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Abstract: Atherothrombosis is the principal underlying cause of cardiovascular disease (CVD).
Microvesicles (MV) are small blebs originated by an outward budding at the cell plasma membranes,
which are released in normal conditions. However, MV release is increased in pathophysiologic
conditions such as CVD. Low density lipoprotein (LDL) and MV contribute to atherothrombosis
onset and progression by promoting inflammation and leukocyte recruitment to injured endothelium,
as well as by increasing thrombosis and plaque vulnerability. Moreover, (oxidized)LDL induces MV
release and vice-versa, perpetuating endothelium injury leading to CVD progression. Therefore,
MV and lipoproteins exhibit common features, which should be considered in the interpretation of
their respective roles in the pathophysiology of CVD. Understanding the pathways implicated in this
process will aid in developing novel therapeutic approaches against atherothrombosis.
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1. Introduction

Atherothrombosis is the principal underlying cause of cardiovascular disease (CVD).
Atherosclerosis is caused by lipid accumulation associated with endothelial dysfunction and chronic
low-grade inflammation and oxidative stress. Innate immunity cells and vascular smooth muscle cells
respond to these perturbations by initiating interactions and gene programs that contribute to vascular
dysfunction and atherosclerotic plaque formation. Advanced atherosclerotic plaques, with a lipid-rich
atheroma, show inward remodeling encroaching in the arterial lumen, which decrease blood flow,
thus leading to tissue ischemia. Eventually, atherosclerotic plaques can rupture and provoke thrombus
formation that may occlude the lumen interrupting oxygen supply [1].

High plasma concentrations of low density lipoprotein (LDL) cholesterol induce atherosclerosis,
while decreasing LDL cholesterol levels associates with a reduced incidence of major CV events [2].
In fact, the life-long exposure of an artery to LDL cholesterol remains a principal determinant
of atherosclerotic progression [3]. Recently, enhanced perivascular adipose tissue mass and local
inflammation has been associated with increased atherosclerotic plaque burden [4], and immunity
cells and inflammation have a causal role in atherosclerosis progression by modulating the resident
cells in the artery wall [3].

Microvesicles (MV) derived from blood and vascular cells seem also being able to participate in
the initiation, progression and complications of atherothrombosis by a direct and a paracrine regulation
of target cells. Therefore, this review is aimed at summarizing the crosstalk between lipoproteins,
inflammation, and microvesicles in the pathophysiology of atherothrombosis.
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2. Atherosclerosis: Lipids and Inflammation

Atherosclerosis is considered a lipid-initiated, chronic and progressive inflammatory systemic
disease of large and medium arteries and characterized by inflammatory and immune responses
contributing to the onset and evolution of the disease and to plaque instability and rupture. It is
triggered by the presence of elevated levels of cholesterol in the vessel wall. On the other hand,
high density lipoprotein (HDL) particles, when functionally capable, can exert the opposite effect by
removing cholesterol from the circulation through the induction of reverse cholesterol transport, by
protecting LDL and other proteins from oxidative damage [5], and by inhibiting monocyte production
of inflammatory cytokines [6,7] and monocyte differentiation [8]. However, alterations in the HDL
structure and function can render dysfunctional HDL particles that may exert deleterious effects in the
CV system [9,10]. Inflammation plays a pivotal role in atherosclerotic plaque formation and instability
by promoting endothelial cell activation, endothelial dysfunction, loss of integrity and lipid deposition
in the intima and by impairing endothelial-repairing capacity [11].

The involvement of inflammation besides LDL in atherosclerosis has been recently proven in
the proof-of-concept CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcome Study) trial,
showing that interleukin 1β inhibition resulted in a 15% reduction in cardiovascular events [12].
Supporting these findings, it has been recently observed that interleukin 6 trans-signaling increases
the risk of cardiovascular events [13]. Interleukin 1β/ interleukin 6 signaling is activated by
the nucleotide-binding leucine-rich repeat-containing pyrine receptor 3 (NLRP3) inflammasome
platform [14]. However, (minimally modified) LDL activates the inflammasome [15–17], in its turn
activating the Interleukin 1β/ interleukin 6 signaling pathway, and thus hampering the dissection of
the separate roles of lipids and inflammation in atherosclerosis progression.

