

This is the **accepted version** of the journal article:

Argente Viñals, Marc; Miró, Elisenda; Martí, Carmina; [et al.]. «Molecular characterization of OXA-48 carbapenemase-producing Klebsiella pneumoniae strains after a carbapenem resistance increase in Catalonia». Enfermedades infecciosas y microbiología clínica, Vol. 37, Issue 2 (February 2019), p. 82-88. 7 pàg. DOI 10.1016/j.eimc.2018.02.003

This version is available at https://ddd.uab.cat/record/285200 $\,$

under the terms of the **GOBY-NC-ND** license

	1	EIMC-D-17-00387R1. REVISADO
1 2 2	2	
5 4 5	3	
6 7	4	
8 9	5	Molecular characterization of OXA-48 carbapenemase-producing Klebsiella
10 11	6	pneumoniae strains after a carbapenem resistance increase in Catalonia.
12 13	7	
14 15 16	8	
17 18	9	Abstract
19 20	10	
21 22		
23 24	11	Purpose: To characterise OXA-48 carbapenemase-producing Klebsiella pneumoniae
25 26 27	12	strains isolated after an increase in carbapenem resistance in Catalonia.
27 28 29	13	Methodology: K. pneumoniae identification, antimicrobial susceptibility studies, the
30 31	14	Modified Hodge Test method, amplification of antimicrobial resistance genes (against
32 33	15	β -lactamases, quinolones and aminoglycosides), molecular typing (by PFGE and
34 35 36	16	MLST), conjugation assays, plasmid characterisation (PBRT-PCR and Southern blot),
37 38	17	a description of mobile genetic elements and statistical analysis were done.
39 40	18	Results: OXA-48 was the only carbapenemase detected, with a prevalence of 1.9%.
41 42 42	19	The <i>bla</i> OXA-48 gene was located in an IncL conjugative plasmid of 62 kb and integrated
44 45	20	into the transposons Tn 1999.2 (91.7%) or Tn 1999.1. Five PFGE profiles (A to E) were
46 47	21	found, which exactly matched the MLST: ST101, ST17, ST1233, ST14 and ST405.
48 49	22	respectively. ST1233 is described here for the first time. <i>K. pneumoniae</i> OXA-48-
50 51		producing strains were also CTX-M-15 carriers, some producing OXA-1 and TEM-1
52 53	23	producing strains were also only in to carries, some producing ext(1) the approximation
54 55	24	penicilinases. The acquired <i>qnrBoo</i> and <i>qnrB1</i> and <i>aac(3)-na</i> , <i>aac(6)-ib</i> genes were
56 57	25	also identified.
58 59		
60 61		1
62 63		
ю4		

Conclusion: The *K. pneumoniae* ST405 clone has played an important role in the
 growing prevalence of OXA-48 in Catalonia. All clones described preserved the *bla*_{OXA-48} genetic environment and mobile genetic elements (Tn *1999*). Notably, the three
 strains with minor sequence types in this study are not multiresistant strains. These
 strains are expanding in elderly patients (average age of 76 years) with serious
 underlying diseases, mainly women (61.2%)..

Caracterización molecular de las cepas de *Klebsiella pneumoniae* productoras de carbapenemasa OXA-48 tras un aumento de la resistencia a los carbapenemas en Cataluña.

Introducción: el objetivo de este estudio fue caracterizar las cepas de *Klebsiella pneumoniae* productoras de carbapenemasas OXA-48 aisladas tras observar un
 aumento de estos aislados resistentes a los carbapenémicos en Cataluña

Métodos: se realizó la identificación de *K. pneumoniae*, estudios de sensibilidad antimicrobiana, el test de Hodge modificado, amplificación de genes de resistencia antimicrobiana (contra β-lactamasas, quinolonas y aminoglucósidos), tipificación molecular (por PFGE y MLST), ensayos de conjugación, caracterización de plásmidos (PBRT-PCR y *Southern blot*), descripción de los elementos genéticos móviles y el análisis estadístico.

Resultados: OXA-48 fue la única carbapenemasa presente, con una prevalencia del
48 1.9%. El gen *bla*_{OXA-48} se localizó en un plásmido conjugativo IncL de 62 kb e integrado
49 en los transposones Tn*1999.2* (91.7%) o Tn*1999.1*. Se encontraron cinco perfiles

diferentes de PFGE (A a E), que tenían una concordancia exacta con MLST: ST101, ST17, ST1233, ST14 y ST405, respectivamente. El ST1233 se describe aquí por primera vez. Las cepas productoras de K. pneumoniae OXA-48 también fueron portadoras de CTX-M-15 y algunas de ellas producen penicilinasas OXA-1 y TEM-1. Los genes adquiridos qnrB66 y qnrB1 y aac(3')-Ila, aac(6')-Ib también se identificaron. Conclusión: el clon K. pneumoniae ST405 tiene un papel importante en la creciente prevalencia de OXA-48 en Cataluña. Todos los clones descritos preservaron el entorno genético de bla_{OXA-48}, así como los elementos genéticos móviles (Tn 1999). Notablemente, las tres cepas con tipos de secuencia menos prevalentes en este estudio no son cepas multirresistentes. Además, la expansión de estas cepas con bla_{OXA-48} se está produciendo en pacientes de edad avanzada (promedio de edad de 76 años), la mayoría mujeres (61,2%) con enfermedades subyacentes graves. Keywords: Antibiotic resistance, OXA-48, carbapenemase, PFGE, MLST Introduction The emergence and spread of carbapenem-resistant Enterobacteriaceae due to carbapenemase production is a serious public health problem worldwide. Colistin or tigecycline are last-resort antibiotics against these carbapenemase-producing *Enterobacteriaceae*¹, but some resistant strains have been described.

Class A, B and D carbapenemases have been reported in *Enterobacteriaceae*worldwide since 1993^{2,3}, but were not described in Spain until 2003⁴. VIM and IMP
(class B) were initially the most frequent, but they have since declined and OXA-48
(class D), first documented in Spain in 2009, is currently the most prevalent⁵.

