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Abstract: Maqui (Aristotelia Chilensis) berry features a unique profile of anthocyanidins that includes
high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and delphinidin-3-O-sambubioside
and has shown positive effects on fasting glucose and insulin levels in humans and murine models
of type 2 diabetes and obesity. The molecular mechanisms underlying the impact of maqui on
the onset and development of the obese phenotype and insulin resistance was investigated in
high fat diet-induced obese mice supplemented with a lyophilized maqui berry. Maqui-dietary
supplemented animals showed better insulin response and decreased weight gain but also a differential
expression of genes involved in de novo lipogenesis, fatty acid oxidation, multilocular lipid droplet
formation and thermogenesis in subcutaneous white adipose tissue (scWAT). These changes correlated
with an increased expression of the carbohydrate response element binding protein b (Chrebpb),
the sterol regulatory binding protein 1c (Srebp1c) and Cellular repressor of adenovirus early region
1A–stimulated genes 1 (Creg1) and an improvement in the fibroblast growth factor 21 (FGF21)
signaling. Our evidence suggests that maqui dietary supplementation activates the induction of fuel
storage and thermogenesis characteristic of a brown-like phenotype in scWAT and counteracts the
unhealthy metabolic impact of an HFD. This induction constitutes a putative strategy to prevent/treat
diet-induced obesity and its associated comorbidities.
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1. Introduction

Stimulation of the brown adipose tissue (BAT) and the induction of browning in white adipose
tissue (WAT) as a strategy against obesity and its associated metabolic complications has generated
growing interest in recent years. This interest is based on the ability of both BAT and browned-WAT
to increase energy expenditure (EE) mainly through fatty acid consumption [1,2], and their pivotal
role in the control of energy homeostasis in mammals [3,4]. In addition to classical brown adipocytes
located in BAT, thermogenic adipocytes with similar characteristics can be found within white adipose
tissue (WAT) [3]. These brite/beige adipocytes are metabolically and phenotypically similar to brown
adipocytes and can actively contribute to increasing whole-body EE. Specifically, brite/beige adipocytes
show a multilocular phenotype and express genes closely related to BAT metabolism (Ucp1 as a marker
of its thermogenic capacity in addition to genes implied in de novo lipogenesis (DNL), fatty acid
oxidation (FAO), lipolysis, etc.).

Recent evidence shows that the activation of BAT and the induction of browning in WAT can be
induced by cold acclimation but also by nutritional inputs under different signaling cascades [2,5–7].
Cold is a classic activator of BAT and of beige adipocyte development and function [5,8]. Regarding
nutritional inputs, we recently demonstrated that low-protein diets and the cooked-tomato sauce
called “sofrito” are able to induce Ucp1 expression in WAT, thus indicating a browning phenotype [6,7].
In the same way, other authors published that high-fat diets, bioactive compounds and prebiotics can
also induce browning in WAT [9–14].

Part of the cold-induced metabolic profile in BAT is regulated by the stimulation of
carbohydrate-responsive element binding protein b (ChREBPb) through the Ak strain transforming/protein
kinase 2 (AKT2) activity [15]. Besides ChREBP, fibroblast growth factor 21 (FGF21) has shown beneficial
effects on glucose/lipid homeostasis and body weight control among other mechanisms by increasing
energy expenditure (EE) and inducing browning and UCP1 overexpression in adipose tissues [6,16–19],
as well as by promoting the insulin-dependent glucose uptake, mitochondrial biogenesis, and adiponectin
secretion in adipocytes [20,21]. In this case, it has been widely demonstrated that FGF21 activity and/or
signaling respond to nutritional challenges [22].

Anthocyanidin-rich berries have been proposed for the treatment and prevention of several
disorders, including obesity-related metabolic disorders [23–32] but little is known about the molecular
mechanisms underlying their beneficial effects. Maqui (Aristotelia chilensis) is a native Chilean
berry with a unique anthocyanins profile that includes delphinidin-3-O-sambubioside-5-O-glucoside
and delphinidin-3-O-sambubioside as the main phenolic compounds [33]. Besides its antioxidant
activity, different preparations of maqui have shown positive effects on fasting glucose and
insulin levels in humans and murine model of type 2 diabetes and obesity [34–37] and
delphinidin-3-sambubioside-5-glucoside has been described as the responsible for hypoglycemic
activity in in vivo models [36].

With the global aim of deepening the knowledge of the molecular mechanisms responsible for the
metabolic effects of maqui and in some way of the anthocyanidin-rich foods, we investigated the effect
of a lyophilized maqui berry preparation on the onset and progression of the diet-induced obesity (DIO)
in mice subjected to high-fat diet (HFD) for 16 weeks. We studied the impact of maqui in the metabolic
profile of the obese phenotype. We focused on the adipose tissue metabolic phenotype because of its
role on the progression of obesity and as a major target to counteract the onset and development of this
pathology and its metabolic-associated diseases such as insulin resistance. We analyzed specifically
the subcutaneous WAT (scWAT) because growing evidence suggests that this depot is protective to
metabolic health while visceral is detrimental [38–43].

