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MACROSCOPIC SCHOEN CONJECTURE FOR MANIFOLDS WITH
NON-ZERO SIMPLICIAL VOLUME

F. BALACHEFF AND S. KARAM

ABSTRACT. We prove that given a hyperbolic manifold endowed with an auxiliary Rie-
mannian metric whose sectional curvature is negative and whose volume is sufficiently
small in comparison to the hyperbolic one, we can always find for any radius at least 1 a
ball in its universal cover whose volume is bigger than the hyperbolic one. This result is
deduced from a non-sharp macroscopic version of a conjecture by R. Schoen about scalar
curvature, whose proof is a variation of an argument due to M. Gromov and based on a
smoothing technique. We take the opportunity of this work to present a full account of this
technique which involves simplicial volume and deserves to be better known.

1. INTRODUCTION

L. Guth proved in [Guth11] that there exists a positive constant δn such that, if Mn is
a closed hyperbolic manifold of dimension n and g is an auxiliary Riemannian metric
with vol(M, g) < δn vol(M,hyp), then we can always find some ball of radius 1 in its
universal cover whose volume is bigger than Vhyp(1). Here M is said hyperbolic if it admits
a metric of constant sectional curvature −1 and Vhyp(R) denotes the hyperbolic volume of
a geodesic ball of radius R in Hn. Such a result gets some perspective once you translate
the famous theorem of Besson, Courtois & Gallot about volume entropy for hyperbolic
manifolds in the following way (see [BCG95]): if M is a closed hyperbolic manifold and g
is an auxiliary Riemannian metric with vol(M, g) < vol(M,hyp), then there exists R0 > 0
such that any ball of radius R ≥ R0 in its Riemannian universal cover has volume bigger
than Vhyp(R). This leads Guth to conjecture the following.

Conjecture 1.1 (Guth, 2011). If M is a closed hyperbolic manifold and g is an auxiliary
Riemannian metric such that vol(M, g) < vol(M,hyp), then for all radius R > 0

max
y∈M̃

|B̃(y,R)| > Vhyp(R).
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Here |B̃(y,R)| denotes the Riemannian volume of a metric ball B̃(y,R) ⊂ M̃ in the
universal cover with respect to the lifted metric g̃.

While Besson, Courtois & Gallot theorem proves this conjecture for large radius (de-
pending on the metric), the case where radius goes to zero is connected to a conjecture by
R. Schoen on scalar curvature. Indeed remember that for small radius R > 0 the volume of
a ball centered at some point x in M admits the following expansion:

|B(x,R)|g = ωnR
n

(
1− Scalg(x)

6(n+ 2)
R2 + o(R3)

)
.

The condition Scalg(x) > Scalhyp thus implies that |B(x,R)|g < Vhyp(R) provided R
is small enough. In particular Guth conjecture would imply via a scaling argument the
conjecture attributed to Schoen1 that a closed hyperbolic manifold with a Riemannian
metric g whose scalar curvature is at least equal to the scalar curvature of hyperbolic space
has volume at least equal to the hyperbolic one.

The flat version of Guth conjecture is the generalized Geroch conjecture due to M.
Gromov in 1985 (see [Guth10]): for any R > 0 you can always find in the universal cover
of any Riemannian torus a ball of radius R whose volume is at least equal to the euclidean
one, that is ωnR

n. The generalized Geroch conjecture, if it is true, would imply the original
Geroch conjecture that tori do not admit Riemannian metrics with positive scalar curvature.
The original Geroch conjecture is solved, see [SY79] and [GL80].

Having this context in mind, the following result appears to be of some interest.

Theorem 1.2. There exists a constant αn such the following estimate holds. If (M, g) is a
closed Riemannian manifold of dimension n with vol(M, g) < αn∥M∥, then for all R ≥ 1

max
y∈M̃

|B̃(y,R)|
|B̃(y,R/2)|

>
Vhyp(R)

Vhyp(R/2)
.

Here ∥M∥ denotes the simplicial volume. We will recall this notion in the core of this
paper, but for now the main property of this topological invariant that matters is that for
hyperbolic manifolds the simplicial volume and the hyperbolic volume coincide up to
some constant depending only on the dimension. This result due to Gromov and Thurston
(see [Thu78] and [Gro82]) implies in particular that Riemannian manifolds which are also
hyperbolic and whose volume is sufficiently small admits for any radius R ≥ 1 some ball
in their universal cover with some hyperbolic flavour. Because scalar curvature can be

1This conjecture would be a consequence of the fact that the Yamabe invariant of a closed hyperbolic
manifold is achieved by its hyperbolic metric, which is conjectured to be true by Schoen in [Scho89, p.127].
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alternatively defined as the following limit

Scalg(x) = 8(n+ 2) lim
R→0

1

R2

(
1− |B(x,R)|

2n|B(x,R/2)|

)
,

we see that an analog of Theorem 1.2 valid for R → 0 would imply a non-sharp version
of Schoen conjecture. This is the reason why we interpret Theorem 1.2 as a non-sharp
macroscopic version of Schoen conjecture.