The OXA-48 carbapenemase exhibits strong penicillin-hydrolysing activity and weak
activity against carbapenems. Derivatives such as OXA-163 (first described in *Klebsiella pneumoniae*), OXA-247 (*K. pneumoniae*) and OXA-405 (*Serratia marcescens*) hydrolyse penicillins, ceftazidime and cefotaxime, but as their
carbapenem-hydrolysing activity is far lower than OXA-48 they are barely considered
as carbapenemases¹⁻³.

An OXA-48-producing K. pneumoniae strain was first identified in 2001 in Istanbul, with reservoirs becoming established in North Africa and the Mediterranean area. It has now spread through the rest of Europe. Asia and America^{6,7}. The dissemination of this enzyme could be explained by two factors. First, *bla*_{OXA-48} has been described in an IncL plasmid in Enterobacteriaceae as well as in both non-fermenters (Acinetobacter baumannii and Pseudomonas aeruginosa)¹. Second, bla_{OXA-48} gene is part of the transposon Tn 1999, which is inserted in the tir gene of the plasmid IncL. Different Tn 1999 variants are known (Tn 1999.2, Tn 1999.3 and Tn 1999.4)⁸, varying in the presence or not of the insertion sequence $IS 1R^{1}$ or the transposon Tn2015, which also contains bla_{CTX-M-15}. On the other hand, the insertion of Tn 1999 in the tir gene of this plasmid has been associated with an enhanced conjugation performance and could contribute to the high diffusion of this plasmid type and its resistance genes. Enterobacteriaceae strains carrying the OXA-48-carbapenemase can also co-express extended-spectrum β-lactamases (ESBLs) such as CTX-M-15 and SHV-12⁹, or acquired AmpC β -lactamases (acAmpC) such as DHA-1⁴, mainly in different plasmids;

strains resistant to quinolones, cotrimoxazole and aminoglycosides have also been
described^{2,10}.

In a national study conducted in 2009^4 , we observed a very low prevalence of carbapenemase-producing *Enterobacteriaceae* in Catalonia (0.04%). However, in 2012, hospitals in the Barcelona area reported an increase in *K. pneumoniae* strains resistant to third generation cephalosporins and ertapenem and suspected of expressing carbapenemases. The aim of this study was to explain this growing prevalence by characterizing the β -lactamases involved in this resistance phenotype and establishing the genetic relationships between strains.

109 Material and Methods

110 Ethics

111 The study was approved by the Ethical Review Committee of the Institut de Recerca de112 l'Hospital de la Santa Creu i Sant Pau.

113 Strains and patients

In a prospective study in 2012 (January to December) involving 12 hospitals in Catalonia, K. pneumoniae isolates resistant to β -lactams were collected, excluding those with a natural resistance pattern. Epidemiological data on patient gender, age, chronic diseases and treatment were collected in parallel. Only one strain per patient was included. The selected strains were resistant to any of the following β -lactams: cephalotin, cefoxitin, cefuroxime, cefotaxime, ceftazidime, cefepime, ertapenem, imipenem, aztreonam, amoxicillin/clavulanic acid and/or piperacillin/tazobactam. Each hospital carried out identification and antibiotic susceptibility tests and provided epidemiological patient data. The participating hospitals were: Hospital Municipal de Badalona (HMB), Hospital de Barcelona (HB), Corporació de Salut del Maresme I la Selva (HC), Hospital General de Granollers (HGG), Hospital General Universitari de

Catalunya at Sant Cugat del Vallès (HGC), Hospital General de L'Hospitalet (HGH),
Hospital Sant Joan de Déu at Manresa (HSJDD), Hospital Sant Joan Martorell (HMLL),
Hospital de Mataró (HM), Hospital Universitari de Vic (HGV), Hospital Universitari de
Sant Joan de Reus (HUSJR) and Hospital de la Santa Creu i Sant Pau (HSCSP)
(covering a population of approximately 250,000 inhabitants).

The patients were classified in three categories: nosocomial (the infection occurring
after 48h of hospital admission), healthcare centre (resident in a healthcare centre) and
community (no recent contact with a medical environment).

133 Bacterial identification and antimicrobial susceptibility testing

K. pneumoniae identification and antimicrobial susceptibility tests were performed in each hospital following routine laboratory methods, either manual or automated [MicroScan WalkAway (Siemens) and Vitek system (bioMérieux, Marcy l'Etoile, France)]. The susceptibility pattern to β -lactams, guinolones and aminoglycosides was obtained by the disc-diffusion method (Rosco Diagnostica A/S, Taastrup, Denmark) following following Clinical and Laboratory Standards Institute (CLSI) criteria, as used routinely in the laboratory¹¹. The antibiotics used were: Ampicillin (AMP), Piperacillin (PIP), Amoxicillin/clavulanic acid (AMC), Piperacillin/tazobactam (TZP), Cephalotin (CEF), Cefoxitin (FOX), Cefuroxime (CXM), Cefotaxime (CTX), Ceftazidime (CAZ), Aztreonam (ATM), Cefepime (FEP), Ertapenem (ERT), Imipenem (IMP), Kanamycin (K), Gentamicin (G), Tobramycin (T), Amikacin (A), Netilmicin (Nt), Neomycin (Nm), Nalidixic acid (NAL), Ciprofloxacin (CIP), and Cotrimoxazole (SXT). The then recommended Modified Hodge Test (MHT) was performed to detect carbapenemase activity, using imipenem according to CLSI criteria¹¹. The strains selected for analysis were resistant to any of the studied β -lactams. Strains with positive or weakly positive MHT results were included for the molecular characterization of carbapenemase resistance mechanisms.