Globally, our results highlight the potential role of maqui in the treatment of diet-induced obesity
and insulin resistance. Further studies will be needed to identify the effects of maqui on healthy
population and the impact of its regular consumption as part of a healthy dietary pattern such as the
Mediterranean diet.



Antioxidants 2019, 8, 360 3 of 19

2. Materials and Methods

2.1. Anthocyanins Determinations by UPLC-DAD

For sample preparation, 0.1 g of maqui was extracted with 5 mL of a mixture of water and
ethanol 80:20 (v/v). The extraction was repeated 3 times to increase extractability of the anthocyanidins.
The extract was evaporated under vacuum to remove the ethanol and reconstituted to a final volume
of 10 mL with MilliQ water. This procedure was done in triplicate. Finally, the sample was filtered
through a 0.22 µm PTFE membrane filter into an amber vial for UPLC analysis.

The quantification and identification of anthocyanins was done using a Waters Acquity Ultra
Performance Liquid Chromatography H class (Waters Corp, Milford MA, USA) coupled to Photodiode
Array (PDA) detector (Waters Corp, Milford MA, USA). The chromatographic separation was performed
by an Aquity BEH C18 column 2.1 mm × 100 mm, 1.7 µm. The chromatographic method proposed
by Andrés-Lacueva et al. (2005) adapted to the UPLC system was used [44]. Briefly, the injection
volume was 10 µL and the gradient elution was performed with water/5% formic acid (v/v) (A) and
100% acetonitrile (B) at a constant flow rate of 0.75 mL/min. A decreasing linear gradient of solvent A
was used. Separation was carried out in 11 min under the following conditions: 0 min, 98% A; 6 min,
95% A; 9 min, 90% A; 9.1 min, 20% A; 9.3min, 20% A; 9.4 min, 92% A, 11 min, 92% A.

The column was equilibrated for 6 min prior to each analysis. Each maqui anthocyanin
was quantified at λ = 520 nm using a calibration curves with pure standard purchased in
Extrasynthese S. A. (Delphinidin-3-O-sambubioside-5-O-glucoside, delphinidin-3-O-sambubioside,
cyanidin-3-O-sambubioside-5-O-glucoside, cyanidin-3-O-glucoside and cyanidin-3-O-sambubioside),
and the identification was made by comparing the retention times of the chromatographic peaks with
the retention time of the pure phenolic standards. Results were expressed as millimoles of anthocyanins
per kilogram of maqui (mmol/kg).

2.2. Animal Procedures—Dosage Regimen

Animal procedures were approved by the Animal Ethics Committee of the University of Barcelona
(CEEA-173/18). C57BL/6J littermates’ male mice (n = 23) were housed in a temperature-controlled
room (22 ± 1 ◦C) on a 12-h/12-h light/dark cycle and were provided free access to commercial rodent
chow and tap water prior to the experiments. When animals were four-week-old it was confirmed that
all animals were normoglycemic before being randomly assigned into two experimental groups (HFD
and HFD supplemented with maqui (HFDM)). Both groups were fed a diet of 45% fat-derived calories
(HFD) (D12451, Research Diets) for 16 weeks supplemented or not with lyophilized maqui. HFD
group (n = 9) had free access to HFD diet and filtered-tap water and HFDM (n = 14) group had free
access to HFD diet and filtered-tap water supplemented with maqui (20 mg of lyophilized maqui/mL
of filtered-tap water). To prepare the supplemented water, 1 g of the lyophilized maqui was added to
50 mL of tap-filtered water. This mixture was prepared extemporaneously every two days to prevent
the oxidation of maqui bioactive compounds.

The dosage regimen of maqui was calculated according to the polyphenol intake recommended as
beneficial by the Predimed Study (820 mg in a human diet of 2300 kcal) [45,46]. Mice intake is around
10–15 kcal per day, which means 4–5 mg of polyphenols per day scaling-down the recommended
beneficial quantity in humans. Table 1 shown that 1g of lyophilized maqui provides 45 mg of
anthocyanins. The dose of maqui was adjusted to achieve 4 mg of polyphenols per day, considering
that mice take 2–3 mL of water/day. The nutritional composition of the lyophilized maqui used
(Maquiberry, Native for Life, Chile) is indicated in the supplemental information (Table S1).

