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Abstract: In this paper, we present a qualitative study in which we analyse the video-

recordings of four groups of students solving Fermi Problems. Previous studies show 

that Secondary School students solve this type of problems using complex problem 

solving processes and developing mathematical models. In order to analyse the 

students’ problem solving processes, so-called Modelling Activity Diagrams were used. 

The results of the present study demonstrate that solving Fermi problems is a complex 

matter, and that some of the theoretical tools used in the field of Mathematical 

Education fail to adequately reflect this level of complexity. In addition, Modelling 

Activity Diagrams are presented as a more detailed analysis tool to characterise student 

choices and actions, as well as to make the structure of the Fermi problem addressed 

more visible. 

 
Keywords: Mathematical modelling, Modelling Activity Diagrams, Fermi problems, 
Secondary School. 

 

1. Introduction 

Since the early work of Pollak (1979), there has been a growing interest in introducing 
activities that promote contextualised work and mathematical modelling in the field of 
Mathematical Education at different educational levels (Vorhölter, Kaiser, & Borromeo 
Ferri, 2014). In this paper we present a qualitative study focusing on identifying and 
developing tools to aid researchers in the analysis of mathematical modelling processes 
students engage in. Existing literature features several theoretical developments that 
attempt to describe students’ modelling processes. Most of these theoretical 
perspectives are based on the division of the students’ work into two domains by 
separating the real world from the mathematical realm. Particularly, it is mostly 
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accepted that students go through different stages in a cyclical manner when engaged in 
modelling as exemplified for example by the so-called modelling cycle of Blum and 
Leiss (2007). In fact, the concept of a modelling cycle is featured in the Common Core 
State Standards (CCSSI, 2010) to describe the mathematical activity developed within 
modelling processes. It has been also used as defining modelling processes in articles 
related to educational practices, such as done by Anhalt and Cortez (2015), and also as a 
heuristic tool for task design (Czocher, 2017). 

However, there are opposing voices on the prevalence of the modelling cycle in 
the literature. Several authors claim that, though useful in the design of tasks or for 
explaining modelling to teachers and teaching staff, the modelling cycle does not show 
most of the actual work done by the students (Cai et al., 2014). In fact, some studies 
(e.g. Ärlebäck, 2009; Czocher, 2016; Aymerich & Albarracín, 2016) highlight the 
difficulties in the qualitative identification of the stage of the modelling process 
corresponding to each episode of the students’ work. In order to overcome these 
difficulties, we propose a construct that extends Modelling Activity Diagrams (MAD) 
to characterise the performance of the students in a mathematical modelling process as 
an alternative to the modelling cycle. For this purpose, we used video-data of students 
aged 15 to 16 engaged in solving Fermi problems (c.f. Ärlebäck, 2009), and we 
extended the information provided by the original MADs by including a representation 
of the internal structure of the sub-problems the students engaged in to solve the main 
problem. 

Thus, the aim of the present study is to explore the possibilities of Modelling 
Activity Diagrams, extended to in a more detailed way represent the complexity of 
modelling processes and to determine whether this extended tool actually provide 
further information on the structures underlying the processes the students engaged in. 

 

2. Mathematical modelling as a process: from the Modelling Cycle to Modelling 
Activity Diagrams 

Mathematical modelling is a problem solving process of contextualised problems that 
involves elaborating a mathematical model to describe the phenomenon studied. Lesh 
and Harel (2003) define mathematical models as conceptual systems that describe other 
systems. These authors understand that models are made up of a) a set of concepts to 
describe or explain the mathematical objects relevant to the phenomenon studied, as 
well as the relations, actions, patterns, and regularities that are attributed to the problem 
solving situation; and b) the procedures used to create useful constructions, 
manipulations, or predictions for achieving clearly recognized goals. The system that 
comprises the model can be expressed in multiple ways, such as in terms of algebraic 
relations, written symbols, sketches or diagrams, natural language or metaphors based 
on experience. 