Theorem 1.2 can also be seen as a stronger macroscopic version of the following theorem
by Gromov [Gro82, Corollary, p. 36]: if the Ricci curvature is at least that of hyperbolic
space, then the volume of the manifold is at least a constant times the simplicial volume.
Indeed Bishop-Gromov inequality implies that with such a Ricci bound, the ratio between
volumes of balls of radius R and R/2 is at most the corresponding ratio in hyperbolic space.

Another argument in favor of Theorem 1.2 is that it can be used to prove the following
non-sharp version of Guth conjecture in the case of negative curvature for radii big enough.

Theorem 1.3. Let M be a closed hyperbolic manifold of dimension n and g a Riemannian
metric with negative sectional curvature. There exists a positive constant βn such that the
condition vol(M, g) < βn vol(M,hyp) implies that for all R ≥ 1

max
y∈M̃

|B̃(y,R)| > Vhyp(R).

This theorem was already known in dimension n = 2 without any curvature bound
condition, by a result of the second named author, see [Kar15].

The main ingredient in the proof of Theorem 1.2 is a result by Gromov called the
smoothing inequality, see [Gro82, pp. 33-34].

This inequality relies on a dual definition of the simplicial volume of a manifold M at
the level of its universal covering. Loosely speaking, instead of minimizing the ℓ1-norm
of simplicial cycles representing the fundamental class of M , Gromov explains in [Gro82,
pp. 28-31] how to define simplicial volume by minimizing the ℓ∞-norm of some special
cocycles in its universal covering. These special cocycles satisfy a property of straightness
that mimics the caracteristics of a particular cocycle appearing in the hyperbolic context.
The idea is that in the hyperbolic case, there exists one privileged representation of a
simplex in its homotopy class with vertices fixed, namely the geodesic one. In the general
Riemannian case, such a privileged representation is no longer well defined, but its dual
version persists.

The second ingredient of this smoothing inequality is, in the presence of a Riemannian
metric, to replace points interpreted as Dirac measures by measures with density using
the geometry inherited by the universal cover. More specifically, if M is endowed with a
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Riemannian metric, Gromov essentially smooths Dirac measures of the universal covering
into density measures supported by metric balls with an exponential decay. By combining
this smoothing process with the dual definition of simplicial volume, Gromov obtains a
smoothing inequality involving the Riemannian volume, the simplicial volume and the
volume of balls in the universal cover.

Gromov used this smoothing inequality to obtain mainly three results which compare
for a hyperbolic manifold with an auxiliary Riemannian metric the following invariants:
the Ricci curvature and the volume (see [Gro82, Corollary, p. 36]), the entropy and the
volume (see [Gro82, p. 37]), and lastly the systole and the volume (see [Gro83, Theorem
6.4.D’] and [Gro96, Theorem 3.B.1]). Our argument in the proof of Theorem 1.2 appears
as a variation of the one used by Gromov to prove the volume entropy estimate, see Remark
4.2. See also subsection 4.3 for a discussion about how Theorems 1.2 and 1.3 interact with
Gromov’s results.

The first two sections of this paper are devoted to present this smoothing inequality.
Some lectors will certainly prefer to read Gromov’s text [Gro82] which contains much
more material. But we hope that our presentation may be of some help in complement
of this lecture for the others. The alternative definition of simplicial volume using the
notion of straight invariant fundamental cocycle is presented in section 2. Section 3
presents the smoothing procedure of straight invariant fundamental cocycles, and a proof of
the related smoothing inequality. Then we prove Theorem 1.2 and Theorem 1.3 in section 4.

2. SIMPLICIAL VOLUME VIA STRAIGHT INVARIANT COCYCLES

Let M be a closed oriented n-dimensional manifold. Denote by M̃ its universal cover
and by π : M̃ → M the corresponding covering map.

2.1. Standard definition of simplicial volume. According to Mostow rigidity theorem
[Mos68] a hyperbolic metric on a manifold of dimension at least three is completely
determined by the fundamental group of the manifold (up to isometry). The simplicial
volume was originally designed by Gromov to find an explicit topological definition of
volume for hyperbolic manifolds, and was first defined as the quantity

∥M∥ = inf{
k∑

i=1

|ri| |
∑

riσi represents [M ]},

where the infimum is taken over all real singular chains representing the fundamental class
of M . We will refer to the quantity

∑k
i=1 |ri| as the ℓ1-norm of the chain

∑
riσi in the
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sequel. If Mn is a closed manifold of dimension n ≥ 2 endowed with a hyperbolic metric
hyp then

Vn ∥M∥ = vol(M,hyp)

where Vn denotes the maximal volume of an ideal n-simplex in the hyperbolic space
Hn. This result due to both Gromov [Gro82] and Thurston [Thu78] ends the search for a
topological definition of hyperbolic volume. It was also the main ingredient in Gromov’s
proof of Mostow rigidity theorem.

