
This is the accepted version of the journal article:

Cufí Sobregrau, Julià,; Gallego Gómez, Eduardo; Reventós, Agustí. «On The
Integral Formulas Of Crofton And Hurwitz Relative To The Visual Angle Of
A Convex Set». Mathematika, Vol. 65, Issue 4 (May 2019), p. 874-896. DOI
10.1112/S0025579319000202

This version is available at https://ddd.uab.cat/record/288132

under the terms of the license

https://ddd.uab.cat/record/288132


ON THE INTEGRAL FORMULAS OF CROFTON AND

HURWITZ RELATIVE TO THE VISUAL ANGLE OF A CONVEX

SET

JULIÀ CUFÍ, EDUARDO GALLEGO & AGUSTÍ REVENTÓS

Abstract. We provide a unified approach that encompasses some integral
formulas for functions of the visual angle of a compact convex set due to

Crofton, Hurwitz and Masotti. The basic tool is an integral formula that also

allows us to integrate new functions of the visual angle. As well we establish
some upper and lower bounds for the considered integrals, generalizing in

particular those obtained by Santaló for Masotti’s integral.

1. Introduction

In 1868 Crofton showed ([1]), using arguments that nowadays belong to integral
geometry, the well known formula∫

P 6∈K
(ω − sinω) dP =

L2

2
− πF,

where K is a planar compact convex set of area F , L is the length of its boundary
and ω = ω(P ) is the visual angle of K from the point P , that is the angle between
the two tangents from P to the boundary of K.

Later on, Hurwitz in 1902 in his celebrated paper [6] considered again the integral
of some functions of the visual angle. In particular he gave a new proof of the
Crofton formula using the Fourier series of the radius of curvature of the boundary
of K. He also computed

(1)

∫
P 6∈K

sin3 ω dP =
3

4
L2 +

1

4
π2γ2

2

as well as the integral of a family of special functions that enables him to show that
the quantities γ2

k = α2
k + β2

k, where αk and βk are the Fourier coefficients of the
radius of curvature, are invariant with respect to rigid motions of K.

In 1955 Masotti ([7]) considered a Crofton-type formula computing∫
P 6∈K

(ω2 − sin2 ω) dP

in terms of the area of K, the length of ∂K and the Fourier coefficients of the radius
of curvature of ∂K. Santaló in 1976 ([9, I.4.5]) gave lower and upper bounds for
the above integral.

1991 Mathematics Subject Classification. 52A10, 53A04.

Key words and phrases. convex set, isoperimetric inequality, pedal curve, visual angle.
The authors were partially supported by grants 2017SGR358, 2017SGR1725 (Generalitat de

Catalunya) and MTM2015-66165-P (Ministerio de Economı́a y Competitividad).

1
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In this paper we provide a unified approach that encompasses the previous results
and allows us to obtain new integral formulas for functions of the visual angle. The
basic tool is an integral formula given by our first result.

Theorem (3.1). Let K be a compact convex set with boundary of class C2 and
let L be the length of ∂K. Let c2k = a2

k + b2k where ak, bk are the Fourier coefficients
of the support function of K. Then, for every continuous function of the visual
angle f(ω) on [0, π] such that f(ω) = O(ω3), as ω tends to zero, one has∫

P /∈K
f(ω) dP

=

(∫ π

0

f(ω)(1 + cosω)2

sin3 ω
dω

)
L2

2π
+ π

∑
k≥2

(∫ π

0

f(ω)hk(ω)

sin3 ω
dω

)
c2k,

where hk, for k ≥ 2, are the universal functions given in (6).

Crofton’s formula, the integral of the above mentioned special functions consid-
ered by Hurwitz and the Masotti integral formula follow directly from Theorem 3.1.
Moreover we improve the lower bound given by Santaló for Masotti’s integral (see
Corollary 5.1).

As well the integral (1) follows from Theorem 3.1. Indeed, a more general result
is obtained: we can compute the integral of any power of sinω. The corresponding
result is

Theorem (6.1). Let K be a compact convex set with boundary of class C2 and
length L. Write c2k = a2

k + b2k where ak, bk are the Fourier coefficients of the
support function of K. Then∫

P /∈K
sinm ω dP =

πm!

2m−1(m− 2)Γ(m+1
2 )2

L2

2π

+
π2 m!

2m−1(m− 2)

∑
k≥2, even

(−1)
k
2 +1(k2 − 1)

Γ(m+1+k
2 )Γ(m+1−k

2 )
c2k.

For m odd the index k in the sum runs only from 2 to m− 1.

When K is a compact convex set of constant width one has ck = 0 for k even, so
that the integral of sinm ω is, in this case, L2 multiplied by a factor that depends
only on m.

Next we extend the formulas of Crofton and Masotti by means of the equality

(2)

∫
P /∈K

(ωm − sinm ω) dP = −πmF +Mm
L2

2π
+ π

∑
k≥2

βkc
2
k,

where the quantities Mm and βk can be explicitly computed (see section 7). For
instance in the case m = 3 we get∫

P /∈K
(ω3 − sin3 ω) dP = −π3F +

(
12π ln(2)− 3π

2

)
L2

2π

+ 12π2

(
ln(2)− 19

16

)
c22 − 6π2

∑
k≥3

(
Ψ

(
k + 1

2

)
+ γ

)
c2k,

where Ψ(x) is the digamma function Ψ(x) = (ln Γ(x))′, and γ is the Euler–Masche-
roni constant.
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Finally since the quantities βk appearing in (2) are not easily handled we give
upper and lower bounds for

∫
P /∈K(ωm − sinm ω) dP that generalize those given by

Santaló for m = 2. More precisely we prove

Theorem (7.1). Let K be a compact convex set with boundary of class C2, area F
and length of the boundary L, and let ω = ω(P ) be the visual angle from the point P .
Then ∫

P /∈K
(ωm − sinm ω) dP ≤ −πmF +Mm

L2

2π
, m ≥ 1,

where Mm =

∫ π

0

(ωm − sinm ω)′

1− cosω
dω. Equality holds only for circles.