During the 16-week nutritional intervention, food and beverage intake were recorded every two
days and body weight twice a week. At the end of the nutritional intervention, the animals were
euthanized. Blood was extracted by intracardiac puncture, and serum was obtained by centrifugation
(1500 rpm, 20 min). Epididymal WAT (eWAT), scWAT and BAT were isolated, immediately snap-frozen
and stored at −80 ◦C for future analysis.
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2.3. RNA Isolation and Quantitative RT-PCR

Total RNA was isolated from frozen tissues using TRI Reagent™ Solution (AM9738, Thermo
Fisher Scientific, Waltham, USA), followed by DNaseI treatment (K2981, Thermo Fisher Scientific,
Waltham, USA). cDNA was synthesized from 1 µg of total RNA using the High-Capacity cDNA
Reverse Transcription Kit (4368814, Thermo Fisher Scientific, Waltham, USA). Relative mRNA levels
were measured by quantitative PCR (qPCR) using SYBR™ Select Master Mix for CFX (4472942, Thermo
Fisher Scientific, Waltham, USA). 18S and B2M were used as housekeeping genes. The sequences of
the primers used in qPCR are presented in Table S2. Results were obtained by the relative standard
curve method, and values were referred to the HFD group.

2.4. Glucose Tolerance Test (GTT) and Insulin Tolerance Test (ITT)

Mice were fasted for 6 h in the morning, and then injected intraperitoneally (i.p.) with 1.5 g of
glucose (Sigma)/kg mouse (GTT) or 0.5 UI of insulin solution (Sigma)/kg mouse (ITT). Blood samples
were collected from the tail vein, and glucose levels were measured using a glucometer (Glucocard SM,
Menarini, Florence, Italy) prior to the i.p. injection and at 30, 60 and 120 min postinjection. GTT was
performed 14 weeks after the beginning of maqui supplementation and ITT on week 15th.

2.5. Histological Analysis

For the histological analysis, pieces of scWAT of each animal were fixed in 10% formalin (Sigma)
and embedded in paraffin. Afterwards, 4 µm-thick sections were cut and stained with hematoxylin
and eosin (H&E). Images were acquired using a Digital Upright Microscope BA310 Digital and a
Moticam 2500 camera. The selection of the test objects was performed according to color and choosing
the same limits for binarization for all images. At least three pictures from different regions of each cut
were taken.

2.6. Data Analysis/Statistics

GraphPad Prism version 8.02 (GraphPad, San Diego, CA, USA) was used to perform the statistical
analyses. Two tailed Student’s Test with Welch’s correction when not equal SDs can be assumed was
used to determine significant differences among experimental groups. The statistical analysis of body
weight progression, body weight/calorie intake and curves of GTT and ITT was performed by 2 factor
ANOVA with pot-hoc test (Bonferroni’s). In all cases, p-value < 0.05 was considered statistically
significant. All data are expressed as the mean ± SEM.

3. Results

3.1. Maqui Anthocyanin Content

The levels of anthocyanins determined in the lyophilized maqui used in our experimental approach
(Maquiberry, Native for Life, Chile) (Table 1) were similar to those reported previously [47–50]. In terms
of the total content of anthocyanins, the lyophilized maqui used in this work has an extremely high
content (45,052 mg/kg = 4.5%) compared to other similar products like a Freeze-Dried Whole Blueberry
(2432 mg/kg = 2.4%) [51] or a dried raspberry solids (750 mg/kg = 0.75%) [52]. The predominant (80%)
anthocyanins were delphinidin-3-O-sambubioside-5-O-glucose and delphinidin-3-O-sambubioside,
as shown in Table 1 and Figure S1 (Supplemental Materials).
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Table 1. Anthocyanidin composition of the lyophilized maqui berry. Anthocyanins were determined by
UPLC-DAD. The table shows the concentration in mg/g and mmol/kg of the different anthocyanidins
detected. The table includes the retention time (min), the limit of detection (LOD) and the limit of
quantification (LOQ) for each molecule.

Compound Conc.
(mg/g)

Conc.
(mmol/kg)

Retention Time
(min)

LOD
(mg/L)

LOQ
(mg/L)

Delphinidin-3-O-sambubioside-5-O-glucoside 19.645 ± 0.788 24.71 ± 0.99 3.5 1.81 6.02

