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Abstract

The multi-period vehicle routing problem (MPVRP) is an extension of the vehicle routing problem in which
customer demands have to be delivered in one of several consecutive time periods, e.g., the days of a week.
We introduce and explore a variant of the MPVRP in which the carrier offers a price discount in exchange
for delivery flexibility. The carrier’s goal is to minimize total costs, which consist of the distribution costs
and the discounts paid. A biased-randomized iterated local search algorithm is proposed for its solution.
The two-stage algorithm first quickly generates a number of promising customer-to-period assignments, and
then intensively explores a subset of these assignments. An extensive computational study demonstrates the
efficacy of the proposed algorithm and highlights the benefit of pricing for delivery flexibility in different
settings.

Keywords: vehicle routing problem, multi-period, price discounts, biased-randomized heuristics, iterated

local search

1. Introduction

The multi-period vehicle routing problem (MPVRP) (Francis et all [2008) is an extension of the well-
known vehicle routing problem (VRP)(Toth & Vigo, [2014; |Caceres-Cruz et al., 2015) in which customer
demands have to be delivered in one of several consecutive time periods, e.g., the days of a week. As
observed in |Archetti et al.| (2015), in many practical settings there may exist some flexibility in the time
of service and effectively exploiting that flexibility may result in significant cost savings. Therefore, we
study a variant of the MPVRP in which a service provider offers a price discount in exchange for delivery
flexibility. More specifically, we consider a setting in which customers place orders to be delivered during
a planning horizon consisting of several consecutive days. Each customer specifies a demand quantity, a

delivery location, and a preferred delivery day. The service provider offers a discount to its customers in
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exchange for flexibility in the timing of the delivery, e.g., the delivery is allowed to be made one day early
or one day late, i.e., one day before or one day after the preferred day. This can be viewed as a form of
collaboration because both parties benefit: a customer benefits directly by receiving a discount, and the
service provider benefits indirectly by being able to exploit the additional flexibility to reduce distribution
costs.

Settings in which delivery flexibility is provided in exchange for a price discount are becoming more

common as such agreements are found in many provider-customer contracts. This may be due, in part,

by the changing landscape of city logistics (Savelsbergh & Van Woensel, [2016). City councils encourage

(or force) service providers to reduce the number of trips into the city, which may be achieved by serving
customers in the same district/region in a single trip. Delivery flexibility is required for service providers to
do so. While the “pricing for delivery flexibility” has been analyzed in the context of production planning
, there is a lack of similar studies in the VRP context. The primary goal of our research
is to answer the following question: By how much can total costs be reduced for different levels of delivery
flexibility and for different levels of price discounts?

We illustrate the potential benefits of delivery flexibility on a small example in Figure An optimal
delivery plan for three consecutive days, when deliveries have to take place of the preferred delivery day, is
shown in Figure[fja. In order to simplify the visualization, we assume that the delivery routes on a particular
day start and end at a different location. Figure [1}p illustrates how delivering to some customers a day early

or a day late can reduce the distribution costs.

/,\\H"‘.

.-."A (b) Improved distribution (by applying \"‘

discounts, some flexibility is achieved)

(a) Requested distribution

Figure 1: An example of the benefits of delivery flexibility.

To solve instances of this MPVRP variant, we propose a two-stage algorithm that combines iterated local

search (ILS) (Lourenco et al.,|2010) with biased-randomization (BR) techniques (Grasas et al., [2017)). The

algorithm will be shown to work well (i.e., producing near optimal solutions) in a variety of settings, from
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the most restricted setting, in which a customer can only be served on his preferred day, to the most flexible
setting, in which a customer can be served on any day. As a consequence, we are able to establish, for an
instance, the total costs as a function of customer flexibility (and for different price discounts) and, thus,
provide valuable insights into the potential benefits of pricing for delivery flexibility.