Atherosclerosis initiates with increases in endothelial permeability to circulating LDL and
its accumulation in the intima. Activated endothelial cells then release cytokines, chemokines,
and adhesion molecules attracting circulating leukocytes, and more specifically monocytes, into the
atherosclerotic lesion, inducing the differentiation of monocytes into proinflammatory macrophages
and finally foam cells [18]. Although the primary origin of foam cells in atherosclerotic lesions are
leukocytes [19], smooth muscle cells have been shown to differentiate to foam cells [20]. The rupture of
the atherosclerotic plaque is the most common trigger of thrombosis, leading to an infarction.

Therefore, atherosclerosis is driven by LDL and inflammation mediated by immune cells, leading
to thrombosis and a major CV event. In this process, MV act as a paracrine complementary system
ensuing atherothrombosis as will be further discussed.

3. Microvesicles

MV belong to the family of extracellular vesicles. Extracellular vesicles are literally defined by
the International Society for Extracellular Vesicles as “the generic term for particles naturally released
from the cell that are delimited by a lipid bilayer and cannot replicate, i.e. do not contain a functional
nucleus” [21]. MV are medium/large extracellular vesicles (0.1–1 µm) originated by an outward
budding at the plasma membrane from almost all cell types [21–24], and their release is increased when
activated, injured or undergoing apoptosis. The biogenesis of MV requires a structured rearrangement
of the plasma membrane which provokes physical bending of the membrane and restructuring of
the underlying actin cytoskeleton, inducing membrane budding, exposure of phosphatidylserine (PS)
from the inner leaflet to the cell surface and formation of membrane blebs. However, MV biogenesis
also occurs even if membrane lipid asymmetry is maintained [25]. Given their biogenesis, they contain
bioactive molecules from their parental cells, and lipids are essential components of MV. Cholesterol is
a structural component of the plasma membrane, which regulates cell functionality and subcellular
compartmentalization, and is a precursor or cofactor for several signaling molecules/pathways. In fact,
MV are enriched in cholesterol compared to plasma membranes [26,27], and cholesterol mediates their
formation and release, ensures membrane stability, and it is necessary for their uptake by target cells.
Although MV are known to carry biomolecules such as proteins, RNAs and even DNA, their complete
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molecular fingerprint is largely unexplored [28], probably because the molecular composition of MV is
largely influenced by the stimulus originating them [29,30].

Once released from the cell, MV reach target cells and transfer their molecular cargo, triggering
functional responses and phenotypic changes affecting cell functionality, both at the local and systemic
environments. The net effect of MV in target cells involves signaling at multiple levels including
their interaction with cell surface receptors, and transference of genetic material, metabolites and
cytosolic enzymes.

Although the current review is focused in the lipid-mediated role of MV in the pathogenesis of
atherothrombosis, it is worth mentioning that there are smaller extracellular vesicles sized ≤150 nm
called exosomes, formed by the fusion of intracellular multivesicular bodies with the plasma
membrane [23]. Exosomes are rich in biomolecules such as protein, mRNA and non-coding RNA such
as miRNA, and have also emerged as both regulators and biomarkers of CVD progression [31]. For
further information please refer to reviews [32–37].

4. Role of Microvesicles in Atherosclerosis

As previously mentioned, MV are released from all cell types, including platelets, endothelial
cells, smooth muscle cells, leukocytes and erythrocytes. Therefore, MV are released in the bloodstream
affecting local and distal vulnerable zones.

