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Chronic kidney disease (CKD) is a major risk factor for end-stage renal disease,
cardiovascular disease and premature death. Despite classical clinical risk factors
for CKD and some genetic risk factors have been identified, the residual risk
observed in prediction models is still high. Therefore, new risk factors need to be
identified in order to better predict the risk of CKD in the population. Here, we
analyzed the genetic association of 79 SNPs of proteins associated with mineral
metabolism disturbances with CKD in a cohort that includes 2,445 CKD cases and 559
controls. Genotyping was performed with matrix assisted laser desorption ionization–
time of flight mass spectrometry. We used logistic regression models considering
different genetic inheritance models to assess the association of the SNPs with
the prevalence of CKD, adjusting for known risk factors. Eight SNPs (rs1126616,
rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359, and rs1564858)
were associated with CKD even after adjusting by sex, age and race. A model containing
five of these SNPs (rs1126616, rs35068180, rs1800247, rs4236, and rs2248359),
diabetes and hypertension showed better performance than models considering only
clinical risk factors, significantly increasing the area under the curve of the model
without polymorphisms. Furthermore, one of the SNPs (the rs2248359) showed an
interaction with hypertension, being the risk genotype affecting only hypertensive
patients. We conclude that 5 SNPs related to proteins implicated in mineral metabolism
disturbances (Osteopontin, osteocalcin, matrix gla protein, matrix metalloprotease 3 and
24 hydroxylase) are associated to an increased risk of suffering CKD.

Keywords: chronic kidney disease, risk factors, genetic association study, single nucleotide polymorphism,
linkage disequilibrium, haplotype
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INTRODUCTION

Chronic kidney disease (CKD) is a major risk factor for end-stage
renal disease, cardiovascular disease and premature death (Go
et al., 2004; van der Velde et al., 2011). Nowadays, its worldwide
prevalence is estimated in 7.2%, increasing dramatically among
elderly people (Zhang and Rothenbacher, 2008), so it is predicted
that CKD will become a highly prevalent disease due to
population aging. Indeed, the Global Burden of Diseases, Injuries,
and Risk Factors Study 2015 calculated that, in absolute numbers,
its worldwide prevalence increased a 26.9% over the last 10 years
(2005–1015), and a similar increase has been observed in the
average years living with disability of CKD patients, which
increased a 23.8% (GBD 2015 Disease and Injury Incidence and
Prevalence Collaborators, 2016). Thus, considered as a major
public health problem, international efforts are needed for CKD
prevention, early detection and treatment. Different risk factors
for CKD have been successfully identified, being the leading ones
diabetes, hypertension and obesity, but also including gender, age
and smoking (Kazancioğlu, 2013).

Currently, it is accepted that CKD and its associated risk
factors present a considerable genetic component. Nowadays,
Genome Wide Association Studies (GWAS) have identified
novel genetic variants associated with CKD, its progression,
and its associated pathologies (Wuttke and Köttgen, 2016;
Limou et al., 2018). Some of these SNPs are located in genes
coding for proteins whose alteration could be causative of
CKD. For example, Köttgen et al. (2009) found association
of the UMOD gene with CKD; mutations on this gene were
associated to rare autosomal dominant tubulointerstitial disease
that leads to CKD (Devuyst and Pattaro, 2018). Later, in
2013, it was demonstrated that these polymorphisms lead
to increased uromodulin expression, and mice overexpressing
UMOD showed salt-sensitive hypertension and age-dependent
renal lesions (Trudu et al., 2013).

Due to this huge bulk of knowledge and the clear association
of some polymorphisms to CKD (Köttgen et al., 2009, 2010;
Pattaro et al., 2016; Parsa et al., 2017), efforts have been focused
on designing test for CKD diagnosis or prognosis based on these
findings but, to this day, none has reached the clinical practice
(Ma et al., 2017; Thio et al., 2018). Indeed, with vast number of
markers in GWAS analyses, true ‘hits’ may become lost in a sea
of false positives, due to the false discovery rate used to adjust
p-values. The candidate gene approach is another widely used
option to assess genetic predisposition to diseases. Candidate
gene studies, although being incapable of discovering new genes
or gene combinations, tend to have rather high statistical power,
and a scientific hypothesis behind its rationale.