To summarize, the main contributions of our research are threefold: (i) we introduce a new, but, in
our view, relevant variant of the MPVRP, which allows the study of pricing for delivery flexibility; (ii) we
propose a two-stage BR-ILS algorithm to solve instances of this MPVRP variant; and (%) we analyze the
relationship between delivery flexibility and distribution costs, extracting valuable managerial insights.

The remainder of this paper is organized as follows. Section [2] reviews relevant literature on related
topics. Section [3] introduces the proposed solution approach. Section [4] presents the results of an extensive
computational study and discusses insights obtained after an analysis of these results. Finally, Section

provides concluding remarks.

2. Literature Review

Early work on the MPVRP was carried out by [Beltrami et al.| (1974) considering two approaches to the
problem: (i) developing routes and assigning them to delivery days; and (i) assigning customers to delivery
days and then routing each day independently. Russell & Igo| (1979)) proposed three approaches to the
problem: (i) assigning customers to delivery days using a clustering algorithm —where the clusters for each
day were formed around customers with a single allowable delivery combination; (i7) an adaptation of the
single-day vehicle routing heuristic MTOUR, originally introduced in [Russell (1977)); and (%) an adaptation
of the single-day vehicle routing heuristic by |Clarke & Wright| (1964). In a similar way, |Christofides &
Beasley]| (1984) presented heuristic algorithms for the MPVRP based on an initial decision of delivery-day
combinations for customers, followed by day-combination interchanges in an endeavor to reduce the total
cost of the resulting VRPs. [Hemmelmayr et al. (2009)) proposed a new heuristic for the MPVRP based on
variable neighborhood search. Their computational results show that the approach is competitive with other
techniques. Likewise, (Cacchiani et al.|(2014]) introduced a hybrid optimization algorithm, embedding both
heuristic and exact components, for the MPVRP. The algorithm is based on the linear programming (LP)
relaxation of a set-covering-like integer linear programming formulation of the problem. The whole solution
method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as
a local search, making use of a tabu list to avoid cycling.

Several variants of the MPVRP are described in the literature. A classification of the different versions
can be found in a survey by [Mourgaya & Vanderbeck! (2007)). The authors distinguished between different
objective functions. Typical goals that are considered are: minimization of the total traveled distance,

minimization of accumulated driving time, or minimization of the total transportation cost. However, many
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other features can be part of the objective function as well, e.g.: regionalization of routes, workload balance
among different vehicles, number of required vehicles, service quality, etc. Likewise, constraints can also
be classified in three categories: (i) the ones related to the planning of the visits (different frequencies,
restrictions on certain days, etc.); (i) those related to the type of demand (deterministic or stochastic); and
(i) the ones associated with the vehicles (e.g.: capacity constraints, fleet composition, etc.).

Next, some extensions of the basic MPVRP are presented. |Angelelli & Speranzal (2002) addressed a
generalization of the MPVRP in which some intermediate facilities exist and where vehicles renew entirely
their capacity and return to the depot only when the work shift is over. In this work, a tabu search (TS)
algorithm is proposed for solving the problem with the aim of minimizing the total length of the routes
traveled by the vehicles. [Francis et al.| (2006) and [Francis et al.| (2007) analyze the MPVRP with service
choice, in which the service frequency is a model decision variable. In the former article, the authors introduce
a mathematical model and develop an exact solution method as well as a heuristic solving procedure. In the
latter article, they propose a TS algorithm to study the trade-offs between operational flexibility (in terms of
costs and customer service benefits) and complexity (in terms of modeling and implementation difficulty) for
this periodic VRP. |Zapfel & Bogl| (2008) considered a short-range weekly planning by postal companies that
must decide about pickup tours and delivery tour for fluctuating volume (number of shipments). The problem
also considered time windows for the demand points, variable vehicle capacities and personnel planning, as
well as outsourcing decision for tours and drivers. A hybrid metaheuristic was proposed. Similarly, [Alonso
et al.| (2008) studied a VRP including the possibility that a vehicle can do more than one route per day
—as long as the maximum daily operation time is not exceeded. In addition, some constraints related to the
accessibility of the vehicles to the customers are considered too. A TS algorithm was also used in this case.

