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ON TWISTS OF SMOOTH PLANE CURVES

ESLAM BADR, FRANCESC BARS, AND ELISA LORENZO

To Pilar Bayer for her 70th birthday

Abstract. Given a smooth curve defined over a field k that admits a non-singular plane model over k, a fixed

separable closure of k, it does not necessarily have a non-singular plane model defined over the field k. We

determine under which conditions this happens and we show an example of such phenomenon. Now, even

assuming that such a smooth plane model exists, we wonder about the existence of non-singular plane models

over k for its twists. We characterize twists possessing such models and use such characterization to improve,

for the particular case of smooth plane curves, the algorithm to compute twists of non-hyperelliptic curves wrote

recently down by the third author. We also show an example of a twist not admitting such non-singular plane

model. As a consequence, we get explicit equations for a non-trivial Brauer-Severi surface. Finally, we obtain

a theoretical result to compute all the twists of smooth plane curves with cyclic automorphism group having a

k-model whose automorphism group is generated by a diagonal matrix. Some examples are also provided.

1. Introduction

Let C be a smooth curve over k, i.e. C a projective non-singular and geometrically irreducible curve defined

over a field k. Denote by C the curve C ×k k where k is a fixed separable closure of k, and by Aut(C) its

automorphism group. We assume, once and for all, that C is non-hyperelliptic of genus g ≥ 3. With the method

exposed in [16] we can compute the twists of C; i.e. a smooth curve C ′ over k with a k-isomorphism ϕ : C → C ′.

The set of twists of C modulo k-isomorphism, denoted by Twistk(C), is in one to one correspondence with the

first Galois cohomology set H1(Gal(k/k),Aut(C)). Given a cocycle ξ ∈ H1(Gal(k/k),Aut(C)), the idea behind

computing equations for the twist, is finding a Gal(k/k)-modulo isomorphism between the subgroup generated

by the image of ξ in Aut(C) with a subgroup of a general linear group GLn(k). After that, by making explicit

Hilbert’s 90 Theorem, we can compute an isomorphism ϕ : C → C ′ over k such that ξτ = ϕ−1 ·τ ϕ for all

τ of the Galois group Gal(k/k), and hence, obtain equations for the twist. For non-hyperelliptic curves, see

a description in [15], the canonical model gives a natural inclusion Aut(C) ↪→ PGLg(k) and with the natural

representation of Aut(C) on the regular differential forms, Aut(C) will live inside a general linear group (then

so does the subgroup generated by the image of a 1-cocycle in PGLg(k) provided by the canonical model),

Now consider a smooth plane curve C over k, i.e. C is a smooth curve over k that admits a non-singular

plane model over k. Therefore, C has a g2d complete linear series which defines a map Υ : C ↪→ P2
k
, where P2

k
is

the 2-th projective space over k, and moreover Image(Υ) is defined by the zeroes of a degree d polynomial in

X,Y, Z with coefficients in k. Denote such a model by FC(X,Y, Z) = 0, in particular g = 1
2 (d− 1)(d− 2). It is

well-known that the complete linear series g2d is unique up to conjugation in PGL3(k), the automorphism group

of P2
k
, see [10, Lemma 11.28]. Therefore, any k-model of C is defined by FPC(X,Y, Z) := F (P (X,Y, Z)) = 0

for some P ∈ PGL3(k). Furthermore, a plane model of C is defined over k if there exists a Q ∈ PGL3(k) such

that FQC(X,Y, Z)∈ k[X,Y, Z]. The group Aut(C) is isomorphic via Υ to the automorphism group Aut(FPC)

of any of its k-models, and all these groups are conjugate in PGL3(k). We say that C admits a smooth plane

model over k if it is k-isomorphic to a smooth plane model defined over k.

The aim of this paper is to make a study of the twists for smooth plane curves by considering the embedding

Aut(C) ↪→ PGL3(k) instead the one given by the canonical model. The embedding is of Gal(k/k)-groups if C

admits a smooth plane model over k.
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This approach leads also to two natural questions: the first one, given C a smooth plane curve defined over

a field k, does it admit a smooth plane model defined over the base field k; and secondly, if the answer is yes,

does every twist of C over k also have a smooth plane model defined over k?

For both questions the answer is no in general, it does not. We obtain general results for the curves and the

twists for which the above questions always have an affirmative answer, and also we show different examples

concerning the negative general answer. Interestingly, in the way to get these examples, we need to handle with

non-trivial Brauer-Severi surfaces, and we are able to compute explicit equations of a non-trivial one.

Moreover, for smooth plane curves defined over k with a cyclic automorphism group generated by a diagonal

matrix, we obtain a general theoretical result to obtain all its twists. Families of such smooth plane curves have

already been studied by the first two authors in [2,3]. These families have genus arbitrarily big, so the method

in [16] does not work for them.

1.1. Outline. The structure of this paper is as follows. In Section 2, we introduce the background and basic

definition about Galois cohomology and Brauer-Severi varieties needed in the sequel. We devote Section 3 to

deal with the question on the field where there exists a non-singular model for a smooth plane curve C defined

over k. We prove that if the degree of a non-singular plane model of C is coprime with 3 or C has a k-point

or the 3-torsion of the Brauer group of k is trivial (in particular if k is a finite field), then the curve C admits

a smooth plane model over k: Theorem 3.6 and Corollaries 3.2, 3.3. Moreover, we prove that a smooth plane

model of C always exists in a finite field extension of k of degree dividing 3, see Theorem 3.5. We end Section

3 with an explicit example of a smooth plane curve defined over Q and not admitting a smooth plane model

over Q; however, we construct a smooth plane model over a degree 3 extension of Q.

In Section 4, we assume that C is a smooth plane curve defined over k having a smooth plane model over

k. We obtain Theorem 4.1 characterizing the twists of C having also a smooth plane model over k. Moreover,

we construct a family of examples over k = Q where a twist of C over Q does not admit a non-singular plane

model over Q (this construction is not explicit because we do not provide equations of such twists).

We dedicate Section 5 to detail an explicit example of a smooth plane curve defined over the field Q(ζ3)

having a twist that does not possess such a model in the field Q(ζ3), where ζ3 is a primitive 3rd root of unity.

Interestingly, we find the already mentioned explicit equations for a non-trivial Brauer-Severi variety.

In Section 6, we study the twists for smooth plane curve C over k with a non-singular plane model over k,

FPC ∈ k[X,Y, Z] such that Aut(C) is a cyclic group. We prove that if Aut(FPC) is represented in PGL3(k)

by a diagonal matrix, then all the twists are diagonal, i.e. of the form FPDC(X,Y, Z) = 0 with D a diagonal

matrix, Theorem 6.2. We apply such result to a family of curves (one for each degree) where the techniques

of [16] does not apply if the degree is too big, see Theorems 6.4, 6.5. In the case that C does not admit such

a model where Aut(FPC) is cyclic diagonal in PGL3(k), we also construct an example where not all the twists

are given by a diagonal twist.

Finally, we apply the algorithm in [16] to the simplest degree 5 example in section 6, this shows the improve-

ments of Theorem 6.4 and Theorem 6.2 to compute the twists.

1.2. Notation and conventions. We set the following notations, to be used throughout.

By k we denote a field, k is a separable closure of k and L is an extension of k inside k. By ζn we always

mean a fixed primitive n-th root of unity inside k when the characteristic of k is coprime with n. We write

Gal(L/k) for the Galois group of L/k. All the Galois groups in this paper, when acting on sets, we denote

it by left exponentiation. We write Hi(Gal(L/k), N) with i ∈ {0, 1} for the Galois cohomology set of a

Gal(L/k)-group N . In the particular case L = k, we also denote Gk instead of Gal(k/k) and H1(k,N) instead

of H1(Gk, N). Br(k) denotes the Brauer group of k consisting of the central simple algebras over k modulo

k-algebras isomorphism.

When we work with groups, we use the SmallGroup Library-GAP [7]. Where the group < N, r > or

GAP (N, r) denotes the group of order N that appears in the r-th position in such library. By ID(G), we mean

the corresponding GAP notation for the group G. For cyclic groups, we use the standard notation Z/nZ.
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By smooth curve over k we mean a projective, non-singular and geometrically irreducible curve defined over

k, and usually we denote it by C or Ck. As usual C corresponds to C ×k k, (the curve C over k), Aut(C) the

automorphism group, and g(C) denotes the genus of the curve, and once and for all we assume that g(C) ≥ 2.

We denote by Pr
k the r-th projective space over the field k.

By a smooth plane curve C over k we mean a smooth curve over k, which admits a non-singular plane model

FC(X,Y, Z) = 0 over k of degree d ≥ 4. We denote by FPC(X,Y, Z) = 0 with P ∈ PGL3(k) another non-

singular model, where FPC(X,Y, Z) := FC(P (X,Y, Z)). By Aut(FPC) we mean the automorphism group of the

curve FPC(X,Y, Z) = 0 in P2
k
which is a finite subgroup of PGL3(k). We have that Aut(FPC) = P−1Aut(FC)P

as subgroups of PGL3(k).