For our purpose we only need to recall how to prove that Vn ∥M∥ ≥ vol(M,hyp).
Because M is hyperbolic it is provided with a straight operator. First define the notion of
straight simplex of M̃ by induction as follows: the straight k-simplex of M̃ with vertices
(ỹ0, . . . , ỹk) is defined as the h̃yp-geodesic cone over the straight simplex with vertices
(ỹ0, . . . , ỹk−1). Then define the straight operator as the map which assigns to any singular
k-simplex σ̃ of the universal cover M̃ the unique straight simplex σ̃st with the same set
of vertices. Using this straight operator, we see that any real singular chain

∑
riσi is

homotopic to the straighted chain
∑

ri π ◦ (σ̃i)st where σ̃i denotes any lift of σi to M̃ . If
we represent the fundamental class of [M ] by such a chain, we get

vol(M,hyp) ≤
k∑

i=1

|ri| vol((σ̃i)st, hyp) ≤
k∑

i=1

|ri|Vn

thus proving the desired inequality. Here observe that Vn can be alternatively defined as the
supremum of the volume of a straight n-simplex in the hyperbolic space Hn.

2.2. Dual definition of simplicial volume. Next we need to recall the link between
simplicial volume and bounded cohomology. For a cohomological class Ω ∈ Hn(M,R)
set ∥Ω∥∞ := inf [ω]=Ω supσ |ω(σ)| where the supremum is taken over all simplices and the
infimum over all real simplicial cocycles ω representing Ω. The following duality principle
provides an alternative definition for simplicial volume and at the same time proves that
manifolds with non-zero simplicial volume are exactly those whose dual fundamental class
is bounded.

Proposition 2.1 (Gromov).

∥M∥ = sup {Ω[M ] | Ω ∈ Hn(M,R)with ∥Ω∥∞ = 1} .

In particular, if ΩM denotes the dual fundamental class of M , then

∥M∥ = (∥ΩM∥∞)−1.
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Proof. For any real singular cycle c =
∑k

i=1 riσi representing the class [M ], and any real
singular cocycle ω representing a cohomological class Ω of dimension n, we have

Ω[M ] = ω(c) ≤
k∑

i=1

|ri||ω(σi)| ≤
k∑

i=1

|ri| · ∥ω∥∞,

where ∥ω∥∞ := supσ |ω(σ)| denotes the ℓ∞-norm on the space of real cochains of M . So
Ω[M ] ≤ ∥M∥ for any cohomological class Ω of unit ℓ∞-norm. If ∥M∥ = 0 this concludes
the proof.

If ∥M∥ > 0, in the other direction, recall that the ℓ1-norm on real chains is dual to the ℓ∞-
norm on real cochains. Let c be a cycle representing [M ]. According to the Hahn-Banach
theorem there exists a linear form ω such that

• ω(c) = 1 ;
• ω|∂Cn+1(M,R) = 0 ;
• ∥ω∥∞ = (d∥·∥1(c, ∂Cn+1(M,R)))−1 = ∥M∥−1

where Cn+1(M,R) denotes the set of (n + 1)-chains. Therefore Ω := [ω]/∥ω∥∞ is a
cocycle with ∥Ω∥∞ ≤ 1 such that Ω[M ] = ∥M∥ which concludes the proof. □

If g is a Riemannian metric on M , we could define the dual fundamental class using the
following cocycle: for any simplex σ set

ω(σ) =
vol(σ, g)

vol(M, g)
.

Of course [ω] = ΩM , but unfortunately ∥ω∥∞ = ∞. In the case of a hyperbolic manifold,
we can fix this by using the straight operator. More precisely, if (M,hyp) is hyperbolic, we
define a slightly different cocycle ωhyp using the formula

ωhyp(σ) =
vol((σ̃)st, h̃yp)

vol(M,hyp)

where σ̃ denotes any lift of σ to M̃ . It is straightforward to check that [ωhyp] = ΩM and that

∥ωhyp∥∞ =
Vn

vol(M,hyp)
=

1

∥M∥
.

The corresponding lifted cochain also enjoys the following properties.

Proposition 2.2. The π1M -invariant cochain π∗ωhyp is straight, that is for any simplex σ̃

π∗ωhyp(σ̃) = π∗ωhyp (σ̃st) .
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Equivalently, the value π∗ωhyp(σ̃) only depends of (y0, . . . , yn), the set of vertices of σ̃.
Moreover, the resulting function

π∗ωhyp : M̃
n+1 → R

(y0, . . . , yn) 7→ π∗ωhyp(y0, . . . , yn)

is continuous and in particular Borel.

This is here that Gromov found that such nice properties of π∗ωhyp could be used to
define an alternative notion of simplicial volume. In the next paragraph we present this
definition, but it is important to already underline that this alternative simplicial volume
coincides with the standard one, albeit the proof of their equivalence seems quite technical.

2.3. Alternative definition of simplicial volume via straight invariant cocycles.

Definition 2.3. A straight invariant fundamental cocycle is a cochain ω̃ of Cn(M̃ ;R) with
the following properties:

a) Invariance: ω̃ is π1M -invariant,

b) Fundamental cocycle: the only cochain ω on M satisfying π∗ω = ω̃ is a cocycle repre-
senting the dual fundamental class of M , that is [ω] = ΩM . In particular ω̃ is a cocycle.

c) Straight and Borel: ω̃ is straight and the induced real valued function on M̃n+1 is Borel.