MV are involved in CVD progression by supporting cellular cross-talk leading to vascular
inflammation and dysfunction, leukocyte adhesion and tissue remodeling, thus creating an
inflammatory and prothrombotic milieu. In parallel to LDL, MV accumulate and promote the
progression of atherosclerotic plaques [38]. Given the externalization of PS during their biogenesis, and,
in some cases, tissue factor on their surfaces, MV are potent inducers of coagulation [39], and within
the atherosclerotic plaque, retained MV account for the procoagulant activity of the lipid core. MV
are the main reservoir of tissue factor activity, thus MV increase plaque vulnerability by promoting
coagulation after erosion or rupture of the atherosclerotic plaque. In fact, MV exposing PS in their
surface enhance clot propagation, cause apoptosis of nearby cells, and modulate gene expression via
a variety of pathways [25], for instance, by transferring monomeric C-reactive protein (CRP) to the
cell surface and generating pro-inflammatory signals [40]. Endothelial release of MV is associated to
increased cytokine production, and in its turn, increased cytokine production increases MV release.
In fact, it has been observed that pharmacological attenuation of inflammation induces a decreased
shedding of endothelial-derived MV [41]. Monocyte-derived MV increase endothelial thrombogenicity
and apoptosis in vitro by increasing endothelial tissue factor expression, also by the adherence of
tissue factor derived from MV to the endothelial cell membrane, by decreasing levels of tissue
factor pathway inhibitor (TFPI) and thrombomodulin, and by disrupting endothelial integrity [42].
In addition, MV can transfer cluster of differentiation 40 ligand (CD40L) which binds to monocyte
CD40 triggering the activation of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6)
downstream signaling, activating in its turn nuclear factor (NF)-kB, thus inducing monocyte release of
inflammatory mediators [43]. Besides their prothrombotic activity [44], platelet-derived MV enhance
the expression of adhesion molecules and trigger the production of interleukins and TNF-α [45].
In addition, platelet MV recruit activated platelets to the endothelial injury area and can also activate
platelets; and platelet-derived MV also contribute to atherogeneis by inducing smooth muscle cell
proliferation [46]. Finally, it has been shown that erythrocytes can induce the vulnerability and rupture
of plaques in a dose-dependant manner [47]. This effect has been proposed to be indirectly mediated
by erythrocyte MV by activating the endothelium, attracting leukocytes and platelets, and enhancing
the whole inflammatory pathway [46], although scarce research has been done in this direction.

Therefore, MV contribute to atherothrombosis progression by indirectly elevating the thrombotic
risk through the induction of an inflammatory response and directly activating platelets and
coagulation. Although up to 200-fold elevated concentrations of MV have been found at the local
area of atherosclerotic plaques compared to plasma circulating levels [48], circulating MV from CVD
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patients [49] and healthy subjects [44] have shown significant prothrombotic activity per se, a role that
should not be underestimated in atherothrombotic progression.

Crosstalk between Lipoproteins and MV

Recent findings pinpoint some similarities between MV and lipoproteins: both MV and HDL and
LDL contain and transfer miRNA to target cells [50,51]; MV extracts have been shown to carry ApoE,
ApoB, ApoC-II, among others; and the size and density of small- and middle-sized MV closely overlap
with lipoproteins, as can be observed in Figure 1. As a matter of fact, some isolation techniques result
in co-purification of MV and lipoprotein particles [22,23,52].
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Figure 1. Particle size of lipoproteins and microvesicles. HDL, high density lipoprotein; LDL, low
density lipoprotein; IDL, intermediate density lipoprotein; VLDL, very low density lipoprotein; and
MV, microvesicles.

Given this size overlap, it is of extreme importance that blood extraction for MV isolation and
characterization is being performed in fasting conditions. Depletion of lipoproteins for MV analyses and
vice-versa should be carefully considered in biomarker and functional studies. However, the half-life
of lipoproteins and MV differs significantly. In physiological conditions, remnant chylomicrons, LDL
and HDL, are readily metabolized and stored as intracellular lipid droplets in the liver and adipose
tissue. Oppositely, MV rapidly accumulate in resident macrophages of the liver, lungs, and spleen [53].
During atherosclerosis progression, oxidized lipoproteins accumulate in macrophages and other
subendothelial cells of the vascular wall provoking an inflammatory response and the progression
of the plaque formation. The contribution of circulating (not local) MV in atherothrombosis needs
further research.