Other relevant variants are those from |Wen et al.| (2010) and |Albareda-Sambola et al.| (2014)), which are
based on the concept of dynamic orders. The former considered the dynamic MPVRP, in which customers
place orders dynamically over a planning horizon consisting of several periods. The distributor must plan
its delivery routes over several days in order to minimize the routing cost and customer waiting, as well as
to balance the daily workload over the planning horizon. The latter introduced the dynamic MPVRP with
probabilistic information, in which calls for service arrive throughout a discrete time horizon and must be
fulfilled within a time window that comprises several time periods. In addition to known information about
customers (request time windows and distances), it is assumed that probabilistic information regarding calls
for service in future time periods is available. Thus, at each time period two decisions must be made: (i)
the choice of the subset of pending service requests to satisfy; and (7i) the design of the vehicle routes.

In [Pacheco et al.| (2012), the authors propose a mixed-integer linear model for a MPVRP based on a
real-life case. Also, a GRASP with path-relinking metaheuristic is proposed to solve the problem. Using

real-life data, they show that the new approach is able to significantly lower the enterprise distribution
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costs. |Rahimi-Vahed et al.| (2013) considered a variant of the MPVRP with several depots and proposed an
efficient path relinking algorithm to tackle it. This algorithm is able to address the problem in two different
settings: (i) as a stand-alone algorithm; and (%i) as part of a co-operative search algorithm called integrative
co-operative search. |Zhang et al.| (2013)) defined a new extension of the MPVRP with profit, and designed
an effective memetic algorithm with a giant-tour representation to solve it. The goal is to determine routes
for a set of vehicles that maximizes profitability from visited locations, based on the conditions that vehicles
can only travel during stipulated working hours within each period. They also considered that the vehicles
are only required to return to the depot at the end of the last period. Likewise, Vidal et al.| (2012]) proposed
an algorithmic framework that successfully addressed three vehicle routing problems: the multi-depot VRP,
the multi-period VRP, and the multi-depot periodic VRP with constrained route duration.

Recently, |[Luo et al.| (2015) investigated a new variant called the MPVRP with time windows and limited
visiting quota, which requires that any customer can be served by at most a certain number of different
vehicles over the planning horizon. Another variant is the MPVRP with due dates, where customers have to
be served between a release date and a due date (Archetti et al.,|2015). In this problem, customers with due
dates exceeding the planning period may be postponed at a cost and a fleet of capacitated vehicles is available
to perform the distribution in each day of the planning period. The aim of this problem is to find vehicle
routes for each day such that the total cost of the distribution is minimized. In some sense, our paper extends
the work of |Archetti et al| (2015]) by introducing the possibility of applying incentives to the customers in
order to gain more flexibility when designing the delivery routing plans. Finally, |Archetti et al.| (2017)
introduce the flexible MPVRP, in which a distribution plan has to be designed over a time horizon. These
authors include some flexibility in the service frequencies and schedules, and also establish a link between
this flexible MPVRP and the inventory routing problem. The authors propose a mathematical formulation
and use Cplex to solve some small-scale instances, but they also recognize that larger instances require the
use of heuristic-based approaches. Precisely, our paper proposes a two-stage metaheuristic algorithm to deal
with the MPVRP with flexibility in the delivery dates in turn of price discounts. However, we do not link our
MPVRP version to the inventory routing problem but, instead, we create similarities with the multi-depot

VRP.

3. A Two-Stage BR-ILS Algorithm

To solve the MPVRP with price discounts for delivery flexibility, a two-stage metaheuristic approach has
been developed (Figure. The two-stage schema has been adopted since this is a bi-level problem, where the
initial assignment of customers to days can have a strong impact on the ulterior routing plans. The solution
approach combines BR techniques with an ILS framework (which includes a perturbation stage and a local

search stage), hence will be referred to as BR-ILS. In the first-stage, a series of “promising” customer-to-day
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assignment maps (i.e., assignment plans) are generated, and their associated delivery costs are estimated
using a fast routing heuristic. In the second stage, these delivery costs are refined, i.e., computed with
a higher accuracy, for the most promising customer-to-day assignment maps via a more intensive routing

procedure. Both stages are explained next in more detail.
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Figure 2: A two-stage solution approach.