A linear transformation A = (ai,j) of P2 is also written as [a1,1X + a1,2Y + a1,3Z : a2,1X + a2,2Y + a2,3Z :

a3,1X + a3,2Y + a3,3Z].

Given C a smooth plane curve over k, we say that C admits a non-singular plane model over L if there exists

P ∈ PGL3(k) such that FPC(X,Y, Z) ∈ L[X,Y, Z], and C and FPC(X,Y, Z) = 0 are isomorphic over L.

By an abuse of language, if a smooth plane curve C over k admits a non-singular plane model over k given

by FPC = 0, we identify C with the plane model FPC = 0 and we identify Aut(C) with Aut(FPC) as a fixed

finite subgroup of PGL3(k).

Acknowledgments. The authors would like to thank Xavier Xarles for his suggestions and comments con-

cerning our work and to clarify different aspects of his work in [19]. We are very happy also to thank René

Pannekoek for e-mailing us his Master thesis [18] and comments on Brauer-Severi surfaces related to his Master

thesis. Finally, we thank Christophe Ritzenthaler who pointed us different comments concerning smooth plane

curves over finite fields an hyperelliptic curves.

2. Galois cohomology and Brauer-Severi varieties

In this section, we state different results about Galois cohomology to be used through the paper (see a general

approach in [20, Chapter III]).

Definition 2.1. Given C a smooth curve over k. A twist of C over k is a smooth curve C ′ defined over k such

that C ∼=k C ′. Given two twists of C over k, namely C1, C2, we say that they are equivalent if there exist an

isomorphism C1
∼= C2 defined over k. The set of twists of C over k modulo the above equivalence is denoted by

Twistk(C).

The following result is well-known.

Theorem 2.2. There exists a bijection between the sets Twistk(C) and H1(k,Aut(C)).

Recall that the above bijection [C ′] 7→ [ξ] sends a twist φ : C → C ′ to the cocycle ξ : τ 7→ ξτ := φ−1 · τφ ∈
Aut(C) where τ ∈ Gk.

Lemma 2.3. Let C be a curve over k admitting a plane model FC = 0 over k̄. Let us assume that there exists

a matrix P ∈ PGL3(k) with FPC(X,Y, Z) ∈ k[X,Y, Z]. Then, there exists a twist C ′ of C over k given by the

non-singular plane model FPC = 0 over k. Furthermore, we have a map Σ′ : Twistk(C)→ H1(k,PGL3(k)).

Proof. Let h : C → FPC be a k- isomorphism, and consider the 1-cocycle σ 7→ h−1 ·σ (h) ∈ Aut(C) in

H1(k,Aut(C)) = Twistk(C). Then there exists a twist λ : C → C ′ of C over k such that h−1 · σh = λ−1 · σλ
for all σ ∈ Gk. Therefore λ ◦ h−1 : FPC → C ′ is an isomorphism defined over k.

Now we can identify Aut(C ′) with Aut(FPC) as Gk-groups. Since Aut(FPC) has an injective representation

inside Aut(P2
k
) = PGL3(k) as a Gk-group, we get a natural map in Galois cohomology

Σ′ : Twistk(C) = H1(k,Aut(C ′))→ H1(k, PGL3(k)).

�

Definition 2.4. A Brauer-Severi variety D over k of dimension r is a smooth projective variety such that the

variety D ⊗k k over k is isomorphic to the projective space Pr
k
of dimension r over k.
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The following result is also well-known [12, Corollary 4.7]:

Lemma 2.5. The Brauer-Severi varieties over k of dimension r, up to k-isomorphism, are in bijection with

H1(Gal(k/k), PGLr+1(k)) = H1(Gal(k/k), Autk(P
r
k
)).

Denote by Azkn the set of all isomorphic classes of central simple algebras A of dimension n2 over k (they

split in a separable extension of degree n of k).

The next result is Corollary 3.8 in [12].

Theorem 2.6. Let k be a field, then there exists a bijection between the following sets

Azkn ←→ H1(Gk,PGLn(k)).

For completeness, we recall the map defining the above bijection: given A ∈ Azkn, we always get a Galois

extension L/k of degree n and an isomorphism f : A ×k L → Mn(L) such that there exists a matrix Aτ ∈
Aut(Mn(L)) = PGLn(L) for every τ ∈ Gal(L/k) that makes the following diagram commutative:

A×k L →f Mn(L)

τ ↑ ↑ Aτ ◦ τ
A×k L →f Mn(L)

The map τ 7→ Aτ defines an element ofH1(Gal(L/k),PGLn(L)), and we obtain an element inH1(k,PGLn(k))

through the inflation map.

Definition 2.7. Let L/k be a cyclic extension of degree n with Gal(L/k) = ⟨σ⟩, and fix an isomorphism

χ : Gal(L/k) → Z/nZ. Given a ∈ k∗, we consider (a, χ), the n-dimensional vector space over L with basis

1, e, . . . , en−1, i.e.

(χ, a) := ⊕1≤i≤n−1Le
i,

where the multiplication rules are given by eλ = σ(λ)e for λ ∈ L and en = a. Such (χ, a) becomes a central

simple algebra of dimension n2 over k which splits in L (see [23, §2]), and is called a cyclic algebra of k.

Theorem 2.8. All the elements of Azk3 are cyclic algebras of the form (χ, a) as in Definition 2.7 with n = 3.

In particular, modulo isomorphism of k-algebras, (χ, a) ∈ Azk3 is the trivial k-algebra if and only if a is a norm

of L/k of an element of L. Moreover, the assignment

(χ, a) ∈ Azk3 7→ inf({Aτ}τ∈Gal(L/k)) ∈ H1(k,PGL3(k))

is given by an Aσ of the shape

 0 0 a

1 0 0

0 1 0

 . Here inf denotes the inflation map in Galois cohomology.

Proof. By definition, any central cyclic simple algebra of Azk3 can be expressed as described. Recall also that

the map f : A ⊗k L → M3(L) is given by f(λ ⊗ 1) = diag(λ, σ(λ), σ2(λ)) and f(e ⊗ 1) =

 0 0 a

1 0 0

0 1 0

. It is a

result of Wedderbum [25], that all elements of Azk3 corresponds to cyclic algebras. Moreover, it is well-known

that a cyclic algebra (χ, a) is trivial if and only if a is a norm of its splitting field.

The last statement concerning the 1-cocycle assignment follows by [23, Example 5.5], after defining first

the cocycle element in H1(Gal(L/k),PGL3(L)) and using [12, Lemma 3.7] for the inflation map in Galois

cohomology groups. �

Because the Brauer group of a finite field is trivial, and taking cohomology of the short exact sequence

1→ k
∗ → GLn(k)→ PGLn(k)→ 1, we mention:

Lemma 2.9. Let k be a finite field, then H1(Gk,PGLn(k)) = 1.



ON TWISTS OF SMOOTH PLANE CURVES 5

3. The field of definition of a non-singular plane model

In this section, we prove that if a smooth curve defined over k admits a non-singular plane model over k,

then it is always possible to find a non-singular plane model defined over an extension L/k of degree dividing

3. Moreover, for a particular field k or if the smooth plane model has degree coprime with 3, we prove that

we can always find a non-singular plane model defined over the base field k. We provide an example of a curve

defined over Q that does not admit a smooth plane model over Q, but that it does over a Galois extension of

Q of degree 3.

Roé and Xarles prove the following result in [19, Corollary 6].

Theorem 3.1 (Roé-Xarles). Let C be a smooth projective curve defined over k such that C has a non-singular

plane model. Let Υ : C ↪→ P2
k
be a morphism given by the uniqueness of the g2d-linear system over k, then there

exists a Brauer-Severi variety D (of dimension two) defined over k, together with a k-morphism g : C ↪→ D

such that g ⊗k k : C → P2
k
is equal to Υ.

From the above result, one obtain remarkable consequences.

Corollary 3.2. Let C be a smooth curve over k that admits a non-singular plane model. Assume that C has

a k-point, i.e. C(k) is not-empty. Then C admits a non-singular plane model over k.

Proof. By a Severi result, see [12, Prop.4.8], a Brauer-Severi variety over k of dimension n with a k-point is

isomorphic over k to Pn
k . By Theorem 3.1, the map g : Ck → D ∼= P2

k defined over k defines the non-singular

plane model of C over k. �

Corollary 3.3. Consider a field k such that Br(k)[3] is trivial, where Br(k)[3] denotes the 3-torsion of Br(k).

Then any smooth plane curve C over k, admits a non-singular plane model over k, and in particular any twist

of C over k admits also a non-singular plane model over k.