The way students elaborate mathematical models to describe phenomena or to 
carry out predictions is an object of discussion and there are currently different 
theoretical positions and perspectives one can take (Borromeo Ferri, 2006). In general, 
current literature accepts the cyclical nature of modelling processes. Even though there 
are several ways of determining the structure of a modelling process, it is understood 
that it can be divided into different stages and that the students go through these 
sequentially, moving on to the following stage once they consider the work of the 
current stage has been concluded satisfactorily. When working in the classroom with 
students, the starting point is a problem or situation (in the real world) and from a 



                                                         TME, vol. 16, nos.1, 2&3, p. 213 
	

simplification and abstraction process, a mathematical model is generated (within the 
mathematical realm) that facilitates the use of mathematical knowledge and techniques 
to reach a solution. When the students attempt to validate the result obtained, they 
decide whether it is good enough solution to the problem (back in the real-life domain), 
and if not they start the modelling process again, aiming to revise and reconstruct the 
mathematical model generated (by reformulating it or developing it further by 
incorporating or modifying certain elements), in order to obtain a new solution. In this 
way, the process is repeated through different iterations, as many as the students 
consider necessary to obtain a satisfactory model and result. 

This view on modelling processes is not shared by all researchers and has 
received criticism based on being an oversimplification of the processes described and 
of the students’ decisions (Barbosa, 2009; Villa-Ochoa, Bustamante & Berrio, 2010). In 
addition, there is also no clear consensus on describing the nature of the stages of the 
so-called modelling cycle (Perrenet & Zwaneveld, 2012), which makes it difficult to 
establish a collectively shared basis and understanding for the used analysis tools in this 
field. 

To provide examples of the many views on mathematical modelling in the 
literature, we in the following briefly dicuss some of the theoretical perspectives 
developed to describe and understand the processes involved in modelling. The first 
example is that of Pollak (1979), in which a platonic differentiation between the 
mathematical domain and the rest of the world is established (Figure 1). This separation 
inevitably leads to the mathematisation process of a phenomenon and to the 
interpretation of mathematical models elaborated in the mathematical realm within their 
real context as validation. 

 
Figure 1 – Pollak’s (1979) modelling cycle (Pollak, 1970, p. 233) 

Berry and Davies (1996) expanded the view introduced by Pollak by focusing on 
different stages of the modelling process, such as the formulation of a mathematical 
model or realising the need to revise and reformulate the model, as well as write up their 
solution in a report. This conceptualisation of the modelling cycle inherits the 
aforementioned division between the domains of the real world and the mathematical 
realm. Berry and Davies (1996) describe the modelling process as cyclic, understanding 
that the modellers/solvers go through the different stages in their work while they 
improve the models and results obtained. 

In recent years, other theoretical interpretations have been introduced to 
represent modelling processes with the intention of collecting processes that were not 
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present in previous formulations (Perrenet & Zwaneveld, 2012). An example along this 
line is the work of Geiger (2011), that includes the use of technology as an active 
element of the different stages of the process, even though it maintains a view on 
modelling as a cyclical process. One of the most recognised perspective of the 
mathematical modelling processes in the field of Mathematical Education is the 
conceptualisation and representation of Blum and Leiss (2007), shown in Figure 2. 

 
Figure 2 – The modelling cycle of Blum and Leiss (2007, p. 1626) 

This diagram shows the differentiation between the mathematical and real-life 
domains, distinguishing between the models based in real life and their abstraction 
constructed in the mathematical realm. It also maintains a cyclical view of the process. 
This representation finalises the work started by Blum (2002), in which the following 
modelling stages are detailed: 1) simplification of a real-life problem to a real-life 
model; 2) mathematisation of the real model, thus moving on to the mathematical 
model; 3) search for a solution based on the mathematical model (working 
mathematically); 4) interpretation of the solution to the mathematical model; and 5) 
validation of the mathematical solution, interpreting it in the context of the real-life 
problem. The conceptualisation of Blum and Leiss (2007) has been widely accepted to 
describe the modelling process but has shown to be difficult to use as a tool for analysis 
when it comes to describe and explain the students’ work. Some researchers have 
directed their efforts towards elaborating indicators to identify the stages described by 
Blum and Leiss (2007) in the students’ real-life activities, as in the work of Borromeo 
Ferri (2007), or that of Sol, Giménez and Rosich (2011). The existence of this type of 
study is an example of the difficulties that researchers come across when using a 
concrete theoretical framework in their research. 