3.1. Generating Promising Customer-to-Day Assignment Maps

The first stage of our algorithm consists of: (i) fast generation of many promising customer-to-day as-
signment maps, i.e., maps that, by construction, are good candidates to have low delivery costs — considering
both routing costs and “penalty” costs, representing any discounts paid; (i) estimation of the routing cost
for each of the assignment maps; and (7ii) sorting the maps in order of nondecreasing estimated total costs,
so that a small set of “elite” maps is selected for further processing (in the second stage). Specifics are

provided next.
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e To be able to generate many promising customer-to-day assignment maps, we start by computing s;4,

the “desirability” of delivering to customer ¢ on day d (for each customer i and each feasible delivery
day d). Three schemes have been developed to determine this desirability index (two of them are static

in the way they are computed, while the third one is dynamically computed):

1. k-nearest: In a high-quality solution, a customer i is likely to be visited by a vehicle that also visits
customers near ¢. Therefore, we approximate the cost ¢;4 of delivering to customer ¢ on day d as
the sum of the distances from customer ¢ to the k nearest customers having d as their preferred
delivery day, since these customers are more likely to be visited on day d. Reasonable choices for
k are 2 and 3 (in our experiments, we have used k = 3). We now define the desirability s;q of
visiting customer ¢ on day d to be c¢jg« — ¢jq, where d* = argming,, ¢;q, i.e., the best alternative
day.

2. depot-based: Alternatively, the cost ¢;q of delivering to customer ¢ on day d is approximated by
the distance from customer i to the depot. Again, the desirability s;; of visiting customer i on
day d is defined to be cjg+ — ¢ja, where d* = argming,, ;4.

3. dynamic-nearest: Finally, another option is to approximate the cost ¢;q by the distance of customer
i to the nearest customer j that has already been assigned to day d for delivery (also accounting
for the discount fee). Note that this cost approximation is dynamic and has to be updated each

time a new customer-to-day assignment is made.

e Next, for each day, a list of potential customers to visit in nonincreasing order of desirability is cre-

ated (the list contains only those customers who can be visited on the corresponding day). Then, a
round-robin selection process is started in which days “choose”, in sequential turns, the customers to
be assigned to them. When implemented in code, this is a heuristic procedure that can be run in
milliseconds using a standard computer. However, since it is also a deterministic procedure, it gen-
erates exactly the same map every time it is run. To overcome this limitation, biased-randomization
techniques are used (Juan et al 2013)), i.e., instead of always selecting the candidate at the top of the
list, a skewed probability distribution is employed to introduce some randomness in the process without
destroying the logic behind the sorting criterion. In our case, the Geometric probability distribution
is utilized, since it has been well-tested in different vehicle routing and scheduling applications (Juan

et al.l |2011} |2014; Dominguez et al., [2016alb)).

When assigning customers to days, it might be convenient to seek a balanced distribution of the demand
served across these days. This is especially important for instances in which the total demand to be
served during the planning period is close to the total delivery capacity. For these “tight” instances, an

unbalanced distribution of the demand across days might cause the delivery plan to become unfeasible.
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Note that it is easy to generate balanced assignment maps by adapting the previously described round-
robin process as follows: instead of employing a pure round robin process, or even a random one,
balanced maps are generated by granting the selection turn to the day with the highest available

capacity.

e Since it is critical to evaluate as many customer-to-day assignment maps as possible in the available
computing time, every time a map is generated its routing cost is estimated by using a fast routing
heuristic — the well-known savings procedure in our case (Clarke & Wright| [1964). Even though the
routing cost obtained is only an estimate of the real routing cost associated with a map, it allows us
to compare maps and then run a more intensive routing algorithm over an elite subset of the maps in

the second stage.