Proof. A non-trivial Brauer-Severi surface over k corresponds to a non-trivial 3-torsion element of Br(k), there-

fore is such group is empty, by Theorem 3.1 the gd2 -system factors through g : Ck ↪→ P2
k and all of them are

defined over k, so, they define a plane model of C over k. �

Remark 3.4. For a finite field k (see Lemma 2.9) or k = R, it is known that Br(k)[3] is trivial, therefore any

smooth plane curve over such fields admits always a non-singular plane model over k.

Theorem 3.5. Let C be a smooth plane curve defined over k, then it admits a non-singular plane model over

L such that [L : k] | 3, i.e. ∃P ∈ PGL3(k) such that FPC ∈ L[X,Y, Z] and such that C and FPC = 0 are

L-isomorphic.

Proof. From Theorem 3.1, we have a k-morphism of C to a Brauer-Severi surface D over k. By Theorem 2.6,

D corresponds to a central simple algebra over k of dimension 9 which splits (if is not the trivial algebra) in at

degree 3 Galois extension L of k, therefore D⊗kL corresponds to the trivial element in H1(Gal(k/L),PGL3(k)),

by theorem 2.6. Thus, D ⊗k L ∼= P2
L over L. We then obtain that

g ⊗k L : C ⊗k L ↪→ P2
L

are all defined over L, thus we have a non-singular plane model of C over L. Lastly, because all the non-singular

plane models of C over k are of the form FPC(X,Y, Z) = 0 for some P ∈ PGL3(k), we deduce the result. �

The next result is a particular case of an argument by Roé and Xarles in [19] following Châtelet [6].

Theorem 3.6. Let C be a smooth curve defined over k, such that admits a non-singular plane model of degree

d with d coprime with 3. Then C admits a non-singular plane model over k.

Proof. By the results of the previous section, Brauer-Severi surfaces over k corresponds to elements ofH1(k,PGL3(k)),

hence to the set of equivalence classes of central simple algebras of dimension 9 with a splitting field of degree

3 over k (thus, they are elements of the Brauer group Br(k) of the field k of order dividing 3).
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Moreover, if D is a Brauer-Severi surface over a field k, then its class [D] in the Brauer group Br(k) verifies

that in the exact sequence

Pic(D)→ Pic(D ⊗k k) ∼= Z→ Br(k),

the last map send 1 to [D], and hence the image of some generator of Pic(D) is equal to m, where m is the order

of [D]. Consequently, m divides 3, as the order of [D] does. Now, if C is a curve over k in Pic(D) such that C

has a non-singular plane model of degree d, then the image of C in Pic(B ⊗k k) ∼= Z is equal to the degree d.

Therefore, if d is coprime with 3, we thus get m = 1, and D is the projective plane P2
k (see [19, Theorem 13] for

a more general statement on hypersurfaces in Brauer-Severi varieties).

�

Corollary 3.7. Let C be a smooth curve defined over k which admits a non-singular plane model over k of

degree d, coprime with 3. Then, every twist C ′ ∈ Twistk(C) admits a non-singular plane model over k.

Proof. It follows, by our assumption, that every twist of C over k admits a non-singular plane model over k of

degree d, coprime with 3. Hence, non-singular plane models over k exist for twists of C over k, by Theorem 3.6.

�

3.1. An example of a smooth plane curve over Q without a non-singular plane model over Q. Let

us consider Qf the splitting field of the polynomial f(x) = x3+12x2−64. It is an irreducible polynomial and the

discriminant of f is (2632)2, then Gal(Qf/Q) ≃ Z/3Z, moreover by a computation in SAGE, the discriminant

of the field Qf is a power of 3, and the prime 2 becomes inert in Qf .

Let us denote the roots of f by a, b, c in a fixed algebraic closure of Q, and let us call σ the element in the

Galois group that acts by sending a→ b→ c.

Proposition 3.8. The smooth plane curve over Qf

C : 64x6 + aby6 + az6 + 8x3y3 +
ab

8
y3z3 + az3x3 = 0,

has Q as a field of definition, but it does not admit a plane non-singular model over Q.

Proof. The matrix

ϕ =

 0 0 2

1 0 0

0 1 0


defines an isomorphism ϕ : σC → C. This isomorphism ϕ satisfies the Weil cocycle condition [26] (ϕσ3 = ϕ3

σ =

1), we therefore obtain that the curve is defined over Q, and that there exists an isomorphism φ0 : CQ → C

where CQ is a rational model such that ϕ = φ0
σφ−1

0 ∈ PGL3(Q). The assignation ϕτ := φ0
τφ−1

0 defines an

element of H1(Gal(Qf/Q),PGL3(Qf )), by Theorem 2.8, this cohomology element is non-trivial because 2 is not

a norm of an element of Qf (since 2 is inert in Qf ). Therefore φ0 is not given by an element of PGL3(Qf ), or

of PGL3(Q) because the cohomology class by the inflation map is neither trivial. Therefore the curve C over

Q does not admits a non-singular plane model over Q (because if admitted a non-singular plane model over

Q, such model would be of the form FPQC(X,Y, Z) = 0 for some P ∈ PGL3(k) where FQC(X,Y, Z) = 0 a

non-singular model over Qf , therefore φ0 would be representative by P ∈ PGL3(k) which is not). �

Remark 3.9. We have just seen an example of a curve defined over a field k not admitting a particular model (a

plane one) over the same field. For hyperelliptic models, we find such examples after Proposition 4.14 in [13].

In [11, chp. 5,7], there are also examples of hyperelliptic curves and smooth plane curves where the field of

moduli is not a field of definition, so, in particular, there are not such models defined over the fields of moduli.

4. On twists of plane models defined over k

In this section, we assume, once and for all, that C is a smooth curve defined over k with a non-singular plane

model also defined over k, i.e. we can assume that C is given by an equation FC = 0 with FC ∈ k[X,Y, Z]. We

provide results characterizing when all the twists of C admit a non-singular plane model over k, and we give a

(non-explicit) example of a family of such curves C having twists not admitting a plane model over k.
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Theorem 4.1. Let C be a curve defined over a field k with a plane non-singular model FC(X,Y, Z) = 0 defined

over k. Then there exists a natural map

Σ : H1(k,Aut(FC))→ H1(k,PGL3(k)),

defined by the inclusion Aut(FC) ⊆ PGL3(k) as Gk-groups. The kernel of Σ is the set of all twists of C that admit

a non-singular plane model over k. Moreover, any such a plane model is obtained through an automorphism of

P2, that is, it is of the form FMC(X,Y, Z) := FC(M(X,Y, Z)) ∈ k[X,Y, Z] for some M ∈ PGL3(k).

Proof. The map is clearly well-defined. If a twist C ′ admits a non-singular plane model FC′ over k, the

isomorphism from FC′ to FC is then given by an element M ∈ PGL3(k) (as any isomorphism between two non-

singular plane curves of degrees > 3 is given by a linear transformation in P2, [5]). Hence, the corresponding

1-cocycle σ 7→M σM−1 ∈ Aut(FC) becomes trivial in H1(k,PGL3(k)). Conversely, if a twist C ′ is mapped by

Σ to the trivial element in H1(k,PGL3(k)), then this twist is given by a k-isomorphism φ : FC → C ′ defined by

a matrix M ∈ PGL3(k) that trivializes the cocycle and such an M produces a non-singular plane model defined

over k. �

Remark 4.2. We can reinterpret the map Σ in Theorem 4.1 as the map that sends a twist C ′ to the Brauer-

Severi variety D in Theorem 3.1.

Remark 4.3. Consider a smooth plane curve C defined over k, and assume that it has degree d coprime with

3 or that Br(k)[3] is trivial, then Σ in Theorem 4.1 is the trivial map by Corollaries 3.7 and 3.3.

Remark 4.4. Theorem 4.1 can be used to improve the algorithm for computing twists for non-hyperelliptic

curves, see [16] or [15, Chp.1], for the special case of non-singular plane curves. The algorithm requires to

compute a canonical model in Pg−1, solutions to Galois embedding problems, and constructing equations for

the twists. The last step needs to see Aut(C) ⊆ GLg(k̄) via the canonical embedding and the action of the

automorphism group on the vector space of regular differentials, so, we can use an explicit version of Hilbert 90

Theorem.

Now, if Σ is trivial in Theorem 4.1, then we can work on P2 instead of on Pg. The exact sequence 1 →
k̄ → GL3(k̄) → PGL3(k̄) gives the exact, well-defined sequence 1 → H1(k̄,GL3(k̄)) → H1(k̄,PGL3(k̄)). Hence,

the trivial element of H1(k̄,PGL3(k̄)) corresponds to an element in H1(k̄,GL3(k̄)) and we can proceed again by

Hilbert 90 Theorem.

In the appendix, we use this improvement to compute the twists of some particular families of plane curves

over k having a cyclic diagonal automorphism group.

To finish we construct a family of smooth curves defined over Q that admits a non-singular plane model over

Q but some of its twists do not admit a non-singular plane model over Q. This construction is not explicit in

the sense that we do not construct the equations of the twist and the Brauer-Severi surface, see next section

for an explicit construction giving defining equations.