151 Amplification of antimicrobial resistance genes

The Polymerase Chain Reaction (PCR) was used to detect the following genes in all studied strains according to their resistance phenotype: carbapenemases (bla_{OXA-48} , bla_{VIM} , bla_{SPM} , bla_{IMP} , bla_{GIM} , bla_{SME} , bla_{NMC} , bla_{KPC} , bla_{IMI} and bla_{GES} , bla_{NDM}), ESBLs (bla_{TEM} , bla_{SHV} , bla_{CTX-M}), acquired AmpC genes (acAmpC) (bla_{ACC} , bla_{CIT} , bla_{EBC} , bla_{DHA} , bla_{FOX} , bla_{MOX}) and the penicillinase bla_{OXA-1} , quinolones (qepA and qnrA, qnrB, qnrS, qnrC, qnrD) and aminoglycoside modifying enzymes (AME) (aac(3')-lla, aac(6)-lb, aph(3')-la, ant(2')-la and aac(2')-la) ^{4,12,13}.

159 The *bla*_{OXA-48} genetic platform was determined by PCR using specific primers for

160 IS 1999, *lysR* and IS 1R of Tn 1999 and Tn 1999.2 6,14 in all *bla*_{OXA-48}-carrying strains.

All amplicon sequences were obtained by Sanger sequencing in an external genomeservice enterprise (Macrogen Europe, Amsterdam, The Netherlands).

163 Molecular typing of *bla*_{OXA-48}-carrying *K. pneumoniae* strains

Pulsed-field gel electrophoresis (PFGE) with genomic DNA digestion by the enzyme Xbal was performed with the CHEF-DRIII system (Bio-Rad, Hemel Hempstead, UK) and analysed by BioNumerics 6.6 (Applied-Maths, Ghent, Belgium)^{2,12,15}. The relatedness was calculated by the unweighted-pair group method using an average linkage (UPGMA) algorithm, with band similarity calculated using the Dice coefficient with a 2% optimization value and 1% tolerance. PFGE patterns were interpreted as previously described^{11,12}. MultiLocus Sequence Typing (MLST) was performed according to the Pasteur Institute website (www.pasteur.fr/recherche/genopole/P8/mlst)¹⁵ in 11 strains selected according to their

PFGE pattern (A-E). For cluster E, we selected the majority and minority patternsconsulting the resistance pattern.

175 Conjugation Assay

Conjugation was performed in the aforementioned 11 isolates. Rifampicin-resistant-GFP *E. coli* VA6190 was used as a recipient¹¹, which also expresses a green fluorescent protein (GFP) marker. Luria-Bertani broth (LB) was used for the conjugation or, if LB results were negative, solid mating with HA 45µm-pore-size filters (Millipore, Billerica, MA). Putative transconjugants were selected on LB agar supplemented with ceftazidime (10 mg/L) and rifampicin (100 mg/L), and exposed to UV illumination to check for GFP fluorescence. The transfer frequency was expressed as the ratio of transconjugants to total recipient cells. The presence of bla_{OXA-48} in the transconjugants was confirmed by PCR.

185 Plasmid Typing

Plasmid Identification was performed in 37 strains by a homemade PCR-based replicon typing (PBRT-PCR) method based on Carattoli *et al.* (2009)¹⁶. The studied strains represented each PFGE subcluster, adding some strains with the same PFGE pattern but different resistance patterns. Poirel et al. (2012)¹⁷ observed that PBRT-PCR did not detect a *bla*_{OXA-48}-carrying IncL/M replicon. Carattoli *et al.* (2015)¹⁸ described specific primers to detect the *bla*_{OXA-48}-carrying IncL plasmid, which distinguished IncL from IncM. We used these primers to describe the plasmid in our OXA-48-producing K. pneumoniae strains.

The plasmid localization of the *bla* genes was determined in the same 11 strains by
PFGE using *S1* nuclease and Southern blot hybridization methods, as previously
described¹². The probes were obtained by the DIG Probe Synthesis Kit (SigmaAldrich)
using primers corresponding to the *bla* and replicon genes.

198 Statistical analysis

Categorical variables were compared by the X² test and continuous variables by the
Student's *t*-test or Mann–Whitney test. P-values of <0.005 were considered statistically

significant. The software GraphPad Prism (GraphPad Software, Inc. CA. USA) wasused for the analyses.

RESULTS

204 Bacterial isolates and susceptibility data

Between January and December 2012, we collected a total of 3,901 K. pneumoniae isolates resistant to β -lactams, not including those with a natural resistance pattern. Among these, 171 (4.38%) gave positive MHT results, including strains with only a weak growth around the streak. And among these171 strains, 98 (57.3%) were resistant to ertapenem and 22 (12.8%) to imipenem. After the PCR and sequencing, 85 strains gave positive results for bla_{OXA-48}, nine of them from faecal carriers. These 85 strains were from eight out of the 12 participating hospitals. Thus, the prevalence of OXA-48-producing K. pneumoniae strains in Catalonia was 1.9% (subtracting the nine faecal carriers). No other targeted carbapenemases were detected. The 85 OXA-48-producing strains were resistant to ampicillin, piperacillin and the association amoxicillin/clavulanic acid. Only 23.5% were resistant to imipenem, whereas 95.3% were resistant to ertapenem, which is the most sensitive drug for OXA-48-producing strain detection. Most strains were resistant to cephalosporins, in some cases remaining susceptible to cefoxitin and cefepime (Table 1). These different phenotypes were due to the presence of an ESBL, as 89.4% co-expressed the CTX-M-15, together with the penicillinases OXA-1 (94.1%) and TEM-1 (85.4%). All 85 isolates also expressed the chromosomal penicillinase SHV characteristic of this species: in 77.64% we detected *bla*_{SHV-76}, 20% *bla*_{SHV-1}, 1.1% *bla*_{SHV-11} and 1.1% *bla*_{SHV-42}.

These strains were also resistant to aminoglycosides (90.5%), cotrimoxazole (89.4%)
and ciprofloxacin (83.5%). Only four strains remained susceptible to all
aminoglycosides and quinolones tested. Regarding aminoglycoside resistance, we
found nine different phenotype patterns: KTG (64.7%), KTGN (14.1%), KTGNm (4.7%),

KTA (1.1%), G (2.3%), KTAGN (1.1%), KTAN (3.5%), KT (2.3%) and KTN (1.1%). The
AMEs present in these strains were AAC(3')-IIa (83.5%), AAC(6')-Ib (81.2%), APH(3')Ia (3.5%), AAC(2')-Ia (2.4%) and ANT (2')-Ia (1.2%). Finally, 88.2% carried QnrB and in
one case QnrS (Table 2).