Algorithm [I] provides a more detailed description on how these different components are combined in a
BR-ILS framework. Apart from the inputs, a reduced number of parameters are used in this algorithm (the

values of these parameters have been chosen after a quick trial-and-error fine-tuning process):

mazlter: maximum number of iterations allowed; 300,000 in our tests.

e p: percentage of the baseMap destroyed in the perturbation phase; in our computational study, at

each iteration p is randomly chosen in the interval (30, 70).

e «: parameter of the Geometric distribution used in the BR round-robin process; in our experiments,

at each iteration « is randomly chosen in the interval (0.5, 0.8).
e n: number of eliteMaps to be selected from promisingMaps; 10 in our computational study.

e [3: parameter of the Geometric distribution utilized in the BR routing algorithm; in our tests, g is

randomly chosen within the interval (0.10, 0.20).

3.2. Refining the Routing Plans for Elite Assignment Maps

For each of the elite maps obtained in the first stage, a more intensive routing algorithm is applied. Of
course, the number of elite maps to consider will depend on the available time and computing resources
— note that the routing of these elite maps is a task that can be run in parallel, using different threads,
cores, or computers. The vehicle routing algorithm employed in our tests is the SR-GCWS-CS one proposed
in |Juan et al| (2011). It encapsulates a biased-randomized version of the popular savings heuristic into a
multi-start process, which is noticeably enhanced by the use of a cache memory and a ‘splitting’ technique.
The cache procedure relies on a hash map data structure that keeps the best-found path to connect a given

set of customers. It also contains a fast local search that is similar to a 2-opt one. The splitting technique



Algorithm 1 A two-stage BR-ILS algorithm for the MPVRP with delivery flexibility.

1: function BR-ILS(customers, days, shift, discount, maxIter, p, o, n, 3)
2: % Stage 1: generation of promising customer-to-day assignment maps.

3: for each (d € days) do

4: for each (i € customers) do

5: Sid < calcDesirability(d, i, shift, discount)

6: end for

7 priorityLists(d) < sortCustomersByDesirability(d)

8: end for

9: initial Map < roundRobin(days, customers, priorityLists, o)

10: estimatedCost(initial M ap) < routingHeuristic(initial Map)
11: baseMap < initial M ap

12: promisingMaps < add(initial Map)

13: iter < 0

14: while (iter < maxIter) do

15: newMap < perturbate(baseMap, p, o) % BR round-robin process.
16: newMap + localSearch(newMap) % a cache with inner-loops operator.
17: cost(newMap) < light RoutingH euristic(newMap)

18: delta < cost(baseMap) — cost(newMap)

19: if (delta > 0) then % newMap improves baseMap

20: promisingMaps < add(0, new M ap)

21: baseMap < newMap, credit < delta

22: else

23: if (—delta < credit) then % acceptance criterion.

24: baseMap < newMap, credit < 0

25: end if

26: end if

27: iter < iter +1

28: end while

29: % Stage 2: refinement of routing plans for elite allocation maps.
30: eliteMaps < select BestMaps(promisingMaps,n)

31: cost(best M ap) < oo, bestMap <+ 0

32: for {map in eliteMaps} do

33: cost(map) <+ intensiveRoutingAlgorithm(map, 8) % BR algorithm with cache and splitting.
34: if (cost(map) < cost(bestMap)) then

35: cost(bestM ap) < cost(map), bestMap < map

36: end if

37: end for
38: return bestMap

39: end function 9
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can be seen as a divide-and-conquer procedure: each complete solution generated by the constructive process
is divided into several disjoint sub-solutions using a proximity criterion; then, each of these sub-solutions
are recomputed as if they were a new VRP of smaller size. If a better solution is found for any of the
subproblems, then the global solution will be improved. The SR-GCWS-CS algorithm has been enriched
with an additional local search process, by keeping, for each customer and for each day a delivery to the
customer can be made, a list with the [ nearest neighbors. This allows for fast evaluation of reassigning
customers to different days. In our computational study, we have set | = 2 - nCust/(nDays - nVeh), where

nCust, nDays, and nVeh are the number of customers, days, and vehicles, respectively.