Other researchers have adopted a different approach, and argue that existing 
modelling cycle frameworks in some respects provide a too simplified picture of 
modelling, since the path the students follow throughout a modelling process is non-
linear. In addition, they also argue that it is hard to assign the students’ activities when 
engaged in modelling to either belonging to the real world or to the mathematical 
domain, suggesting that the distinction between the two domains is not always possible, 
and that the boundary between them not is clear cut (Ärlebäck, 2009). Some positions 
found in existing literature oppose the aforementioned meaning given to the word 
reality. Blum and Borromeo Ferri (2009), based on the perspective of Pollak (1979), 
understand reality as everything that is outside mathematics, its concepts and 
procedures. Thus, they define reality as the rest of the world, which includes nature, 
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society, everyday life and the rest of scientific disciplines. According to Barbosa (2009), 
the notion of a reality that is external to mathematics holds a view on mathematical 
models as a rough portrait of reality. Barbosa also introduce a different perspective in 
the sense that they consider mathematics to be part of reality and suggest that 
mathematical models are not necessarily skewed or partial by nature. 

When faced with the need to describe the modelling processes implemented by 
students, Borromeo Ferri (2007) proposes so-called individual modelling routes with the 
aim of broadening the modelling cycle’s reach. These routes are based on arrow 
diagrams that show the students’ work within the theoretical diagram of the modelling 
cycle, evidencing that the cycle fails to show the decisions the students make during the 
modelling process. In a previous study, Ärlebäck (2009) includes Borromeo Ferri’s 
approach, and presents Modelling Activity Diagrams (MAD) as a bidimensional graph 
that depicts the type of modelling activities the students engage in when solving 
modelling problems. These activities proposed by Ärlebäck (2009) and used to 
characterise the modelling processes in terms of MADs can be found in Table 1. 

Table 1 – Activities that make up MADs 

R: Reading Reading the statement of the task and understanding it 

M:  Modelling Simplifying and structuring the task mathematically 

E: Estimating Making quantitative estimates 

C: Calculating Performing mathematical calculations, such as 
arithmetic calculations, working with equations, 
drawing sketches or diagrams 

V: Validating Interpreting, verifying and validating the results, 
calculations and the model itself in its real-life context 

W: Writing Summarising the findings and results in a report, 
drafting the solving process as well as the solution 

 

Figure 3 shows a MAD that reveals the complexity of the mathematical process 
developed by the students, leading to their modelling work being qualified as 
idiosyncratic, in relation to both the students’ characteristics as protagonists of the 
mathematical activity and the nature of the problem that prompted the activity in the 
first place. 



	 																																																																																																											Albarracín	et	al.	

 
Figure 3 – Modelling Activity Diagram for the resolution of the problem of estimating the time needed to 

walk up the Empire State Building (Ärlebäck, 2009, p. 345) 

 

 

3. Fermi Problems 

The use of so-called Fermi Problems in our work allows us to propose simple situations 
that require mathematical analysis promoting the construction of models. Following 
Ärlebäck (2009), we consider Fermi problems to be open, non-standard problems that 
require students to make assumptions about the problem situation and estimates of 
certain quantities before they engage in, often, a series of simple calculations. Based on 
his previous investigations, Ärlebäck (2011) argues that working with Fermi problems 
may be useful for the purpose of introducing modelling in the classroom, since they are 
accessible to students and do not necessarily depend on any kind of previous 
mathematical knowledge. Examples of Fermi problems used in different investigations 
are: the estimation of the number of cars on a stretch of road (Peter-Koop, 2009), the 
estimation of the time needed to walk up the stairs of the Empire State Building in New 
York (Ärlebäck, 2009) or the estimation of the number of people participating in a 
demonstration (Albarracín & Gorgorió, 2014). More examples of Fermi problems and 
their resolutions can be found in Weinstein and Adam (2009) and Weinstein (2012).  

Some research studies conducted to date on the use of Fermi problems in the teaching 
and learning of mathematics have been shown to facilitate the introduction of 
mathematical modelling in Primary and Secondary School classrooms. Peter-Koop 
(2009) used Fermi problems with students in upper Primary School (ages 10 to 12) to 
analyse their solving strategies. Based on her investigations, Peter-Koop concluded that 
a) students solve problems in a myriad of ways, b) students develop new mathematical 
knowledge in arriving at their solutions, and c) the problem solving processes the 
students displayed indeed were multi-cyclic in nature and relatable to the modelling 
cycle. Ärlebäck (2009), introducing MADs as an analytic tool, analysed the modelling 
activities of a group of Secondary School students engaged in solving a Fermi problem. 
With this work, he highlighted the importance of social relations and extra-
mathematical knowledge in the problem solving situation. Albarracín and Gorgorió 
(2014) analysed the solving strategies used by Secondary School students on several 
Fermi problems and observed a large number of possible strategies and ways of 
constructing the models used to arriving at their answers. Ferrando, Albarracín, Gallart, 
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García-Raffi and Gorgorió (2017) characterised the output produced by Secondary 
School students from a sequence of Fermi problem by identifying the procedures and 
concepts that shaped their models, highlighting elements that differ between the outputs 
of students with previous experience in modelling activities and that of students without 
any previous experience. Finally, we wish to acknowledge the work of Czocher (2016), 
who used Fermi problems with university students in the field of Engineering and 
analysed their performance in terms of MADs. Czocher confirms that the MAD 
diagrams reveal their mathematical thinking about variables and constraints related to 
the problem contexts. Czocher adds an interesting dimension to the interpretation of the 
MAD when she writes that when a task has become routine for an individual, the 
modelling route displayed by that individual for solving that task resemble the idealized 
working process of the modelling cycle (e.g. Blum & Leiss, 2007). 		