Mineral metabolism disturbances, defined as CKD mineral
bone disorder (CKD-MBD), are a very common complication
of CKD patients. The CKD-MBD is a disruption in the normal
interplay between the kidney, skeleton, and cardiovascular
system. Apart from biochemical and bone abnormalities, CKD-
MBD is defined by an increase in vascular calcification. Those
disturbances occur very early in CKD [increases in Fibroblast
Growth Factor 23 have been described from CKD stage 2 (Wolf,
2012)], have a high impact in outcomes (Valdivielso et al., 2017)

and, furthermore, are associated with CKD progression (Schwarz
et al., 2006). Thus, CKD-MBD alterations are not only a
consequence of CKD, but can be also playing a role in the
causative pathway.

Therefore, in the present study, we assessed the association of
79 SNPs of genes reported in the literature as being associated
to CKD-MBD and vascular calcification, (Rong et al., 2014;
Tuñón-Le Poultel et al., 2014; Ammirati et al., 2015; Higgins
et al., 2015; Xu and Sun, 2015) with CKD prevalence in the
NEFRONA cohort.

MATERIALS AND METHODS

Study Design and Participants
The NEFRONA study is a prospective, multicenter, observational
study, in which 2,445 CKD subjects were recruited from 81
nephrology services and dialysis units throughout Spain, from
October 2010 to June 2012 (Junyent et al., 2010). Patients
between 18 and 74 years of age were eligible if they had CKD
stage 3 or higher as defined by current guidelines [glomerular
filtration rate below 60 mL/min/1.73 m2 estimated using the
Modification of Diet in Renal Disease (MDRD) 4 equation (Levey
et al., 1999; Stevens et al., 2006)]. During the same period, 559
controls (MDRD4 above 60 mL/min/1.73 m2) were recruited
from Primary Care centers. Information about classical risk
factors for CKD (diabetes, hypertension, and tobacco) as well as
age and sex were recorded.

Exclusion criteria for both groups included: pregnancy, active
infections, life expectancy lower than 12 months, history of a
previous cardiovascular event, carotid artery surgery or any organ
transplantation. All patients signed an informed consent and the
local Ethics Committee of each hospital approved the protocol.

SNP Selection and Genotyping
We used blood samples from the NEFRONA study stored in
the Biobank of the REDinREN (Calleros-Basilio et al., 2016)
in Alcala de Henares, Madrid, for DNA extraction from all
2,445 CKD cases and 559 controls. Seventy-nine SNPs located
in twenty-nine genes (Supplementary Table S1) related with
CKD-MBD and vascular calcification that have been reported
in the scientific literature (Rong et al., 2014; Tuñón-Le Poultel
et al., 2014; Ammirati et al., 2015; Higgins et al., 2015; Xu and
Sun, 2015) were genotyped. We only considered those SNPs with
potential functional implications, so only those present in coding,
promoter or 3′untranslated region were considered.

Genotyping was performed with matrix assisted laser
desorption ionization–time of flight mass spectrometry in the
Sequenom MassARRAY platform R©, in CEGEN (Santiago de
Compostela). As a quality control, the clusters for each SNP were
reviewed and the SNPs with low genotyping percentage or not
meeting Hardy Weinberg Equilibrium (HWE) were eliminated.
Assessment of HWE was performed by means of a chi-squared
test and an exact test for each SNP, considering a SNP in
HWE when this was not rejected by any test. Samples with
low genotyping percentage and with insufficient quality were
also discarded. We also checked consistency within samples
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duplicating the same sample in the same plate and in different
plates. In addition, a trio of samples from the Coriell Institute
biorepository, for which published data were available, were
included in each chip to verify the effectiveness of the genotyping.

Statistical Analysis
The clinical heterogeneity between cases and controls was
assessed considering demographic and clinical variables. Mean
and standard deviation or absolute frequency and percentage
were computed for quantitative and qualitative variables,
respectively, assessing differences with Mann–Whitney’s U-test
and Fisher test.