Theorem 4.5. Let p ≡ 3, 5 mod 7 be a prime number. Take a ∈ Q with a ̸= −10,±2,−1, 0. Consider the

family Cp,a of smooth plane curves over Q given by

Cp,a : X6 +
1

p2
Y 6 +

1

p4
Z6 +

a

p3
(p2X3Y 3 + pX3Z3 + Y 3Z3) = 0.

Then, there exists a twist C ′ ∈ TwistQ(Cp,a) which does not admit a non-singular plane model over Q.

We need some lemmas before proving Theorem 4.5.

Lemma 4.6. Consider the family of non-singular plane curves over Q defined by the equation

Ca : X6 + Y 6 + Z6 + a(X3Y 3 +X3Z3 + Y 3Z3) = 0,

with a ̸= −10,±2,−1, 0. The full automorphism group Aut(Ca) is generated by

S := [X; ζ3Y ; ζ23Z], U := [X;Y ; ζ3Z], T := [Z;X;Y ], and R := [Y ;X;Z].

In particular, it is isomorphic to GAP (54, 5).
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Proof. First, it is necessary that a ̸= ±2,−1 for non-singularity of Ca. Second, we use similar techniques and

notation to the ones used and developed in [2], in particular Aut(Ca) should be one of the groups in [2, Theorem

2]. We have ⟨R,S, T, U⟩ ≤ Aut(Ca), hence Aut(Ca) is not conjugate to a cyclic group, the Klein group PSL(2, 7),

the icosahedral group A5, the alternating group A6 (i.e. Ca is not K-equivalent to the Wiman sextic curve),

or the Hessian groups Hess∗ with ∗ ∈ {36, 72}. On the other hand, Ca is not a descendant of the degree 6

Klein curve K6, since 54 - |Aut(K6)|(= 63), also Aut(Ca) fixes no points in the projective plane P2, thus from

Mitchel’s classification that is explicitly explained in [2], Aut(Ca) fixes a triangle. Consequently, we need only

to worry about the following situations: Aut(Ca) is conjugate to the Hessian group Hess216 or to a subgroup

of Aut(F6) (i.e. Ca is a descendant of the Fermat curve of degree 6).

We note that there is a unique representation of the Hessian group Hess216 inside PGL3(K), up to conjuga-

tion. Thus, without loss of generality, we consider Hess216 = ⟨S, T, U, V ⟩ where

V =

 1 1 1

1 ζ3 ζ23
1 ζ23 ζ3

 .

Now, if Aut(Ca) = P−1 · ⟨S, T, U, V ⟩ · P for some P ∈ PGL3(k), then it is easy to check that it must be

Aut(Ca) = ⟨S, T, U, V ⟩. Moreover, if V ∈ Aut(Ca) then a = −10 (see the coefficient of X4Y Z), which is not

our case.

Let us now inspect the automorphism group of the Fermat curve of degree 6.

Aut(F6) = ⟨[ζ6X;Y ;Z], [X; ζ6Y ;Z], [Y ;Z;X], [X;Z;Y ] ⟩ ≃ GAP (216, 92),

where ζ6 is a primitive 6-th root of unity.

This group contains a unique group of order 54, up to conjugation. Hence, we may assume that Ca is a

descendant of the Fermat curve F6 : X6 + Y 6 + Z6 = 0 through a projective transformation P ∈ PGL3(K)

such that P−1⟨S,U, T,R⟩P = ⟨S,U, T,R⟩. Consequently, the transformed equation should be again of the form

CP : X6 + Y 6 +Z6 + a′(X3Y 3 +X3Z3 + Y 3Z3) for some a′ ∈ Q. Finally, elements of Aut(F6) are of the forms

[X; ζr6Y ; ζr
′

6 Z], [X; ζr
′

6 Z; ζr6Y ], [ζr6Y ;X; ζr6Z], [ζr
′

6 Z; ζr6Y ;X], [ζr6Y ; ζr
′

6 Z;X], [ζr
′

6 Z;X; ζr6Y ]

with r, r′ ∈ Z. Because a ̸= 0, then any of these forms belongs to Aut(CP ) only if 2|r, r′. This gives exactly

6(3× 3) = 54 automorphisms inside Aut(F6).

As a conclusion, the full automorphism group of Ca with a ̸= −10,±2,−1, 0 is of order 54 and is isomorphic

to GAP (54, 5). �

Remark 4.7. If the automorphism group of a smooth plane curve, as a subgroup of PGL3(k) contains a

subgroup conjugate to ⟨S,U, T,R⟩, then the degree d of the plane model is divisible by 3. This follows because

the non-singularity plus having the automorphism T implies that we must have one of the following cores 1:

(1) Xd + Y d + Zd,

(2) Xd−1Y +XZd−1 + Y d−1Z,

(3) Xd−1Z + Y Zd−1 +XY d−1

But also we have U as an automorphism of the plane model, therefore the plane model could only have the core

Xd + Y d + Zd with 3|d.

Lemma 4.8. Given a ̸= −10,±2,−1, 0 and α0 ∈ Q, the family of curves

Cα0,a : X6 +
1

α2
0

Y 6 +
1

α4
0

Z6 +
a

α3
0

(α2
0X

3Y 3 + α0X
3Z3 + Y 3Z3) = 0,

has automorphism group isomorphic to GAP (54, 5) with [Y,Z, α0X] ∈ Aut(Cα0,a), and the elements of Aut(Cα0,a)

are defined over the field Q(ζ3, 3
√
α0), where ζ3 is a primitive 3-rd root of unity.

1For a non-zero monomial cXiY jZk, its exponent is defined to be max{i, j, k}. For a homogeneous polynomial F , the core of

F is the sum of all terms of F with the greatest exponent.
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Proof. The curve Cα0,a and Ca of Lemma 4.6 are k-isomorphic through the projective transformation P =

diag(1;β;µ) where β3 = 1
α0

, and µ3 = 1
α2

0
. �

Proof. (of Theorem 4.5)

Consider the Galois extension M/Q with M = Q(cos(2π/7), ζ3, 3
√
p) where all the elements of Aut(Cp,a) are

defined. Let σ be a generator of the cyclic Galois group Gal(Q(cos(2π/7))/Q). We define a 1-cocycle in

Gal(M/Q) ∼= Gal(Q(cos(2π/7))/Q) × Gal(Q(ζ3, 3
√
p)/Q) to Aut(Cp,a) by mapping (σ, id) 7→ [Y,Z, pX] and

(id, τ) 7→ id. This defines an element of H1(M/Q, Aut(Cp,a)).

Consider its image by Σ inside H1(M/Q,PGL3(M)). We need to check that its image is not the trivial

element, and then the result is an immediate consequence by Theorem 4.1.

By Theorem 2.6, H1(M/Q,PGL3(M)) is the set of central simple algebras over Q of dimension 9 which splits

in a degree 3 field inside M . If we consider the image in H1(Gal(Q(cos(2π/7))/Q),PGL3(Q(cos(2π/7)))) then

it is non-trivial if and only if p is not a norm of the field extension Q(cos(2π/7))/Q.

By [24, Theorem 2.13], the ideal (p) is prime in Q(cos(2π/7))/Q, therefore p is not a norm of an element

of Q(cos(2π/7)). Now H1(M/Q,PGL3(M)) is the union of the above central simple algebras over Q running

through the subfields F ⊂ M of degree 3 over Q, see [12]. Thus the element is not trivial, which was to be

shown. �

5. Explicit non-plane model twists over k of a plane model defined over k

In this section, we explicitly construct a twist of a curve Ca over Q(ζ3) which does not admit a plane model

over Q(ζ3). In particular, we construct a non-trivial Brauer-Severi surface over Q(ζ3) giving its equations inside

P9
Q(ζ3)

.

Let us consider the curve Ca : X6 + Y 6 + Z6 + a(X3Y 3 + Y 3Z3 + Z3X3) = 0 defined over a number

field k ⊇ Q(ζ3) where ζ3 is a primitive third root of unity and a ∈ k. For a ̸= −10,−2,−1, 0, 2, it is a non-

hyperelliptic, non-singular plane curve of genus g = 10 and its automorphism group is the group of order 54

determined in the previous section.

The algorithm in [16], allows us to compute all the twists of Ca, previous computation of its canonical

model in P9. We follow such algorithm, since this time we will see that Σ is not trivial, so we cannot use the

improvements in Remark 4.4.