As previously mentioned and summarized in Figure 2, monocyte-derived macrophages accumulate
cholesterol modified within the arterial wall during atherogenesis [54]. In its turn, cholesterol
accumulation in macrophages and foam cells enhance AV+ and tissue factor+ MV release [55], potentially
contributing to the prothrombotic state in hypercholesterolemia [56], and to the prothrombotic core of
the lipid-rich vulnerable plaque [57].
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Figure 2. Lipid and microvesicle crosstalk contributing to atherosclerosis progression.

It is known that oxidized low-density lipoprotein (oxLDL) activates platelets [58–60], thus inducing
a prothrombotic state [39]. In addition, oxLDL induces the cellular release of MV [33,39]. In fact, total,
AV+ and CD41a+ MV release was shown increased after challenging platelets with oxLDL (but not
native LDL) [61], and this effect was comparable to that of ADP. However, Nielsen et al. [62] observed
that in vitro incubation of platelets with oxLDL (or native LDL as well) did not significantly stimulate
CD41+ and CD41+/CD36+ MV release, suggesting that MV release induced by oxLDL may not be
mediated by the interaction with CD36 on platelets.

It has been shown that oxLDL, in a time- and dose-dependent manner, promotes the in vitro release
of endothelial MV rich in intercellular adhesion molecule 1 (ICAM-1) [63], which can be transferred
from MV to endothelial cells increasing monocyte adhesion to endothelial cells [64], further propagating
the atheroprone effects of oxLDL even in its absence. Moreover, enrichment of THP-1 monocytic
cells with unsterilized cholesterol resulted in increased MV production [65], and these MV induced
extensive leukocyte rolling and adherence to the endothelium. In the presence of oxLDL, high shear
stress-induced platelet-derived MV were able to activate THP-1 monocytes and induce them to generate
tissue factor-rich MV in vitro [66].

Elevated concentrations of circulating autoantibodies for oxLDL, a surrogate biomarker for LDL
oxidation in vivo, have been associated with increased levels of platelet- and monocyte-derived
circulating MV in acute coronary syndrome patients [66]. As previously stated, oxLDL induces
the cellular release of tissue factor-exposing MV, promoting coagulation and thrombosis, and also
disseminating the inflammatory response [39]. Although surface molecules of parental cells are
transferred to MV, the interactions between of oxLDL and MV are not entirely elucidated and the
consequent effects still remain unknown.

In addition to oxidized LDL, aggregated LDL but not native LDL increases tissue factor-loaded
MV from smooth muscle cells [67]. In their turn, oxidized MV have been shown to stimulate monocyte
adhesion to endothelial cells through oxidized membrane phospholipids, thus also contributing to
atherosclerosis progression [65,68,69].

Given the heterogenic composition of MV, they may have cardioprotective functions as well. As
recently reviewed, some MV carry antioxidant enzymes, conferring antioxidant activity at MV under
specific stimuli [70]. In its turn, MV have also been shown to both stimulate or inhibit angiogenesis
by several mechanisms of action, again depending on the cellular origin and molecular composition
derived from the trigger or condition originating their release [71].

5. Role of Microvesicles in Dyslipidemia

The pathophysiological link between postprandial hypertriglyceridemia, inflammation and
endothelial injury may be provoked by an excessive retention of lipoproteins in the extracellular
matrix and increased uptake by macrophages, thus initiating the atherogenic process. A large body
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of evidence indicates a direct relationship between postprandial hypertriglyceridemia and CVD
risk [72,73]. Postprandial dyslipidemia, independently of the caloric intake or the postprandial
state itself, is associated with increased endothelial-derived CD31+/CD42− [74], and total circulating
MV levels in healthy subjects [75], and to increased platelet-derived MV in men with different CV
risk burden [76], in parallel to increased markers of oxidative stress such as oxLDL and impaired
flow-mediated dilation [75]. The effects of postprandial hypertriglyceridemia on MV release in subjects
with metabolic dysregulation are quite unexplored and deserve further research, as the reported results
are controversial. Type 2 diabetic patients, who show exacerbated postprandial dyslipidemia, show
around 3.5 fold increased concentration of endothelial-derived CD144 circulating MV after a meal [77].
However, patients with carotid atherosclerosis show a similar postprandial elevation of circulating
platelet-derived MV, despite having higher postprandial hypertriglyceridemia than control subjects
free of atherosclerosis [78].