Hardy Weinberg Equilibrium was checked for all SNPs
using data from both controls and cases. Since HWE was
accepted for all SNPS, no specific evaluation was conducted to
assess HWE only in controls. Genetic association was evaluated
using logistic regression models with five different inheritance
models: dominant, recessive, codominant, overdominant and
additive models. Akaike’s Information Criterion (AIC) was
used to select the model with the best fit and therefore
compute the corresponding p-value, odds-ratio (OR) and 95%
confidence intervals. A permutation p-value was also computed
for those SNPs found significantly associated to CKD. For
this purpose, the likelihood ratio (LR) was assessed in 20,000
random permutations of case and control labels, computing the
permutation p-value as the sample probability of obtaining a
LR greater or equal to the one initially obtained. Moreover,
potentially confounding variables were also included in each SNP
model, performing a likelihood ratio test (LRT) to obtain an
adjusted p-value.

To represent missing genotype data, SNPs were sorted
by increasing percent of missing genotypes (Supplementary
Table S2). The percentage of missing genotype was lower than 7%
for 10 of the 12 SNPs that were significant in the single association
analysis (6.16% for rs35068180 and rs35068180; 6.19% for rs4236,
rs731236 and rs9138, 6.26% for rs1126616 and rs2238135, 6.32%
for rs679620, 6.39% for rs1800247 and rs385564), however, it was
quite high for two SNPs (46.3% for rs2248359 and 46.34% for
rs1564858). No imputation was considered for the analysis, so all
of them were made on a complete-cases basis. Thus, for the single
association analysis, all the data cases available for each SNP were
used but, for the multivariate models a reduced data base with
1603 out of 3004 cases (53.4%) containing complete data for all
12 SNPS was considered.

Linkage disequilibrium (LD) between all pairs of SNPs was
quantified assessing the two-loci r2 coefficient. The statistical
significance of the obtained r2 values was evaluated using the
chi-square statistic for LD.

Multiple logistic regression models were used to assess the
combined effect of single SNPs on CKD risk. All possible
models containing any combination of the single SNPs found
to be statistically significant, were fitted considering the
inheritance setting determined in the single association analysis.
Using a step-wise algorithm and the model with the lowest
AIC was chosen. The total number of fitted models was(

m
1

)
+

(
m
2

)
+ . . .+

(
m
m

)
= (1+ 1)m − 1 = 2m

− 1 being

m the number of selected SNPs in the single association
analysis. Once an initial set of associated SNPs was determined,
interaction effects were considered, both between SNPs and
between SNPs and CKD risk factors (diabetes and hypertension).
A step-wise algorithm was again used to determine the final
model including both SNPs and clinical risk factors, calculating
the corresponding p-values, OR and 95% confidence intervals.
Potentially confounding variables were also included to calculate
adjusted p-values.

Finally, sensitivity and specificity analyses were implemented
to compare the model with the SNPs, the model with
diabetes and hypertension and the model with all the
variables, calculating the receiver operating characteristic
(ROC) curves and the area under the curve (AUC).
A bootstrap procedure, using 1,000 simulations, was used
to obtain a robust estimation of the AUC and a confidence
interval was computed using 2.5 and 97.5% percentiles
of the bootstrap distribution. DeLong tests were used to
compare the curves among models and an optimal threshold
for the predicted probability obtained from the logistic
multivariate model was determined and, thus, sensitivity and
specificity with the corresponding 95% confidence intervals
were calculated.

All statistical analyses were performed using R software (R
Core Team, 2014), particularly using the packages SNPassoc,
Genetics and haplo.stats. Threshold for statistical significance was
set at α = 0.05.

RESULTS

Heterogeneity Analysis in Case-Control
Groups
Main clinical and demographic data are summarized in
Table 1. The CKD group of patients showed higher percentage
of hypertensives (91% in CKD; 35.4% in controls), and
diabetics (25.4% in CKD; 10.7% in controls). Moreover, the
CKD group also included a higher percentage of males,
smokers and of non-caucasians. Diabetes and hypertension
are well known causes of CKD and were included in
the model as potentially confounding variables. Sex, race
(Caucasian/non-Caucasian) and age were also included as
adjusting variables.