And for the case of constant width we get

Theorem (7.2). Let K be a compact convex set of constant width, with boundary
of class C2, of area F and length of the boundary L, and let ω = ω(P ) be the visual
angle from the point P . Then∫

P /∈K
(ωm − sinm ω) dP ≥ −πmF +Mm

L2

2π
− πm−1

4

(
1−

(
3

4

)m)
∆ ≥ 0,

where ∆ = L2 − 4πF is the isoperimetric deficit. The first inequality becomes an
equality only for circles.

2. Preliminaries

A set K ⊂ R2 is convex if it contains the complete segment joining every two
points in the set. We shall consider nonempty compact convex sets. The support
function of K is defined as

pK(u) = sup{〈x, u〉 : x ∈ K} for u ∈ R2.

For a unit vector u the number pK(u) is the signed distance of the support line
to K with outer normal vector u from the origin. The distance is negative if and
only if u points into the open half-plane containing the origin (cf. [10, 1.7.1]). We
shall denote by p(ϕ) the 2π-periodic function obtained by evaluating pK(u) on
u = (cosϕ, sinϕ). Note that ∂K is the envelope of the one parametric family of
lines given by

x cosϕ+ y sinϕ = p(ϕ).

If the support function p(ϕ) is differentiable we can parametrize the boundary ∂K
by

γ(ϕ) = p(ϕ)N(ϕ) + p′(ϕ)N ′(ϕ),

where N(ϕ) = (cosϕ, sinϕ). When p is a C2 function the radius of curvature ρ(ϕ)
of ∂K at the point γ(ϕ) is given by p(ϕ) + p′′(ϕ). Then, convexity is equivalent to
p(ϕ) + p′′(ϕ) ≥ 0. From now on we will assume that p is of class C2.

It can be seen (cf. [9, I.1.2]) that the length L of ∂K and the area F of K are
given in terms of the support function, respectively, by

(3) L =

∫ 2π

0

p dϕ and F =
1

2

∫ 2π

0

(p2 − p′2) dϕ.

We will consider ω = ω(P ) the visual angle of ∂K from an exterior point P , that
is the angle between the tangents from P to ∂K. For a function f(ω) of the visual
angle ω we will deal with the integral of f(ω) with respect to the area measure dP .
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Sets of constant width form a special class of convex sets, they are those whose
orthogonal projection on any direction have the same length w. In terms of the
support function p of K, constant width means that p(ϕ)+p(ϕ+π) = w. Expanding
p in Fourier series

(4) p(ϕ) = a0 +

∞∑
n=1

(an cosnϕ+ bn sinnϕ) ,

it follows that

p(ϕ) + p(ϕ+ π) = 2

∞∑
n=0

(a2n cos 2nϕ+ b2n sin 2nϕ) ,

and therefore constant width is equivalent to an = bn = 0 for all even n > 0.
Given a compact convex set K with support function p(ϕ) the Steiner point of K

is defined by the vector-valued integral

s(K) =
1

π

∫ 2π

0

p(ϕ)N(ϕ) dϕ.

This functional on the space of convex sets is additive with respect to the Minkowski
sum. The Steiner point is rigid motion equivariant; this means that s(gK) = gs(K)
for every rigid motion g. We remark that s(K) can be considered, in the C2 case,
as the centroid with respect to the curvature measure in the boundary ∂K; also it
is known that s(K) lies in the interior of K (cf. [5, p. 56]). In terms of the Fourier
coefficients of p(ϕ) given in (4) the Steiner point is

s(K) = (a1, b1).

The relation between the support function p(ϕ) of a convex setK and the support
function q(ϕ) of the same convex set but with respect to a new reference with origin
at the point (a, b), and axes parallel to the previous x and y axes, is given by

q(ϕ) = p(ϕ)− a cosϕ− b sinϕ.

Hence, taking the Steiner point as a new origin, we have

q(ϕ) = a0 +
∑
n≥2

(an cosnϕ+ bn sinnϕ) .

The associated pedal curve to K will be the curve that in polar coordinates with
respect to the Steiner point as origin is given by r = p(ϕ). In fact it is the geomet-
rical locus of the orthogonal projection of the center on the tangents to the curve.
The area A enclosed by the pedal curve is

A =
1

2

∫ 2π

0

p(ϕ)2 dϕ.

3. First integral formula

Let f(ω) be a function of the visual angle ω = ω(P ) of a given compact convex
set K from a point P outside K. In this section we will give a formula to compute
the integral of f(ω) with respect to the area measure dP ,

∫
P /∈K f(ω) dP , in terms

of the area of K, the length of the boundary of K, and the Fourier coefficients of
the support function of K.
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For each point P /∈ K let ϕ be the angle at the origin formed by the normal to
one of the tangents from P to ∂K with the x axis; the pair (ϕ, ω) can be considered
as a system of coordinates of R2 \K.

Figure 1. The visual angle ω.

Denoting by A, A1 the contact points of the tangents from P to ∂K, and by p =
p(ϕ) the support function of K with respect an origin O inside K (see Figure 1),
we have

A = (p cosϕ− p′ sinϕ, p sinϕ+ p′ cosϕ)

and hence, denoting
ϕ1 = π + ϕ− ω

we get

A1 = (−p1 cos(ϕ− ω) + p′1 sin(ϕ− ω),−p1 sin(ϕ− ω)− p′1 cos(ϕ− ω)),

where p1(ϕ) = p(ϕ1), p′1(ϕ) = p′(ϕ1).
The intersection point P = (X,Y ) of the tangent lines to ∂K at points A and A1

is given by

X = − 1

sinω
(p sin(ϕ− ω) + p1 sinϕ),

Y =
1

sinω
(p cos(ϕ− ω) + p1 cosϕ).