Patients with hypercholesterolemia show higher levels of monocyte- and platelet-derived MV
than healthy subjects [79–81]. Familial hypercholesterolemia (FH) is an autosomal dominant genetic
disorder associated with elevated LDL cholesterol levels and deposition in tendons (xanthomas),
and premature heart disease [82]. MV have been associated with atherosclerosis progression
and with a higher risk of atherothrombosis in FH patients. In fact, elevated concentrations of
total, endothelial cell-derived, erythrocyte-derived, monocyte-derived, tissue factor-loaded MV [83],
and platelet-derived MV [84], have been found in FH patients compared to healthy controls [85],
and identify subclinical atherosclerosis [80]. In addition, circulating CD36+ MV derived from
endothelial cells and monocytes were significantly higher in FH patients compared to healthy
controls [85], and monocyte-derived circulating MV in FH patients directly correlated with oxLDL
plasma concentrations [79]. Moreover, these patients showed increased concentrations of circulating
MV derived from leukocytes, and lymphocyte-derived CD3+/CD45+ circulating MV have been shown
elevated in FH patients with lipid-rich atherosclerotic plaques [86]. In addition, platelet- (CD41a+/AV+,
CD31+/AV+, CD41a+/CD31+/AV+), granulocyte- (CD66+/AV+), neutrophil- (CD11b+/CD66+/AV+),
and endothelial cell-derived (CD62E+/AV+/−) circulating MV discriminate and map coronary
atherosclerotic plaque and calcification [84], and leukocyte- and activated platelet-derived circulating
MV predict a major cardiovascular event in these patients three years before it takes place [87].

In FH patients, plasma apheresis reduces circulating MV concentration, mainly platelet-derived
MV AV+ [88].

Pharmacological Treatment of Dyslipidemia and Circulating MV

Given the crosstalk between lipids and MV, as discussed in a previous section, it appears
plausible that lipid lowering therapy may elicit a pleiotropic effect by (partially) inhibiting MV release,
contributing to explain their beneficial effects in atherothrombotic complications. We have observed
that statins reduce MV shedding from platelets, endothelial cells and leukocytes carrying markers
of cell activation [89], and this effect was found to be accumulative throughout years of treatment.
Other researchers have also observed that statins decrease MV release from several cell origins [90–92],
and modify their molecular fingerprint by decreasing their cargo of cell activation markers [93,94].
In stroke patients with hyperlipidemia, simvastatin treatment for 6 months reduced the percentage of
CD61+ platelet-derived MV to similar levels to those of age- and sex-matched controls [95].

However, some authors did not observe such effect of statins [96,97], and, as discussed in the 2019
ESC/EAS Guidelines for the management of dyslipidemias, the clinical relevance of the pleiotropic
effects of statins remains clinically unproven [98], and thus may be object of future research.

6. Conclusions and Future Perspectives

The studies summarized in this review evidence that MV are settled in the tandem lipids
inflammation, contributing to the progression of atherothrombosis leading to a major CV event.
Despite a huge body of research towards the understanding of the exact contribution of MV in this
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process, several questions remain unanswered, such as the specific interaction of MV with native and
modified LDL, the molecular fingerprint of MV, how do they qualitatively (by which pathways) and
quantitatively (in what amounts) contribute in the presentation of major CV events, and if they can be
considered real candidates as drug delivery vectors in the clinical setting. Given the central role of
MV in systemic inflammation and endothelial injury within the pathophysiology of atherothrombosis,
their link with lipids and lipoproteins are of particular interest. Understanding the pathways implicated
in this process will aid in developing novel therapeutic approaches against early atherosclerosis. In this
setting, MV and lipoproteins exhibit common features, which should be considered in the interpretation
of their respective roles in the pathophysiology of CVD.
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