The alternative simplicial volume is then defined by

∥M∥′ = 1

inf ∥ω̃∥∞
where the infimum is taken over all straight invariant fundamental cocycles.

In particular ∥M∥′ = 0 if M does not admit such a straight invariant fundamental cocycle
of bounded type. In the case of a hyperbolic manifold, we can compute the alternative
simplicial volume as follows.

Theorem 2.4. If M is hyperbolic, then

∥M∥′ = vol(M,hyp)

Vn

.

Proof. First observe that we already proved that

(∥M∥′)−1 = inf ∥ω̃∥∞ ≤ ∥π∗ωhyp∥∞ =
Vn

vol(M,hyp)
.
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In the reverse direction, consider a straight invariant fundamental cocycle ω̃ of M̃ and
denote by ω the corresponding cocycle of M such that π∗ω = ω̃ and [ω] = ΩM . Following
[Gro82, section 2.2] and [Thu78, Theorem 6.2] pick a straight simplex σ̃D of M̃ = Hn

all of whose edges have length equal to D endowed with the natural orientation induced
by M̃ . Denote by µ̃ the Haar measure on the group Isom+(Hn) of orientation-preserving
isometries normalized so that the measure of isometries taking a point in Hn to a region
R ⊂ Hn is the hyperbolic volume of R. This measure being invariant under both right
and left multiplication, it descends to a measure denoted by µ on the quotient space
P (M) = π1M \ Isom+(Hn) such that

∫
P (M)

dµ = vol(M,hyp). Denote by FD the set of
simplices of M obtained by projecting all straight simplices of Hn all of whose edges have
length D with their natural orientation. The map

Ψ : P (M) → FD

π1Mφ 7→ π ◦ φ ◦ σ̃D

pushes forward the measure µ to a measure on FD denoted by smearM(σ̃D). Now pick any
reflection r of Hn associated to an hyperplane and set the measure on FD defined by

νD =
1

2
(smearM(σ̃D)− smearM(r ◦ σ̃D)).

By construction its total variation satisfies

∥νD∥ = ∥smearM(σ̃D)∥ = vol(M,hyp).

The measure νD is a cycle of the measured homology of M (see [Thu78, Section 6]): for
any cocycle ζ ∈ Cn(M ;R) the integral∫

FD

ζ(σ)dνD

depends only on the cohomological class of ζ and we set by duality

⟨[νD], [ζ]⟩ :=
∫
FD

ζ(σ)dνD.

The corresponding homological class [νD] is thus a multiple of the fundamental class.
Because

1

∥νD∥

∫
FD

ζhyp(σ)dνD = vol(σ̃D, h̃yp)

where ζhyp denotes the cocycle induced by the hyperbolic volume form on M , we see that

[νD] = vol(σ̃D, h̃yp) · [M ].
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From the fact that [ω] = ΩM we get that

vol(σ̃D, h̃yp) =

∫
FD

ω(σ)dνD ≤ ∥ω̃∥∞ · vol(M,hyp).

By letting D → ∞ we deduce that

Vn

vol(M,hyp)
≤ ∥ω̃∥∞

as limD→∞ vol(σ̃D, h̃yp) = Vn. This proves the reverse inequality. □

In particular, the two simplicial volumes ∥ · ∥′ and ∥ · ∥ coincide for hyperbolic manifolds.
In [Gro82, section3], Gromov proved that they are indeed always equal. But his proof
“requires a bit of abstract machinery”, as he himself confessed (see [Gro82, p.30]). Because
we don’t need this equivalence between both definitions, we work from now with the
alternative definition of simplicial volume that we abusively denote by ∥ · ∥.

Remark 2.5. We assumed at the beginning of this section that M was oriented. In fact
simplicial volume does not depend on a specific choice of orientation on M . So the notion
of simplicial volume of a closed orientable manifold is well defined. Furthermore, if M is
now supposed to be non-orientable, simply set

∥M∥ =
1

2
∥M ′∥

where M ′ denotes the orientable double cover of M , and observe that Theorem 2.4 is still
valid.

3. THE SMOOTHING INEQUALITY

Using the fact that straight invariant Borel cochains can be interpreted as functions with
variables in M̃ , Gromov defines a diffusion process associated to a family of probability
measures living in the universal covering space of the manifold.

3.1. Diffusion of straight invariant fundamental cocycles via a smoothing operator.
Denote by M the Banach space of finite measures µ on the universal cover M̃ of M , and
by P ⊂ M the subset of probability measures. We endow M with the usual norm

∥µ∥ =

∫
M̃

|µ|
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where |µ| denotes the total variation. Any straight invariant fundamental cocycle ω̃ uniquely
extend to a (n+ 1)-linear function on Mn+1 as follows

ω̃(µ0, . . . , µn) =

∫
M̃n+1

ω̃(y′0, . . . , y
′
n)dµ0(y

′
0) . . . dµn(y

′
n).