Delphinidin-3-O-sambubioside 17.770 ± 1.178 28.07 ± 1.86 5. 0.30 1.00

Cyanidin-3-O-sambubioside-5-O-glucoside 2.447 ± 0.063 3.14 ± 0.08 5.5 0.75 2.50

Not identified (quantified as cyd-3-0-glu) 0.402 ± 0.050 0.83 ± 0.10 6.5 - -

Cyanidin-3-O-glucoside 2.148 ± 0.158 4.43 ± 0.33 7 0.11 0.35

Cyanidin-3-O-sambubioside 2.642 ± 0.201 4.28 ± 0.33 7.3 0.17 0.56

TOTAL 45.052 65.46

3.2. Maqui Dietary Supplementation Reduces HFD-Induced Body Weight Gain and Improves Insulin
Sensitivity in Mice

C57BL6/J mice fed an HFD for 16 weeks put on weight (Figure 1a,b) and displayed glucose
intolerance (Figure 1e,f) and insulin resistance (Figure 1g,h). Comparing both experimental groups
revealed that mice fed HFD supplemented with maqui (HFDM) showed an attenuated progression
in body weight (Figure 1a–c), even the animals were hyperphagic, and their daily caloric intake was
higher (Figure 1d). Concretely, the HFDM animals put on less weight after the 16 weeks of nutritional
intervention (Figure 1b). Even though no statistical differences were observed in the body weight
progression (Figure 1a), there were when the ratio between body weight and caloric intake was
calculated (Figure 1c). These data indicated that, in some way, there is an increased energy expenditure
in these animals.

Regarding the insulin/glucose responsiveness, HFDM mice shown a significant reduction in
fasting glucose at Week 15 of the nutritional intervention (207.6 ± 5.5 vs. 166.5 ± 6.1, p = 2.7 × 10−5).
It is worth highlighting that, after the glucose injection, the HFDM animals displayed a better glucose
curve (Figure 1e) that corresponded to a significant reduction of the area under the curve (AUC) of
the GTT (Figure 1f, p < 0.05). In the case of the ITT, the curve of glucose after the insulin injection
showed significantly lower levels of glucose at the first time-points (Figure 1g). These differences were
minimized but maintained over time, even though they did not reach statistical significance (Figure 1g).
Finally, the AUC of the ITT showed a clear tendency to a reduction in HFDM (Figure 1h, p < 0.08).
Although some of the data are not significant individually, altogether they indicate an improvement on
glucose tolerance and insulin sensitivity after 16 weeks of maqui dietary supplementation.
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for the 16-week nutritional intervention with maqui. Calorie intake was calculated based on the 
energy density of the HFD and the amount of food consumed daily. In HFDM mice, the kcal from 
maqui were also added. The graph represents the mean ± SEM of the weekly body weight increase 
related to calorie intake in both experimental groups. (d) Calorie intake for both experimental groups 
during the 16-week nutritional intervention. The graph represents the mean ± SEM. (e) GTT curve 
showing plasma glucose levels after i.p. administration of glucose (1.5 g/kg b.w.) in HFD and HFDM 
mice after 14 weeks of maqui supplementation. (f) AUC of glucose levels in GTT. (g) ITT curve 
showing plasma glucose levels after i.p. administration of insulin (0.5 UI/kg b.w.) in HFD and HFDM 
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Figure 1. Maqui dietary supplementation reduces HFD-induced body weight gain and improves
insulin sensitivity in mice. (a) Body weight progression (g) for the 16-week nutritional intervention
with maqui. Body weight was recorded twice a week. The graph represents the mean ± SEM of weekly
increments in both experimental groups. (b) Total body weight increment in grams after 16-week
nutritional intervention with maqui. The graph represents the mean ± SEM of the total body weight
increment in both experimental groups. (c) Body weight (g) related to calorie intake (kcal) per week for
the 16-week nutritional intervention with maqui. Calorie intake was calculated based on the energy
density of the HFD and the amount of food consumed daily. In HFDM mice, the kcal from maqui
were also added. The graph represents the mean ± SEM of the weekly body weight increase related to
calorie intake in both experimental groups. (d) Calorie intake for both experimental groups during
the 16-week nutritional intervention. The graph represents the mean ± SEM. (e) GTT curve showing
plasma glucose levels after i.p. administration of glucose (1.5 g/kg b.w.) in HFD and HFDM mice
after 14 weeks of maqui supplementation. (f) AUC of glucose levels in GTT. (g) ITT curve showing
plasma glucose levels after i.p. administration of insulin (0.5 UI/kg b.w.) in HFD and HFDM mice
after 15 weeks of maqui administration. (h) AUC of glucose levels in ITT. Data from GTT and ITT are
presented as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 versus the HFD group.

