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Abstract

This paper provides, for finite sets of choice data, revealed preference char-
acterizations for the additive representations considered in Dekel, Lipman and
Rustichini (2001). For a particular class of data sets, it is shown that the char-
acterizing conditions can be reformulated as nonlinear systems of inequalities for
which the existence of solutions can be verified using numerical methods.

∗Department of Economics, Boston University, fpayro@bu.edu. I would like to thank an editor and
an anonymous referee for their comments. I am especially grateful to Larry Epstein for his guidance
and support throughout this project. I would also like to thank Chris Chambers, Bart Lipman, Jawwad
Noor and Igor Kopylov for helpful conversations and comments. All errors are my own.



1 Introduction
Kreps (1979) studies preferences over menus of deterministic alternatives. He
shows that a simple set of axioms characterizes a representation that can be inter-
preted as if the agent is uncertain about her future tastes. This taste uncertainty
is summarized by a set of possible future preferences which is referred to as the
subjective state space. In Kreps’ model, the subjective state space is not com-
pletely pinned down by the preference over menus. Dekel, Lipman and Rustichini
(2001)(henceforth DLR) extend Kreps’ analysis to menus of lotteries. This richer
domain allows them to show that, under certain assumptions, the subjective state
space is "essentially unique" given the preference over menus of lotteries.

Although DLR provide axiomatic foundations for several representations that
have a subjective state space component, we only consider the additive ones which
have the form

V (A) =



S
sup
p∈A

Us(p)µ(ds),

where: A is a menu of lotteries, S is a non-empty set, Us is an expected utility
function for every s ∈ S, and µ is a finitely additive (signed) measure over S. As is
typical of the axiomatic approach, verification of their axioms requires that the en-
tire preference order be observable. This paper provides a corresponding revealed
preference analysis assuming that only finitely many choices are observed. In par-
ticular, we assume that we are given finitely many observations, each observation
consists of a budget, that is, a collection of menus of lotteries, and a choice from
each budget.

Our main result shows that a suitable adaptation of the Independence axiom
for menus of lotteries to finite choice data sets characterizes the general additive
representation. We also provide necessary and sufficient conditions for the cases in
which µ is a positive measure; and when the subjective state space S is a singleton.

In their framework, DLR show that there is a distinction between preferences
that have an additive representation with an infinite state space and preferences
that have a representation with a finite state space. An implication of our results
is that for finite data sets there is no empirically meaningful distinction.

Our analysis builds on the revealed preference analysis for vNM utility theory
carried out by Fishburn (1975), Border (1992) and Kim (1996). Fishburn (1975)
considers lotteries over a finite abstract prize space; Border (1992) assumes the
prize space is a compact subset of the real line and studies the case in which the
vNM utility index is increasing. Kim (1996) generalizes Fishburn (1975) and Bor-
der (1992) by considering lotteries over an abstract compact metric space. As in
Fishburn (1975), we consider an abstract finite prize space but we generalize the
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choice domain to menus of lotteries. Restricted to singleton menus, our character-
izing conditions are equivalent to Fishburn’s condition for vNM utility theory. To
the best of our knowledge this is the first paper to provide a revealed preference
analysis for any model with a subjective state space component.

Finally, for the case in which each menu of lotteries is either finite or finitely
generated (that is, equal to the convex hull of a finite set), we show how our results
can be reformulated as a nonlinear system of inequalities and discuss the numerical
methods that can be used to verify them. Hence, for this case, our results provide
a test that is, in principle, implementable. See Varian (1983), Chiappori (1988),
Diewert (2012) and Demuynck and Seel (2018) for other instances in the revealed
preference literature where characterizing conditions lead to nonlinear inequalities.

The paper proceeds as follows. Section 2 gives the general model. Section 3
states the main results. Section 4 contains a discussion of our results. Appendix
A contains the proofs of our results and Appendix B describes the aforementioned
systems of inequalities and applicable numerical methods.

2 The Model
Let X be a finite set of cardinality n. A lottery is a probability measure over X.
The set of all lotteries is denoted ∆(X) and P (∆(X)) denotes the set of all its
non-empty subsets.

A choice problem (c,B, T ) is an index set T = {1, ..., T}, a collection of sets
of menus of lotteries, called budgets; B = {Bt|t ∈ T} where Bt ⊆ P (∆(X)); and
a function c : T → P (∆(X)) such that ct ∈ Bt for all t ∈ T . Generic menus will
be denoted A,B and generic lotteries will be denoted p, q.

Definition 2.1. A choice problem (c,B, T ) is rationalizable by an additive rep-
resentation if there exist a non-empty set S, a state dependent utility function
U : S×∆(X) → R such that Us is an expected utility function for all s ∈ S, and a
finitely additive (signed) measure µ on S, such that: for all t ∈ T and dt ∈ Bt\ct,



S
sup
p∈ct

Us(p)µ(ds) >



S
sup
q∈dt

Us(q)µ(ds).

If µ is positive, we say (c,B, T ) is rationalizable by a monotone additive rep-
resentation. If |S| = 1, we say (c,B, T ) is rationalizable by a strategically
rational representation.1

1To be more precise, we require that S be a measurable space and that U be measurable with respect
to this space. Since we make no explicit use of such measurability considerations, we avoid a discussion
of the details.

2



Our notion of rationalizability requires that the chosen menu be strictly pref-
ered to any of the rejected menus. If we were to require only weak preference, then
any choice problem would be rationalizable by a strategically rational representa-
tion with a constant expected utility function.

The case |S| = 1 is of particular interest because of its relation to vNM utility
theory. A strategically rational agent knows what she is going to choose from the
menu. If the agent chooses A over B, then there exists a lottery p ∈ A such that
she would choose {p} over B.