Observe that

∥ω̃∥∞ = sup
y0,...,yn∈M̃

|ω̃(y0, . . . , yn)| = sup
µi∈P

|ω̃(µ0, . . . , µn)|.

Definition 3.1. A smoothing operator is a smooth π1M -equivariant function

S : M̃ → P .

The idea is to replace points of M̃ by probability measures, and to observe the effect of
this diffusion on straight invariant fundamental cocycles.

Theorem 3.2. Given a smoothing operator S and a straight invariant fundamental cocycle
ω̃, the diffused cochain S ∗ω̃ defined by

S ∗ω̃(y0, . . . , yn) = ω̃ (S (y0), . . . ,S (yn))

is also a straight invariant fundamental cocycle.

Proof. It is clear that the straight (by definition !) cochain S ∗ω̃ is π1M -invariant and Borel.
To check that it is a fundamental cocycle, we first prove that S ∗ω̃ is a cocycle. Indeed for
any singular (n+ 1)-simplex σ̃ with vertices (y0, . . . , yn+1) we have

S ∗ω̃(∂σ̃) =
n+1∑
i=0

(−1)iS ∗ω̃(y0, . . . , ŷi, . . . , yn+1)

=
n+1∑
i=0

(−1)i
(∫

M̃n+1

ω̃(y′0, . . . , ŷ
′
i, . . . , y

′
n+1) dS (y0) . . . d̂S (yi) . . . dS (yn+1)

)

=
n+1∑
i=0

(−1)i
(∫

M̃n+2

ω̃(y′0, . . . , ŷ
′
i, . . . , y

′
n+1) dS (y0) . . . dS (yi) . . . dS (yn+1)

)

=

∫
M̃n+2

n+1∑
i=0

(−1)iω̃(y′0, . . . , ŷ
′
i, . . . , y

′
n+1)︸ ︷︷ ︸

=0

dS (y0) . . . dS (yn+1)

= 0

as ω̃ is itself a cocycle.
Now denote by S ∗ω the unique cocycle of M such that π∗(S ∗ω) = S ∗ω̃. Fix a

triangulation T of M such that the cycle
∑

σ∈T σ defines the fundamental class of M . We
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can lift this cycle into a chain of M̃ as follows: for each σ ∈ T choose a lifted n-simplex
denoted by σ̃ in such a way that the union of these lifted simplices gives a triangulation
of the closure of some fundamental domain for the π1M -action. Denote by {y1, . . . , yk}
a subset of vertices of the chain

∑
σ∈T σ̃ obtained by lifting all the vertices of T . For all

σ ∈ T , there exists unique functions

fσ : {0, . . . , n} → {1, . . . , k}

and
gσ : {0, . . . , n} → π1M

such that the vertices of σ̃ are described by the ordered set
(
gσ(0) · yfσ(0), . . . , gσ(n) · yfσ(n)

)
.

Observe that T being a triangulation fσ is one-to-one. Because∑
σ∈T

ω(σ) =
∑
σ∈T

ω̃
(
gσ(0) · yfσ(0), . . . , gσ(n) · yfσ(n)

)
= 1

by assumption, we see that∑
σ∈T

ω̃
(
gσ(0) · y′fσ(0), . . . , gσ(n) · y

′
fσ(n)

)
= 1

for any choice of (y′1, . . . , y
′
k) ∈ M̃k. Then∑

σ∈T

S ∗ω(σ) =
∑
σ∈T

S ∗ω̃(σ̃)

=
∑
σ∈T

S ∗ω̃
(
gσ(0) · yfσ(0), . . . , gσ(n) · yfσ(n)

)
=

∑
σ∈T

∫
M̃n+1

ω̃
(
y′fσ(0), . . . , y

′
fσ(n)

)
dS

(
gσ(0) · yfσ(0)

)
. . . dS

(
gσ(n) · yfσ(n)

)
=

∑
σ∈T

∫
M̃n+1

ω̃
(
gσ(0) · y′fσ(0), . . . , gσ(n) · y

′
fσ(n)

)
dS (yfσ(0)) . . . dS (yfσ(n))

=
∑
σ∈T

∫
M̃k+1

ω̃
(
gσ(0) · y′fσ(0), . . . , gσ(n) · y

′
fσ(n)

)
dS (y1) . . . dS (yk)

=

∫
M̃k+1

∑
σ∈T

ω̃
(
gσ(0) · y′fσ(0), . . . , gσ(n) · y

′
fσ(n)

)
︸ ︷︷ ︸

=1

) dS (y1) . . . dS (yk) = 1.

Thus S ∗ω̃ is a fundamental cocycle. □

In particular we get the following.
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Corollary 3.3. Given a smoothing operator S ,

∥M∥ =
1

inf ∥S ∗ω̃∥∞
where the infimum is taken over all straight invariant fundamental cocycles.