As mentioned above, 86 out of 171 positive MHT strains (50.3%) were non-carbapenemase-producing. Among these isolates, 17 (19.7%) were resistant to ertapenem and 1 (1%) to imigenem. To explain the positive MHT results, we checked for the presence of ESBLs and acAmpC. The PCR results revealed that 47 strains (54.6%) carried an acAmpC (80.8% DHA, 10.6% ACC and 8.6% CMY), 21 (24.4 %) carried an ESBL (CTX-M-1-type) and 14 (16.3%) co-expressed both ESBL and acAmpC (64.3% CTX-M-1-type+DHA, 14.3% CTX-M-9-type+DHA, 14.3% CTX-M-1-type+ACC and 7.1% CTX-M-1-type with CMY). Finally, four strains (4.6%) did not show any studied acAmpC or ESBL. The 86 strains without carbapenemase production were excluded from further studies.

241 Clinical and molecular epidemiological data

The origin of the 85 OXA-48-producing strains was: 47 (55.3%) from urine samples, 13
(15.3%) from respiratory tract samples, six (7%) from blood, four (4.7%) from surgical
wounds, six (7%) from other samples (vaginal discharge, peritoneal fluid, sore,
cellulitis, bile, post-operative ulcer) and nine (10.6%) were isolated from faeces (Table
3).

The demographic data collected from the 85 patients with OXA-48-producing *K*. *pneumoniae* infection showed that 52 were female (61.2%) of an average age of 76 years (range 26-98 years). There was no significant difference between genders (P>0.005). In 41 (48.2%) cases the infection had a nosocomial origin, 30 (35.3%) were related to a healthcare centre, and the remaining 14 (16.5%) were acquired in the community (Table 3).

The PFGE analysis revealed five well-defined clusters (A-E), which were subdivided in multiple subclusters, with 76% homology between the main clusters. Cluster A, B, C, D and E represented 18.8%, 1.1%, 1.1%, 1.1% and 77.6% of all isolates, respectively. Clusters A and E showed subclusters A_{1-3} and E_{1-18} . The cluster distribution is depicted in Figure 1.

By MLST, the five PFGE clusters corresponded to five different K. pneumoniae sequence types (STs) as follows: cluster A belonged to ST101 (n=16); B to ST17 (n=1); C to ST1233 (n=1); D to ST14 (n=1) and E to ST405 (n=66). ST1233 is described here for the first time and is a single-locus variant (SLV) of ST540 in the gapA gene. Cluster E, which corresponds with ST405, was isolated in six of the eight OXA-48-detecting hospitals; cluster A, all ST101, was present in three of the eight hospitals. The minor clusters B (ST17), C (ST1233) and D (ST14), with one strain each, were from HGG, HM and HGV, and were isolated in different hospitals together with isolates belonging to major clones (Supplementary Figure 1).

We observed that all OXA-48-producing *K. pneumoniae* strains, except those
belonging to ST14, ST17 and ST1233, were resistant to multiple antimicrobial drugs
(mainly aminoglycosides and quinolones) by acquiring resistance genes. *bla*_{OXA-48}
seemed to be associated with *bla*_{OXA-1}, *aac*(3')-*lla*, *aac*(6')-*lb* and *qnrB*, and in most
cases with *bla*_{CTX-M-15} and *bla*_{TEM-1} (Table 2).

272 Plasmid characterization and the *bla*_{OXA-48}-carrying genetic platform

The PBRT-PCR data show that the 37 selected strains carried a plasmid with an IncL plasmid, 96% out of the 37 a plasmid replicon FIIK and 33.3% a plasmid replicon ColE (Table 4). Two cluster A-ST101 strains also carried one plasmid replicon R and the strain of cluster E_{16} -ST405 showed the plasmid replicon FIA. The strains belonging to ST17 and ST14 were the only ones without plasmid replicons other than IncL.

PFGE and Southern blot studies revealed that that bla_{OXA-48} was present in all 85 OXA-48-producing strains in an approx. 62kb plasmid belonging to the IncL incompatibility group. These data were confirmed by conjugation assays. In all 11 conjugated strains we found OXA-48-producing E. coli transconjugants with a conjugation frequency between 1.3 $\times 10^{-5}$ and 5×10^{-7} . All transconjugants with *bla*_{OXA-48} were resistant to penicillins, remaining susceptible to cefotaxime and ceftazidime and with a reduction in their susceptibility to ertapenem. In all cases the carbapenemase had transferred alone, as confirmed by PCR.

Southern blot experiments revealed that *bla*_{CTX-M-15} and *bla*_{OXA-1} were carried in FIIK
plasmids of approx. 240Kb in ST101strains and approx. 290Kb in ST405.

The bla_{OXA-48} -carrying genetic platform was related with the transposon Tn 1999 (Table 4). Seventy-eight strains (91.8%) showed Tn 1999.2 and seven the intact Tn 1999. We sequenced the bla_{OXA-48} genetic surroundings in eleven randomly selected strains (Figure 2) (GenBank accession numbers: KT265174, KT265175, KT265176, KT265177, KT265178, KT265179, KT265180, KT265181, KT265182, KT265183 and KT265173). In 10 cases a unique sequence between the IS1R element, upstream of *bla*_{OXA-48} and *lysR*, was found, with 100% homology with the Tn 1999.2 sequence from pKpn-E1.Nr7 (KM406491.1). The remaining strain had 100% homology with K. pneumoniae E71T (KC335143.1) and pKPoxa-48N1 (KC757416.2). The only difference between the two groups was due to a transversion T-G at position 911, ^owhere the *K. pneumoniae* E71T (KC335143.1) and pKPoxa-48N1 (KC757416.2) sequences have a guanine.