3.3. Maqui Dietary Supplementation Induces a Multilocular Phenotype in scWAT

HFDM mice were leaner than their littermates (Figures 1a and 2a) and had more BAT and less
WAT (Figure 2b,c). Because of the healthier profile observed in HFDM mice regarding body weight
and insulin resistance, we hypothesized that maqui could be exerting its effects through the induction
of browning in scWAT. The H&E staining of scWAT revealed that maqui supplementation induced
the transition of unilocular adipocytes to multilocular ones (Figure 2d). No differences in other WAT
depots due to maqui supplementation were observed in any analysis performed.
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Representative hematoxylin and eosin (H&E)-stained scWAT sections from HFD and HFDM (40× 
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in the HFD animals. (e) Fsp27a and Fsp27b mRNA levels were measured by qRT-PCR in scWAT of 
HFD and HFDM mice. Bars represent the relative mRNA levels of both genes in the two experimental 
conditions in scWAT normalized by the B2M gene as housekeeping gene. Data are presented as the 
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In the context of browning, recent publications have shown the relevance of fat-specific protein 
27 (FSP27) isoforms in the phenotype of unilocular or multilocular lipid droplets. FSP27 is considered 
to be, at least in part, the protein responsible for the formation and growth of lipid droplets (LDs). 
Two isoforms have been described with different expression patterns and functions. Fsp27a is 
expressed in WAT, where it promotes the formation of large LDs. By contrast, BAT expresses the 
Fsp27b isoform that contributes to the ensemble of smaller LDs [53,54]. To confirm the brown-like 

Figure 2. Maqui dietary supplementation induces a multilocular phenotype in scWAT. (a) Representative
pictures of HFD (n = 9) and HFDM (n = 14) mice after 16 weeks of nutritional intervention. HFDM
mice are leaner and show fewer white fat depots. (b) Representative pictures of interscapulum BAT
of HFD and HFDM mice. For HFDM mice, the BAT depot is larger than the one from HFD mice.
(c) Representative pictures showing scWAT depots of HFD and HFDM mice. (d) Representative
hematoxylin and eosin (H&E)-stained scWAT sections from HFD and HFDM (40× magnification).
Some multilocular adipocytes are revealed in scWAT of HFDM, but none were seen in the HFD animals.
(e) Fsp27a and Fsp27b mRNA levels were measured by qRT-PCR in scWAT of HFD and HFDM mice.
Bars represent the relative mRNA levels of both genes in the two experimental conditions in scWAT
normalized by the B2M gene as housekeeping gene. Data are presented as the mean ± SEM. * p < 0.05,
*** p < 0.001 versus the HFD group.

In the context of browning, recent publications have shown the relevance of fat-specific protein 27
(FSP27) isoforms in the phenotype of unilocular or multilocular lipid droplets. FSP27 is considered
to be, at least in part, the protein responsible for the formation and growth of lipid droplets (LDs).
Two isoforms have been described with different expression patterns and functions. Fsp27a is expressed
in WAT, where it promotes the formation of large LDs. By contrast, BAT expresses the Fsp27b isoform
that contributes to the ensemble of smaller LDs [53,54]. To confirm the brown-like phenotype of scWAT
in HFDM mice, the mRNA levels of both Fsp27 isoforms were measured. The results indicated that the
dietary maqui supplementation causes a shift in the expression pattern of Fsp27. The scWAT depot
of HFDM mice showed a significant reduction in the levels of Fsp27a and a significant induction of
Fsp27b expression (Figure 2e), thus reinforcing the idea that maqui causes a brown-like phenotype in
the scWAT.
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3.4. Maqui Induces the Expression of Genes from de Novo Lipogenesis, Fatty Acid Oxidation, Thermogenesis
and Browning in scWAT

As shown in Figure 3, in the scWAT of HFDM mice, the mRNA levels of genes related to
mitochondrial (carnitine palmitoyl transferase 1b (Cpt1b)) and peroxisomal (Acyl-CoA oxidase 3
(Acox3), Enoyl-Coenzyme A, and Hydratase/3-Hydroxyacyl Coenzyme A Dehydrogenase (Ehhadh))
FAO (Figure 3a), DNL (Acetyl-CoA Carboxylase Alpha (Acaca), ATP Citrate Lyase (Acly), Fatty acid
synthase (Fasn), Diacylglycerol Acyltransferase I (Dgat1), Sterol regulatory binding protein 1c (Srebp1c)
and Glycerol Kinase (GlyK)) (Figure 3b) and thermogenesis/browning (Ucp1, Type 2 Iodothyronine
Deiodinase (Dio2), PR-Domain Zinc Finger Protein 16 (Prdm16), Peroxisome proliferator-activated
receptor gamma (Pparg), Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Pgc1a)
and Cellular repressor of adenovirus early region 1A–stimulated genes 1 (Creg1)) (Figure 3c) increased,
suggesting that the scWAT of the HFDM mice were metabolically closer to BAT than WAT. We also
analyzed epididymal WAT (eWAT) and BAT. While eWAT did not show any feature of browning (data
not shown), BAT showed an increment of size (Figure 2b) but no induction of Ucp1 was observed (data
not shown).
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mitochondrial and peroxisomal FAO (Cpt1b, Acox3, and Ehhadh), (b) DNL (Acaca, Acly, Fasn, GlyK, 
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Figure 3. Maqui induces the expression of genes from de novo lipogenesis, fatty acid oxidation,
thermogenesis/browning in scWAT. The relative mRNA levels of characteristic genes of (a) mitochondrial
and peroxisomal FAO (Cpt1b, Acox3, and Ehhadh), (b) DNL (Acaca, Acly, Fasn, GlyK, Dgat1 and Srebp1c)
and (c) thermogenesis and browning (Ucp1, Type 2 Iodothyronine Deiodinase (Dio2), PR-Domain Zinc Finger
Protein 16 (Prdm16), Peroxisome proliferator-activated receptor gamma (Pparg), Peroxisome proliferator-activated
receptor gamma coactivator 1 alpha (Pgc1a) and Cellular repressor of adenovirus early region 1A–stimulated
genes 1 (CREG1)) were measured using qRT-PCR in scWAT of HFD and HFDM mice. Bars represent
the fold induction in the mRNA levels versus the HFD animals that are considered the control group,
which produces an arbitrary value of 1. Data are presented as the mean ± SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001 versus the HFD group.
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3.5. Maqui Induces the Expression of Chrebpa, Chrebpb and Glut4 in scWAT