Proof. Simply observe that
∥S ∗ω̃∥∞ ≤ ∥ω̃∥∞

for any straight invariant fundamental cocycle ω̃. □

By defining Sδ(y) = δy for all y in M̃ where δy denotes the Dirac function at y, we see
that

S ∗
δ ω̃ = ω̃

for any straight cocycle, but Sδ fails to be a smoothing operator as it is even not continuous.
This example helps us to understand the meaning of smoothing operator: the cocycle ω̃
is viewed as the singular object S ∗

δ ω̃ and we smooth it by replacing Dirac measures with
probability measures depending smoothly on points.

3.2. The smoothing inequality. The main result we need is an inequality which links in
presence of a Riemannian metric the Riemannian volume to the simplicial volume through
smoothing operators. For this, given a Riemannian metric g on M , we define the norm of
the differential of S at some point y ∈ M̃ by

∥dyS ∥ = sup
τ

∥dyS (τ)∥

where τ runs over the unit tangent sphere Sy ⊂ TyM̃ for the pulled-back metric g̃.

Theorem 3.4 (Gromov’s smoothing inequality). Let g be a Riemannian metric on M , and
S a smoothing operator such that

∥dS ∥∞ := sup
y∈M̃

∥dyS ∥ < ∞.

Then
∥M∥ ≤ n!∥dS ∥n∞ vol(M, g).

Proof. If ∥M∥ = 0 there is nothing to prove. So suppose that ∥M∥ > 0 and fix a straight
invariant fundamental cocycle ω̃ with ∥ω̃∥∞ < ∞. Observe that we can first antisymmetrize
this cocycle by considering the following straight cochain

ω̃ant(y0, . . . , yn) =
1

(n+ 1)!

∑
δ

[δ] · ω̃(yδ(0), . . . , yδ(n))
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where δ runs over all permutations of {0, . . . , n} and where [δ] stands for the signature of δ.
The cochain ω̃ant is still a straight invariant fundamental cocycle and satisfies

∥ω̃ant∥∞ ≤ ∥ω̃∥∞.

So let assume that ω̃ is antisymmetric.
Now we associate to ω̃ a differential n-form on M̃ defined as follows. For y ∈ M̃ and

u1, . . . , un ∈ TyM̃ , set

α̃y(u1, . . . , un) := n! ω̃ (S (y), dyS (u1), . . . , dyS (un)) .

It is straightforward to check that the sup-norm

∥α̃∥∞ := sup α̃y(u1, . . . , un)

where the supremum is taken over all y ∈ M̃ and u1, . . . , un ∈ Sy is bounded as follows:

∥α̃∥∞ ≤ n! ∥ω̃∥∞∥dS ∥n∞.

Observe that α̃ is π1M -invariant and that the induced differential n-form α on M lies in
the cohomological class of ΩM . Indeed, first ω̃ induces an n-form ω̃M on M by setting

ω̃M
µ (µ1, . . . , µn) = n! · ω̃(µ, µ1, . . . , µn)

for any µ ∈ M and µ1, . . . , µn ∈ TµM ≃ M. Because ω̃ is (n + 1)-linear on M, the
equality ∫

[µ0,...,µn]

ω̃M = ω̃(µ0, µ1, . . . , µn)

is satisfied for all linear n-simplex [µ0, . . . , µn] of M. Fix a triangulation T of M . The
cycle

∑
σ∈T σ which defines the fundamental class of M lift to a chain of M̃ such that

the union of the lifted simplices gives a triangulation of the closure of some fundamental
domain for the π1M -action. For all lifted simplex σ̃ denote by {yσ0 , . . . , yσn} its set of
vertices. From the equality

α̃ = S ∗(ω̃M)

where S ∗(·) denotes the pullback operator on differential n-forms, we deduce that∫
M

α =
∑
σ∈T

∫
σ

α =
∑
σ∈T

∫
σ̃

α̃ =
∑
σ∈T

∫
σ̃

S ∗(ω̃M) =
∑
σ∈T

∫
S ◦σ̃

ω̃M.
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Because the n-simplex S ◦σ̃ of M is homotopic to the linear simplex [S (yσ0 ), . . . ,S (yσn)],
we get that ∫

M

α =
∑
σ∈T

∫
[S (yσ0 ),...,S (yσn)]

ω̃M

=
∑
σ∈T

ω̃(S (yσ0 ), . . . ,S (yσn))

=
∑
σ∈T

S ∗ω̃(yσ0 , . . . , y
σ
n) = 1

and thus [α] = ΩM .
By integration we get

1 =

∫
M

α ≤ ∥α̃∥∞ vol(M, g) ≤ n! ∥ω̃∥∞∥dS ∥n∞ vol(M, g).

Taking the infimum over all straight invariant fundamental cocycles ω̃ with ∥ω̃∥∞ < ∞
leads to the theorem. □

4. APPLICATION TO VOLUME ESTIMATES

We now prove our main result Theorem 1.2 and show how to deduce Corollary 1.3.