Association of Single SNPs With CKD
All the evaluated SNPs met the HWE (Supplementary
Table S3). Thirteen SNPs showed a 100% missing
genotypes in controls and were removed from the analysis
(Supplementary Figure S1 and Supplementary Table S2).
Thus, only 66 out of 79 initially selected SNPs were
analyzed for its association to CKD. Then, we tested
different inheritance models for all the SNPs, and univariate
analyses to assess its association with CKD under the
selected inheritance model (Supplementary Table S3).
After adjusting for confounding variables, only twelve
SNPs showed significant association to CKD (Table 2).
Complete genetic information about the SNPs is provided in
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Supplementary Table S4. Minor allele frequencies (MAF)
of those SNPs in the Control group were not different
to those in the CKD group, neither to those included

in the European populations analyzed in 1,000 Genomes
Project (1000 Genomes Project Consortium et al., 2015)
(Supplementary Table S5).

TABLE 1 | Baseline demographic and clinical characteristics of the population.

Total 3004 (100%) Controls 559 (18.6%) CKD 2445 (81.4%) p-value OR (95% CI)

Sex 0.0003

Male 1806(60.1%) 298(53.3%) 1508(61.6%) 1.0

Female 1198(39.8%) 261(46.6%) 937(38.3%) 0.71 (0.59–0.85)

Race 0.11

Caucasian 2910(96.9%) 549(98.2%) 2361(96.5%) 1.0

Black 17(0.57%) 0(0%) 17(0.7%) Inestimable

Asian 9(0.3%) 0(0%) 9(0.37%) Inestimable

Arabic 14(0.47%) 1(0.18%) 13(0.53%) 3.02 (0.6–54.98)

Hispanic 54(1.8%) 9(1.61%) 45(1.84%) 1.16 (0.59–2.55)

Caucasian Y/N 0.04

Caucasian 2910(96.87%) 549(98.2%) 2361(96.5%) 1.0

Non-Caucasian 94(3.1%) 10(1.8%) 84(3.4%) 1.95 (1.06–4.03)

Smoker Y/N 0.07

No 1296(43.1%) 222(39.7%) 1074(43.9%) 1.0

Yes 1708(56.8%) 337(60.2%) 1371(56.0%) 0.84 (0.7–1.01)

Smoker Status 0.09

Non smoker 1296(43.1%) 222(39.7%) 1074(43.9%) 1.25 (1.02–1.54)

Former smoker 1109(36.9%) 228(40.8%) 881(36%) 1.0

Smoker 599(19.9%) 109(19.5%) 490(20%) 1.16 (0.9–1.5)

Diabetes <0.00001

No 2323(77.3%) 499(89.2%) 1824(74.6%)

Yes 681(22.6%) 60(10.7%) 621(25.4%) 2.83 (2.15–3.79)

Hypertension <0.00001

No 579(19.2%) 361(64.6%) 218(8.9%)

Yes 2425(80.7%) 198(35.4%) 2227(91%) 18.63 (14.94–23.31)

Weight 76.49(15.17) 76.51(14.54) 76.49(15.3) 0.96

Height 1.64(0.09) 1.65(0.09) 1.64(0.09) 0.55

BMI 28.26(5.1) 28.12(4.5) 28.29(5.2) 0.81

Age 57.34(12.6) 54.61(11.6) 57.97(12.7) <0.00001

Qualitative data are presented as frequency (%). Fisher test is used to assess differences in the proportions between controls and CKD groups. Quantitative data are
presented as mean value (standard deviation). Mann–Whitney’s U-test is used to assess differences in the means between groups.

TABLE 2 | Univariate analysis of CKD associated SNPs including the chosen inheritance model.