From this it is easy to see that the distances T = PA and T1 = PA1 are given by
the positive quantities

(5)

T =
1

sinω
(p cosω − p′ sinω + p1),

T1 =
1

sinω
(p1 cosω + p′1 sinω + p),

due to the fact that the origin is inside K.
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The area element dP of R2 \K is

dP = dX ∧ dY =

(
∂X

∂ω

∂Y

∂ϕ
− ∂X

∂ϕ

∂Y

∂ω

)
dϕ ∧ dω.

A straightforward computation shows that

dP =
TT1

sinω
dϕ ∧ dω.

This expression of the area element, introduced by Crofton in [1], appears also in [8]
and [9, I.2.2].

Hence, the integral on R2 \K of a suitable function of the visual angle f(ω) is
given by∫

P /∈K
f(ω) dP =

∫ π

0

∫ 2π

0

f(ω)

sinω
TT1 dϕ dω =

∫ π

0

f(ω)

sinω

(∫ 2π

0

TT1 dϕ

)
dω.

Now we will write the product TT1 in terms of the Fourier coefficients of p(ϕ)
given in (4), and the Fourier coefficients of p1(ϕ) given by

p1(ϕ) = a0 +
∑
k>0

(Ak cos kϕ+Bk sin kϕ)

which are related to the coefficients of p(ϕ) by

Ak = (−1)k+1(−ak cos kω + bk sin kω),

Bk = (−1)k+1(−ak sin kω − bk cos kω).

Substituting these Fourier series in (5), a straightforward but long calculation gives∫ 2π

0

TT1 dϕ =
1

sin2 ω

(
L2

2π
(1 + cosω)2 + π

∑
k>0

c2khk(ω)

)
,

where c2k = a2
k + b2k and

hk(ω) = 2 cosω + (−1)k+1
(
− cos kω(1 + cos2 ω)

− 2k sin kω sinω cosω + k2 cos kω sin2 ω
)
.

(6)

These functions can also be written as

hk(ω) =
(−1)k

4

[
(k + 1)2 cos((k − 2)ω)+(k − 1)2 cos((k + 2)ω)−2(k2 − 3) cos(kω)

]
+ 2 cosω.

Notice that h1 ≡ 0, hk(0) = 2(1 + (−1)k) and hk(ω) = O((ω − π)4), as ω tends
to π. Hence we have obtained the following result.

Theorem 3.1. Let K be a compact convex set with boundary of class C2 and let
L be the length of ∂K. Let c2k = a2

k + b2k where ak, bk are the Fourier coefficients
of the support function of K. Then, for every continuous function of the visual
angle f(ω) on [0, π] such that f(ω) = O(ω3), as ω tends to zero, one has

(7)

∫
P /∈K

f(ω) dP

=

(∫ π

0

f(ω)(1 + cosω)2

sin3 ω
dω

)
L2

2π
+ π

∑
k≥2

(∫ π

0

f(ω)hk(ω)

sin3 ω
dω

)
c2k,

where hk, for k ≥ 2, are the universal functions given in (6).
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As a first example we can easily compute the integral in (1):∫
P /∈K

sin3 ω dP =
L2

2π

∫ π

0

(1 + cosω)2dω + π
∑
k≥2

c2k

∫ π

0

hk(ω) dω

=
3

4
L2 +

9

4
π2c22.

(8)

Notice that γ2
2 = 9c2k (see the footnote in page 9). This formula shows that the

quantity c22 is invariant with respect to euclidean motions of K.

4. The area of level sets and second integral formula

As an application of Theorem 3.1 we will now compute the area F (ω) enclosed
by the locus Cω of the points from which the convex set K is viewed under the
same angle ω. The corresponding formula (11) was first given by Hurwitz in [6,
p. 383] and we will use it later on to obtain another version of formula (7).

Applying formula (7) with f the characteristic function of the domain enclosed
by the level set Cω we have

(9)

F (ω) = F +

(∫ π

ω

(1 + cos τ)2

sin3 τ
dτ

)
L2

2π
+ π

∑
k≥2

(∫ π

ω

hk(τ)

sin3 τ
dτ

)
c2k

= F +
L2

2π

[
− 1

2 sin2(τ/2)

]π
ω

+ π
∑
k≥2

∫ π

ω

(
hk(τ)

sin3 τ
dτ

)
c2k

= F +
L2

4π
cot2(ω/2) + π

∑
k≥2

∫ π

ω

(
hk(τ)

sin3 τ
dτ

)
c2k.

Using (3) and the Fourier expansions of p and p′ one gets (see for instance [2] or
[5, 4.2.2])

F =
L2

4π
− π

2

∑
k≥2

(k2 − 1)c2k

and equation (9) can be written as

F (ω) =
L2

4π

1

sin2(ω/2)
− π

2

∑
k≥2

(k2 − 1)c2k + π
∑
k≥2

∫ π

ω

(
hk(τ)

sin3 τ
dτ

)
c2k.

Equivalently

F (ω) sin2 ω =
L2

2π
(1+cosω)−π

2
sin2 ω

∑
k≥2

(k2−1)c2k+π sin2 ω
∑
k≥2

∫ π

ω

(
hk(τ)

sin3 τ
dτ

)
c2k.