The difference between a monotone additive and an additive representation is
that the former does not allow smaller menus to be strictly preferable. It pre-
scribes that given menus B ⊂ A, the agent would choose A over B because of
the extra flexibility A provides. However, there are situations (temptation and
costly self control, see Gul and Pesendorfer (2001)) in which flexibility is costly
and commitment is valuable. The additive representation allows for both.

Given a collection A1, ..., AT of menus of lotteries and a probability measure
λ ∈ ∆(T ), a mixture of these menus is defined as



t

λtAt = {p ∈ ∆(X)|p =


t

λtpt, pt ∈ At}.

3 Main Results
In this section we state our main result for choice problems (c,B, T ) such that each
budget is binary. In the next section we discuss to what extent this binariness
assumption is without loss of generality.

Theorem 3.1. Let (c,B, T ) be a choice problem such that for all t ∈ T , Bt =
{ct, dt} where ct and dt are closed and convex sets of lotteries and ct is the chosen
menu out of Bt. For each of the following rationalizability properties the conditions
indicated are necessary and sufficient.

Strategically Rational There exist pt ∈ ct, t = 1, ..., T , such that
t λtpt ∕∈


t λtdt ∀λ ∈ ∆(T ).

Monotone Additive


t λtct ∕⊆


t λtdt ∀λ ∈ ∆(T ).

Additive


t λtct ∕=


t λtdt ∀λ ∈ ∆(T ).

Moreover, if (c,B, T ) is rationalizable by an (monotone) additive representation,
then it is also rationalizable by an (monotone) additive representation with a finite
state space of cardinality less than or equal to T .

At first glance it may seem that the conditions characterizing the strategically
rational and monotone additive cases are equivalent. This is not true: the strate-
gically rational case requires that for some fixed p1, ...., pT such that pt ∈ ct for all
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t ∈ T ,


t λtpt ∕∈


t λtdt ∀ λ ∈ ∆(T ), whereas in the monotone additive case the
pt’s can vary with λ. To illustrate, let (c,B, T ) be such that

T = {1, 2}, c1 = {p}, d1 = {q}, c2 = ∆({p, q}) and d2 = {p}.

This choice problem is rationalizable by a monotone additive representation but
not by a strategically rational one: fix any r ∈ ∆({p, q}), then

λp+ (1− λ)r = λp+ (1− λ)(αp+ (1− α)q)

= (λ+ (1− λ)α)p+ (1− λ)(1− α)q,

for some α ∈ [0, 1]. Thus, if λ = (1−α)
2−α , then λp+(1−λ)r = λq+(1−λ)p. Hence,

∄ p1 ∈ c1, p2 ∈ c2 such that λp1 + (1 − λ)p2 ∕∈ λd1 + (1 − λ)d2 for all λ ∈ ∆(T ),
which is a violation of our condition for strategic rationality.2

The main content in Theorem 3.1 is that the indicated conditions are sufficient
for rationalizability. In addition, the theorem shows that there is no meaningful
empirical difference between representations with infinite state spaces and repre-
sentations with finite state spaces. Moreover, the number of budgets provides an
upper bound on the minimum number of states needed for rationalizability.3

As described next, it is straightforward to show that the indicated conditions
are necessary for rationalizability. Any preference ≽ over P (∆(X)) that has a
strategically rational, monotone additive or additive representation satisfies the
following axiom (by DLR’s Theorem 4).4

Independence For any λ ∈ (0, 1], A ≽ B implies λA+(1−λ)C ≽ λB+(1−λ)C.

If (c,B, T ) is rationalizable by an additive representation, then the preference ≽
over P (∆(X)) that corresponds to the representation is such that ct ≻ dt for every
t ∈ T . Then, by Independence,


t λtct ≻


t λtdt for every λ ∈ ∆(T ). Hence,

t λtct ∕=


t λtdt for every λ ∈ ∆(T ). Moreover, if the representation is monotone
additive, then (by DLR’s Theorem 4), B ⊆ A implies A ≽ B . Hence, there cannot
exist λ ∈ ∆(T ) such that


t λtct ⊆


t λtdt. Finally, if the representation is

strategically rational, then for any closed and convex menu A there exists a lottery
p ∈ A such that {p} ∼ A. To see this take p ∈ argmaxp∈A U(p), then {p} ∼ A.
The pt’s that appear in the condition characterizing strategic rationality are the
ones prescribed by this property. Hence, Independence implies that


t λtpt ∕∈

t λtdt ∀λ ∈ ∆(T ).

2Any monotone additive representation such that S = {s1, s2}, µ(s1) = µ(s2) > 0 and Us1(p) >
Us2(q) > Us2(p) > Us1(q) rationalizes (c,B, T ).

3The argument for the proof of the bound on the state space was inspired by an exchange with Chris
Chambers.

4A preference is a complete and transitive binary relation.
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The conditions that appear in Theorem 3.1 cannot be verified directly as there
are uncountably many λ’s in ∆(T ) if |T | > 1. Moreover, an existential quantifier
appears in the condition that characterizes the strategically rational representa-
tion. Appendix B shows that for the case in which each menu is either finite or
finitely generated, the conditions can be expressed as nonlinear systems of inequal-
ities. Then it discusses numerical methods that can be used to check for existence
of a solution.

Finally, the next proposition shows that whenever the number of observations
T is less than or equal to the cardinality n of the set of alternatives X, then the
bound given by Theorem 3.1 is tight.

Proposition 3.1. If n ≥ T , then there exists a rationalizable choice problem
(c,B, T ) such that every (monotone) additive representation that rationalizes (c,B, T )
has at least T states.