SNP Gene Model Adjusted p-value OR (95%CI) AIC Permutation p-value

(1) rs1126616 SPP1 Dominant 0.005 1.31 (1.08–1.58) 2777 0.005

(2) rs35068180 MMP3 Overdominant 0.01 1.29 (1.07–1.55) 2780 0.01

(3) rs2238135 VDR Recessive 0.007 1.74 (1.14–2.76) 2776 0.008

(4) rs3102735 OPG Overdominant 0.009 1.32 (1.07–1.64) 2780 0.01

(5) rs1800247 BGLAP Overdominant 0.01 1.28 (1.06–1.55) 2774 0.01

(6) rs385564 KL Dominant 0.02 1.27 (1.05–1.54) 2758 0.02

(7) rs679620 MMP3 Overdominant 0.02 1.25 (1.04–1.51) 2779 0.02

(8) rs2248359 CYP24A1 Recessive 0.01 1.4 (1.06–1.86) 2063 0.01

(9) rs1564858 TNFRSF11B Dominant 0.03 1.32 (1.02–1.69) 2063 0.03

(10) rs4236 MGP Dominant 0.04 1.23 (1.01–1.49) 2782 0.03

(11) rs9138 SPP1 Dominant 0.04 1.22 (1.01–1.47) 2782 0.041

(12) rs731236 VDR Dominant 0.046 1.22 (1–1.48) 2782 0.043

SNPs, associated gene, chosen inheritance model and its p-value in the LRT adjusted by confounding variables are shown. Odds-ratio and its 95% confidence interval
and the AIC computed from the unadjusted model are also displayed. Finally, permutation p-value is also included.
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Out of the twelve selected SNPs, three pairs were in
LD: rs679620 and rs35068180 (located in the MMP3 gene,
chromosome 11), rs9138 and rs1126616 (located in SPP1 gene,
chromosome 4), and rs3102735 and rs1564858 (located in
TNFRSF11B gene, chromosome 8). These SNPs, together with
rs2238135 and rs4236 (located in the chromosome 12 in the VDR
and MGP genes, respectively), were considered as candidates
to assess the existence of haplotypes. Supplementary Figure
S2 shows the existence of haplotypes for the three pairs of
SNPs in linkage disequilibrium, but not for the pair of SNPs
of chromosome 12.

Association of Combination of SNPs
With CKD
To implement the model fittings, only those subjects with
complete data in all of the twelve selected SNPs were considered
(n = 1,585; 1,047 cases and 538 controls). Three of the 4,095
multivariate fitted models attained the minimum AIC value
(2006.6; Supplementary Figure S3). This was because, under
the reference and CKD risk genotype categories, rs1126616 and
rs9138 were perfectly correlated, and models with one of each
or both were equally considered. Arbitrarily, we selected the
model that contains the first SNP (rs1126616). The multivariate
model consisted in the combination of eight SNPs (rs1126616,
rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359,
and rs1564858) associated with CKD (p< 0.05) whose estimated
coefficients, standard errors, unadjusted and adjusted p-values
and odds-ratios are shown in Supplementary Table S6. We
also generated a model using classical risk factors, adjusting by
sex, race and age, and, as expected, hypertension and diabetes
were found significantly associated to the prevalence of CKD
(Supplementary Table S7).

In order to evaluate the possible clinical utility of the proposed
model, we generated a multivariate model on which we included
the eight SNPs, hypertension, diabetes and the adjusting variables
(sex, age, and race). For both, adjusted and unadjusted models,
the combination of the 8 SNP was statistically significant for CKD
risk prediction, even when classical risk factors and adjusting
variables were considered (Supplementary Table S8). Going
further, we generated a model considering interactions of the
eight SNPs with diabetes and with hypertension, which allowed
us a backward elimination of three SNPs (rs2238135, rs385564,
and rs1564858). On this process we identified an interaction of
hypertension with rs2248359, whose genotype had no effects on
CKD risk for non-hypertensive individuals, but for hypertensive
patients the TT genotype increased the risk of CKD [p = 0.017,
OR = 2 (1.23,3.32); Supplementary Figure S4].

Therefore, a multivariate model containing five SNPs,
diabetes, hypertension and the interaction of hypertension
with rs2248359 was generated (Table 3). The predicted risk
model is summarized in Figure 1. Thus, our model shows
that in a hypothetical high-risk profile patient (male, non-
Caucasian with diabetes and hypertension), the presence of
the five described SNPs increases the predicted risk of being
a CKD patient six times. In any case, this is a predictive tool
that needs to be validated in a different cohort. Although the

proportion of non-caucasian patients was low (3.61% in the
complete model), we assessed the potential interactions of the
significant SNPs with race. We did not find any significant
interaction (results not shown). In addition, we also fitted the
model with only Caucasian patients and we did not find any
notable differences in the estimated parameters of the model
(results not shown).

Finally, in order to evaluate the CKD predictive power of SNPs
in general population, Receiver Operating Characteristic (ROC)
curves for the eight SNPs model, the diabetes + hypertension

TABLE 3 | Multivariate model containing SNPs, classical risk factors and
confounding variables.