Efthimiou and Llewellyn (2007) characterised Fermi problems by how these 
were formulated since they always appear to be open questions offering little or no 
specific information to the solver to direct them in the solving process. The key aspect 
to Fermi problems from the perspective of mathematical modelling is the need to 
conduct a detailed analysis of the situation presented in the statement of the problem, 
with the objective of decomposing the original problem into simpler problems – 
addressed as sub-problems in the present work – to reach the solution of the original 
question by means of reasonable estimates and reasoning. Such reasoned conjectures 
can be replaced by classroom activities to further the extraction of information and its 
critical interpretation (Sriraman, & Knott, 2009) or problem solving processes linked to 
reality (Ärlebäck, 2009). Analyses of the sub-problem types that can be found in Fermi 
problems have not been covered in the existing literature, though several studies have 
shown that these depend on the students’ approaches when tackling the problem (Peter-
Koop, 2009; Albarracín & Gorgorió, 2014). In an attempt to establish a systematic 
approach to the solving processes of Fermi problems to promote the development of 
analytical skills in university Economics and Business students, Anderson and Sherman 
(2010) proposed a type of representation that structures the solving process by explicitly 
differentiating the sub-problems the students had to deal with. In the case of estimating 
the number of hotdogs consumed at major league baseball (MLB) games each season in 
the US, Anderson and Sherman (2010) presented the structure shown in Figure 4. 
Together with their students, they differentiated between the values that needed to be 
estimated – such as the number of hotdogs consumed by an attendant and match – from 
unchanging values that can be looked up beforehand – such as the number of matches in 
a season. 

 
Figure 4 – Structure of a Fermi problem by Anderson and Sherman (2010, p. 37)  
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4. Methodology 

The aim of our research presented in this paper is to develop an extension of the 
Modelling Activity Diagrams for modelling processes and to investigate the potential 
and possibilities of this extended framework. For this purpose, we explicitly included a 
representation of the sub-problems elaborated by the students to achieve their objective 
within the activity (e.g. solving a Fermi problem). The data, collected at a Secondary 
School of a municipality located in the metropolitan area of Barcelona, consisted of the 
video-recordings of the problem solving processes of four groups engaged in solving a 
Fermi problem. Each group consisted of three regular students of 4th grade of Secondary 
School (ages 15 to 16), which in the following will be referred to as groups A, B, C and 
D respectively. The composition of the groups was based on the answers the students 
had given to a previous questionnaire in which the students were requested to detail 
their action plan to solve two Fermi problems – following the same process disclosed 
and discussed in Albarracín and Gorgorió (2014). The groups were constructed by 
choosing students that both suggested different strategies and provided highly detailed 
answers, with the intention of minimising the amount of data to be collected. The 
problem chosen for the students to work on deals with the estimation of the number of 
objects needed to fill a large volume and is presented to the students in a specific 
context. The problem statement provided to the students was the following: 

Water is a scarce resource and it is necessary to be aware of the use we make 
of it. We have organised a debate to address the amount of water used for 
different purposes, and, in order to provide concrete data, we need to answer 
the following question: How many bathtubs can we fill with the water of a 
public swimming pool? 

Calculate the requested amount approximately and describe the steps 
followed to reach the solution. 