As mentioned above, part of the cold-induced metabolic profile in BAT is regulated by the
stimulation of ChREBPb through the AKT2 activity [15]. In WAT, the expression of Chrebp in adipose
tissue is regulated by GLUT4-mediated glucose uptake that activates the ChREBPa isoform, which
in turn induces the expression of Chrebpb, an alternative-promoter transcribed isoform. Chrebpb
expression in human adipose tissue predicts insulin sensitivity, and its induction has been highlighted
as an effective strategy for preventing and treating obesity-related metabolic dysfunction and type 2
diabetes [55–57]. Globally, ChREBP is considered the major regulator of DNL in adipose tissue [58].
To analyze the putative role of ChREBPb and GLUT4 in the induction of the metabolic changes observed
in scWAT due to maqui supplementation, the mRNA levels of Glut4, Chrebpa and Chrebpb were
evaluated. The data show that maqui increases the expression of these three genes (Figure 4), thus
providing insight into the molecular mechanism through which maqui induces a brown-like phenotype
in scWAT.
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Figure 4. Maqui induces the expression of Chrebpa, Chrebpb and Glut4 in scWAT. The relative mRNA
levels of Glut4, Chrebpa and Chrebpb were measured by qRT-PCR in scWAT of HFD and HFDM mice.
Bars represent the fold induction in the mRNA levels versus the HFD animals that are considered the
control group and assigned an arbitrary value of 1. Data are presented as the mean ± SEM. ** p < 0.01,
*** p < 0.001 versus the HFD group.

3.6. Maqui Increases the Expression of Adiponectin and FGF21 and the FGF21 Signaling in the scWAT

Obesity is considered an FGF21-resistant state usually due to a downregulation of the fibroblast
growth factor receptor (FGFR) and/or its co-receptorβ-klotho (KLB) that impairs FGF21 signaling [59,60].
To analyze the effect of maqui berry supplementation on the FGF21 signaling, the mRNA levels of
Fgf21 itself, Fgfr1, Fgfr4 and KLB were determined. Moreover, to analyze the functionality of the
FGF21 signal transduction pathway, the expression levels of Egr-1 and adiponectin were measured.
Figure 5 shows that, in scWAT, both the FGF21 and its receptors (FGFR1 and FGFR4) were significantly
overexpressed in HFDM mice versus the HFD mice (Figure 5). These data, together with the induction
of Egr-1 and adiponectin in scWAT (Figure 5), indicate that maqui supplementation improves FGF21
signaling and effectiveness in scWAT.
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4. Discussion

Globally, our data show that maqui dietary supplementation ameliorates the unhealthy effects of
HFD. By using diet-induced obese mice, the present study demonstrated that supplemented animals
displayed better insulin responsiveness, decreased weight gain and increased thermogenic activity.
The analysis of gene expression in different tissues showed that scWAT exhibited differential expression
of genes involved in browning, DNL, mitochondrial and peroxisomal FAO, multilocular adipocytes
and thermogenesis. These changes were probably related with the increased expression of Chrebpa,
Chrebpb, Glut4, Creg1 and Srebp1c but also the improvement in FGF21signaling.

Obesity is essentially caused by an imbalance between energy intake and energy expenditure.
Some evidence indicates that, at some point, the white adipose tissue (WAT) fails to adequately keep
the surplus of nutrients, which together with an insufficient differentiation of new adipocytes leads to
an off-WAT accumulation of ectopic lipids in peripheral relevant organs that may cause the metabolic
obesity-related metabolic dysfunctions. It seems obvious that defects in WAT functionality together
with peripheral lipotoxicity are key in the onset of metabolic syndrome [61–66].

The biomedical relevance of brown and beige adipocytes lies in the ability of these cells to increase
EE and counteract metabolic diseases such as obesity or type 2 diabetes [1,2]. Indeed, increasing the
activity of brown, beige or both fat depots is considered a promising strategy for the treatment of
metabolic diseases [67,68].