Introducing the functions

(10) gk(ω) = 1 +
(−1)k

2
((k + 1) cos(k − 1)ω − (k − 1) cos(k + 1)ω) ,

already considered by Hurwitz, and using that

hk(τ)

sin3 τ
= −

(
gk(τ)

sin2 τ

)′
we get
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Proposition 4.1. Under the same hypothesis of Theorem 3.1, the area F (ω) en-
closed by the locus Cω of the points from which the compact convex set K is viewed
under the same angle ω is given by

(11) F (ω) sin2 ω =
L2

2π
(1 + cosω) + π

∑
k≥2

c2kgk(ω),

where the functions gk(ω) are defined in (10).

Notice that the asymptotic behavior of F (ω) for ω near 0 is given by

(12) lim
ω→0

(
F (ω) sin2 ω

)
=
L2

π
+ 2π

∑
k≥2, even

c2k,

an equality that appears in [6, p. 383]. In the special case of a compact set of
constant width it is

lim
ω→0

(
F (ω) sin2 ω

)
=
L2

π
.

As dP = P (ϕ, ω) dϕ ∧ dω we can write

F (ω) = F +

∫ 2π

0

∫ π

ω

P (ϕ, τ) dτ dϕ,

so that F ′(ω) = −
∫ 2π

0
P (ϕ, ω) dϕ. Therefore∫
P /∈K

f(ω) dP = −
∫ π

0

f(ω)F ′(ω) dω.

Integrating by parts and using the functions gk given in (10) we obtain

Proposition 4.2. With the same hypothesis of Theorem 3.1 we have∫
P /∈K

f(ω) dP = − [f(ω)F (ω)]
π−
0+

+
L2

2π
M(f) + π

∑
k≥2

βk(f)c2k,

where

(13) M(f) =

∫ π

0

f ′(ω)

1− cosω
dω and βk(f) =

∫ π

0

f ′(ω)gk(ω)

sin2 ω
dω.

Notice that M(f) and βk(f) depend only on the function f and not on the shape
of the convex set K.

As an application of Proposition 4.2 we can easily prove Crofton’s formula

(14)

∫
P /∈K

(ω − sinω) dP = −πF +
L2

2
.

Indeed M(ω − sinω) = π and βk(ω − sinω) =
∫ π

0
gk(x)/(1 + cos(x)) dx = 0, as can

be easily seen integrating by parts and using elementary trigonometric identities.
Since

− lim
ω→π

f(ω)F (ω) + lim
ω→0

f(ω)F (ω) = −πF

the formula follows.
We will now find another expression for the universal factors gk(ω)/ sin2(ω) ap-

pearing in the integral defining the coefficients βk(f).
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Lemma 4.3. The following identities hold

gk(ω)

sin2(ω)
=

1

1− cosω
+ 2

k−1∑
j=1, odd

j cos(jω), for k even,

gk(ω)

sin2(ω)
= −2

k−1∑
j=2, even

j cos(jω), for k odd.

Proof. From the expression of the conjugate Dirichlet kernel one has

k−1∑
j=1, odd

sin(jω) =
1− cos(kω)

2 sinω
, for k even,(15)

and

k−1∑
j=1, even

sin(jω) =
cos(ω)− cos(kω)

2 sinω
, for k odd.

Differentiating these formulas the lemma follows. �

From this Lemma and Proposition 4.2 we get

Proposition 4.4. With the same hypothesis of Theorem 3.1 we have

(16)

∫
P /∈K

f(ω) dP = − [f(ω)F (ω)]
π
0 +

L2

2π
M(f)

+ π
∑

k≥2, even

M(f) + 2

k−1∑
j=1, odd

∫ π

0

f ′(ω)j cos(jω) dω

 c2k

+ π
∑

k≥3, odd

−2

k−1∑
j=2, even

∫ π

0

f ′(ω)j cos(jω) dω

 c2k,

where M(f) is given in (13).

This is a useful formula because it does not involve auxiliary functions and the
coefficients of the c2k do not depend on the convex set.

5. Some applications of the integral formulas

5.1. Hurwitz functions. In formula (16), the individual Fourier coefficients, ak, bk,
of the support function of K, do not appear. Rather it is the c2k = a2

k + b2k that
seems to be of interest. So it will be important to see how these quantities depend
on the geometry of K. In fact Hurwitz in [6, p. 392] found a formula relating the
c2k with the length of ∂K and the integral outside K of an elementary function of
the visual angle. By a direct application of formula (16) we can prove

Theorem 5.1 (Hurwitz, [6]). Let K be a compact convex set with boundary of
class C2 and length L. Let c2k = a2

k + b2k where ak, bk are the Fourier coefficients of
the support function of K. For the functions fm(ω) given by

(17) fm(ω) = −2 sinω +
m+ 1

m− 1
sin((m− 1)ω)− m− 1

m+ 1
sin((m+ 1)ω),
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we have1

(18)

∫
P 6∈K

fm(ω) dP = L2 + (−1)m π2(m2 − 1)c2m, m ≥ 2.

Proof. In order to apply formula (16) we need to compute [fm(ω)F (ω)]π0 , M(fm)
and the integrals

∫ π
0
f ′m(ω) cos(jω) dω, for j integer.

First of all we have [fm(ω)F (ω)]π0 = 0 since by (12),

lim
ω→0

fm(ω)F (ω) = c lim
ω→0

fm(ω)

sin2 ω
= 0.

For M(fm) we need the equalities

f ′m(ω) = 2(1− cosω)(1 + 2

m−1∑
j=1

j cos(jω) + (m− 1) cos(mω)), m ≥ 2,

which are obtained by direct computation using 2 cos(ω) cos(jω) = cos(j + 1)ω +
cos(j − 1)ω. Then

M(fm) =

∫ π

0

f ′m(ω)

1− cosω
dω = 2

∫ π

0

(
1+2

m−1∑
j=1

j cos(jω)+(m−1) cos(mω)

)
dω = 2π.