_

β (SE) p-value OR (95% CI)

Intercept −1.57(0.35) <0.00001 0.21 (0.1−0.41)

rs1126616 0.32(0.13) 0.02 1.37 (1.06−1.78)

rs35068180 0.25(0.13) 0.06 1.29 (0.99−1.66)

rs1800247 0.3(0.14) 0.03 1.35 (1.04−1.76)

rs4236 0.31(0.14) 0.02 1.37 (1.04−1.79)

rs2248359 −0.28(0.33) 0.4 0.76 (0.39−1.4)

Hypertension (yes) 2.6(0.15) <0.00001 13.53 (10.06−18.35)

Diabetes (yes) 0.4(0.18) 0.03 1.49 (1.04−2.15)

Sex (male) 0.11(0.13) 0.42 1.11 (0.85−1.45)

Race (non-Caucas.) 0.8(0.43) 0.06 2.22 (1−5.37)

Age −0.005(0.005) 0.37 1 (0.98−1.01)

Interaction:
hypertension with
rs2248359

0.99(0.41) 0.02 2.68 (1.23−6.15)

Complete summary of the model containing classical risk factors, SNPs and the

adjusting variables.
_
β (SE) denotes the estimated coefficient (standard error) in the

logistic regression model, p-value denotes the z-test p-value for the coefficient, OR
(95%) denotes the odds-ratio (95% confidence interval).

TABLE 4 | Summary of the ROC curves of the different multivariate models
explored for CKD risk prediction.

5-SNP model Classical risk
factors model

Classical risk
factors and
SNPs model

Probability
threshold

0.65 0.43 0.70

Sensitivity 0.636
(0.606–0.665)

0.900
(0.880–0.918)

0.881
(0.860–0.900)

Specificity 0.565
(0.520–0.606)

0.645
(0.603–0.685)

0.669
(0.628–0.709)

Positive PV 0.740
(0.710–0.776)

0.832
(0.809–0.853)

0.839
(0.816–0.860)

Negative PV 0.442
(0.404–0.480)

0.768
(0.726–0.806)

0.742
(0.701–0.781)

AUC 0.620
(0.591–0.649)

0.794
(0.770–0.819)

0.824
(0.802–0.847)

Summary of the ROC curves for each model. Probability threshold is the chosen
probability threshold obtained from the optimal cut-off for each curve, chosen as
the point that maximizes the distance to the diagonal line. Sensitivity and specificity,
positive and negative predicted values (PV) for that optimal threshold are displayed
with 95% confidence intervals. Finally, the respective area under the curve (AUC),
with 95% confidence intervals, is included.
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FIGURE 1 | Prediction models of CKD risk. The height of each bar corresponds to the predicted odds-ratio for that category when compared to the reference
category. The value of these odds-ratio, their 95% confidence interval and their p-value are also displayed inside each bar. Above bars, odds-ratios, 95% confidence
intervals and p-values comparing each possible other pair of categories are also displayed, always taking the group with less CKD risk as reference. The vertical axis
is plotted in logarithmic scale. For all models, taken age was the sample median age (60).

FIGURE 2 | Receiver operating characteristic (ROC) curves of the different multivariate models explored for CKD risk prediction. ROC curves corresponding to
explored multivariate models, including in all cases the adjusting variables: sex, race (Caucasian/Non-Caucasian) and age. The “SNPs” ROC curve (orange)
corresponds to the model containing the 8-SNP combination and the adjusting variables. The “classical risk factors” ROC curve (green) corresponds to the model
containing diabetes, hypertension and the adjusting variables. The ROC “classical risk factors and SNPs” (blue) corresponds to the model containing the 5-SNP
combination, diabetes, hypertension, the interaction of hypertension with rs2248359 and the adjusting variables. For each curve, the filled diamond represents the
optimal cut-off, chosen as the point that maximizes the distance to the diagonal line (dashed black line).

model and the five SNPs + diabetes + hypertension model, were
calculated (Figure 2). The predictive power of the model with
the five SNPs + diabetes + hypertension showed the best AUC,
and this AUC increase, compared to the one of the classical

risk factors model, was statistically significant (p < 0.0001;
Table 4). Results of the bootstrap simulations confirmed the
predictive power of the model, leading to a mean AUC of
0.823 (0.79, 0.84).
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DISCUSSION

In the present study, 79 SNPs were genotyped in a large cohort of
CKD patients and non-CKD subjects. After adjusting for age, sex
and race, we found twelve SNPs associated to CKD, in which three
pairs showed LD. We also account for additive effects among the
twelve selected SNPs, finding an eight SNP combination whose
additive effects were statistically significant, even when adjusting
by potentially confounding variables. We also showed that the
model including diabetes, hypertension, sex, age and race, and
the five selected SNPs, displays a statistically significant increase
in the AUC, compared with the same model without SNPs.