To provide intuition about the previous proposition we give a sketch of the
proof: Suppose n ≥ T and let (c,B, T ) be such that

ct = ch({δ1, ..., δT })
dt = ch({δ1, ..., δt−1, δt+1, ..., δT })

where ch(.) denotes the convex hull and δi is the degenerate lottery that gives
alternative xi with probability 1. By Theorem 3.1 (c,B, T ) is rationalizable by
an additive representation. The proof of the proposition amounts to showing
that every additive representation that rationalizes (c,B, T ) has at least T states.
Intuitively, the choices reveal that for each δi there is a state s such that Us(δi) >
Us(q) for all q ∈ ∆({δ1, ..., δT })\{δi}. Hence, any additive representation that
rationalizes (c,B, T ) has at least T states.

4 Discussion
Above we assumed that for each t ∈ T , the agent chooses between two menus.
For the characterization part of Theorem 3.1, this assumption is without loss of
generality as long as each budget has finitely many menus. To see this, consider a
choice problem (c,B, T ) such that T = {1} and B1 = {c1, d1,1, d1,2}. Let (c′,B′, T ′)
be such that T ′ = {1, 2}, B′

1 = {c1, d1,1}, B′
2 = {c1, d1,2}, c′(1) = c1 and c′(2) = c1.

Then (c,B, T ) is rationalizable by a strategically rational, monotone additive or
additive representation if and only if (c′,B′, T ′) is rationalizable by a strategically
rational, monotone additive or additive representation respectively. This kind of
"decomposition of choices" can be done for any (c,B, T ) such that each budget
contains finitely many menus. Hence, it is enough to consider budgets that contain
only two menus. However, the bound on the cardinality of the state space must be
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modified if binariness is dropped. In general, the bound equals the total number
of rejected menus (that is,


t∈T |Bt\ct|). For example, if we were to observe a

single choice from a budget that contains 26 menus, then the bound equals 25.
The closed and convex assumption is also without loss of generality: consider a

choice problem (c,B, T ) such that at least one of the menus is not closed or convex.
We can always construct another choice problem (c′,B′, T ) by replacing each menu
with the closure of its convex hull. It follows from Lemma 1 and Lemma 2 in DLR
that (c,B, T ) is rationalizable by a strategically rational, monotone additive or
additive representation if and only if (c′,B′, T ) is rationalizable by a strategically
rational, monotone additive or additive representation respectively.

Note that Theorem 3.1 implies that if we observe a single choice c1 ⊂ d1,
then the choice cannot be rationalized by a monotone additive representation.
However, we cannot conclude that the agent does not value flexibility. It could
be the case that the agent does value flexibility but that the extra lotteries in d1
do not add any flexibility. Hence, whenever a choice problem does not satisfy the
characterizing condition for monotone additive representation in Theorem 3.1 we
can only conclude that the choices do not reveal a (strict) preference for flexibility.
This limitation comes from the requirement that ct be strictly preferred to dt.

An agent that behaves as the strategically rational representation prescribes
has no subjective uncertainty about her future taste. When evaluating a menu she
considers only the best lottery according to her future tastes. Our characterizing
condition reflects this taste certainty as the pt’s that appear in the condition are
understood to be what the agent anticipates she will choose. For an agent that
admits a monotone additive representation this is no longer true. In particular,
she is uncertain about her future tastes. This taste uncertainty makes "smaller"
menus less desirable because the agent does not desire to commit to any particular
lottery. Any behavior that would suggest that the agent would prefer to commit to
a smaller menu when a bigger one (in the sense of set inclusion) is available is ruled
out by our condition. Finally, an agent that admits an additive representation is
also uncertain about her future tastes but considers some of her possible future
tastes to be harmful ex ante. These "bad" states are the ones that are assigned a
negative weight by the signed measure. Therefore in some situations bigger menus
might be less desirable than smaller ones and in other situations they might be
more desirable. Thus, there is no consistency requirement between the choices
of the agent other than rationality in the sense of weak order and Independence
which are completely captured by our condition.

We conclude the discussion of our results by relating our characterizing condi-
tions to DLR’s axioms. DLR shows that Independence is the main ingredient of
all the representations we consider. Moreover, they show that the only distinction
between the monotone additive and the additive representations is that the former
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satisfies monotonicity.5 Our condition for the monotone additive representation
captures the joint content of monotonicity and Independence, while the condi-
tion for the additive representation captures the content of Independence for finite
choice data.

4.1 Relation to Fishburn (1975) and Border (1992)
The condition for strategic rationality in Theorem 3.1 is an adaptation of Fish-
burn’s result to menus of lotteries. Fishburn’s result can be expressed in our setup
as follows.

Let (c,B, T ) be a choice problem such that Bt = {{pt}, {qt}} and c(t) = {pt}
for all t ∈ T . (c,B, T ) is rationalizable by vNM if there exists an expected utility
function u : ∆(X) → R such that for all t ∈ T ,

u(pt) > u(qt).

Theorem 4.1. (Fishburn) Let (c,B, T ) be a choice problem such that Bt = {{pt}, {qt}}
and c(t) = {pt} for all t ∈ T . Then, (c,B, T ) is rationalizable by vNM if and only
if


t λtpt ∕=


t λtqt ∀λ ∈ ∆(T ).

To see the relation to our characterizing condition for strategic rationality, fix
a choice problem (c,B, T ) as in Theorem 3.1. Our condition is satisfied if and only
if there exist p1, ..., pT such that any choice problem (c′,B′, T ), with

B′
t = {{pt}, {qt}}, c(t) = {pt} and qt ∈ dt for all t ∈ T,

satisfies Fishburn’s condition. Note that for choice problems such that every menu
contains a single lottery, each of the conditions in Theorem 3.1 is equivalent to
Fishburn’s.

Border (1992) considers an observable choice function over sets of lotteries,
where all lotteries are over monetary outcomes. He shows that if the choices are
not consistent with expected utility maximization of an increasing vNM utility
function, then there is a way to create a compound lottery using the rejected
lotteries that stochastically dominates the compound lottery created by using the
chosen lotteries. Our result for the monotone additive case is in the same spirit. In
particular, Theorem 3.1 implies that if a choice problem is not rationalizable by a
monotone additive representation, then we can construct a compound menu using
the rejected menus that dominates, in the sense of set inclusion, the compound
menu created by using the chosen menus.