Finally∫ π

0

f ′m(sin(jω))′ dω = −
∫ π

0

f ′′m sin(jω) dω

= −
∫ π

0

(
2 sinω + 2(m2 − 1) cos(mω) sinω

)
sin(jω) dω

= −πδ1,j − 2(m2 − 1)

∫ π

0

sinω cos(mω) sin(jω) dω

= −πδ1,j − 2(m2 − 1)
π

4
(δj,m+1 − δj,m−1),

where δij = 0 for i 6= j and δii = 1.
Hence, if k is even,

2

k−1∑
j=1, odd

∫ π

0

f ′k(sin(jω))′ dω = −2π−(m2−1)π(−δk−1,m−1) = −2π+(k2−1)πδk,m

since

δj+2,m+1 − δj,k−1 = 0, j = 1, . . . , k − 1.

And, if k is odd,

2

k−1∑
j=2, even

∫ π

0

f ′m(sin(jω))′ dω = −(m2 − 1)π(−δk−1,m−1) = (m2 − 1)πδk,m.

1There is a misprint with the sign in Hurwitz’s paper. Moreover the ck coefficients appearing

in this formula are different from those in Hurwitz’s paper because the latter correspond to the
Fourier series of the curvature radius function. In fact αk = (1 − k2)ak, βk = (1 − k2)bk where

αk, βk are the Fourier coefficients of the radius of curvature.
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Substituting in (16) we have∫
P /∈K

fm(ω) dP = L2 + π
∑

k≥2, even

c2k

(
2π − 2π + (k2 − 1)πδk,m

)

+ π
∑

k≥3, odd

c2k

(
−(k2 − 1)πδk,m

)
= L2 + (−1)mπ2c2m(m2 − 1).

And the proof is finished. �

The theorem shows that the quantities c2m are invariant with respect to euclidean
motions of K.

Notice that the functions fm are related to the functions gm introduced in (10)
by

gm(ω) = 1 +
(−1)m

2
(f ′m(ω) + 2 cos(ω)).

5.2. Masotti integral formula. In [7] Masotti gives without proof a Crofton type
formula evaluating

∫
P /∈K(ω2 − sin2 ω) dP . We will derive here Masotti’s formula

from (16).
Consider the function f(ω) = ω2 − sin2 ω which clearly satisfies the hypoth-

esis of Theorem 3.1, and let us compute [f(ω)F (ω)]π0 , M(f) and the integrals∫ π
0
f ′(ω) cos(jω) dω, for j integer.
We have

lim
ω→π

f(ω)F (ω) = π2F

and

lim
ω→0

f(ω)F (ω) = lim
ω→0

ω2 − sin2 ω

sin2 ω

L2

2π
(1 + cosω) + π

∑
k≥2

c2kgk(ω)

 = 0,

since the term inside the parentheses is bounded. Hence, [f(ω)F (ω)]
π
0 = π2F.

On the other hand

M(f) =

∫ π

0

f ′(ω)

1− cosω
dω =

∫ π

0

2ω − sin(2ω)

1− cosω
dω

=
[
sin2(ω/2)− 3 cos2(ω/2)− 2ω cot(ω/2)

]π
0

= 8.

Moreover, for j 6= 2,∫ π

0

f ′(ω) cos(jω) dω =

∫ π

0

(2ω − sin(2ω)) cos(jω) dω

=

[
2

j2
(cos(jω) + jω sin(jω))− cos((j − 2)ω)

2(j − 2)
+

cos((j + 2)ω)

2(j + 2)

]π
0

=
8(1− (−1)j)

j2(j2 − 4)
,

and ∫ π

0

(2ω − sin(2ω)) cos(2ω) dω = 0.
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It follows that
k−1∑

j=1, odd

∫ π

0

f ′(ω) cos(jω) dω =
∑

j=1, odd

16

j(j2 − 4)
=

4k2

1− k2
.

Summing up we obtain

Theorem 5.2 (Masotti, [7]). Let K be a compact convex set of area F with bound-
ary of class C2 and length L. Let c2k = a2

k + b2k where ak, bk are the Fourier
coefficients of the support function of K. Then

(19)

∫
P /∈K

(ω2 − sin2 ω) dP = −π2F +
4L2

π
+ 8π

∑
k≥2, even

(
1

1− k2

)
c2k.

Moreover the equality ∫
P /∈K

(ω2 − sin2 ω) dP = −π2F +
4L2

π

holds if and only if the compact convex set K has constant width.

Besides the obvious inequality∫
P /∈K

(ω2 − sin2 ω) dP ≤ −π2F +
4L2

π

that follows from (19), Santaló states in [9, I.4.5] the lower bound

(20)

∫
P /∈K

(ω2 − sin2 ω) dP ≥ (16− π2)F,

with equality only for circles. We will improve now this last inequality.

Theorem 5.3. Under the same hypothesis that in Theorem 5.2 one has

(21) −π2F +
4L2

π
− 4

3

(
H − L2

π

)
≤
∫
P /∈K

(ω2 − sin2 ω) dP ≤ −π2F +
4L2

π
,

where H = limω→0 F (ω) sin2 ω is given in (12). Equality in the left hand side holds
if and only if ∂K is a circle or a curve parallel to an astroid.

Proof. For the left-hand side just write∫
P /∈K

(ω2−sin2 ω) dP ≥ −π2F+
4L2

π
− 8π

3

∑
k≥2, even

c2k = −π2F+
4L2

π
− 4

3

(
H−L

2

π

)
.