4. Computational Experiments

The methodology described in this paper has been implemented as a Java application. All the experiments
have been run in an Intel Xeon E5-2630 v4 CPU at 2.20 GHz and 32 GB RAM.

Being a new MPVRP variant, with price discounts in exchange for delivery flexibility, no benchmark
instances exists. Therefore, we decided to adapt a well-known set of benchmark instances from the multi-
depot vehicle routing problem (MDVRP). Apart from giving us a base dataset with highly-competitive
best-known solutions, the use of this MDVRP benchmark is not unreasonable as the MDVRP has certain
similarities with the MPVRP with price discounts for delivery flexibility. More specifically, when we consider
each depot as representing a different day of the week (Monday, Tuesday, etc.), and we assume that no
discounts have to be offered to customers to deviate from their preferred delivery day (i.e., we are free to
choose the delivery day), then the only difference is the location of the depots, which are geographically
dispersed in the MDVRP and geographically co-located in the MPVRP with price discounts for delivery
flexibility.

Therefore, we have used the benchmark MDVRP instances described in |Cordeau et al.| (1997) (instances
p01 to p23) and the benchmark MDVRP instances introduced in [Pisinger & Ropke| (2007)) (instances pr01 to
pr10). These instances assume a limited fleet of available vehicles per day, and, in some cases, a maximum
route length. It is quite easy to modify these MDVRP instances so that they better reflect the setting
of interest, in which the depots are geographically co-located. Specifically, we replace the depots in each
MDVRP instance by a single depot located at the geometric center of the original ones (see Figure . Note
that the 33 new instances retain most of the characteristics of the original ones (fleet and depot capacities,
customers locations, etc.). However, any maximum route length constraints have been omitted to avoid any
infeasibility (due to changes in travel distances resulting from re-locating the depots). For each instance, the
preferred delivery day for a customer is fixed in advanced at random (once fixed, the preferred day cannot
be modified during the experiments, so if a customer is delivered any other day then a discount has to be

applied).

10
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Figure 3: Generating MPVRP-PD instances from MDVRP instances.

4.1. Experiment 1: Instances with geographically dispersed (non-overlapping) depots

To assess the impact of offering price discounts for delivery flexibility, the following scenarios have been

considered:

e Best-case or total flexibility scenario: Here, it is assumed that customers do not have any preferences

245

250

255

260

regarding the delivery day (i.e., the preferred delivery day is ignored). Therefore, it is possible to assign
a customer to any day without having to pay a price discount. Note that in this “ideal” (and probably

unrealistic) scenario, we are solving an MDVRP.

Note that by considering this best-case scenario (for instances with geographically dispersed depots),
we are able to assess the performance of our BR-ILS algorithm as near-optimal solutions are known

and reported in the MDVRP literature.

Worse-case or zero flexibility scenario: Here, it is assumed that customers are unwilling to deviate
from their preferred delivery day, no matter what price discounts are offered, and it is not possible
to assign them to another day. Note that this lack of flexibility will generate more costly delivery
plans — compared to the previous scenario — and could even cause some instances to become infeasible
(depending on available delivery capacity). Also, since customers have to be served on a given day, a
solution can be obtained by solving a number of VRPs (one for each day). Therefore, the solution we

report for this worst-case scenario is obtained by solving the VRPs using the SR-GCWS-CS algorithm

proposed in [Juan et al. (2011)).