5.1. A canonical model of Ca in P9. Let us denote by αi the six different root of the polynomial T 6+aT 3+1 =

0, and define the points on Ca: Pi = (0 : αi : 1), Qi = (αi : 0 : 1) and ∞i = (αi : 1 : 0). The divisor of the

function x = X/Z is div(x) = Pi −∞. Let P = (X0 : Y0 : 1) ∈ Ca, the function x is a uniformizer at P if the

polynomial T 6 + a(X3
0 +1)T 3 +X6

0 + aX3
0 +1 = 0 does not have double roots. That is, if X6

0 + aX3
0 +1 ̸= 0 or

4(X6
0 +aX3

0 +1) ̸= a2(X3
0 +1)2. Let us denote by βi the six different roots of the polynomial T 6+ 2a

a+2T
3+1 = 0

and denote by Vij = (βi : ζ
j+1
3

3

√
−a

2 (β
3
i + 1) : 1) where j ∈ {1, 2, 3}. In order to compute ordP (dx) we need to

use the expression

dx = −y2

x2

2y3 + a(x3 + 1)

2x3 + a(y3 + 1)
dy

for the points Qi and Vi,j . Notice that div(2y3 + a(x3 +1)) = Vi,j − 3∞. For the points at infinity, we use that

the degree of a differential is 2g − 2 = 18. We finally get

div(dx) = 2Qi + Vi,j − 2∞′s.

Hence, a basis of regular differentials is given by

ω1 = ω =
xdx

y(2y3 + a(x3 + 1))
, ω2 =

x2

y
ω, ω3 =

y2

x
ω, ω4 =

1

xy
ω

ω5 = xω, ω6 =
y

x
ω, ω7 =

1

y
ω, ω8 = yω, ω9 =

x

y
ω, ω10 =

1

x
ω.

We list the divisors of these differentials below.

div(ω1) = Pi +Qi +∞, div(ω2) = 3Pi, div(ω3) = 3Qi, div(ω4) = 3∞
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div(ω5) = 2Pi +Qi, div(ω6) = 2Qi +∞, div(ω7) = Pi + 2∞,

div(ω8) = Pi + 2Qi, div(ω9) = 2Pi +∞, div(ω10) = Qi + 2∞.

Lemma 5.1. The ideal of the canonical model of Ca in P9[ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, ω10] is generated by

the polynomials

ω4ω9 = ω2
7 , ω4ω6 = ω2

10, ω4ω1 = ω7ω10, ω4ω5 = ω9ω10, ω4ω8 = ω6ω7, ω4ω2 = ω7ω9, ω4ω3 = ω6ω10,

ω3ω10 = ω2
6 , ω2ω7 = ω2

9 , ω6ω9 = ω2
1 , ω3ω5 = ω2

8 , ω2ω3 = ω5ω8, ω2ω8 = ω2
5 ,

ω2
2 + ω2

3 + ω2
4 + a(ω5ω8 + ω6ω10 + ω7ω9) = 0.

We denote by Ca this canonical model.

Proof. If ω4 ̸= 0, then the des-homogenization of this ideal with respect to ω4 gives the affine curve Ca for

Z = 1. If ω4 = 0, then ω7 = ω10 = 0, so ω6 = ω9 = 0 and ω1 = 0, so if ω3 ̸= 0 we recover the part at infinity

(Z = 0) of Ca. If ω4 = ω3 = 0, then all the variables are equal to zero which produces a contradiction.

To check that it is non-singular, we need to see if the rank of the matrix of partial derivatives of the previous

generating functions has rank equal to 8 = dim(P9) − dim(C) at every point. If ω4 ̸= 0, then the partial

derivatives of the first seven equation plus the last one produce linearly independent vectors If ω4 = 0, we have

already seen that ω3 ̸= 0 and by equivalent arguments, neither it is ω2. Then the 6th, 7th, 8th, 9th equations

plus the last four equations produce the linearly independent vectors. �

Remark 5.2. The canonical embedding of Ca in Pg−1 = P9 coincides with the composition of the gd2-linear

system of Ca with the Veronese embedding given by:

P2 ↪→ P9 : (x : y : z)→ (xyz : x3 : y3 : z3 : x2y : y2z : z2x : xy2 : x2z : yz2).

In particular, we get that the ideal defining the projective space P2 in P9 by the Veronese embedding is generated

by the polynomials defined in Lemma 5.1 after removing the last one.

5.2. The automorphism group of Ca in P9. Let us consider the automorphisms of the curve Ca given by

R = [y;x; z], T = [z;x; y] and U = [x; y; ζ3z]. We easily check that < R, T, U >⊆ Aut(Ca) and by Lemma 4.6,

we obtain that Aut(Ca) =< R, T, U >.

Notice that the pullbacks R∗(ω) = −ω, T ∗(ω) = ω and U∗(ω) = ζ23ω. So, in the canonical model, these

automorphisms look like

R→ −R = −



1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0



, T → T =



1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0


and U → ζ23Diag(1, ζ23 , ζ

2
3 , ζ

2
3 , ζ

2
3 , 1, ζ3, ζ

2
3 , 1, ζ3) = ζ23U . We define the faithful linear representation Aut(Ca) ↪→

GL10(k) by sending R, T, U →R, T ,U . Moreover, it preserves the action of the Galois group Gk.

5.3. A explicit twist over k = Q(ζ3) of Ca without a non-singular plane model over k. Let us consider

the subgroup N of Aut(Ca) generated by N :=< TU >≃ Z/3Z.
Let us consider the curve Ca defined over k = Q(ζ3), and the field extension L = k( 3

√
7) with Galois

group Gal(L/k) =< σ >≃ Z/3Z, where σ( 3
√
7) = ζ3

3
√
7. We define the cocycle ξ ∈ Z1(Gk,Aut(Ca)) ↪→

Z1(Gk,PGL10(k)) given by ξσ = T U .

Lemma 5.3. The image of the cocycle ξ by the map Σ : H1(Gk,Aut(Ca))→ H1(Gk,PGL3(k)) is not trivial.
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Proof. By construction, the image of the cocycle ξ in H1(k,PGL3(k)) coincides with the inflation of the cocycle

in H1(Gal(L/k),PGL3(L)) where ξσ = TU . Now by Theorem 2.8 we conclude, since ζ3 is not a norm in L/k

(no new primitive root of unity appears in L than k and ζ3 is not a norm of an element of L). �

In order to compute equations defining the twist C′a associated to the cocycle ξ (and the Brauer-Severi surface

that contains such twist), we need to find a matrix ϕ ∈ PGL10(k) such that ξσ = ϕ ·σ ϕ−1.

We can then take

ϕ =



1 0 0 0 0 0 0 0 0 0

0 3
√
7

3
√
72 7 0 0 0 0 0 0

0 3
√
7 ζ3

3
√
72 7ζ23 0 0 0 0 0 0

0 3
√
7 ζ23

3
√
72 7ζ3 0 0 0 0 0 0

0 0 0 0 1 3
√
7 ζ3

3
√
72 0 0 0

0 0 0 0 1 ζ3
3
√
7

3
√
72 0 0 0

0 0 0 0 ζ3
3
√
7

3
√
72 0 0 0

0 0 0 0 0 0 0 1 ζ3
3
√
7 ζ3

3
√
72

0 0 0 0 0 0 0 ζ3 ζ3
3
√
7

3
√
72

0 0 0 0 0 0 0 ζ3
3
√
7 ζ3

3
√
72


If we simply substitute this isomorphism ϕ in the equations of Ca, we will get equations for C′a. However,

even defining a curve over k, this equations are defined over L = k( 3
√
7). In order to get generators of the ideal

defined over k, we use next lemma.

Lemma 5.4. Let f0, f1, f2 ∈ k[x1, ..., xn], and define g0 = f0 +
3
√
7f1 +

3
√
72f2, g1 = f0 + ζ3

3
√
7f1 + ζ23

3
√
72f2,

g2 = f0 + ζ23
3
√
7f1 + ζ3

3
√
72f2. Then the ideals in L[x1, ..., xn] generated by < g0, g1, g2 > and < f0, f1, f2 > are

equal.