Equality in the left-hand side holds if and only if the support function of K with
respect to the Steiner point is of the form p(ϕ) = a0 +a2 cos(2ϕ) + b2 sin(2ϕ). This
means that ∂K is a circle or a curve parallel to an astroid (see for instance [2]). �

In terms of the area A of the pedal curve of K with respect to the Steiner point
we get

Corollary 5.1. Under the same hypothesis that in Theorem 5.2 one has∫
P /∈K

(ω2 − sin2 ω) dP ≥ (16− π2)F +
32

3
(A− F ).

Equality holds if and only if ∂K is a circle or a curve parallel to an astroid.
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Proof. It is a simple consequence of (21) and the two inequalities H − L
2

π
≤ A−F

and ∆ ≥ 3π(A− F ) (see [2]). �

The above argument shows that (21) improves Santaló’s inequality (20).

6. Integral powers of the sine of the visual angle

In (8) we have seen that∫
P /∈K

sin3 ω dP =
3

4
L2 +

9

4
π2c22.

In this section we compute the integral of sinm(ω) for integer values of m greater
than 3. We have that [sinm(ω)F (ω)]

π
0 = 0, so∫

P /∈K
sinm(ω) dP = M(sinm(ω))

L2

2π
+ π

∑
k≥2

βk(sinm ω)c2k,

with M and βk are given in (13).
As for j even cos(ω) cos(jω) is an odd function with respect π/2 it can be seen

from (16) that βk(sinm ω) = 0 for every k odd.
When K is a convex set of constant width, ck = 0 for every even value of k, and

we get ∫
P /∈K

sinm(ω) dP = M(sinm(ω))
L2

2π
.

Since M(sinm ω) does not depend on the convex set K we can compute this con-
stant applying the above formula to the unit circle centered at the origin. If r is
the distance to the origin of the point P we have sin(ω) = 2 sin(ω/2) cos(ω/2) =

2
√
r2 − 1/r2, and so∫
P 6∈K

sinm(ω) dP =

∫ 2π

0

∫ ∞
1

sinm(ω)r dr dθ = 2π 2m
∫ ∞

1

(√
r2 − 1

r2

)m
r dr

= 2mπB
(m

2
+ 1,

m

2
− 1
)
,

where B(x, y) is the Beta function. Hence

M(sinm ω) = 2m−1B
(m

2
+ 1,

m

2
− 1
)

= 2m−1 Γ(m2 + 1)Γ(m2 − 1)

(m− 1)!
.

Using the relation

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z)

we obtain

Γ

(
m

2
+ 1

)
Γ

(
m

2
− 1

)
=

πm!(m− 1)!

22m−2(m− 2)Γ(m+1
2 )2

,

and hence

(22) M(sinm(ω)) =
πm!

2m−1(m− 2)Γ(m+1
2 )2

.

Notice that M(sinm ω) decreases with m, its maximum value 3π/2 is attained for
m = 3 and it behaves as 1/

√
m when m tends to infinity.

We have proved the following
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Proposition 6.1. Let K be a compact convex of constant width with boundary of
class C2 and length L then∫

P /∈K
sinm ω dP =

πm!

2m−1(m− 2)Γ(m+1
2 )2

L2

2π
.

For general convex sets we have

Theorem 6.1. Let K be a compact convex set with boundary of class C2 and
length L. Write c2k = a2

k + b2k where ak, bk are the Fourier coefficients of the
support function of K. Then
(23)∫
P /∈K

sinm ω dP = M(sinm ω)
L2

2π
+

m!π2

2m−1(m− 2)

∑
k≥2, even

(−1)
k
2 +1(k2 − 1)

Γ(m+1+k
2 )Γ(m+1−k

2 )
c2k,

where M(sinm(ω)) is given in (22). For m odd the index k in the sum runs only
from 2 to m− 1.

Proof. From (16) it is clear that we need to compute

M(sinm ω) + 2

k−1∑
j=1, odd

∫ π

0

(sinm ω)′j cos(jω) dω, k even.

Using (15) and integrating by parts one gets

k−1∑
j=1, odd

∫ π

0

(sinm ω)′(sin(jω))′ dω

= −
∫ π

0

(m(m− 1) sinm−2 ω −m2 sinm ω)
1− cos(kω)

2 sinω
dω.

Denoting Im,k =
∫ π

0
sinm ω cos(kω) dω we have

(24)

k−1∑
j=1, odd

∫ π

0

(sinm ω)′(sin(jω))′ dω

= −m(m− 1)

2
Im−3,0 +

m2

2
Im−1,0 +

m(m− 1)

2
Im−3,k −

m2

2
Im−1,k.

By induction on m and using known relations of the Gamma function it can be
seen that

Im,k = (−1)k/2
2−mm!π

Γ(1 + m−k
2 )Γ(1 + m+k

2 )
,

(see for instance [4, p. 372]). Performing the operation on the right-hand side
of (24) with these values of Im,k we obtain

k−1∑
j=1, odd

∫ π

0

(sinm ω)′(sin(jω))′ dω=−1

2
M(sinm ω)+

m!π

2m(m− 2)

(−1)
k
2 +1(k2 − 1)

Γ(m+1+k
2 )Γ(m+1−k

2 )
.

From this, formula (23) follows.
When m is odd and k > m we have that m+1−k is an even non-positive integer

and hence Γ(m+1−k
2 ) = ∞. From this remark the last assertion of the theorem is

proved. �
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For instance, for the special cases m = 3, 4 and 5 we obtain the equalities∫
P /∈K

sin3 ω dP =
3

4
L2 +

9

4
π2c22,

∫
P /∈K

sin4 ω dP =
4

3π
L2 + π

∞∑
k=2,even

24

9− k2
c2k,

∫
P /∈K

sin5 ω dP =
5

16
L2 +

5π2

4
c22 −

25π2

16
c24.