Berries are an important source of anthocyanins [27,36,69,70]. Anthocyanins are widely distributed
water-soluble polyphenols that have shown important health effects including metabolic effects on
glucose metabolism [23–27,36,37,69,71–76]. In this context, maqui berry features a unique profile
of anthocyanidins that includes high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and
delphinidin-3-O-sambubioside. These anthocyanins with a sambubioside residue are distinctive of
maqui berry since they have been not reported in other edible berries such as blueberries [77], acai [78],
blackcurrant, elderberry [79], cranberries [80] or other south Patagonian wild berries [81].

Our results clearly confirm the previously described effects of maqui regarding glucose
metabolism but also describe the capacity of maqui to induce browning in HFD-induced obese
mice. Dietary-supplemented obese mice showed less weight gain despite their hyperphagic behavior,
thus indicating that in some way these animals have a higher metabolic rate, probably due to an
increased BAT depot and a more energy consuming scWAT. The absence of effects on other WAT
depots indicated that scWAT was the target for maqui beneficial effects against diet-induced obesity
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and that at least part of the effects of berries on glucose metabolism and insulin sensitivity go through
the improvement of adipose tissue functionality.

BAT thermogenesis is stimulated by adrenergic induction of cAMP production, which activates
protein kinase A (PKA) to drive transcription of thermogenic genes (including Ucp1), lipolysis and FAO.
Although less recognized, the activation of BAT thermogenesis paradoxically induces the anabolic DNL
pathway [15,82–84]. Several studies support the important role of ChREBP isoforms in the control of
insulin signaling and lipogenesis in adipose tissue and describe the induction of both isoforms’ activity
under the Glut4-dependent glucose uptake [55,85–88]. In WAT, HFD feeding lowers the expression of
Chrebp and DNL genes in mice [55]. Moreover, the expression of a constitutively active ChREBP in WAT
protects mice against obesity and insulin resistance by among others reducing adiposity and increasing
the expression of gene related to adipocyte differentiation and browning [89]. In the same context,
an adipose-specific Chrebp knockout mice show a decrease in DNL and are insulin resistant with an
impaired insulin action in the liver, muscle and fat [85]. Beyond mice, in humans, the expression
of Chrebp and lipogenic genes in WAT shows a strong correlation with insulin sensitivity, and the
improvement of insulin sensitivity in insulin-resistant people restores Chrebp and glucose transporter
type 4 (Glut4) expression in adipose tissue [56].

Our key finding is that this characteristic metabolic feature of BAT also appears in the scWAT
of obese mice fed a maqui-supplemented HFD where there is an induction of Chrebpa, Chrebpb and
Glut4 expression and also higher mRNA levels of genes involved in DNL, multilocular LDs formation
and thermogenesis/browning. The remaining question is how ChREBP is activated under maqui
supplementation. The increased levels of Glut4 in HFDM mice indicated that glucose or glucose
metabolites could be the major inducers of Chrebp expression [90,91]. Moreover, although ChREBP
was initially identified as a glucose-responsive factor, recent evidence suggests that it is also essential
for fructose-induced lipogenesis both in the small intestine and liver [55,92]. The effects of maqui
could, therefore, be attributed to its fructose content. However, the absence of Chrebpb induction in
liver (data not shown) allows us to rule out this possibility.

SREBP1c is also a key regulator of hepatic DNL [93–98]. It has been demonstrated that, in the liver,
SREBP1c and ChREBP are both necessary for the expression of lipogenic and glycolytic genes [88,99]
In adipose tissue, the role of SREPB1c is more controversial. In adipose tissue, the mRNA levels of
lipogenic genes did not change in animals using a Srebp1c loss of function or gain of function approach,
thus indicating that in this tissues Srebp1c is not essential for DNL activation [58]. By contrast, mice
under caloric restriction (CR) showed an SREBP1c/PGC1a-dependant induction of DNL in adipose
tissue giving to Srebp1c an role on activating this metabolic pathway under this specific nutritional
condition [100]. Finally, CREG1 has been described as an inducer of Ucp1 and FGF21 expression in an
adipocyte P2–Creg1-transgenic (Tg) mice and globally of BAT adipogenesis and browning [101,102].
Our results indicate that maqui supplementation is able to induce the expression of Chrebpb, Srebp1c,
Pgc1a and Creg1, thus we cannot discard any of them as possible contributors to the induction of DNL
and thermogenic genes observed.

In addition, in the scWAT of dietary-supplemented obese mice, there was an increase in the
expression of peroxisomal FAO enzymes that would make possible the contradiction of having FAO
and DNL simultaneously active. Peroxisomal FAO is important in this scenario where, despite an
increased expression of Cpt1b, the rate-limiting enzyme of mitochondrial FAO, this pathway would be
inhibited by the malonyl-CoA produced by DNL.