4.1. Proof of Theorem 1.2. Consider a closed Riemannian manifold (M, g) with non-zero
simplicial volume and suppose that

max
y∈M̃

|B̃(y,R)|
|B̃(y,R/2)|

≤ Vhyp(R)

Vhyp(R/2)

for some R ≥ 1.
Fix λ > 0 and define

S̃λ,R(y) = (e−λdg̃(y,y
′) − e−λR) · 1B̃(y,R)(y

′) · d volg̃(y′).

Here 1B̃(y,R) denotes the charateristic function of a metric ball B̃(y,R) in (M̃, g̃) centered at
y and of radius R, while d volg̃ denotes the Riemannian volume density. It is straightforward
to check that Sλ,R = S̃λ,R/∥S̃λ,R∥ is a smoothing operator, and to observe that it diffuses
points into a measure whose support lies on the metric ball B̃(y,R) with a exponential
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decreasing decay in terms of the distance to the center. The smoothing operator Sλ,R =

S̃λ,R/∥S̃λ,R∥ satisfies

∥dySλ,R∥ =
1

∥S̃λ,R(y)∥

∥∥∥∥∥dyS̃λ,R − dy∥S̃λ,R(y)∥
∥S̃λ,R(y)∥

S̃λ,R

∥∥∥∥∥
≤ 1

∥S̃λ,R(y)∥

(
∥dyS̃λ,R∥+ sup

τ
dy∥S̃λ,R(y)∥(τ)

)
.

Because

∥S̃λ,R(y)∥ =

∫
B̃(y,R)

(e−λdg̃(y,y
′) − e−λR)d volg̃(y

′),

we see that

dy∥S̃λ,R(y)∥ = −λ ·
∫
B̃(y,R)

dydg̃(·, y′)e−λdg̃(y,y
′)d volg̃(y

′).

In particular

sup
τ

dy∥S̃λ,R(y)∥(τ) ≤ λ ·
∫
B̃(y,R)

e−λdg̃(y,y
′)d volg̃(y

′).

But we also have that

∥dyS̃λ,R∥ ≤ λ ·
∫
B̃(y,R)

e−λdg̃(y,y
′)d volg̃(y

′)

which leds to

∥dySλ,R∥ ≤ 2λ · I(λ,R)

I(λ,R)− |B̃(y,R)|
with

I(λ,R) :=

∫
B̃(y,R)

e−λ(d(y,y′)−R)d volg̃(y
′).

Our assumption on R implies the following lower bound:

I(λ,R) ≥ e
λR
2 |B̃(y,R/2)|

≥ e
λR
2 · |B̃(y,R)| · Vhyp(R/2)

Vhyp(R)
.

From this we derive that

∥dySλ,R∥ ≤ 2λ · e
λR
2 · Vhyp(R/2)

eλR/2 · Vhyp(R/2)− Vhyp(R)
,
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the function I 7→ I/(I −B) being strictly decreasing for a fixed positive constant B. Now
by fixing

λ =
2

R
log

(
2Vhyp(R)

Vhyp(R/2)

)
⇔ e

λR
2 · Vhyp(R/2)

eλR/2 · Vhyp(R/2)− Vhyp(R)
= 2,

we conclude that

∥dySλ,R∥ ≤ 8

R
log

(
2Vhyp(R)

Vhyp(R/2)

)
=: f(R).

The smoothing inequality gives that

∥M∥ ≤ n! (f(R))n vol(M, g).

The asymptotic Vhyp(R) ≃ V ol(Sn−1)
2n−1 e(n−1)R when R → ∞ implies that

lim
R→∞

f(R) = 4(n− 1).

We thus define Cn := (supR≥1 f(R))n < ∞ and derive that the initial assumption that

max
y∈M̃

|B̃(y,R)|
|B̃(y,R/2)|

≤ Vhyp(R)

Vhyp(R/2)

for some R ≥ 1 implies the inequality

∥M∥ ≤ n!Cn vol(M, g).

This proves Theorem 1.2 with αn = 1/ (n!Cn).

Remark 4.1. Remark that

f(R) ≃ 8(n+ 1) log 2

R
for R → 0. So this strategy fails for small R and can not be used to prove a non-sharp
version of Schoen conjecture.

Remark 4.2. In [Gro82, p.37], Gromov used exactly this smoothing operator to compare
the volume and the volume entropy by analyzing the asymptotic behaviour of the smoothing
inequality when R → ∞.

4.2. Proof of Corollary 1.3. Let M be a closed hyperbolic manifold and g a Riemannian
metric with negative sectional curvature. Suppose that vol(M, g) < βn vol(M,hyp) with

βn :=
αn

λn
n · Vn

where λn ≥ 2 only depends on the dimension n and will be determined in the sequel.
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The conformal metric h = λ2
ng on M satisfies the condition

vol(M,h) = λn
n vol(M, g) < αn∥M∥.

By Theorem 1.2 for any R ≥ 1 (recall that λn ≥ 2 and so λnR ≥ 2) we can find y ∈ M̃
such that

|B̃h̃(y, λnR)|h̃
|B̃h̃(y, λnR/2)|h̃

>
Vhyp(λnR)

Vhyp(λnR/2)
.