To end with we make the following remark.

a) If m = 2r the coefficient of c2k in (23) for k ≤ r is positive if and only if k/2
is odd. For k > r this coefficient is positive if and only if r is odd.

b) If m = 2r − 1 the coefficient of c2k vanishes for k > m.

In [6, p. 392] Hurwitz computed the integral of sin3(ω) and the integrals of the
functions fm(ω) given in (17) without any relationship between them. We will
show now that the integrals of the powers of the sine of the visual angle are a linear
combination of the integrals of the functions fm.

Proposition 6.2. For a compact convex set K with boundary of class C2 and m ≥
3, we have∫

P /∈K
sinm(ω) dP =

m!

2m−1(m− 2)

∞∑
p=1

(−1)p+1

Γ(m+1
2 + p)Γ(m+1

2 − p)
·
∫
P /∈K

f2p(ω) dP,

where the functions f2p(ω) are given in (17).

Proof. Substituting in (23) the value of c2k given by (18) one gets
(25)∫

P /∈K
sinm ω dP =

m!

2m(m− 2)

(
1

Γ(m+1
2 )2

− 2

∞∑
p=1

(−1)p+1

Γ(m+1
2 + p)Γ(m+1

2 − p)

)
L2

+
m!

2m−1(m− 2)

∞∑
p=1

(−1)p+1

Γ(m+1
2 + p)Γ(m+1

2 − p)
·
∫
P /∈K

f2p(ω) dP.

Using the standard notation for hypergeometric series we have

2

∞∑
p=1

(−1)p+1

Γ(m+1
2 + p)Γ(m+1

2 − p)
= 2

2F1

(
3−m

2 , 1; 3+m
2 ; 1

)
Γ(m+1

2 + 1)Γ(m+1
2 − 1)

and by the Gauss summation formula (see [3, Vol III, p. 147]) we obtain

2
2F1

(
3−m

2 , 1; 3+m
2 ; 1

)
Γ(m+1

2 + 1)Γ(m+1
2 − 1)

=
2

Γ(m+1
2 + 1)Γ(m+1

2 − 1)
·
Γ(m− 1)Γ(m+3

2 )

Γ(m)Γ(m+1
2 )

=
1

Γ(m+1
2 )2

.

Hence the coefficient of L2 in (25) vanishes. �
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7. Extension of the Crofton and Masotti formulas and related
inequalities

In this section we consider the integral∫
P /∈K

(ωm − sinm ω) dP,

where ω is the visual angle of the convex set K from the point P . For m = 1
and m = 2 these are the integrals appearing in Crofton’s formula (14) and in the
Masotti integral formula (19), respectively.

For the general case, we have by Proposition 4.2

(26)

∫
P /∈K

(ωm − sinm ω) dP = −πmF +Mm
L2

2π
+ π

∑
k≥2

βkc
2
k,

where Mm = M(ωm − sinm ω) and βk = βk(ωm − sinm ω) are given in (13). The
quantities Mm can be explicitly computed. In fact M(sinm ω) is given in (22) and

M(ωm) = 2m(m− 1)πm−2

(
1

m− 2
+

∞∑
k=1

(−1)kπ2kB2k

(m− 2 + 2k)(2k)!

)
,

where B2k are the Bernoulli numbers (see [4, p. 189]). As the parenthesized expres-
sion tends to zero like 1/m2 when m tends to infinity we see that M(ωm) behaves
like em and therefore Mm grows exponentially with m.

For βk recall that we have by Proposition 4.4

(27) βk =


Mm + 2

k−1∑
j=1, odd

∫ π

0

(ωm − sinm ω)′j cos(jω) dω, for k even,

−2

k−1∑
j=1, even

∫ π

0

(ωm)′j cos(jω) dω, for k odd.

Although the integrals appearing in the expression of the βk can be explicitly com-
puted they are not easily handled.

For instance in the case m = 3 it can be seen that∫
P /∈K

(ω3 − sin3 ω) dP = −π3F +

(
12π ln(2)− 3π

2

)
L2

2π

+ 12π2

(
ln(2)− 19

16

)
c22 − 6π2

∑
k≥3

(
Ψ

(
k + 1

2

)
+ γ

)
c2k,

where Ψ(x) is the digamma function Ψ(x) = (ln Γ(x))′, and γ is the Euler–Masche-
roni constant.

7.1. Upper bounds. We obtain now an upper bound for
∫
P /∈K(ωm − sinm ω) dP .

For m = 3, since Ψ(x) > 0 for x ≥ 2, we have

(28)

∫
P /∈K

(ω3 − sin3 ω) dP ≤ −π3F +

(
12π ln(2)− 3π

2

)
L2

2π
.

For the general case we obtain the following result.
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Theorem 7.1. Let K be a compact convex set with boundary of class C2, area F
and length of the boundary L, and let ω = ω(P ) be the visual angle from the point P .
Then ∫

P /∈K
(ωm − sinm ω) dP ≤ −πmF +Mm

L2

2π
, m ≥ 1,

where Mm =

∫ π

0

(ωm − sinm ω)′

1− cosω
dω. Equality holds only for circles.

Remark 7.1. Since M1 = π, M2 = 8 and M3 = (12 ln(2)−3π/2) this result agrees
with Crofton formula (14) for m = 1, it is a generalization of the upper bounds for
Masotti’s integral given in (21) for m = 2 and of the upper bound given in (28)
for m = 3.

Proof. We shall see that βk ≤ 0, for k ≥ 2. Writing Vr,j =
∫ π

0
ωr cos(jω) dω the

following recurrence formula can be checked

Vr,j =
r

j2

(
(−1)jπr−1 − (r − 1)Vr−2,j

)
.