5A preference ≽ over P (∆(X)) satisfies monotonicity if B ⊆ A implies A ≽ B
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4.2 Relation to Kreps (1979)
To understand the relation between our results and Kreps (1979), we define the
analogous setup for menus of alternatives.

Definition 4.1. A Kreps choice problem is a tuple (cK ,BK , T ) such that T =
{1, ..., T}, BK = {BK

t |t ∈ T} where BK
t ⊆ P (X) and cK : T → P (X) is such that

cKt ∈ BK
t for all t ∈ T .

Generic menus of alternatives will be denoted by AK and BK and generic al-
ternatives will be denoted a, b. We proceed to define the representation considered
in Kreps (1979) in this setup.6

Definition 4.2. A Kreps choice problem (cK ,BK , T ) is rationalizable by a Kreps
additive representation if there exist a non-empty finite set S, and a state de-
pendent utility function U : S×X → R such that: for all t ∈ T and dKt ∈ BK

t \cKt ,


s∈S
max
a∈cKt

Us(a) >


s∈S
max
b∈dKt

Us(b).

A Kreps choice problem (cK ,BK , T ) is rationalizable by a utility function if
there exists a function U : P (X) → R such that: for all t ∈ T and dKt ∈ BK

t \cKt ,

U(cKt ) > U(dKt ).

Given a Kreps choice problem (cK ,BK , T ), construct the analogous choice prob-
lem (c,B, T ) such that for all t ∈ T ,

ct = ch({δa|a ∈ cKt })
dt = ch({δb|b ∈ dKt })

where δa and δb are the degenerate lotteries that give a and b with probability one
respectively and ch(.) denotes the convex hull. Hence, we can map Kreps data
into our setup.

The next proposition shows that Kreps choice problems are rationalizable by
a Kreps additive representation if and only if the analogous choice problem in our
setup is rationalizable by a monotone additive representation. Moreover, a Kreps
choice problem is rationalizable by a utility function if and only if the analogous
choice problem in our setup is rationalizable by an additive representation.

Proposition 4.1. Given a Kreps choice problem (cK ,BK , T ) and its analogue
(c,B, T ):

6Since we assumed that the set of alternatives is finite, by Theorem 1 in Kreps (1979), it is enough
to consider representations with finite state spaces.
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1. (cK ,BK , T ) is rationalizable by a Kreps additive representation if and only if
(c,B, T ) is rationalizable by a monotone additive representation.

2. (cK ,BK , T ) is rationalizable by a utility function if and only if (c,B, T ) is
rationalizable by an additive (not necessarily monotone) representation.

Part 1 allows us to conclude that our results also provide a characterization of
Kreps’ representation. Moreover, for any Kreps choice problem, all the menus of
lotteries in the budgets of the analogous choice problem in our setup are finitely
generated. Hence, the results in Appendix B provide an implementable test for
the Kreps additive representation. Part 2 follows from Propositions 1 and 3 in
Gorno (2016).

Kreps’ Theorem 1 shows that a preference ≽K over P (X) has a Kreps additive
representation if and only if it satisfies

K-1 AK ⊆ BK implies BK ≽K AK

K-2 AK ∼K AK ∪BK implies that for all DK , AK ∪DK ∼K AK ∪BK ∪DK .

Our condition reflects the first axiom because any violation of K-1 in (cK ,BK , T )
would imply a violation of our condition in (c,B, T ). However, our condition does
not reflect the second axiom. This is not surprising because, in the menu of lotteries
framework, K-2 is redundant in the presence of monotonicity and Independence.
Both of these are reflected in our characterizing condition.

Appendix A: Proofs

Proof of Theorem 3.1
Necessity in each case is provided in the text. Here we prove sufficiency and the
assertion about the cardinality of the subjective state space.

Strategic Rationality

Suppose that there exist p1, ..., pT such that pt ∈ ct for all t ∈ T and


t λtpt ∕∈
t λtdt for all λ ∈ ∆(T ). Define C = {(p − q)|p =


t λtpt, q ∈


t λtdt and

λ ∈ ∆(T )}. Then, C is closed, convex and 0 ∕∈ C.
[Proof that C is convex. Take (p − q), (p′ − q′) ∈ C and α ∈ (0, 1). Then,

αp + (1 − α)p′ = α


t λtpt + (1 − α)


t λ
′
tpt =


r(αλt + (1 − α)λ′

t)pt. Hence,
it suffices to show that αq + (1 − α)q′ ∈


t(αλt + (1 − α)λ′

t)dt. By definition
of C, q =


t λtqt and q′ =


t λ

′
tq

′
t. WLOG assume that ∄ t ∈ T such that

λt = λ′
t = 0. Let q′′t be such that q′′t = αλt

αλt+(1−α)λ′
t
qt +

(1−α)λ′
t

αλt+(1−α)λ′
t
q′t. Then,

q′′t ∈ dt for all t ∈ T and


t(αλt + (1 − α)λ′
t)q

′′
t = αq + (1 − α)q′. Hence,

αq′ + (1− α)q′ ∈


t(αλt + (1− α)λ′
t)dt]
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By the Hyperplane Separation Theorem, there exists an expected utility func-
tion u : ∆(X) → R such that u(p) > u(q) for all (p − q) ∈ C. Hence, for all
λ ∈ ∆(T ) and q ∈


t λtdt,

max
p∈


t λtct

u(p) ≥ u(


t

λtpt) > u(q).

Note that if λ is such that λt = 1 for some t ∈ T , then the previous inequality
implies that

max
p∈ct

u(p) > max
q∈dt

u(q).