300 Discussion

301 Determining OXA-48-producing strain prevalence is hampered by the lack of a
302 standard method¹⁹. The MHT, in 2012 recommended by the CLSI for carbapenemase
303 detection^{1,11}, is now considered unsuitable as a single screening method, being too

unspecific and insensitive for metallo-β-lactamase detection. In this study, 51% of positive MHT strains did not express any carbapenemase. These false positives were due to the presence of ESBLs such as CTX-M-15, acAmpCs such as DHA or porin alterations, which may be involved in reduced susceptibility to carbapenems¹². A low affinity for carbapenems of some ESBLs has been described, specifically for the CTX-M-15 enzyme, which can hydrolyse ertapenem when highly expressed²⁰. The three OXA-48-producing *K. pneumoniae* strains without additional β-lactamases were only resistant to ampicillin, piperacillin and amoxicillin/clavulanic acid, remaining susceptible to ertapenem and imipenem. In contrast, all the OXA-48- and ESBL- or acAmpCproducing strains were resistant to penicillins, cephalosporins and ertapenem, and 23.5% also to imipenem.

Therefore, assuming that the phenotypic method might not be accurate to determine the prevalence of oxa-48 producing strains, prevalence was determined according to PCR results. The prevalence of OXA-48-producing-*K. pneumoniae* strains in 2012 in Catalonia was 1.9%, matching previous studies in some Spanish tertiary hospitals^{2,9} a 0.04% and 5.3% prevalence was described. A recent European survey of carbapenemase-producing *Enterobacteriaceae* (EuSCAPE)²¹,found a 69.8% prevalence of OXA-48-producing *Klebsiella pneumoniae* strains among 136 strains collected by ISCIII.

323 The lack of standardization in detection methods affects not only prevalence data, but 324 also the implementation of a policy to avoid the establishment of multiresistant 325 strains²², although new chromogenic plate methods have been described.

326 Like ESBL- or acAmpC-producing strains^{4,12,13}, OXA-48-producing *K. pneumoniae*

327 isolates are also resistant to aminoglycosides, cotrimoxazole and ciprofloxacin.

328 Nevertheless, the *bla*_{OXA-48}-carrying IncL plasmids described to date (such as pkPoxa-

329 48N1¹⁸), responsible for OXA-48 dissemination, do not include any associated

antimicrobial resistance genes. Our results show that *bla*_{CTX-M-15} is present in an IncFIIk

plasmid, in agreement with other authors²³, together with quinolone and
 aminoglycoside resistance genes²⁴.

The worldwide expansion of bla_{OXA-48} could be due to its association with Tn 1999, located on a characteristic IncL plasmid¹. In turn, Tn 1999 is inserted into the *tir* gene responsible for plasmid transfer inhibition. We found the increasing OXA-48 prevalence was also due to the expansion of the ST405 clone, present in all hospitals with OXA-48-producing K. pneumoniae except two. This major clone was originally identified in Casablanca (Morocco)²⁵ in a K. pneumoniae strain carrying bla_{CTX-M-15}, bla_{OXA-1} and *bla*_{TEM-1}, but not *bla*_{OXA-48}, and has been widely described in Europe, including Spain⁹ As described by Baquero et al.²⁶, this expansion could be due to colonization and transmission between particular hosts, which acquire antibiotic resistance and enhanced survival capacity. In this study, the ST405 clone was found in six of the eight hospitals with OXA-48 carbapenemase.

The expansion of all these clones is taking place in the elderly population and is related
to the healthcare system. These results are similar to those obtained from patients
infected by ESBL- or acAmpC-producing strains²⁷.

Like ST405, the sequence types ST101, ST14 and ST17 are also described as
multiresistant clones present in various European and American countries^{7,28–31}.
Nevertheless, in our case, ST14 and ST17 were only detected exceptionally and did
not carry additional resistances. Finally, ST1233, described here for the first time, was
a single locus variant of ST540, and did not show resistance to aminoglycosides or
quinolones. All these clones were isolated in a timely manner.

Taken together, our results show that the increasing prevalence of carbapenemase
OXA-48 in Catalonia is due to the expansion of the *K. pneumoniae* ST405 clone. All
clones described preserved the *bla*_{OXA-48} genetic environment as well as the mobile
genetic elements (Tn *1999*). Curiously, the three strains with minority ST were not

1 2 3	358	to their infrequency and therefore low exposure to antibiotics.				
4 5 6	359	Acknowledgements				
7 8 9	360	We thank all participating health centers for their willingness to enter the study and a	also			
10 11	361	the group of microbiologists of Country Hospitals in Catalonia and the Balearic Islan	ds			
12 13	362	(http://www.scmimc.org/grupstreball02.php) for collecting the strains and				
14 15 16	363	epidemiological data.				
$\begin{array}{c} 16\\ 17\\ 18\\ 20\\ 22\\ 23\\ 25\\ 26\\ 28\\ 20\\ 31\\ 33\\ 34\\ 35\\ 37\\ 39\\ 41\\ 43\\ 45\\ 46\\ 78\\ 9\\ 51\\ 52\\ 53\\ 55\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5$	364					
5/ 58						
59 60			1 5			
61 62			13			
63						

resistant to multiple drugs, perhaps because of an absence of selection pressure due