The five SNPs that improved CKD risk detection were
rs1126616, rs35068180, rs1800247, rs4236, and rs2248359 that
were located at the SPP1, MMP3, BGLAP, MGP, and CYP24A1
genes, respectively.

SPP1 codes for Osteopontin (OPN), a protein constitutively
expressed in kidney (Hudkins et al., 1999) whose levels are
increased in advanced stages of CKD (Lorenzen et al., 2010)
and in diabetic nephropathy, where it regulates macrophage
recruitment (Kelly et al., 2002). More recently, its levels have been
linked to nephritis in lupus patients (Salimi et al., 2016), and
OPN knock out mice showed resistance against high phosphate
induced nephrocalcinosis (Paloian et al., 2016), a condition
that can lead to CKD (Shavit et al., 2015). Despite these data
linking OPN to CKD onset and progression, currently there are
no studies defining the effect of the rs1126616 SNP on OPN
expression or function.

The rs35068180 located in the gene that codes for the matrix
metalloprotease 3 (also known as Stromelysin 1) has been related
to diabetic nephropathy (Kure et al., 2011), and its combination
with the rs1799750 located in the MMP1 gene strongly associates
to end stage renal disease (Cozzolino et al., 2009). Indeed
matrix metalloproteases are key factors in kidney physiology
and its pathologies, as MMP inhibition improves lesions in
glomerular disease, diabetic nephropathy and interstitial fibrosis
(Tan and Liu, 2012).

BGLAP and MGP genes code for Ostecalcin and Matrix
Gla Protein, respectively, proteins whose levels vary with CKD
progression (Delmas et al., 1983; Thamratnopkoon et al., 2017).
The rs4236 SNP in MGP gene has been associated with
aortic calcification in Spanish men and functional studies have
demonstrated that the protein expressing the minor allele is less
effective in inhibiting calcium deposition in vascular smooth
muscle cells (Tuñón-Le Poultel et al., 2014). The rs1800247
has been previously related to Osteocalcin levels in women
(McGuigan et al., 2010; Ling et al., 2016), although we did not
find any effect of this SNP on Osteocalcin levels in our population
(data not shown).

CYP24A1, is a key enzyme of vitamin D metabolism, and has
been extensively involved in CKD (Petkovich and Jones, 2011).
In GWAS analyses, different SNPs of the CYP24A1 gene have
been related to vitamin D levels (Manousaki et al., 2017; Jiang
et al., 2018), to calcium levels (O’Seaghdha et al., 2013), and even
to glomerular filtration rate (Mahajan et al., 2016; Pattaro et al.,
2016), but to the best of our knowledge, this is the first time that
the rs2248359 polymorphism has been associated to CKD.

It is worth mentioning that previous GWAS analyses for genes
involved in CKD (Köttgen et al., 2009, 2010) did not find any
association of the SNPs described here; that could reflect different
frequencies of the polymorphisms among the United States based
cohorts and our Spain based cohort. Validation of our results
in another Spanish cohort would strengthen our results and,
due to the changing dynamics of Spanish population, would
be desirable the inclusion of non-caucasic genetic background
to better replicate the Spanish multicenter NEFRONA cohort.
The fact that a small amount of patients presented the five
SNPs in our cohort also limits the validation of our model.
It is also remarkable that our model needs a minimum of
five SNPs to improve clinical parameters prediction; a cost-
effectiveness analysis would be desirable to test feasibility of
clinical implantation of our results. A second limitation is
that only 1603 patients presented complete data for all the
genotypes, so the final multivariate model was fitted only in
those. Despite these limitations, the strength of this study is
that we analyzed seventy-nine SNPs in relatively large cohort
of CKD patients, and after adjusting for potential confounding
variables, we found 5 SNPs related to CKD-MBD that might aid
in determining CKD risk.
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