Proof. Clearly, we have the inclusion < g0, g1, g2 >⊆< f0, f1, f2 >. The reverse inclusion can be checked by

writing 3f0 = g0 + g1 + g2, (ζ3 − 1) 3
√
7f1 = g1 − ζ3g2 + (ζ3 − 1)f0 and

3
√
72f2 = g0 − f0 − 3

√
7f1. �

Proposition 5.5. The equations in P9 of the non-trivial Brauer-Severi surface B over k constructed as in

Theorem 4.1 from the cocycle ξ above are

ω1ω2 = ζ3ω5ω9 + ζ3ω6ω8 + 7ζ3ω7ω10, ω2
2 − 7ω3ω4 = ζ3ω5ω10 + ζ3ω7ω8 + ζ3ω6ω9,

ω1ω3 = ω5ω10 + ζ2ω7ω8 + ζ3ω6ω9, 7ω2
3 − 7ζ3ω2ω4 = ω5ω9 + ζ23ω6ω8 + 7ζ3ω7ω10,

7ω1ω4 = ζ3ω5ω8 + 7ω6ω10 + 7ζ23ω7ω9, 49ω
2
4 − 7ζ23ω2ω3 = ω5ω8 + 7ζ3ω6ω10 + 7ζ23ω7ω9,

ω2
5 + 14ζ3ω6ω7 = 7ζ3ω2ω10 + 7ω4ω8 + 7ζ3ω3ω9, ω2

5 − 7ζ3ω6ω7 = 7ω2ω10 + 7ω4ω8 + 7ζ23ω3ω9,

ω2
6 + 2ζ3ω5ω7 = ζ3ω2ω9 + ω3ω8 + 7ζ3ω4ω10, ω2

6 − ζ3ω5ω7 = ω2ω9 + ζ3ω3ω8 + 7ζ3ω4ω10,

7ω2
7 + 2ζ3ω5ω6 = ζ3ω2ω8 + 7ζ23ω3ω10 + 7ζ23ω4ω9, 7ω

2
7 − ζ3ω5ω6 = ω2ω8 + 7ω3ω10 + 7ζ23ω4ω9,

ω2
8 + 14ζ3ω9ω10 = 7ζ23ω2ω7 + ω4ω5 + 7ζ23ω3ω6, ω2

8 − 7ζ23ω9ω10 = 7ζ23ω2ω7 + 7ζ23ω4ω5 + 7ω3ω6,

ω2
9 + 14ζ23ω8ω10 = ζ3ω2ω6 + ζ23ω3ω5 + 7ζ3ω4ω7, ω

2
9 − 7ζ23ω8ω10 = ζ23ω2ω6 + ζ3ω3ω5 + 7ζ3ω4ω7,

7ω2
10 + 2ζ23ω8ω9 = ζ23ω2ω5 + 7ω3ω7 + 7ω4ω6, 7ω2

10 − ζ23ω8ω − 9 = ζ23ω2ω5 + 7ζ23ω3ω7 + 7ω4ω6,

Proof. We only need to plug the equations of the isomorphism ϕ into the equations defining Ca and apply

Lemma 5.4. �

In order to get the equations of the twisted curve, we only need to add the equation that we get by plugging

ϕ in ω2
2 + ω2

3 + ω2
4 + a(ω5ω8 + ω6ω10 + ω7ω9) = 0, and apply Lemma 5.4 again.

Proposition 5.6. The curve C′a is a twist over k of the curve Ca for a ̸= −10,−2,−1, 0, 2 which does not admits

a non-singular plane model over k and the defining equations of C′a in P9 are the ones given in Proposition 5.5

plus the extra equation:

ω2
2 + 14ω3ω4 + a(ω2

2 − 7ω3ω4) = 0
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5.4. A non-singular plane model for the twist of C′a over finite fields. We consider the reductions C̃a

and C̃a at a prime p of good reduction of the curve Ca/k and the twist C′a/k computed in subsection 5.3. Since

k = Q(ζ3), the resulting reductions curves are defined over a finite field Fq with q ≡ 1 mod 3, and q = pf for

some f ∈ N and p | p. We also assume that p > 21 = (6−1)(6−2)+1 in order to ensure that Aut(C̃a) ≃< 54, 5 >,

see [1, §6] and Lemma 4.6.

The natural map Gk → GFq induces a map H1(k,Aut(Ca)) → H1(Fq,Aut(C̃a)). Since Z1(Fq,Aut(C̃a)) ↪→
Z1(GFq ,PGL3(Fq)) and H1(GFq ,PGL3(Fq)) = 1, see lemma 2.9, the reduction twist has a non-singular plane

models.

Clearly, if 7 ∈ F3
q, then the twist C′a becomes trivial. Otherwise, we get that the reduction of the cocycle ξ is

given by its image at π, the Frobenius endomorphism [17], and ξπ can take the values

 0 0 ζe3
1 0 0

0 1 0


e

,

where e = 0, 1, 2 according to the splitting behaviour of the prime p in L = k( 3
√
7). In the first case, we

get the trivial twist. In the later and the former, let assume e = 1 (the other can be treat symmetrically)

and q ̸≡ 1 mod 9, we can then take a generator η of Fq3/Fq, such that η3 = ζ3. Then, the cocycle is given

(ξσ = ϕ σϕ−1) by the isomorphism

ϕ =

 1 η η2

η2 ζ23 η

η ζ23η
2 ζ23

 : C̃ ′
a → C̃a,

and the twist C̃′a has a non-singular plane model

C̃ ′
a : 2(x5z + z5y + ζ3y

5x)− 5(1 + ζ3)(y
4z2 + x2z4) + 9x4y2 + 20ζ3(x

3yz2 + x2y3z)− 20(ζ3 + 1)xy2z3+

+a(−(x5z + z5y + ζ3y
5x) + 2x4y2 − 2(ζ3 + 1)(x2z4 + y4z2)− ζ3(x

3yz2 − x2y3z) + (ζ3 + 1)xy2z3).

If q ≡ 1 mod 9, the same ϕ works, but this time the cocycle becomes trivial since η ∈ Fq.

6. Twists of smooth plane curves with diagonal cyclic automorphism group

We observed in Remark 4.4, that the algorithm for computing Twistk(C) described in [16] can be substantially

improved if the smooth curve C over k admits a non-singular plane model and such that the morphism Σ in

theorem 4.1 is trivial.

In this section, we apply this algorithm for curves C having an extra property: there exists a plane k-model

FC(X,Y, Z) = 0 having a diagonal cyclic automorphism group, i.e., we have that Aut(FC) =< α > with α a

diagonal matrix. In such case, we prove that all the elements of Twistk(FC = 0) are given by non-singular

plane models of the form FDC = 0 with D a diagonal matrix. We apply this method to some particular families

of smooth plane curves.

Definition 6.1. Consider a smooth plane curve C over k with a non-singular plane model over k given by

FC(X,Y, Z) = 0. We say that C ′ ∈ Twistk(C) is a diagonal twist of C if there exist M ∈ PGL3(k) and D a

diagonal matrix in PGL3(k) such that C ′ is k-isomorphic to FMDC(X,Y, Z) = 0.

The condition of having cyclic automorphism group is not enough to ensure that all the twists having plane

non-singular models, are diagonal twists. We will show an example.

6.1. Diagonal cyclic automorphism group: all twists are diagonal.

Motivated by the results in Section 4 and following the philosophy of the third author’s thesis in [15], we

prove the next result.
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Theorem 6.2. Let C : FC(X,Y, Z) = 0 be a non-singular plane curve defined over k. Assume that Aut(FC) ⊆
PGL3(k) is a non-trivial cyclic group of exact order n (prime with the characteristic of k) generated by an

element α = diag(1, ζan, ζ
b
n) where a, b ∈ N.

Then all the twists Twistk(C) are given by plane equations of the form FDC(X,Y, Z) = 0 with FDC(X,Y, Z) ∈
k[X,Y, Z] and D is a diagonal matrix. In particular, the map Σ is trivial.

Proof. We just need to notice that the map Σ in Theorem 4.1 factors as follows:

Σ : H1(k,Aut(FPC))→ (H1(k,GL1(k)))
3 → H1(k,GL3(k))→ H1(k,PGL3(k)).

Hence, Σ is trivial and all the cocycles are given by diagonal matrices.

�

Remark 6.3. A general statement of the above result is as follows: Assume that C is a curve defined over k

with a plane non-singular model over k say, FC(X,Y, Z) = 0, and that there exists [C ′] ∈ Twistk(C) such that

C ′ admits a non-singular plane model over k given by FQC(X,Y, Z) = 0 with Aut(FQC) = ⟨diag(1, ξan, ξbn)⟩.
Then, any [C ′′] ∈ Twistk(C) has a representative C ′′ given by a non-singular plane model over k of the form

FQDC = 0 with D diagonal. In particular, Aut(FQDC) is diagonal, and the twists of C over k are diagonal. 2

We apply now Theorem 6.2 to some particular smooth plane curves with cyclic automorphism group. These

twists are also computed in the appendix by the algorithm in [16] with the improvement of Theorem 4.1 in

order to run the algorithm in [16] in PGL3 instead of PGLg where g the genus of the smooth plane curve.

For a finite group G, we denote by M̃Pl
g (G) the elements, in the moduli space Mg of smooth, genus g curves

over k, that admit a non-singular plane model, and their full automorphism group is isomorphic to G. The strata

M̃Pl
g (G) is the disjoint union of the different components ρ(M̃Pl

g (G)) where ρ denote different non-conjugate

injective representations of G inside PGL3(k), we refer to [1] for complete details.

Let k be a field of characteristic 0 or p > (d− 1)(d− 2)+1 (see the last section in [1] and [3]). Then we have:

˜MPl
g (Z/d(d− 1)Z) = {Xd + Y d +XZd−1 = 0},

˜MPl
g (Z/(d− 1)2Z) = {Xd + Y d−1Z +XZd−1 = 0}.

Both curves are defined over k and they have a non-singular plane model over k whose automorphism groups

are cyclic diagonal of orders d(d− 1) and (d− 1)2 respectively. These groups are generated by

diag(1, ζd−1
d(d−1), ζ

d
d(d−1)), and diag(1, ζ(d−1)2 , ζ

(d−1)(d−2)
(d−1)2 ),

respectively, see Theorem 1 in [3].