357

1	365	Refe	rences
2 3 4	366	1.	Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: The phantom
5 6 7	367		menace. J Antimicrob Chemother 2012;67:1597–1606.
8 9	368	2.	Rodríguez Martínez JM, Díaz-de Alba P, Lopez-Cerero, Ruiz-Carrascoso G,
10 11	369		Gomez-Gil R, Pascual A. Presence of quinolone resistance to qnrB1 genes and
12 13	370		bla _{OXA-48} carbapenemase in clinical isolates of Klebsiella pneumoniae in Spain.
15 16 17	371		Enfermedades Infecc y Microbiol clínica 2014;32:441-442.
18 19	372	3.	Evans BA, B. Amyes SG. OXA β -lactamases. Clin Microbiol Rev 2014; 27 :241-
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	373		263.
	374	4.	Miró E, Agüero J, Larrosa MN, Fernández A, Conejo MC, Bou G, et al.
	375		Prevalence and molecular epidemiology of acquired AmpC β -lactamases and
	376		carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. Eur
	377		J Clin Microbiol Infect Dis 2013; 32 :253-259.
	378	5.	Pitart C, Solé M, Roca I, Fàbrega A, Vila J, Marco F. First outbreak of a plasmid-
	379		mediated carbapenem-hydrolyzing OXA-48 β-lactamase in Klebsiella
37 38 39 40	380		pneumoniae in Spain. Antimicrob Agents Chemother 2011; 55 :4398-4401.
41 42	381	6.	Potron A, Poirel L, Rondinaud E, Nordmann P. Intercontinental spread of OXA-
43 44	382		48 β -lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to
45 46 47	383		2011. Euro Surveill. 2013;18(31):pii=20549.
48 49	384	7.	Mathers AJ, Hazen KC, Carroll J, Yeh AJ, Cox HL, Bonomo RA, et al. First
50 51 52	385		clinical cases of OXA-48-producing carbapenem-resistant Klebsiella
53 54	386		pneumoniae in the United States: The "menace" arrives in the new world. J Clin
55 56 57	387		Microbiol 2013; 51 :680-683.
58 59 60 61 62 63	388	8.	Giani T, Conte V, Di Pilato V, Aschbacher R, Weber C, Larcher C, et al.

	389		Escherichia coli from Italy producing OXA-48 carbapenemase encoded by a	
1 2 3	390		novel Tn 1999 transposon derivative. Antimicrob Agents Chemother	
4 5 6	391		2012; 56 :2211-2213.	
6 7 8	392	9.	Paño-Pardo JR, Ruiz-Carrascoso G, Navarro-San Francisco C, Gómez-Gil	
9 10	393		R, Mora-Rillo M, Romero-Gómez MP, et al. Infections caused by OXA-48-	
11 12 13 14 15 16	394		producing Klebsiella pneumoniae in a tertiary hospital in Spain in the setting of	а
	395		prolonged, hospital-wide outbreak. J Antimicrob Chemother 2013; 68 :89-96.	
16 17 18	396	10.	Oteo J, Hernández JM, Espasa M, Fleites A, Sáez D, Bautista V, et al.	
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	397		Emergence of OXA-48-producing Klebsiella pneumoniae and the novel	
	398		carbapenemases OXA-244 and OXA-245 in Spain. J Antimicrob Chemother	
	399		2013; 68 :317-321.	
	400	11.	Clinical and Laboratory Standards Insitute. Performance Standards for	
	401		Antimicrobial Susceptibility Testing: Twenty-Second Informational Supplement.	
	402		Vol 32; 2012.	
33 34				
35 36	403	12.	Alonso N, Miró E, Pascual V, Rivera A, Simó M, Garcia MC, et al. Molecular	
37 38 20	404		characterisation of acquired and overproduced chromosomal $\textit{bla}_{\textit{AmpC}}$ in	
39 40 41 42 43 44	405		Escherichia coli clinical isolates. Int J Antimicrob Agents 2016;47:62-68.	
	406	13.	Miró E, Grünbaum F, Gómez L, Rivera A, Mirelis B, Coll P, et al.	
45 46 47	407		Characterization of aminoglycoside-modifying enzymes in Enterobacteriaceae	
48 49	408		clinical strains and characterization of the plasmids implicated in their diffusion.	
50 51 52	409		Microb Drug Resist 2013; 19 :94-99.	
53 54	410	14.	Aubert D, Naas T, Héritier C, Poirel L, Nordmann P. Functional characterization	۱
55 56	411		of IS 1999, an IS4 family element involved in mobilization and expression of β -	
57 58 59	412		lactam resistance genes. J Bacteriol 2006; 188 :6506-6514.	
60 61				17
62 63				
64 65				

	413	15.	Diancourt L, Passet V, Verhoef J, Patrick AD, Grimont PAD, Brisse S. Multilocus	5
1 2 2	414		Sequence Typing of Klebsiella pneumoniae Nosocomial Isolates. J Clin	
4 5 6 7 8 9 10 11 12 13 14	415		Microbiol 2005; 43 : 4178-82.	
	416	16.	Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob	
	417		Agents Chemother 2009; 53 :2227-2238.	
	418	17.	Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid	
15 16	419		coding for the carbapenemase OXA-48. Antimicrob Agents Chemother	
17 18 19	420		2012; 56 :559-562.	
20 21	421	18.	Carattoli A, Seiffert SN, Schwendener S, Perreten V, Endimiani A. Differentiatio	n
22 23	422		of IncL and IncM Plasmids Associated with the Spread of Clinically Relevant	
24 25 26	423		Antimicrobial Resistance. PLoS One 2015;10:e0123063.	
27 28 29 30 31	424	19.	Tsakris A, Poulou A, Bogaerts P, Dimitroulia E, Pournaras S, Glupczynski Y.	
	425		Evaluation of a New Phenotypic OXA-48 Disk Test for Differentiation of OXA-48	;
32 33	426		Carbapenemase-Producing Enterobacteriaceae. J Clin Microbiol 2015;53:1245-	
34 35 36	427		1251.	
37 38 20	428	20.	Girlich D, Poirel L, Nordmann P. CTX-M expression and selection of ertapenem	
39 40 41	429		resistance in Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents	
42 43 44	430		Chemother 2009; 53 :832-834.	
45 46	431	21.	Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasevic	5
47 48 49	432		AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and	
50 51	433		Escherichia coli in the European survey of carbapenemase-producing	
52 53	434		Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet	
54 55 56 57	435		Infect Dis 2017; 17 :153-163.	
58 59	436	22.	Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health	
60 61 62 63 64			1	.8