 

The video-recording was transcribed in terms of the utterances the students 
made. We consider each single un-interrupted verbal contribution of a student as one 
utterance. We analysed the data by creating a MAD for each of the recordings obtained, 
following the coding process detailed in next section. In each of the four cases, the 
resulting MADs are reinterpreted by additionally identifying the sub-problems used by 
the students to solve the main problem. The analysis developed by Albarracín and 
Gorgorió (2014) allows us to anticipate the models used by the students when working 
on problems such as that of the students worked on in this study (and given above). 
Notably, the generally most common model for this type of problem and this particular 
age-group of students, and the only one observed in this study, is the iteration of a unit, 
in which the students determine the volume of a (larger) base unit and compare it to that 
of its containing (smaller) object, decomposing the problem into three different sub-
problems – the calculation of each volume and a final comparison – following the 
diagram shown in Figure 5. 

÷

Figure 5 – Structure of the Fermi problem used in this study  

Volume	of	the	
pool	

Volume	of	the	
bathtub	
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With this second level of analysis based on identifying the modelling activities 
present in each sub-problem, we intend to describe and investigate the relationship 
between the MAD and the underlying structure of the modelling process induced by the 
sub-problems. 

 

5. Analysis process 

In this section, we illustrate the analysis process of the video-recordings and the way 
different MAD modelling activities are coded, based on the data collected. Our intention 
is to highlight the decisions made by the researchers when determining the categories – 
the type of activities – in which the students were identified to work in, and to provide 
examples from the data collected. 

R-Reading: 

In general, students read the problem statement together, with one of the members 
reading the problem out loud. If this is the case, this activity it is easy to identify for 
researchers in the recording. Sometimes the students decided to re-read the statement, 
usually after a discussion that required some kind of reformulation resulting in the 
group agreeing to read the problem statement again. For example, the following is an 
extract from the video-recording of group D’s work when deciding to read the problem 
out loud: 

Duna:   Okay, let’s read it out loud. Read it. 

Dídac:  No, you read it. 

Domingo:  Well, I’ll read it. 2013 is the international year 
on water cooperation (…) How many bathtubs 
full of water would we need to fill a swimming 
pool? 

M-Developing the model: 

This category collects all instances regarding the creation of the mathematical model, 
both when approaching the problem more generally by discussing aspects related to a 
potential real-life model – as referred to in Blum and Leiss (2007) – as well as when 
elaborating the actual mathematical model. 

As an example of an instance in which students created real-life models, we 
present the following excerpt of a conversation, in which the students of group D 
attempt to decide which concepts will lay the foundation for their model. In this case, 
they discussed different standards to compare volumes. 

Dídac: Look, the easiest way is to imagine a bathtub 
and imagine you fill it. A bathtub, another 
bathtub, one bathtub next to another, and one 
on top of the other, and so on until you 
manage to fill the whole swimming pool. 
(Makes gestures as if placing bathtubs one 
next to the other and stacking them) 

Duna:   Of course. 

Domènec:  (Addressing Dídac) What do you suggest 
doing? 
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Duna:  Let’s see, let’s imagine something more like 
this, more dynamic, no calculations. I mean, 
more normal. 

Dídac:  More normal? Let’s see, when you say more 
normal, what do you mean? Without using 
mathematics? 

Duna: How many balls... How many balls with 
a volume of I don’t know how much… (makes 
gestures as if placing large footballs in a 
bathtub and pushing them to the other side of 
the pool) 

Dídac:  Sure, we don’t know the calculations yet, but 
we will be calculating volumes, right? 

As an example of an instance when students constructed their mathematical 
model, we present the following extract of when the students in group C modelled the 
shape of a bathtub and approximated it to a cuboid, disregarding its real shape. At this 
specific moment of the recording, they were addressing the width of the bathtub: 

Claudia:  Mine (the bathtub) is like this, and goes 
inwards. I mean it’s not completely straight on 
the sides. (Makes gestures showing a wedge 
shape, indicating that the base is smaller and 
shapes are rounded) 

Carlos:  I know, but that doesn’t matter because it’s not 
going to make much difference. (Regarding the 
fact that they will consider the walls of the 
bathtub to be parallel to each other) 

E-Estimating: 

To pinpoint the moments when the students made estimates, we paid attention to details 
in the conversations related to utterances involving discussing what values to assign to 
certain quantities needed to complete a calculation. In this example, group C is 
estimating the depth of a swimming pool by comparing it to its height. 

Carlos:  How much is that? 50 by 25 metres. 

Cesc:   By two of depth. 

Carlos:  Two of depth? only? 

Cesc:   More or less. 

Carlos:  Two and a half. (Raising his arm to compare 
with his own height and in reference to his 
real-life experience in swimming pools)  

Cesc:   Well, two and a half. 

