made device has been designed to maximize the patterned area and minimize the 

volume of suspension needed (ca. 10 mL). Thus, a rectangular deposition cuvette with a very 

narrow cross section was used. Specifically, as previously described elsewhere, [28] the device 

consists of two planar polystyrene plates separated by a custom U-shaped polydimethylsiloxane 

(PDMS) seal attached to a metallic reservoir. This reservoir will be used to keep constant the 

temperature of the system. When compressed, a cuvette is obtained with dimensions big enough 

to introduce a cover glass of 50 × 25 mm. A hot plate is use during the deposition protocol to 
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keep homogeneous and constant de temperature (60 ± 3 °C). The temperature is keept higher 

than room T in order to increase the evaporation of the water but not enough to high to inactivate 

the IBs, as proven by the fluorescence images showing bright green fluorescence coming from 

the GFP-IBs. The top of the cuvette allows the access of the tube leading to the peristaltic pump 

that suction the water allowing to control the level of the colloidal suspension and thereby the 

contact line with the substrate to be patterned. The designed patterns are governed by the 

programmable peristaltic pump (Watson Marlow 403U/VM2) and its software (FIALab 

Instruments).  

Nanoparticle Tracking Analysis (NTA): To quantify the FGF-IB concentration, 1.0 mL of 

aqueous suspensions were prepared by diluting the working suspensions (1:1000). Samples 

were measured at 298K with a LM20 unit (Nanosight, Malvern Instruments). 

Cell cultures: NIH/3T3 cells (Sigma Aldrich) were routinely cultured in Dulbecco’s modified 

Eagle medium (DMEM) supplemented with 2mM L-glutamine and 10% FBS (v/v) at 37ºC and 

10% CO2 in a humidified incubator. 24 hours prior to cell seeding, the medium was switched 

to a low serum DMNM containing 1% FBS (v/v). Cells were then seeded at a concentration of 

10000 cells/cm2.  

Time lapse imaging: The complete cell medium in a cultivation flask was changed to a cell 

medium with a 1% of serum 24 h prior to cell seeding over the sample in order to sensitize cells 

to the FGF content. In order to obtain confocal microscopy images, samples were mounted to 

an Attofluor cell chamber (A7816, Invitrogen). A Leica TCS SP5 AOBS spectral confocal 

microscope (Leica Microsystems) with a Plan-Apochromat 63x, 1.4 NA lens was used. GFP-

IBs were excited with a 488 nm argon laser beam and detected at 500-537 nm. All the data that 

characterise cell positions originated from series of raw phase-contrast images captured every 

30 min for 22 h.  

Image treatment: Image treatment was carried out using ImageJ and its MTrackJ plugin 

(http://www.imagescience.org/meijering/software/mtrackj/). First, images were enhanced and 
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then cell positions were extracted from the time series. The average value of GFP fluorescence 

intensity was calculated for a circular area of ~2500 μm2 around the position of cells. This value 

enabled to calculate the average FGF-IB concentration (and total concentration of IBs) under 

the cells and in their immediate surroundings.  

Cell tracking: Cell, positions were captured using ImageJ ManulaTracking plugin. All the data 

that characterise cell positions originated from series of raw phase-contrast images captured 

every 30 min for 22 h. 

Data treatment: Cell positions and corresponding average IB’s concentration were extracted to 

MS Excel. Only cells that could be followed for at least 30 time points within one particular 

area, i.e. a period of 14.5 hours, and cells that moved a total distance over 100 μm were taken 

into account to perform the statistical analysis. Thus, cells that migrated from one area to 

another and other possible artifacts, (i.e., dead cells or impurities were excluded. Based on cell’s 

position and image timestamp, speeds and orientations were calculated. Averages, standard 

errors, p-values from non-parametric Kruskal Wallis tests and other values that served as basis 

for further analyses and visualizations were calculated in MS Excel. 
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