care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008;36:309-332. 23. Dolejska M, Brhelova E, Dobiasova H, Krivdova J, Jurankova J, Sevcikova A, et б al. Dissemination of IncFIIK-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from children in hospital paediatric oncology wards. Int J Antimicrob Agents 2012; **40**:510-515. Mata C, Miró E, Toleman M, Rivera MA, Walsh TR, Navarro F. Association of 24. bla_{DHA-1} and qnrB genes carried by broad-host-range plasmids among isolates of Enterobacteriaceae at a Spanish hospital. Clin Microbiol Infect 2011;17:1514-1517. Breurec S, Guessennd N, Timinouni M, Le TA, Cao V, Ngandjio A, et al. 25. Klebsiella pneumoniae resistant to third-generation cephalosporins in five African and two Vietnamese major towns: multiclonal population structure with two major international clonal groups, CG15 and CG258. Clin Microbiol Infect 2013;**19**:349-355. 26. Baguero F, Tedim AP, Cogue TM, Walsh F, Martinez JL, Moya A. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013;35:6-1. Rodríguez-Baño J, Miró E, Villar M, Coelho A, Gozalo M, Borrell N, et al. 27. Colonisation and infection due to Enterobacteriaceae producing plasmid-mediated AmpC β-lactamases. J Infect 2012;**64**:176–183. Oteo J, Ortega A, Bartolomé R, Bou G, Conejo C, Fernández-Martínez M, et al. 28. Prospective multicenter study of carbapenemase producing Enterobacteriaceae from 83 hospitals in Spain: High in vitro susceptibility to colistin and meropenem. Antimicrob Agents Chemother 2015;59: 3406-12.

_	462	29.	Mshana SE, Hain T, Domann E, Lyamuya EF, Chakraborty T, Imirzalioglu C.
1 2 2	463		Predominance of Klebsiella pneumoniae ST14 carrying CTX-M-15 causing
5 4 5 6	464		neonatal sepsis in Tanzania. BMC Infect Dis 2013; 13 :466.
0 7 8	465	30.	Frasson I, Lavezzo E, Franchin E, Toppo S, Barzon L, Cavallaro A, et al.
9 0	466		Antimicrobial treatment and containment measures for an extremely drug-
1 2 2	467		resistant Klebsiella pneumoniae ST101 isolate carrying pKPN101-IT, a novel
3 4 5 6	468		fully sequenced <i>bla</i> (KPC-2) plasmid. J Clin Microbiol 2012; 50 :3768-3772.
0 7 8	469	31.	Peirano G, Hung King Sang J, Pitondo-silva A, Laupland KB, Pitout JDD.
9 0	470		Molecular epidemiology of extended-spectrum-β-lactamase-producing Klebsiella
1 2	471		pneumoniae over a 10 year period in Calgary, Canada. J Antimicrob Chemother
3 4 5	472		2012; 67 :1114-1120.
78901234567890123456789012345678901234567	473		

Antibiotic	Resistance (%)
Ampicillin (AMP)	100
Piperacillin (PIP)	100
Amoxicillin/clavulanic acid (AMC)	100
Piperacillin/tazobactam (TZP)	95.2
Cephalotin (CEF)	97.6
Cefoxitin (FOX)	28.2
Cefuroxime (CXM)	94.1
Cefotaxime (CTX)	90.5
Ceftazidime (CAZ)	82.3
Aztreonam (ATM)	87
Cefepime (FEP)	42.5
Ertapenem (ERT)	95.3
Imipenem (IMP)	23.5
Kanamycin (K)	90.5
Gentamicin (G)	84.7
Tobramycin (T)	90.5
Amikacin (A)	8.3
Netilmicin (Nt)	20
Neomycin (Nm)	4.7
Nalidixic acid (NAL)	85.8
Ciprofloxacin (CIP)	83.5
Cotrimoxazole (SXT)	89.4

 Table 1. Antibiotic resistance in OXA-48-producing K. pneumoniae strains.

Table 2. Antimicrobial resistance genes present in the different MLST and PFGE profiles of the 85 OXA-48-producing *K. pneumoniae* strains.

ST	PFGE	n	β-lactamase genes	AME	Qnr
ST101	A ₁	6	<i>bla</i> _{CTX-M-15} , <i>bla</i> _{OXA-1} , <i>bla</i> _{TEM-1} , <i>bla</i> _{SHV-1} (100%*)	aac(3')-lla, aac(6')-lb (66.6%)	qnrB66
				aac(3')-lla, aac(6')-lb, aph(3')-la (33.3%)	qnrS (50%)
	A ₂	9	<i>bla</i> _{CTX-M-15} , <i>bla</i> _{OXA-1} , <i>bla</i> _{SHV-1} (55.5%)	aac(3')-lla, aac(6')-lb (66.6%)	qnrB66
			<i>bla</i> _{CTX-M-15,} <i>bla</i> _{OXA-1} , <i>bla</i> _{TEM-1} , <i>bla</i> _{SHV-1} (44.4%)	aac(3')-lla, aac(6')-lb, aac(2')-la (11.1%)	(45.5%)
				aac(3')-lla, aac(6')-lb, ant(2')-la, aac(2')-la (11.1%)	
				aac(3')-IIa, aac(6')-Ib, aph(3')-Ia (11.1%)	
	A ₃	1	bla _{CTX-M-15} , bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-1}	aac(3')-lla, aac(6')-lb, aph(3')-la	qnrB1
ST17	В	1	bla _{SHV-11}	-	-
ST1233	С	1	bla _{SHV-42}	-	-
ST14	D	1	bla _{SHV-1}	-	-
ST405	E ₁	11	<i>bla</i> _{OXA-1} , <i>bla_{TEM-1}</i> , <i>bla</i> _{SHV-76} (9%)	aac(3')-lla, aac(6')-lb (36.3%)	qnrB66
			$bla_{0XA,1}$, $bla_{SHV,76}$ (9%)	aac(3')-lla (36.3%)	(91%)