C-Calculating: 

The times when the students are performing their calculations are easy to detect in the 
video-recording, since often one of the members of the group either explicitly explains 
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the mental calculations being performed or otherwise writes them down on paper. The 
following dialogue shows and instance when a mental calculation is being made. 

Arnau:  OK, 12 times 10… 120, and times 4… 

Ada:   OK, times 4, equals 480. 

V-Validating: 

An essential aspect of modelling processes is the validation of results obtained. This 
takes place just after finding partial or final results – since the students can decide to 
validate a result for a sub-problem. Validations can end in the group coming to an 
agreement, as in the following example for group B. 

Bárbara:  Is that reasonable? 

Blanca:  What? 

Bárbara:  Is that reasonable, 54 bathtubs? 

Berta:   Yes, I think so. 

Blanca:  Yes. 

We also identified some validation processes which required the group members 
to recall and reconsider certain knowledge and facts about the context of the problem 
situation in order to resolve tensions in the group, in order to resolve opposing 
viewpoints and discrepancies before obtaining consensus and results. In the following 
example, group C calculated the capacity of a bathtub from its estimated dimensions, 
they obtained 450 litres and decided this number is too large. 

Cesc:   It can’t be 450 litres. 

Carlos:  Well, with these measurements it’s 
approximate. 

Cesc:  It’s just that I don’t know if they (the 
measurements) are acceptable. 

Carlos:  We imagined a bathtub. Well now what’s 
missing is that there are lots of types of 
bathtubs, for the rich, for the poor… We chose 
a standard one.  

Cesc:  Well, not quite standard. That’s not the one we 
chose. Mine is surely smaller. 

Carlos:  It’s just that 450 is a lot. 

W-Writing: 

The times the students wrote their report are easy to identify in the video-recordings, 
though they are not always verbalised. The following is however an example of an 
instance where writing is evidenced during group A’s teamwork: 

Aina:  Well, in order to avoid writing the whole thing, 
we can just write what we got at the end. 

Arnau:  Yes. 

Ada:   Go on, dictate it and I’ll write. 
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6. Results: Modelling Activity Diagrams obtained 

In the following we present the MADs obtained from the video-recordings of the four 
groups of students, as a result of the qualitative analysis developed. 

6.1.  Group A: Ada, Aina and Arnau 
The students in group A worked from the assumption of a swimming pool being 25 
metres in length, arriving at an estimated result that 480 bathtubs would fit inside the 
swimming pool. The participation in the discussion was not equally distributed, and the 
problem was mainly modelled and discussed by Ada and Arnau, while Aina drafted the 
report and participated in the validation process. The total number of utterances for each 
of the members of the team was the following: Ada, 33; Aina, 26; and Arnau, 37. The 
corresponding MAD of the groups work is shown below (Figure 6): 

 
Figure 6 – MAD that describes group A’s modelling process 

In figure 6 we can see the switching between the activities the students engaged 
in, denoting the complexity of how groups A’s modelling process unfolded and by first 
inspection conveying the picture of a somewhat disorganised process. However, if we 
analyse the sub-problem that the students engaged in and how the coded activities are 
distributed in relation to these a clear structure is revealed, as seen in Figure 7. This 
graph shows the activities the students engaged in to solve each of the sub-problem they 
tackled. The students started with working on deciding on their swimming pool of 
choice and estimating its volume (sub-problem one), and then worked on estimating the 
volume of a bathtub (sub-problem two). The third sub-problem consists of calculating 
the number of bathtubs per swimming pool, before finally re-organising the information 
obtained in order to present a solution and write the report. 
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Figure 7 – MAD with separation by sub-problems for group A’s modelling process 

6.2.  Group B: Blanca, Bárbara and Berta 
Group B chose a small leisure swimming pool and the result of their work was an 
estimate that the pool contained of 54 bathtubs. The three team members all participated 
actively throughout the whole activity. The number of utterances was the following: 
Blanca, 55; Bárbara, 63; and Berta, 64. The activities the students engaged in in terms 
of a MAD is shown in Figure 8. 

 
Figure 8 – MAD describing group B’s modelling process 

Group B way of working was similar to the path taken by group A, beginning 
with estimating the volume of the pool and the turning to estimating the volume of the 
bathtub, as shown in Figure 9. However, group B worked with different units of 
measure (cubic metres for the volume of the pool and litres for the bathtub) compared 
with group A (they used cubic metres in both problems). As a consequence, this gave 
raise to an intermediate episode (time between 5:12 and 7:39) in which they calculated 
and reconsidered the problem, resulting in the deciding to acknowledge and make use of 
the work they had done but to convert all their estimates to litres. Finally, the students 
divided the volume of the swimming pool by the volume of the bathtub. The analysis of 
the students work presented below in Figure 9 shows that also the students in group B 
proceeded by completing the different sub-problems, but that they additionally had to 
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coordinate the results obtained with respect to units to give structure to the final 
solution. 