Here we have denoted by | · |h̃ the volume with respect to the pullback metric h̃ of h
on M̃ , and by B̃h̃(y,R) the metric ball of radius R and center y in (M̃, h̃). Because
|B̃h̃(y, λnR)|h̃ = λn

n|B̃g̃(y,R)|g̃ we deduce that

|B̃g̃(y,R)|g̃
|B̃g̃(y,R/2)|g̃

>
Vhyp(λnR)

Vhyp(λnR/2)
.

Now the function R 7→ Vhyp(R)

Vhyp(R/2)
e−(n−1)R/2 is positive and tends to 1 when R → ∞. Thus

cn = inf
R≥2

Vhyp(R)

Vhyp(R/2)
e−(n−1)R/2 > 0

and we deduce that

|B̃g̃(y,R)|g̃ > cne
(n−1)λnR/2 · |B̃g̃(y,R/2)|g̃.

By [Croke80, Proposition 14] we know that for any positive r less than half the injectivity
radius of (M̃, g̃)

|B̃g̃(y, r)|g̃ ≥ c′nr
n

for some positive constant c′n. But negative sectional curvature and simply connectedness
implies that the injectivity radius is infinite, and thus the inequality above holds for any r.
Thus

|B̃g̃(y,R/2)|g̃ ≥ c′n(1/2)
n

and consequently
|B̃g̃(y,R)|g̃ > c′′ne

(n−1)λnR/2

where c′′n := cn · c′n · (1/2)n.
Observe that

c′′ne
(n−1)λR/2 ≥ Vhyp(R) ⇔ λ ≥ 2

(n− 1)R
log

(
Vhyp(R)

c′′n

)
.

Because the function R 7→ 2
(n−1)R

log
(

Vhyp(R)

c′′n

)
tends to 2 when R → ∞ we can define a

posteriori

λn := sup
R≥1

2

(n− 1)R
log

(
Vhyp(R)

c′′n

)
≥ 2.
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That way we deduce that for all R ≥ 1

|B̃g̃(y,R)|g̃ > Vhyp(R).

This proves Corollary 1.3.

Remark that Corollary 1.3 holds if we change the assumption of hyperbolicity on M by
the non-vanishing condition of its simplicial volume (the hyperbolic volume in the volume
upperbound bound condition being replaced by the simplicial volume). In dimension 3, the
Geometrization Conjecture implies that a closed manifold admits a negative sectional curved
metric if and only if it is hyperbolic. In higher dimensions, there exist counterexamples due
to Gromov & Thurston, see [GT87]. More generally, using the same approach for proving
Corollary 1.3, we deduce the following.

Corollary 4.3. Any closed Riemannian manifold M with ∥M∥ > 0, injectivity radius at
least 1 and vol(M, g) < (βn · Vn) · ∥M∥ satisfies that for all R ≥ 1

Vg(R) := sup
y∈M̃

|B̃(y,R)| > Vhyp(R).

4.3. Concluding remarks. Let us emphasize how Theorems 1.2 and 1.3 interact with the
results obtained by Gromov using this technique.

First, as already mentioned in the introduction, Gromov proved in [Gro82, Corollary,
p. 36] the following theorem: if the Ricci curvature is at least that of hyperbolic space,
then the volume of the manifold is at least a constant times the simplicial volume. Because
Bishop-Gromov inequality implies that with such a Ricci bound, the ratio between volumes
of balls of radius R and R/2 is at most the corresponding ratio in hyperbolic space, Theo-
rem 1.2 appears as a stronger macroscopic version of this result.

Secondly, Gromov used the smoothing inequality in [Gro82] to prove the following
non-sharp version of Besson, Courtois & Gallot theorem: if M is a closed hyperbolic
manifold and g a Riemannian metric satisfying vol(M, g) ≤ (αn/Vn) · vol(M,hyp), then

hvol(M, g) ≥ hvol(M,hyp).

Here recall that hvol denotes the volume entropy (also known as asymptotic volume) defined
by

hvol(M, g) = lim
R→∞

log |B̃(y,R)|
R

where y denotes any point in M̃ . This volume entropy inequality is easily deduced from
Theorem 1.2, as we use the same smoothing operator as in Gromov’s proof.
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Lastly, Gromov combined in [Gro83] his smoothing technique with the existence of
regular geometric cycles to prove a systolic inequality for manifolds with non-zero sim-
plicial volume, see [Gro83, Theorem 6.4.D’] and [Gro96, Theorem 3.B.1]. This systolic
inequality is a central result in systolic geometry and can be described as follows: there
exists a positive constant Cn such that, if (M, g) is a closed Riemannian manifold M with
∥M∥ > 0, then

vol(M, g)

sys(M, g)n
≥ Cn ·

∥M∥
(log ∥M∥)n

.

Here sys denotes the systole, that is the least length of a non-contractible loop. Our Theorem
1.3 implies this result for negatively curved metrics. The proof of the existence of regular
geometric cycles (sort of almost minimizing objects in systolic geometry) is quite delicate,
see [Bul15] for a complete and detailed proof.
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