Apart from the abovementioned mechanisms our data also pointed out the improvement of
FGF21 signaling as a way through which maqui could exert its beneficial effects. It has been
widely described that FGF21 levels are increased in obesity and diabetes in both animal models and
humans [60,103,104]. The downregulation of FGF21 receptors in adipose tissue seems to be the key
point to explain the FGF21-resistant state described mainly in obese mice as well as, in some studies,
in humans [43,59,60,105–108]. In this context, the restoring of FGF21 signaling can be considered as a
potential therapeutic strategy to improve the metabolic parameters of obese individuals and to reduce
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the risk of obesity-related diseases and some evidence support this hypothesis [7,109]. In various rodent
models of diet-induced obesity a positive correlation between the beneficial effects of polyphenol-rich
fruit extracts and FGF21 has been described. This correlation with FGF21 can be due to an induction of
FGF21 levels [110,111] or an improvement of the FGF21 signaling [7,112,113]. Finally, FGF21-resitance
in adipose tissue has been linked to a decreased production of adiponectin [114]. Adiponectin induces
fatty acid oxidation leading to a reduction of ectopic lipids and finally the improvement of insulin
sensitivity [115]. In our results, the induction of the mRNA levels of adiponectin, FgfR1, FgfR4 and Egr1
in scWAT of HFDM mice indicates that, in obesity, maqui supplementation increases the sensitivity to
FGF21 of scWAT.

Although our results do not allow us to discard that other signaling pathways could stimulate
the white to beige/brown transition described, the improvement of FGF21 signaling together with the
overexpression of ChREBP, CREG1, PGC1a and SREBP1c are at least key players in the induction of
browning described under maqui supplementation. Neuroendocrine signaling or molecules such as
leptin or Bmp8b will be analyzed in further studies to try to complete the signaling cascade activated
by maqui [2,67,116].

To summarize, we demonstrated that a nutritional intervention with maqui partially alleviates the
unhealthy effects of HFD in mice. Our results provide evidence that, in mice, a dietary supplementation
with maqui added to beverage activates the induction of fuel storage and thermogenesis characteristic
of a brown-like phenotype in scWAT. Finally, based on previously published data, our results indicate
that maqui could exert its effects, at least in part, through the induction of Chrebpb expression and
the improvement of FGF21 signaling. Finally, it is worth mentioning that in this work the dose of
maqui was scaled-down from the polyphenol intake recommended as beneficial in humans by the
Predimed Study [45,46]. This is important because several phenolic compounds such as resveratrol,
quercetin, cyanidin-3-glucoside (C3G), capsaicin, hesperidin have green tea extract have been described
as inducers of BAT activity or WAT browning but in most cases the dietary supplementation was
performed using high doses and only the active compounds [9–13,117–121].

Limitations of the Present Work and Further Studies

This work clearly demonstrates that maqui is effective in obese mice. The impact of maqui in
healthy individual needs to be evaluated. We do not have data about the effects of maqui on normal
chow-fed animals where neither obesity nor insulin resistant is present, but this experimental approach
will be included in our further studies. Positive results in this follow-up experiment will allow pointing
out the efficacy of the consumption of maqui in the prevention of some metabolic diseases and whether
to include its regular consumption as part of a heathy dietary pattern.

On the other hand, despite the observed changes in gene expression, together with the scWAT
and BAT appearance and the histological analysis to define properly the browning phenotype, in this
study, the translation to protein was assumed. To overcome this limitation, Western blot analyses will
be performed to reinforce our results and deepen the mechanism of action of maqui.

5. Conclusions

In conclusion, our data provide evidence that, in obese mice, a dietary intervention with a regular
dose of an anthocyanidin-enriched berry (maqui) can induce a browning phenotype in scWAT and
improve partially the insulin sensitivity, thus ameliorating some of the unhealthy effects of HFD. These
effects reinforce the anthocyanidin-enriched foods as a potential strategy to prevent or treat type 2
diabetes and obesity-related diseases and point out maqui as a putative functional fruit to counteract
at least in part obesity and its metabolic complications. The data presented in this manuscript reinforce
the inclusion of maqui in the diet of obese individuals.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/8/9/360/s1,
Table S1: Maqui extract nutritional composition, Table S2: Sequences of the primers used in SYBR Green
assays and references of the probes used in Taqman assays, Figure S1: Chromatogram of the anthocyanins
identified in maqui samples. 1:Delphinidin-3-O-sambubioside-5-O-glucoside;2:Delphinidin-3-O-sambubioside;
3:Cyanidin-3-O-sambubioside-5-O-glucoside; 4: Unknown; 5: Cyanidin-3-O-glucoside; 6: Cyanidin-3-O-sambubioside.
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