		<i>bla</i> _{CTX-M-15} , <i>bla</i> _{OXA-1} , <i>bla</i> _{SHV-76} (9%)	aac(6')-lb (18.1%)	
		<i>bla</i> _{CTX-M-15} , <i>bla_{TEM-1}</i> , <i>bla</i> _{SHV-76} (18%)		
		<i>bla</i> _{CTX-M-15} , <i>bla</i> _{OXA-1} , <i>bla</i> _{TEM-1} , <i>bla</i> _{SHV-76} (55%)		
E ₂	1	bla _{CTX-M-15} , bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-IIa, aac(6')-Ib	qnrB66
E_3	1	bla _{OXA-1} , bla _{SHV-76}	aac(6')-Ib	qnrB66
E ₄	3	bla _{CTX-M-15,} bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-IIa, aac(6')-Ib	qnrB66
E_5	30	bla _{CTX-M-15,} bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-IIa, aac(6')-Ib (90%)	qnrB66
			aac(3')-Ila (10%)	(96%)
E_6	2	<i>bla</i> _{CTX-M-15,} <i>bla</i> _{OXA-1} , <i>bla</i> _{TEM-1} , <i>bla</i> _{SHV-76} (50%)	aac(3')-lla, aac(6')-lb (50%)	qnrB66
		<i>bla</i> _{OXA-1} , <i>bla</i> _{SHV-76} (50%)	aac(6')-Ib (50%)	
E ₇	1	bla _{CTX-M-15,} bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-lla, aac(6')-lb	qnrB66
E ₈	1	bla _{CTX-M-15} , bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-IIa, aac(6')-Ib	qnrB66
E9	1	bla _{CTX-M-15,} bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-lla, aac(6')-lb	qnrB66
E ₁₀	1	bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(6')-lb	qnrB66
E ₁₁	1	bla _{CTX-M-15} , bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-lla, aac(6')-lb	qnrB66
E ₁₂	5	<i>bla</i> _{CTX-M-15} , <i>bla</i> _{OXA-1} , <i>bla</i> _{TEM-1} , <i>bla</i> _{SHV-76} (100%)	aac(3')-IIa, aac(6')-Ib	qnrB66

E ₁₃	1	bla _{CTX-M-15} , bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-Ila, aac(6')-Ib	qnrB66
E ₁₄	1	bla _{CTX-M-15,} bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-lla, aac(6')-lb	qnrB66
E ₁₅	1	bla _{CTX-M-15,} bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-IIa, aac(6')-Ib	qnrB66
E ₁₆	1	bla _{CTX-M-15} , bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-Ila, aac(6')-Ib	qnrB66
E ₁₇	1	bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-Ila, aac(6')-Ib	qnrB66
E ₁₈	3	bla _{CTX-M-15,} bla _{OXA-1} , bla _{TEM-1} , bla _{SHV-76}	aac(3')-Ila, aac(6')-Ib	qnrB66

*The percentages represent the total of strains with a genetic endowment in each subcluster.

	n	%
Origin of samples		
Urinary tract	47	55.3
Respiratory tract	13	15.3
Blood	6	7
Surgical wound	4	5
Faeces	9	10.6
Others	6	7
Gender		
Men / Women,	33/52	39/61
Average age		
Age (range)	76 (26-96) yea	ars
Men/Women	72/79 years	
Men/Women over 65 years old	20/46	
Origin of Infection		
Nosocomial	41	48.2
Residential healthcare centre	30	35.3
Community	14	16.4

Table 3. Clinical data of the 85 patients with OXA-48-producing K. pneumoniae.

Table 4. Plasmid typing (PBRT-PCR) in 37 OXA-48-producing K. pneumoniaestrains.

ST	Plasmid replicons (%)	Genetic platform	Subtypes (n)
	L, FIIK, CoIE, R	Tn <i>1999.2</i>	A ₁₍ 1)
101	L, FIIK, CoIE, R	Tn <i>1999.2</i>	A ₂ (1)
	L, FIIK, CoIE	Tn <i>1999.2</i>	A ₃ (1)
17	L	Tn <i>1999.2</i>	B(1)
122	L, CoIE	Tn <i>1999.2</i>	C(1)
14	L	Tn <i>1999.2</i>	D(1)
	L, FIIK (100%) CoIE (50%)	Tn <i>1999.2</i>	E ₁ (8)
	L, FIIK	Tn <i>1999.2</i>	E ₂ (1)
	L, FIIK	Tn <i>1999.2</i>	E ₃ (1)
	L, FIIK	Tn <i>1999</i>	E ₄ (1)
	L, FIIK (100%) CoIE (50%)	Tn <i>1999.2</i>	E ₅ (4)
	L, FIIK	Tn <i>1999</i>	E ₆ (1)
	L, FIIK	Tn <i>1999.2</i>	E ₇ (1)
	L, FIIK	Tn <i>1999.2</i>	E ₈ (1)
405	L, FIIK	Tn <i>1999.2</i>	E ₉ (1)
405	L, FIIK	Tn <i>1999.2</i>	E ₁₀ (1)
	L, FIIK	Tn <i>1999</i>	E ₁₁ (1)
	L, FIIK (100%)	Tn <i>1999</i>	E ₁₂ (2)
	L, FIIK	Tn <i>1999.2</i>	E ₁₃ (1)
	L, FIIK	Tn <i>1999.2</i>	E ₁₄ (1)
	L, FIIK	Tn <i>1999.2</i>	E ₁₅ (1)
	L, FIIK, FIA	Tn <i>1999</i>	E ₁₆ (1)
	L, FIIK, CoIE	Tn <i>1999.2</i>	E ₁₇ (1)
	L, FIIK (100%) CoIE (50%)	Tn <i>1999.2/</i> Tn <i>1999</i>	E ₁₈ (2)

Figure 2. Genetic backgrounds of the *bla*_{OXA-48} gene in our *K. pneumoniae*

carbapenemase-producing strains.

Figure 1. Distribution of the different PFGE clusters by hospital

HC (Consorci de salut del Maresme), HGC (Hospital General Universitari de Catalunya), HGG (Hospital General de Granollers), HGH (Hospital General de l'Hospitalet), HGV (Consorci hospitalari de Vic), HM (Hospital de Mataró), HSCSP (Hospital de la Santa Creu i Sant Pau) i HSJDD (Hospital Sant Joan de Déu de Manresa).

Figure 2. Genetic backgrounds of the bla_{OXA-48} gene in our *K. pneumoniae* carbapenemase-producing strains.

(Genbank Access Numbers of fragment sequenced: KT265173, KT265174, KT265175, KT265176, KT265177, KT265178, KT265179, KT265180, KT265181, KT265182 and KT265183).