Intermediate or partially flexible scenarios: Finally, we consider different intermediate scenarios with
different degrees of flexibility (e.g., different levels of discount fees combined with the option to deliver

1 or 2 days early or late relative to the preferred delivery day of customers). For higher degrees of

11
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flexibility, we should obtain solutions of increasing quality — higher than the quality of the solutions
obtained for the worse-case scenario but, at the same time, lower than the quality of the solutions
obtained for the ideal scenario with total flexibility. By comparing these intermediate scenarios with
the extreme ones, we expect to answer the following managerial question: how much can the delivery
plans be improved for different degrees of flexibility? In our experiments, we assume a price of p = 5
monetary units (m.u.) for each unit of product. If a customer i, initially assigned to a day d, is
reallocated to d — 1 or to d + 1, then she receives a discount on the unit price p. In order to consider
different scenarios, the level of discount is a design parameter with three different levels: 0.1 m.u. per
unit of product (low-penalty level), 0.5 m.u. per unit of product (medium-penalty level) and 1.0 m.u.
per unit of product (high-penalty level). Also, if customer ¢ is reassigned to day d — 2 or d 4+ 2 then

the customer receives the 1-day discount plus an extra 25% of this 1-day discount.

The results of these tests are summarized in Figure [l which shows a multiple-boxplot that allows to
visually compare the costs that can be achieved in the different scenarios analyzed in the non-overlapping
(NO) case. Here, NO-F refers to the non-overlapping case with full flexibility (F), while NO-2-H refers to
the non-overlapping case with a 2-day shift (2) and high (H) flexibility. Notice that our best solution (OBS)
for the full-flexibility scenario (best-case) provides an average gap which is below 0.3% with respect to the
best-known solution (BKS) for the MDVRP. This highlights our algorithm’s ability to produce high-quality
solutions. On the other extreme, OBS for the zero-flexibility scenario provides a gap over 12% with respect
to the BKS of the ideal scenario. Then, as we progressively consider higher flexibility levels, the associated
OBS values show lower average gaps: about 9% in the case of 1-day and high discount fees, about 8% in the

case of 2-day and high discount fees, about 8% in the case of 1-day and medium discount fees, etc.

4.2. Ezxperiment 2: Instances with geographically co-located (overlapping) depots

The previous experiment allowed us to compare the results provided by our algorithm with two bench-
marks that acted as extreme scenarios of the MPVRP: the MDVRP (full-flexibility scenario) and a series of
independent VRPs (zero-flexibility scenario). The small gap found between the solutions provided by our
algorithm for the full-flexibility scenario and the BKS reported for the MDVRP instances validates its per-
formance. However, in order to use the MDVRP benchmark we needed to assume geographically dispersed
depots. In this subsection, we focus on the setting of interest, the MPVRP with price discounts for delivery
flexibility, in which the depot is located in the same location in each period.

Tables [1] and [2| show the results obtained for this co-located (overlapping depots) scenario when 1-day
and 2-day demand shifts are allowed, respectively. The following descriptive data is provided: instance name
and number of days D (where each day corresponds to a different depot); next, our best solution (OBS) for

the best-case scenario (with full flexibility) are shown.; afterwards, the table includes our best solutions for
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Figure 4: A visual comparison of the different scenarios assuming geographically dispersed depots.

the different intermediate scenarios: (i) high flexibility, with one shifting day and a low discount rate (low
penalty level); (i77) medium flexibility, with two shifting days and a medium discount rate (medium penalty
level); and (iii) low flexibility, with one shifting day and a high discount rate (high penalty level); OBS values
refer to the distribution cost, and they include the ‘penalty’ cost that the company incurs when applying
discount fees to customers in exchange for reallocation of the preferred distribution day; finally, our best
solutions for the worse-case scenario with zero flexibility are presented. As previously discussed, these last
solutions correspond to the computation of a series of VRPs, and since we are using a well-tested routing
algorithm, the results are expected to be near-optimal. As expected, the results show how by increasing the
flexibility level the OBS values always move away from the worse-case scenario and approach the best-case
one.