 
Figure 9 – MAD with separation into sub-problems for group B’s modelling process 

The graph above (e.g. Figure 9) shows how the students engaged in two different 
activities overlapped each other at the same time on two occasions. This can be seen in 
Figure 9 from 2:12 to 3:20 and from 8:19 to 10:10. In the particular case of the first of 
the two instances this is due to the fact that Blanca detached herself from the teamwork 
to clarify her ideas, attempting to solve the situation separately, and during this time the 
group engaged in two different parallel problem solving processes.  

 

6.3.  Group C: Carlos, Cesc and Claudia 
The students in group C choose to consider an Olympic swimming pool and arrived at 
an estimate that it contains 6,944 bathtubs. Carlos and Cesc immediately started 
discussing the problem and how to solve it. Claudia however was somewhat hesitant in 
the beginning, stating that without checking the internet she would not be able to solve 
the problem. The total number of utterances was: Carlos, 59; Cesc, 45; and Claudia, 45. 
The MAD representing the work of group C is shown in Figure 10. 

 
Figure 10 – MAD that describes group C’s modelling process 

The analysis by sub-problems of group C’s MAD (Figure 11) shows that the 
students started the solving the problem by deciding the particulars of the pool and the 
bathtub they would work with. The activities group C engaged in to solve the sub-
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problems concerning the estimation of the volume of the pool and of the bathtub follow 
a non-linear pattern, which reveals that the students faced up to difficulties determining 
the volume of the bathtub by using their own bodies as a reference for estimating 
bathtub’s length, wide and deep. Also in the case of group C, the students engaged in 
two different and overlapping activities during the estimation of the volume of the 
bathtub. What happened was that the students temporarily worked more individually 
using their own bodies as a reference to simultaneously estimate and validate their 
results. 

 
Figure 11 – MAD with a separation into sub-problems of group C’s modelling process 

6.4.  Group D: Diego, Duna and Domingo 
Group D, like group C, used an Olympic swimming pool for their calculations and 
estimated you could manage to fit 10,416 bathtubs in this particular pool. The 
participation was quite evenly distributed between the three group members. The total 
number of utterances was: Dídac, 90; Duna, 101; and Domingo, 85. The actitivies the 
students in group D engaged in in terms of a MAD when solving the problem is given 
below (Figure 12): 

 
Figure 12 – MAD that describes group D’s modelling process 
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Group D obtained the volume of the bathtub by initially attempting to come up 
with an answer by simply throwing out a number that felt right to them. This phase 
started at the beginning of the activity and lasted for 3 minute and 20 seconds. However, 
after having realised the flaws in this kind of naïve estimation process, they began in 
revising their answer and in calculating the volume of the bathtub with more precision. 
This transition includes a validation process in which the students doubt the possibility 
of obtaining an adequate value without performing any calculations. In this way the 
students between minute 3:20 and 7:30 calculated the volume of the bathtub by 
estimating the lengths of a parallelepiped. Next, they proceeded to engage in a similar 
process to approximate the volume of the swimming pool and ended the activity by 
estimating the number of bathtubs that would fit in a swimming pool with a division. 

 
Figure 13 – MAD with a separation by sub-problems of group D’s modelling process 

7. Discussion and conclusions 

In the present study, we analysed four groups of students aged 15 to 16 when engaged 
in solving the Fermi problem how many bathtubs could we fill with the water of a public 
swimming pool? We analysed the modelling processes the students engaged in by 
identifying the different modelling activities in terms of the MAD framework proposal 
in Ärlebäck (2009), and in addition extended this framework by adding a layer of 
interpretation by including a sub-division of the episodes in which the students solved 
different sub-problems in order to solve the Fermi problem. 