Hence, (c,B, T ) is rationalizable by a strategically rational representation.

Monotone Additive

Step 1: Find all the candidate expected utility functions.

Suppose that for every λ ∈ ∆(T ),


t λtct ∕⊆


t λtdt. Then, for every λ ∈ ∆(T )
there exists pλ =


t λtpt,λ such that pt,λ ∈ ct ∀t ∈ T and pλ ∈


t λtct\


t λtdt.

Define Cλ = {(pλ − q)|q ∈


t λtdt}. Then, Cλ is closed and convex and 0 ∕∈ Cλ.
Hence, by the Hyperplane Separation Theorem, there exists an expected utility
function uλ : ∆(X) → R and a real number κλ such that uλ(pλ) > κλ > uλ(q)
for all q ∈


t λtdt. The set UΛ = {uλ|λ ∈ ∆(T )} contains all the expected utility

functions that are candidates for the representation.

Step 2: Choose a finite number of expected utility functions in UΛ to form the
representation.

Fix a λ ∈ ∆(T ) and let pλ =


t λtpt,λ be the associated compund lottery de-
scribed in step 1. Define pλ′,λ =


t λ

′
tpt,λ, then pλ′,λ ∈


t λ

′
tct.

We are going to show that there exists an λ > 0 such that for all λ′ ∈ Bλ(λ) ∩∆(T ),

uλ(pλ′,λ) > uλ(q) for all q ∈


t λ
′
tdt.

First note that for any λ′ ∈ ∆(T ) close enough to λ, uλ(pλ′,λ) > κλ. Define the
correspondence C : ∆(T ) ⇝ ∆(X) as C(λ′) =


t λ

′
tdt. C is a compact-valued and

continuous correspondence. By the Maximum Theorem, for any λ′ close enough
to λ, κλ > uλ(q) for all q ∈


t λ

′
tdt. Hence, there exists λ > 0 such that for for

all λ′ ∈ Bλ(λ) ∩∆(T ), uλ(pλ′,λ) > uλ(q) for all q ∈


t λ
′
tdt.

{Bλ |λ ∈ ∆(T )} forms an open cover of ∆(T ) which is compact. Hence, there
exists a finite sub cover Λ′

1, ...,Λ
′
k. Define Λi = Λ′

i∩∆(T ). Note that ∪iΛi = ∆(T ).
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Let ui be the expected utility function associated with Λ′
i be the compound lottery

described in step 1. By construction, for every λ ∈ Λi, ui(pλ,λi
) > ui(q) for every

q ∈


t λtdt.
The u′is will be the expected utility functions in the additive representation.

Step 3: Obtain the positive measure over S = {1, ..., k}.

Define

u∗t,j = max
p∈ct

uj(p) and ut,j = max
q∈dt

uj(q)

for t = 1, ..., T and j = 1, ..., k. According to the expected utility function uj , u∗t,j
is the utility of the best lottery in ct and ut,j is the utility of the best lottery in dt.

Let A =




u∗11 − u11 u∗12 − u12 u∗13 − u13 . . . u∗1k − uik
u∗21 − u21 u∗22 − u12 u∗23 − u23 . . . u∗2k − u2k

...
...

...
. . .

...
u∗T1 − uT1 u∗T2 − uT2 u∗T3 − uT3 . . . u∗Tk − uTk





We claim that for any λ ∈ ∆(T ), A⊺λ has a positive entry.7 To see this note
that any λ ∈ ∆(T ) must be in some Λi and by step 2, ui(pλ,λi

) > u(q) for all
q ∈


t λtdt. Hence,

max
p∈


t λtct

ui(p) > max
q∈


t λtdt

ui(q),

which implies that the ith entry of A⊺λ is positive.
If there exists a µ > 0 such that Aµ > 0, then (c,B, T ) is rationalizable by a

monotone additive representation. Ville’s Theorem of the Alternative [13, p.36]
characterizes the conditions under which such systems admit solutions.

Theorem A.1. Either

1. Ax > 0, x > 0 has a solution x,

2. A⊺y ≤ 0, y ≥ 0, y ∕= 0 has a solution y,

but never both.

It follows from above that A⊺y has a positive entry for any y ≥ 0 and y ∕= 0.
Hence, (c,B, T ) is rationalizable by a monotone additive representation.

7A⊺ is the transpose of A.
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Additive

Suppose that for every λ ∈ ∆(T ),


t λtct ∕=


t λtdt. Then, for every λ ∈ ∆(T ),
there are two cases to consider.

Case 1:


t λtct ∕⊆


t λtdt. Then, there exists pλ =


t λtpt,λ such that
pt,λ ∈ ct for t ∈ T and pλ ∈


t λtct\


t λtdt. Define Cλ = {(pλ− q)|q ∈


t λtdt}.

Cλ is closed, convex and 0 ∕∈ Cλ. By the Hyperplane Separation Theorem, there
exists an expected utility function uλ : ∆(X) → R and a number κλ such that
uλ(pλ) > κλ > uλ(q) for all q ∈


t λtdt.

Case 2:


t λtct ⊆


t λtdt. Then,


t λtdt ∕⊆


t λtct. Hence, there exists
qλ =


t λtqt,λ such that qt,λ ∈ dt for all t ∈ T and qλ ∈


t λtdt\


t λtct. Define

Cλ = {(qλ− p)|p ∈


t λtct}. Cλ is closed, convex and 0 ∕∈ Cλ. By the Hyperplane
Separation Theorem, there exists an expected utility function uλ : ∆(X) → R and
a number κλ such that uλ(qλ) > κλ > uλ(p) for all p ∈


t λtct.

By an analogous argument to the one used in the proof of the monotone additive
case there exists Λ1, ...,Λk ⊆ ∆(T ) such that ∪iΛi = ∆(T ) and λ ∈ Λi implies

max
p∈


t λtct

ui(p) > max
q∈


t λtdt

ui(q)

or
max

q∈


t λtdt
ui(q) > max

p∈


t λtct
ui(p).