For the overlapping case, Figure [5| plots the 95% confidence intervals associated with the average gaps
between the depot-based (static) and the dynamic-nearest schemes for the desirability concept previously
introduced. Here, O-1-H refers to the overlapping case (O) with a 1-day shifting and a high (H) flexibility
level (i.e., one with a low penalty cost). Most of the improvements are significant for a standard confidence
level, although they are relatively small (between 0.1% and 0.2% in all cases).

For a 1-day and 2-day shifts, respectively, Tables|3| and [4| show a comparison between the three schemes
employed to determine the desirability concept during the first stage of our algorithm, the depot-based (dB),

dynamic-nearest (AN), and k-nearest (kN). Notice that the results are very similar regardless the strategy
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Figure 5: Comparison between the depot-based (static) and the dynamic-nearest schemes.

employed, although it seems that the dynamic-nearest scheme is the one providing the best average results.
This similarity of results among the different schemes is also explained by the fact that we also use a local
search in the algorithm, which promotes that geographically-clustered customers will be serviced by the
same vehicle (as far as the penalty cost associated with potential re-allocations is lower than its associated
benefits).

Similarly to what we did in the case of the geographically dispersed depots, it is possible to compare,
for the co-located case with overlapping depots, how the distribution costs vary as the level of flexibility is
modified. Figure [f] illustrates how a reduction in the level of flexibility leads to a higher gap with respect
to the full-flexibility scenario and, accordingly, to an increase in total distribution costs. Thus, while the
aforementioned gap is about 2% for the high-flexibility with 2-day shift scenario (O-2-H), it raises up to about
9% for the zero-flexibility scenario (O-Z). In summary, our approach shows that, at least for the two sets
of data considered (non-overlapping and overlapping cases), companies should consider adding flexibility to
their MPVRP in order to obtain notable reductions in their distribution cost. This flexibility can be gained
by negotiating reasonably-affordable discounts in exchange for the possibility of shifting deliveries from one

day to another.
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Figure 6: A visual comparison of the different flexibility scenarios for the co-located case.

5. Conclusions

This paper has introduced a new realistic variant of the multi-period vehicle routing problem in which
price discounts are given to customers in exchange for some flexibility in the delivery times. In particular, the
carrier reduces its distribution costs by advancing or delaying one or two days the service of some selected
customers and, at the same time, the reallocated customers benefit from a discount fee for their flexibility. In
order to solve this problem, a metaheuristic approach has been proposed. Our algorithm combines an iterated
local search framework with biased-randomized techniques that are applied both during the allocation of
customers to days as well as during the subsequent routing process. It is a two-stage approach. Firstly, a
round-robin process is combined with biased-randomization for fast generation of ‘balanced’ customers-to-
days allocation maps. In this step, three different desirability schemes are proposed to establish a priority list
in the allocation of customers per depot. Each of the allocation maps generated is then routed using a fast
heuristic, which provides an initial estimate of its quality as potential delivery plan. The most promising
maps are then selected and processed by a more intensive and time-consuming routing algorithm, which
provides final assignment-and-routing solutions of higher quality.

The algorithm described has been tested using a series of well-known benchmarks for the multi-depot
vehicle routing problem. As discussed in the paper, the multi-period variant analyzed could be considered
as a particular case of multi-depot vehicle routing problem. By employing these well-known benchmarks,

it is possible to validate —at least to some extent— the performance efficiency of our approach. In a second
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experiment, a series of derived instances are also employed to extend our analysis to a more realistic case with
co-located depots (i.e., the geographic coordinates of the depot are fixed regardless of the day considered).
All in all, our approach is able to quantify the potential benefits that the manager could reach by applying
different levels of flexibility in the delivery day and discount fee. From a managerial perspective, this
information can be extremely useful to negotiate the more convenient flexibility conditions (timing and
discount fees) with their customers.

As future work, we plan to extend our work in different ways: (i) by incorporating a probabilistic
customer’s behavior —i.e., customers will accept the offered discount with a given probability; and (%) by
including reactive policies that can allow the algorithm to efficiently response to dynamic events such as

order cancellations or arrival of new orders.
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