From a methodological point of view, we reaffirm the idea that characterizing 
the students’ different activities they engage in when solving a modelling problem is 
more straight forward and clearer in terms of MAD activities compared to that in terms 
of stages of the modelling cycle. However, we must emphasize that analysing the tasks 
carried out by a group is a complex process since we only can rely on the observable 
elements the collected data provide. Sometimes the students in the group split their 
focuses and interests when working toward the solution, resulting in the students not 
working together. Due to their inherent structure the MAD diagrams make it possible to 
show this fact explicitly by mapping out different bars for the different activities for the 
time period in question. In this way, we consider MAD diagrams to be both a richer and 
more robust tool from a methodological point of view when it comes to make the 
connection between the activities the students actually engage in during the problem 
solving process and the codes aiming to capture these activities explicit and visable. 
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Another aspect to note is that the results shows that even in the case of students 
engaged in solving a Fermi problem that is accessible to students, the modelling process 
involved in arriving to a solution is complex. This complexity is manifested in the large 
number of the instances students engage in different actions needed to characterize the 
problem solving process, but also in the significant differences between the problem 
solving processes of the different groups. This study allows us to affirm that although 
this complexity exists, the extended MAD diagrams allow us to reveal the internal 
structure of the proposed Fermi problem, thus more clearly showing the work pattern of 
the students. Group A’s initial MAD (Figure 6) shows a complex problem solving 
process that is, however, clearly possible to divide into the solving of several sub-
problems, displayed using the extended MAD (Figure 7). For group A the problem 
given does not pose great difficulties, neither from a decision-making point of view 
regarding the modelling process, nor in the workings of the mathematical tools used, i.e. 
resulting in an extended MAD of the students problem solving process that in a 
trustworthy way reflects the activities the students engaged in. In part the modelling 
behaviour displayed by the students in groups A is concurrent with the findings of 
Czocher (2016), that when students experience the modelling problem at hand as 
routine, the problem solving process is more or less straight forward. 

In the specific case of group A’s performance, we conducted a parallel analysis 
using the modelling cycle of Blum and Leiss (2007), following the instructions of Sol, 
Giménez and Rosich (2011), as we did in Aymerich and Albarracín (2016), to identify 
the different stages in the modelling process. The result of this analysis of group A’s 
performance can be seen in Figure 12, which shows a complex problem solving process 
involving many on the stages in the modelling cycle. One can note however, that non of 
the students modelling routes are closed, and that the students seem to be struggling in 
the initial phase of solving the problem. 

 
Figure 14 – Analysis of group A’s modelling cycle 

Coming back to the point made by Czocher (2016), that student’s modelling 
processes of routine problems tends to better line up with the stages in the modelling 
cycle, we conclude that this by no mean obvious in terms of the analysis of students’ 
modelling routes as depictured in Figure 14. Rather, the impression conveyed by Figure 
14 is that the problem solving process the students engaged in is an ill-structured and 
complex one. Here, the resulting diagram from the extended MAD (e.g. Figure 13) 
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provide a more accurate and nuanced representation of the students engagement with 
the problem.  

The comparison between the two approaches to analyse the data leads us to 
conclude that the extended MAD do facilitate an analytical narrative that is closer to the 
actual activities the students engage in. It does this in the sense that the extended MAD 
provides more localised information that allows for a clearer and more detailed 
interpretation of the students’ actions and decisions. 

An example of this extra explanatory information the extend MAD makes it 
easier to identify, is the activities the students in group B engage in when they detected 
the inconsistencies in their calculated values due to the units chosen when considering 
the volumes of the pool and bathtub respectively. The extended MAD also facilitates 
the qualitative identification of types of activities in which the students make decisions 
that involve settling on the characteristics of the problem that are not given, as well as in 
the discussions on measurements of the pool or the bathtub of group C (Figure 11). The 
lack of specificity in the formulation of the given problem is part of the nature of Fermi 
problems and promotes discussion between students, as well as connecting 
mathematical and extra-mathematical knowledge. 

Pelesko in Cai et al. (2014) stated that the modelling cycles unintentionally hide much 
of the real work of mathematical modelling. The analytical approach developed in this 
study shows that extended MAD diagrams can be a helpful tool to visualize some of 
these hidden elements, and that previously seemingly messy and haphazard problem 
solving processes can be understood as highly structured. In fact, we are hopeful that 
extended MAD diagrams can be adjusted and readily applied to study also mathematical 
modelling processes beyond mere Fermi problems. Given that the MADs were designed 
to specifically study these types of problems, one of the activities included in the 
original analysis is estimation, but we suggest that this activity is broaden, or 
complemented with other types of activites, so that activites such as for example making 
measurement, statistical data collection, experimentation, simulation are included in the 
next version of the extended MAD.  
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