Define the A matrix as above. We claim that A⊺λ has at least one non zero entry
for every λ ∈ ∆(T ). To see this note that any λ ∈ ∆(T ) must be in some Λi.
Hence, either

max
p∈


t λtct

ui(p) > max
q∈


t λtdt

ui(q)

or
max

q∈


t λtdt
ui(q) > max

p∈


t λtct
ui(p).

which implies that the ith entry if A⊺λ is non zero.
If there exists a µ such that Aµ > 0, then (c,B, T ) is rationalizable by an addi-

tive representation. Gordan’s Theorem of the Alternative [13, p.31] characterizes
the conditions under which such systems admits solutions.

Theorem A.2. Either

1. Ax > 0 has a solution x,
2. A⊺y = 0, y ≥ 0, y ∕= 0 has a solution y,

but never both.

It follows from above that A⊺y has a non zero entry for any y ≥ 0 and y ∕= 0.
Hence, (c,B, T ) is rationalizable by an additive representation.
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Bound on the cardinality of the state space
From above we can conclude that if a choice problem (c,B, T ) is rationalizable by
an (monotone) additive representation with an infinite state space, then it is also
rationalizable by an (monotone) additive representation with a finite state space.

Monotone Additive

Suppose (c,B, T ) is rationalizable by a monotone additive representation with a
finite state space of cardinality K > T . WLOG assume µ is strictly positive.
Define the A matrix as above. We are going to show that there exists a matrix
A′ with r ≤ T columns and a non-negative vector µ′ such that each column of A′

is a column of A and A′µ′ > 0. Note that Aµ =
K

i=1 µiai where ai ∈ RT is the
ith column of A. Since µ > 0, then Aµ ∈ {

K
i=1 λiai|λi > 0 for every i}. Then,

by the cone version of Carathédory’s Theorem [16, p.156], Aµ can be written as
a non-negative linear combination of T or fewer elements of {a1, ..., aK}. WLOG,
assume that the first r ≤ T elements of {a1, ..., aK} are the ones described by the
theorem and let α1, ...,αr ≥ 0 be the weights such that

r
i=1 αiai = Aµ > 0.

To conclude the proof, let A′ = [a1, ..., ar] and µ′ be such that µ′
i = αi. Hence,

A′µ′ > 0.

Additive

Suppose (c,B, T ) is rationalizable by an additive representation with a finite state
space of cardinality K > T . Define the A matrix as above. Then rank(A) = r ≤ T .
Hence, there are r linearly independent columns of A. WLOG assume a1, ..., ar
are the aforementioned columns. Let A′ = [a1, ..., ar], we are going to show that
there exists µ′ such that A′µ′ > 0. To see this note that aj =

r
i=1 α

j
iai for every

j ∈ {r + 1, ...,K} where αj
i ∈ R for every i = 1, ..., r and j = r + 1, ...,K. Hence,

0 < Aµ

=

K

j=1

µjaj

=

r

j=1

µjaj +

K

j=r+1

µj [

r

i=1

αj
iai]

=

r

j=1

(µj +

K

i=r+1

µiα
i
j)aj .

Let µ′ be such that µ′
j = µj +

K
j=r+1 µjα

j
i . Thus, A′µ′ > 0.
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Proof of Proposition 3.1
Let (c,B, T ) be such that ct = ch({δ1, ..., δT }) and dt = ch({δ1, ..., δt−1, δt+1, ..., δT })
where δi is the degenerate lottery that gives alternative xi with probability 1. Then,
by Theorem 3.1, (c,B, T ) is rationalizable by an additive representation. Assume,
by way of contradiction, that there exists an additive representation that ratio-
nalizes (c,B, T ) with a state space of cardinality K < T . Assume the (signed)
measure associated with the representation is positive (hence the representation
is monotone additive). Then, by DLR’s Lemma 1, there exist p1, ..., pK such that
pi ∈ {δ1, ..., δT } and pi ∈ argmaxp∈ch({δ1,...,δT }) ui(p). Thus, there exists t ∈ T
such that p1, ..., pK ∈ dt a contradiction. Hence, it must be the case the (signed)
measure corresponding to the representation has at least one negative value.

Note that if the measure assigns negative values to all the states, then we
get an immediate contradiction. Hence, there exists at least one s such that
µ(s) > 0. WLOG assume the first r < K states are the ones with positive
weight. By DLR’s Lemma 1 there exist p1, ..., pr such that pi ∈ {δ1, ..., δT } and
pi ∈ argmaxp∈ch({δ1,...,δT }) ui(p). Then, {p1, ..., pr} ⊆ dt for some t ∈ T . Hence,



s∈S
max

q∈{p1,...,pr}
Us(q)µ(s) ≥



s∈S
max
q∈dt

Us(q)µ(s)

≥


s∈S
max

q∈ch(dt∪{δt})
Us(q)µ(s)

=


s∈S
max
p∈ct

Us(p)µ(s),

a contradiction.

Proof of Proposition 4.1
Part 2 follows from Propositions 1 and 3 in Gorno (2016). Here we prove Part 1.

Suppose (cK ,BK , T ) is rationalizable by a Kreps additive representation, then
there exists a finite set S and a state dependent utility function U : S ×X → R
such that: for every t ∈ T and dKt ∈ BK

t \cKt ,


s∈S
max
a∈cKt

Us(a) >


s∈S
max
b∈dKt

Us(b).