Theorem 6.4. Let k be a field of characteristic zero or p > (d − 1)(d − 2) + 1. Consider the curve C :

Xd+Y d+XZd−1 = 0 with d ≥ 5. Then, the set Twistk(C) is parameterized by A1 := (k∗\k∗d

)×(k∗\k∗d−1

)/ ∼,
where (M,N) ∼ (M ′, N ′) if and only if M ′ = ndM, N ′ = nmd−1N for some n,m ∈ k. More precisely, a pair

2Here we present a different proof of Theorem 6.2 assuming the general statement:

Consider the natural map Σ : H1(k,Aut(FPQC)) → H1(k,PGL3(k)), then by Theorem 4.1, any twist that has a non-singular

plane model over k is given by some Q′ ∈ PGL3(k), i.e. it has a non-singular plane model over k of the form FPQQ′C = 0. This,

in particular, defines the cocycle σ 7→ Q′ ·σ (Q′)−1, which is trivial in H1(k,PGL3(k)) because Q′ ∈ PGL3(k).

Now, Q′ ·σ Q′−1 ∈ Aut(FPQC) = ⟨diag(1, ξan, ξbn)⟩ ( observe that Q′−1 : FPQC → FPQQ′C), thus σ(Q′−1) =

Q′−1diag(1, ξa
′

n , ξnb′) for some integers a′, b′. Writing Q′−1 = (ai,j), one easily deduces that σ(ai,j) = ujai,j with u1 = 1, u2 =

ξa
′

n , u3 = ξb
′

n ; therefore fixing j, we get σ(ai,j)a
−1
i,j = σ(ai′,j)a

−1
i′,j . In particular, ai,ja

−1
i′,j is invariant under all σ ∈ Gk, and thus

ai,j = qiai′,j for some qi ∈ k. Then, we can consider Q′ = DM with D diagonal over k and M ∈ PGL3(k).

Now, the k-model FPQDMC(X,Y, Z) = 0 is k-isomorphic to FPQDC(X,Y, Z) = 0, which is a diagonal twist of FPQC(X,Y, Z) =

0. Thus, all the twists of C over k admitting a non-singular plane model over k are diagonal. But, also the morphism Aut(FPQC) =<

diag(1, ξan, ξ
b
n) >↪→ PGL3(k) factors through GL3(k), and H1(k,GL3(k)) is trivial. Hence Σ is the zero map, and all the twists of

C over k admit also a non-singular plane model over k.

This completes the proof.
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(M,N) ∈ A1 corresponds to a twist of the form MXd + Y d + NXZd−1 = 0 and vice versa, i.e, every twist

corresponds to some pair (M,N) ∈ A1.

Proof. The description of the twists is an easy consequence of Theorem 4.1. Finally, the equivalence of twists

comes from the fact that two such cohomologous cocycles are related by a diagonal matrix.

�

Similarly, we have:

Theorem 6.5. Let k be a field of characteristic zero or positive characteristic > (d−1)(d−2)+1. Consider the

curve Xd + Y d−1Z +XZd−1 = 0 with d ≥ 5. Then, the set Twistk(C) is parameterized by A2 := (k∗ \ k∗d−1

)×
(k∗ \k∗d−1

)/ ∼, where (M,N) ∼ (M ′, N ′) if and only if M ′ = nd−1mM, N ′ = md−1N for some n,m ∈ k. That

is, we associate to an (M,N) ∈ A2 the twist Xd +MY d−1Z +NXZd−1 = 0, and vice versa.

Remark 6.6. In the work in [3] (or in [2], for curves of genus 6), the first two authors give different families of

curves depending on certain parameters for ρ( ˜MPl
g (Z/nZ)) with ρ(Z/nZ) generated by a diagonal matrix. So,

it is possible to apply Theorem 6.2 to compute the twists of curves in these families. In order to get a precise

parametrization of the twists, we need to deal with representative families for such strata ρ( ˜MPl
g (Z/nZ)) (see the

ideas of Lercier, Ritzenthaler, Rovetta and Sisjling in [14]). In the upcomming work [4], we study representative

families for the different stratas of ρ(M̃Pl
6 (G)).

6.2. Aut(C) cyclic does not imply diagonal twists. The hypothesis that the automorphism group of C is

generated by a diagonal matrix on Theorem 6.2 cannot be removed.

Example 6.7. Consider the non-singular plane curve C0 defined over Q by the equation

X4Y + Y 4Z +XZ4 + (X3Y 2 + Y 3Z2 +X2Z3) = 0

and denote such model by FC0
(X,Y, Z) = 0.

Lemma 6.8. The group Aut(FC0
) is isomorphic to Z/3Z (then so does Aut(C0)), and it is generated by

[Y ;Z;X] as a subgroup of PGL3(Q).

Proof. We have s := [Y ;Z;X] ∈ Aut(FC0
) is of order 3, therefore the group Aut(FC0

) should be one of the

groups in [3, Table 2] with 3 dividing the order. First, we note that there are no elements t ∈ Aut(FC0) of order

2 such that tst = s−1: To show this we consider, for simplicity, the Q-equivalent model FPC0
of the form

4X5 + 20X3Y Z +
(
(−5− 9i

√
3)Y 3 + (−5 + 9i

√
3)Z3

)
X2 − 6XY 2Z2 − 4Y Z(Y 3 + Z3),

through the transformation P of the shape  1 1 1

1 ξ3 ξ23
1 ξ23 ξ3

 .

Recall that Aut(FPC0
) = P−1Aut(FC0

)P , in particular s′ := P−1sP = diag(1; ξ3; ξ
2
3) ∈ Aut(FPC0

). Now, if

t′ ∈ PGL3(Q) is of order 2 such that t′s′t′ = s′−1, then t′ should be of the shapes [X; aZ; a−1Y ], [aZ;Y ; a−1X]

or [aY ; a−1Y ;Z] for some a ∈ Q. But non of these transformations retains the defining equation FPC0
= 0, hence

S3 does not occur as a bigger group of automorphisms. Then so are the groups GAP (30, 1) and GAP (150, 5),

as both groups contain an S3 and also there exists a single conjugacy class of elements of order 3 inside these

groups. In particular, we get the same conclusion for Aut(FC0
), which was to be shown.

Second, assume thatAut(FC0
) is conjugate, through some P ∈ PGL3(Q) toGAP (39, 1) such that FPC0

(X,Y, Z) =

X4Y +Y 4Z+XZ4. Now, any element of order 3 inGAP (39, 1), with respect to the given representation in [2, Ta-

ble 2], is conjugate to s or s−1. Then we may impose, without loss of generality, that P−1sP = s, since s is not

conjugate to s−1 in PGL3(Q). In particular, P has the shape α1 α2 α3

ζr3α3 ζr3λα1 ζr3α2

ζ−r
3 α2 ζ−r

3 α3 ζ−r
3 α1

 ∈ PGL3(Q),
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When r = 0, we need to cancel the coefficients of Y 5, Y 4X,Y 3X2, Y 3Z2, and Y 3XZ in FPC0
, which is impossible

due to invertibility of P . Furthermore, if r = 1 or 2, we also force the coefficients of X5, Y 5 and Z5 in FPC0
to

be zeros, and then we obtain a diagonal transformation P . In particular, the defining equation FPC0
= 0 is not

the claimed one. That is Aut(FC0) can not be conjugate to GAP (39, 1). Hence, Aut(FC0) is cyclic of order 3,

and we are done.

�

Lemma 6.9. There exists a non-diagonal twist C0 over Q.

Proof. The defining equation FC0
= 0 has degree 5, thus any twist of C0 admits also a non-singular plane model

over Q defined by FPC0
(X,Y, Z) = 0 for some P ∈ PGL3(Q).

We construct the twist following the classical algorithm in [16] and Theorem 4.1 because Σ is trivial.

Firstly, the twisted product Γ := Aut(FC0
)oGal(K/Q) is isomorphic to Z/3Z (recall that the field K, where

all automorphisms of FC0
are defined, is Q). The group Aut(FC0

) is identified with lat[2] (see notation in the

code) inside the lattice of subgroups of Γ. Then, if we modify the MAGMA code in [15, Table 5.5] to fit our

case, then we deduce that FC0
has exactly two non-trivial twists for each cyclic cubic field extension L/Q. Since

the set of such extensions is not empty, the curve C0 has a non-trivial twist.