Let Ū : S×∆(X) → R be such that Ūs(p) =


x∈X p(x)Us(x). Then for every s ∈
S, Ūs is an expected utility function. Let µ be a measure over S such that µ(s) = 1
for every s ∈ S. Hence, (S, Ū , µ) forms a monotone additive representation, we
will show it rationalizes (c,B, T ). To see this, note that any preference over ≽
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over P (∆(X)) that has a monotone additive representation satisfies the following
axiom: A ∼ ch(A) (DLR’s Lemma 1). Hence, for every s ∈ S and every t ∈ T ,

max
a∈cKt

Us(a) = max
δa∈{δa|a∈cKt }

Ūs(δa) = max
p∈ct

Ūs(p)

and
max
b∈dKt

Us(b) = max
δb∈{δb|b∈dKt }

Ūs(δb) = max
q∈dt

Ūs(q).

Which implies that for every t ∈ T



s∈S
max
a∈cKt

Us(a) >


s∈S
max
b∈dKt

Us(b)

if and only if


s∈S
max
p∈ct

Ūs(p) >


s∈S
max
q∈dt

Ūs(q).

Next, suppose (c,B, T ) is rationalizable by a monotone additive representation.
Then, by Theorem 3.1, there exist a finite set S, a state dependent utility function
U : S × ∆(X) → R and a positive measure µ over S such that: for every t ∈ T
and dt ∈ Bt\ct,



s∈S
max
p∈ct

Us(p)µ(s) >


s∈S
max
q∈dt

Us(q)µ(s).

Assume WLOG that µ(s) = 1 for every s ∈ S. Let Ū : S ×X → R be such that
Us(x) = Us(δx). Then, (S, Ū) forms a Kreps additive representation, we will show
that (S, Ū) rationalizes (cK ,BK , T ). To see this, note that for every s ∈ S,

max
p∈ct

Us(p) = max
δa∈{δa|a∈cKt }

Us(δa) = max
a∈cKt

Ūs(s)

and
max
q∈dt

Us(q) = max
δb∈{δb|b∈dKt }

Us(δb) = max
b∈dKt

Ūs(b).

Hence, for every t ∈ T ,


s∈S
max
p∈ct

Us(p) >


s∈S
max
q∈dt

Us(q)

if and only if


s∈S
max
a∈cKt

Ūs(a) >


s∈S
max
b∈dKt

Ūs(b).
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Appendix B: Testability
This appendix shows that, for the class of choice problems such that each menu
is either finite or finitely generated, the characterizing conditions in Theorem 3.1
can be reformulated as systems of nonlinear inequalities for which the existence
of solutions can be verified using existing numerical methods. Hence, the results
in this appendix provide a test for the representations which is implementable, at
least in principle. We focus on the case in which each menu is the convex hull of
finitely many lotteries; one can always replace a finite menu with its convex hull.

Fix a choice problem (c,B, T ) such that for all t ∈ T , Bt = {ct, dt} and

ct = ch({p1t , ..., pmc
t
})

dt = ch({q1t , ..., qmd
t
})

where pit , qjt ∈ ∆(X) for every it ∈ {1, ...,mc
t}, j ∈ {1, ...,md

t } and mc
t ,m

d
t ∈ N.

Given T lotteries p1, ..., pT , let [p1, ..., pT ] denote the matrix that has lottery
pt in column t. Define C = {C ∈ Rn×T |C = [p1, ..., pT ], pt ∈ {p1t , ..., pmc

t
} ∀t ∈

T} and D = {D ∈ Rn×T |D = [q1, ..., qT ], qt ∈ {q1t , ..., qmd
t
} ∀t ∈ T}. Since

{p1t , ..., pmc
t
} and {q1t , ..., qmd

t
} are finite for all t ∈ T , C and D are finite sets.

Hence

C = {C1, ..., Ckc}
D = {D1, ..., Dkd}

where kc =
T

t=1m
c
t and kd =

T
t=1m

d
t .

Before moving on to the systems of inequalities we state and prove a lemma
we use in the proofs of the following results.

Lemma B.1. For any λ ∈ ∆(T )



t

λtct = ch({


t

λtpt|pt ∈ {p1t , ..., pmc
t
}∀t ∈ T})



t

λtqt = ch({


t

λtqt|qt ∈ {q1t , ..., qmd
t
}∀t ∈ T})

Proof. Follows from the following fact [17, p.95]:

Let A = ch({x1, ..., xn}) and B = ch({y1, ..., ym}) be two Rn-polytopes and let
C = A+B where the sum is in Minkowski sense. Then

C = ch({x+ y|x ∈ {x1, ..., xn}, y ∈ {y1, ..., ym}}).
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Strategically Rational
Proposition B.1. (c,B, T ) is rationalizable by a strategically rational represen-
tation if and only if for some j ∈ {1, ..., kc} the following system does not have a
solution

kd

i=1

(Diλ)αi = Cjλ

kd

i=1

αi = 1, αi ≥ 0



t

λt = 1, λt ≥ 0.

Proof. First note that by Lemma 1 in DLR and Theorem 3.1, (c,B, T ) is rational-
izable by a strategically rational representation if and only if there exist p1, ..., pT
such that pt ∈ {p1t , ..., pmc

t
} ∀ t ∈ T and


t λtpt ∕∈


t λtdt ∀ λ ∈ ∆(T ).

Hence, by Lemma B.1, (c,B, T ) is rationalizable by a strategically rational
representation if and only if there exist p1, ...pT such that pt ∈ {p1t , ..., pmc

t
} ∀

t ∈ T and


t λtpt ∕∈ ch({


t λqt|qt ∈ {q1t , ..., qmd
t
}∀t ∈ T}) ∀ λ ∈ ∆(T ).

Note that for any p1, ..., pT such that pt ∈ {p1t , ..., pmc
t
} ∀t ∈ T there ex-

ists a j ∈ {1, ..., kc} such that Cj = [p1, ..., pT ] and


t λtpt = Cjλ. Moreover,
ch({


t λtqt|qt ∈ {q1t , ..., qmd

t
}∀t ∈ T}) = ch({D1λ, ..., Dkdλ}). Hence, (c,B, T ) is

rationalizable by a strategically rational representation if and only if for some j ∈
{1, ..., kc}, there does not exists a λ ∈ ∆(T ) such that Cjλ ∈ ch({D1λ, ..., Dkdλ})
which is equivalent to requiring the above system to not have a solution for some
j ∈ {1, ..., kc}.