Secondly, a twist of FC0
through a diagonal isomorphism D ∈ PGL3(Q) is always trivial (then so are all the

twists of the form FDMC0
with M ∈ PGL3(Q)). On the other hand, to obtain a non-trivial twist of the form

FMDC0
with D = diag(1; a; b) ∈ PGL3(Q) and M = (aij) ∈ PGL3(Q), we must satisfy the 1-cocycle condition

(MD).h(MD)−1 = s (recall that ϕ = (MD)−1 : FC0
→ FMDC0

), where h is a generator of Gal(L/Q). In

particular,  a11 aa12 ba13
a21 aa22 ba23
a31 aa32 ba33

 = λ

 a21 h(a)a22 h(b)a23
a31 h(a)a32 h(b)a33
a11 h(a)a12 h(b)a13


for some λ ∈ Q. From the 1st column, we get λa21 = a11, λa31 = a21, and λa11 = a31. Hence λ3 − 1 = 0, but

also aij ∈ Q, then λ = 1. Consequently, h(a3) = a3, and h(b3) = b3. That is a3, b3 ∈ L⟨h⟩(= Q), thus a = 3
√
N,

and b = 3
√
N ′ for some N,N ′ ∈ Q. In particular, the twist ϕ has Q( 3

√
N, 3
√
N ′) as its splitting field, which is

not Galois if a or b does not belong to Q, a contradiction.

Consequently, C0 has a non-trivial twist, which can not be obtained through any diagonal isomorphism

modulo PGL3(Q).

�

Therefore we obtain,

Proposition 6.10. Let C be a non-singular plane curve over k, a field of characteristic zero, admitting a

non-singular plane model FC(X,Y, Z) = 0 over k such that Aut(FC) ⊆ PGL3(k) is a cyclic group of order n

generated by a matrix α, and no element in the conjugacy class of α in PGL3(k) is neither a diagonal matrix.

Then the twists mapping to zero by Σ (i.e., those ones admitting a plane non-singular model over k), are not

necessarily diagonal twist.

Remark 6.11. The above example in §6.2 extends to positive characteristic p, for p > (d− 1)(d− 2) + 1 with

d = 5, (Lemma 6.8 remains true by the arguments in [1, §6]), and ζ3 /∈ k in order to construct the non-trivial

diagonal twist in the proof of Lemma 6.9.

Remark 6.12. Degree 5 is the smallest degree for which such an example exists, see the third author thesis [15]

to discard degree 4 exceptions.

Appendix A. The classical algorithm on twists for non-hyperelliptic curves

The algorithm for computing Twistk(C) of a non-hyperelliptic curve C of genus g ≥ 3 developed in [15, Chp.1]

and [16] has three main steps: (1) canonical model of C, (2) Solutions of the Galois embedding problem, (3)

Explicit equation of Twists.
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Assume that C is a smooth curve over k with a plane non-singular model over k such that Σ is trivial, in

such case all the twist admits a plane non-singular model over k, see Theorem 4.1. Now, instead of computing

a canonical model of C, we can consider a plane model over k associated to C, modifying point (1) of the

algorithm. The point (2) is independent of the embedding of C inside a projective space. In point (3), the

algorithm of [16] requires to investigate the solutions in GLg(k) using [15, Lemma 1.1.3]. Now, in the modified

algorithm, it is enough to look for solutions in GL3(k). As in [15,16], the isomorphisms covering the solutions

of the Galois embedding problems in GLg(k) or GL3(k) is quite hard except that we have a control of the matrix

shape that could appear.

We use the above modified algorithm to compute the twist over k for the curve C : X5 + Y 5 + XZ4 = 0

where k is a field of zero characteristic or positive characteristic > (5− 1)(5− 2) + 1 = 13. Here we recover the

result obtained for such curve in Theorem 6.4.

The automorphism group Aut(C) ∼= GAP (20, 2) is generated by the elements s := diag(1; 1; i), and t :=

diag(1; ζ5; 1), so it is defined over K = k(i, ζ5) (we assume the generic case in which i, ζ5 /∈ k).

Then, [K : k] = 8 and the Galois group Gal(K/k) is generated by τ1 : i 7→ −i, ζ5 7→ ζ5 and τ2 : i 7→ i, ζ5 7→ ξ25
of order 2 and 4 respectively with τ2τ1 = τ1τ2 (in particular, Gal(K/k) ∼= GAP (8, 2)).

The group Gal(K/k) acts naturally on Aut(C) as: τ1 : s 7→ s3, t 7→ t and τ2 : s 7→ s, t 7→ t2.

The twisted product Γ := Aut(C)oGal(K/k) is isomorphic to GAP (160, 207), and generated by the elements

x := (st, 1), y := (1, τ1) and z := (1, τ2), where x20 = y2 = z4 = 1, yxy = x11, xz = zx13 and yzy = z.

The degree of the defining equation of C is coprime with 3, thus, by Corollary 3.7, every twist of C has a

non-singular plane model over k. Consequently, by Theorem 4.1, the map Σ is trivial. In particular, we only

look for solutions of the Galois embedding problems, generated by a similar MAGMA code as in [15, Table 5.5],

inside GL3(k), not in GL6(k). One finds that all the twists of C over k are covered by diagonal matrices, and

they are of the form αXd + Y d + βXZd−1 for some α, β ∈ k through an isomorphism of the shape diag(a; 1; c)

in GL3(k).

We thus collect the computations into the following result:

Theorem A.1. (Galois embedding problems) The set Twistk(C) is completely determined by table 1.

Remark A.2. The Galois embedding problems for C are given by the pairs (G,H) appearing in the second and

the third columns in GAP notations. This means that a twist ϕ : C → C ′ of C over k has a splitting field L

such that Gal(L/k) ∼= G and Gal(L/K) ∼= H for some pair (G,H) in the list. By the aid of Proposition 4.1

in [15], we find solutions to these Galois embedding problems as described in the 8th column, where N ∈ k∗ \k∗2

and M ∈ k∗ \ k∗5. We also provide generators of G and H in the 4th, 5th, and 6th columns: G is generated by

the elements ho 1 ∈ H o 1 and gi o τi with i = 1, 2. The integer n(G,H) that appears in the 7th column is the

number of non-equivalent twists of C with the same splitting field L. In the remaining part of the table, we give

the associated set of non-equivalent twists which are defined by equations of the form αXd + Y d + βXZd−1 = 0

through an isomorphism of the form diag(a; 1; c) with a = 5
√
α, r ∈ {1, 25}, ℓ ∈ {1, 2, 3, 4}, ji ∈ {0, 1}.
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Table 1. The pairs (G,H), and Twists

ID(G) ID(H) gen (H) g1 g2 n(G,H) L α β φ

1

< 8, 2 > < 1, 1 > 1

s 1

1 K 1

−4
c
=

4 √
β

2 s s2 −100

3 1 s2 25

4 1 1 1

5 < 16, 10 >

< 2, 1 > s2

s 1

2

K(
√

N)

1

−4rN2

6 < 16, 3 > s s

K(
4√
5N2)

−20rN2

7 < 16, 3 > 1 s 5rN2

8 < 16, 10 > 1 1 K(
√

N) rN2

9

< 40, 12 > < 5, 1 > t

1 s2

4 K(
5√
M) Mℓ

25Mℓ c
=

4 √
β

M
ℓ

5 √
M

ℓ

10 1 1 Mℓ

11 s s2 −100Mℓ

12 s 1 −4Mℓ

13 < 32, 25 > < 4, 1 > s 1 1 8 K(
4√
N) 1 (−4)j1 (25)j2N2j3+1

c
=

4 √
β

5 √
M

ℓ

14 < 80, 50 >

< 10, 2 > s2, t

s 1

8

K(
√

N,
5√
M)

Mℓ

−4rN2Mℓ

15 < 80, 34 > 1 s

K(
4√
5N2,

5√
M)

125rN2Mℓ

16 < 80, 34 > s s −500rN2Mℓ

17 < 80, 50 > 1 1 K(
√

N,
5√
M) rN2Mℓ

18 < 160, 207 > < 20, 2 > s, t 1 1 32 K(
4√
N,

5√
M) Mℓ (−4)j1 (25)j2N2j3+1Mℓ
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[10] J.W.P.Hirschfeld, G.Korchmáros, F.Torres, Algebraic Curves over Finite Fields, Princeton Series in Applied Mathematics,

2008.

[11] B. Huggins; Fields of moduli and fields of definition of curves. PhD thesis, Berkeley (2005), see

http://arxiv.org/abs/math/0610247v1.

[12] J. Jahnel; The Brauer-Severi variety associated with a central simple algebra: a survey. See the book in https://www.math.uni-

bielefeld.de/lag/man/052.pdf

[13] R. Lercier, C. Ritzenthaler; Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects. J. Algebra

372 (2012), 595-636.

[14] R. Lercier, C. Ritzenthaler, F. Rovetta, J. Sijsling; Parametrizing the moduli space of curves and applications to smooth plane

quartics over finite fields. (LMS Journal of Computation and Mathematics, Volume 17, Special Issue A (ANTS XI), LMS,

London, pp. 128–147, 2014



18 E. BADR, F. BARS, AND E. LORENZO

[15] E. Lorenzo; Arithmetic properties of non-hyperelliptic genus 3 curves. PhD dissertation, Universitat Politècnica de Catalunya
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