Monotone Additive
Proposition B.2. (c,B, T ) is rationalizable by a monotone additive representation
if and only if the following system does not have a solution

kd

i=1

(Diλ)αi,j = Cjλ for j = 1, ..., kc

kd

i=1

αi,j = 1 for j = 1, ..., kc

αi,j ≥ 0 for i = 1, ..., kd and j = 1, ..., kc



t

λt = 1, λt ≥ 0.
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Proof. By Lemma B.1, there exists a λ ∈ ∆(T ) such that


t λtct ⊆


t λtdt if and
only if {


t λtpt|pt ∈ {p1t , ..., pmc

t
}∀t ∈ T} ⊆ ch({


t λtqt|qt ∈ {q1t , ..., qmd

t
}∀t ∈

T}). Moreover, {


t λtpt|pt ∈ {p1t , ..., pmc
t
}∀t ∈ T} = {C1λ, ..., Ckcλ} and ch({


t λtqt|qt ∈

{q1t , ..., qmd
t
}∀t ∈ T}) = ch({D1λ, ..., Dkdλ}). Hence, by Theorem 3.1, (c,B, T ) is

rationalizable by a monotone additive representation if and only if there does not
exists a λ ∈ ∆(T ) such that {C1λ, ..., Ckcλ} ⊆ ch({D1λ, ..., Dkdλ}) which is equiv-
alent to requiring the above system to not have a solution.

Additive
Proposition B.3. (c,B, T ) is rationalizable by an additive representation if and
only if the following system does not have a solution

kd

i=1

(Diλ)α
d
i,j = Cjλ for j = 1, ..., kc

kc

i=1

(Ciλ)α
c
i,j = Djλ for j = 1, ..., kd

kd

i=1

αd
i,j = 1 for j = 1, ..., kc

kc

i=1

αc
i,j = 1 for j = 1, ..., kd

αd
i,j ≥ 0 for i = 1, ..., kd and j = 1, ..., kc

αc
i,j ≥ 0 for i = 1, ..., kc and j = 1, ..., kd



t

λt = 1, λt ≥ 0.

Proof. By Lemma B.1, there exists a λ ∈ ∆(T ) such that


t λtct =


t λtdt if
and only if

{


t

λtpt|pt ∈ {p1t , ..., pmc
t
}∀t ∈ T} ⊆ ch({



t

λtqt|qt ∈ {q1t , ..., qmd
t
}∀t ∈ T})

{


t

λtqt|qt ∈ {q1t , ..., qmd
t
}∀t ∈ T} ⊆ ch({



t

λtpt|pt ∈ {p1t , ..., pmc
t
}∀t ∈ T}).

Since {


t λtpt|pt ∈ {p1t , ..., pmc
t
}∀t ∈ T} = {C1λ, ..., Ckcλ} and {


t λtqt|qt ∈

{q1t , ..., qmd
t
}∀t ∈ T} = {D1λ, ..., Dkdλ}, it is enough to check whether {C1λ, ..., Ckcλ} ⊆

ch({D1λ, ..., Dkdλ}) and {D1λ, ..., Dkdλ} ⊆ ch({C1λ, ..., Ckcλ}) to know if


t λtct =
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t λtdt. Hence, by Theorem 3.1, (c,B, T ) is rationalizable by an additive represen-

tation if and only if there does not exists a λ ∈ ∆(T ) such that {C1λ, ..., Ckcλ} ⊆
ch({D1λ, ..., Dkdλ}) and {D1λ, ..., Dkdλ} ⊆ ch({C1λ, ..., Ckcλ}) which is equiva-
lent to requiring the above system to not have a solution.

Solving the Inequalities
In this section we describe the numerical methods that can be used to check if the
above systems have solutions. We restrict our attention to the monotone additive
case; the strategically rational and additive cases are handled in an analogous way.

Consider the system of nonlinear equations given by Proposition B.2

kd

i=1

(Diλ)αi,j = Cjλ,

kd

i=1

αi,j = 1, αi,j ≥ 0 for i = 1, ..., kd and j = 1, ..., kc



t

λt = 1, λt ≥ 0.

Let Fj : RT+kc×kd → Rn be such that Fj(λ,α) =
kd

i=1(Diλ)αi,j − Cjλ for j =
1, ..., kc. Then, Fj is twice continuously differentiable and has analytic derivatives.
Let F : RT+kc×kd → Rkc×n be such that

F (λ,α) =





F1(λ,α)
F2(λ,α)

...
Fkc(λ,α)




.

Hence, the above system is equivalent to

F (λ,α) = 0,

kd

i=1

αi,j = 1, αi,j ≥ 0 for i = 1, ..., kd and j = 1, ..., kc



t

λt = 1, λt ≥ 0.

Consider the following optimization problem

minimize
λ,α

1

2
F (λ,α)2

subject to
kd

i=1

αi,j = 1, αi,j ≥ 0 for i = 1, ..., kd and j = 1, ..., kc



t

λt = 1, λt ≥ 0.
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where . is the euclidean norm. Then, the system of nonlinear equations has a
solution if and only if the global minimum of the optimization problem is equal to 0.
The above optimization problem can be solved using numerical methods like New-
ton’s, augmented Lagrangian function, sequential quadratic programming (SQP),
trust-region SQP or the interior point method. For a comprehensive textbook
review of relevant numerical methods see Nocedal and Wright (2006). For more
recent extensions of these methods, see for example Curtis, Jiang and Robinson
(2015) and Osman (2016).
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