This gives Vr,j ≥ 0 for j even and Vr,j ≤ 0 for j odd. As for k odd we have

βk = −2m
∑k−1
j=2, even jVm−1,j it follows that βk ≤ 0 for k odd.

For k even, integrating by parts, we get

βk − βk+2 = 2

∫ π

0

(ωm − sinm ω)′′ sin((k + 1)ω) dω.

It can be seen that for m ≥ 4 the function ψ(ω) := (ωm − sinm ω)′′ is non-negative

and increasing on the interval [0, π]. Then partitioning [0, π] by tj = jπ
k+1 with

j = 0, . . . , k + 1, we get∫ π

0

ψ(ω) sin(k + 1)ω dω

=

k∑
j=0

∫ tj+1

tj

ψ(ω) sin(k + 1)ω dω >

k∑
j=1

∫ tj+1

tj

ψ(ω) sin(k + 1)ω dω

=

k∑
j=2, even

(∫ tj+1

tj

ψ(ω) sin(k + 1)ω dω −
∫ tj

tj−1

ψ(ω)| sin(k + 1)ω| dω

)

=

k∑
j=2, even

∫ tj+1

tj

(
ψ(ω)− ψ

(
ω − π

k + 1

))
sin(k + 1)ω dω > 0,

so that βk − βk+2 > 0 for all k ≥ 2. Thus, in order to see that βk ≤ 0 it is enough
to show that β2 ≤ 0, with

β2 =

∫ π

0

(ωm − sinm ω)′
(

1

1− cosω
+ 2 cosω

)
dω.

For simplicity in the exposition we write hm(ω) = ωm−1 − sinm−1 ω cosω and

g(ω) =
1

1− cosω
+ 2 cosω. The function g has exactly one root in the interval

[0, π], ζ = arccos((1−
√

3)/2).
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Notice that

hm(ω)g(ω) = ωm−1g(ω)− sinm−1 ω cosω g(ω) ≤ ωm−1g(ω) + 1

for 0 ≤ ω ≤ π. Then, in order to see that β2 < 0 it suffices to prove that∫ π
0
ωm−1g(ω) dω ≤ −π. First we see that the sequence

∫ π
0
ωm−1g(ω) dω decreases

with m, that is∫ π

0

(ωm − ωm−1)g(ω) dω =

∫ π

0

ωm−1(ω − 1)g(ω) dω ≤ 0.

The integrand is positive if ω ∈ [1, ζ] and negative otherwise. Therefore if we see
that ∫ ζ

1

ωm(ω − 1)g(ω) dω <

∫ π

ζ

ωm−1(ω − 1)|g(ω)| dω

we are done.
On the one hand

∫ ζ
1
ωm−1(ω−1)g(ω) dω < ζm−1(ζ−1)

∫ ζ
1
g(ω) dω. On the other

hand∫ π

ζ

ωm−1(ω−1)|g(ω)|>
∫ π

ζ+ε

ωm−1(ω−1)|g(ω)| dω > (ζ+ε)m−1(ζ+ε−1)

∫ π

ζ+ε

|g(ω)| dω

for 0 < ε < π − ζ. Considering ε = 1 and using the fact that the function 2 sinω −
cot(ω/2) is an antiderivative of g, a simple computation shows that

ζm−1(ζ − 1)

∫ ζ

1

g(ω) dω < (ζ + 1)m−1ζ

∫ π

ζ+1

|g(ω)| dω

and the sequence
∫ π

0
ωm−1g(ω) dω decreases with m. Since

∫ π
0
ω2g(ω) dω < −π we

have proved that βk ≤ β2 < 0. This gives us the upper bound∫
P /∈K

(ωm − sinm ω) dP ≤ −πmF +Mm
L2

2π
, m ≥ 4.

As the cases m = 1, 2, 3 are already known, this finishes the proof of the inequality
in the theorem. Finally, since the βk are not zero, equality holds only when ck = 0
for k ≥ 2, that is, when ∂K is a circle. �

7.2. Lower bounds. For the case of constant width we have

Theorem 7.2. Let K be a compact convex set of constant width, with boundary of
class C2, of area F and length of the boundary L, and let ω = ω(P ) be the visual
angle from the point P . Then∫

P /∈K
(ωm − sinm ω) dP ≥ −πmF +Mm

L2

2π
− πm−1

4

(
1−

(
3
4

)m)
∆ ≥ 0,

where ∆ = L2 − 4πF is the isoperimetric deficit. The first inequality becomes an
equality only for circles.

Proof. In the constant width case we have ck = 0 for k even and the only contri-
bution in βk comes from ωm when k is odd. Therefore since∫

P /∈K
(ωm − sinm ω) dP = −πmF +Mm

L2

2π
+ π

∑
k>2, odd

βkc
2
k
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an upper bound for the positive quantity Km = −π
∑
k>2, odd βkc

2
k will give a lower

bound for
∫
P /∈K(ωm − sinm ω) dP . Using (27) we have

Km = 2πm
∑

k>2, odd

 k−1∑
j=2, even

j

∫ π

0

ωm−1 cos(jω) dω

 c2k.

The following estimate holds∫ π

0

ωm−1 cos(jω) dω <

∫ π

π− π
2j

ωm−1 cos(jω) dω ≤
∫ π

π− π
2j

ωm−1 dω =
πm

m

(
1−

(
3
4

)m)
.

Moreover
∑
j=2, even j = 1

4 (k2 − 1), so that

(29) Km ≤
πm+1

2

(
1−

(
3
4

)m) ∑
k>2, odd

(k2 − 1)c2k.

As ∆ = 2π2
∑
k≥2(k2 − 1)c2k (cf. [2]) we have

Km ≤
πm−1

4

(
1−

(
3
4

)m)
∆,

that gives the desired lower bound.
From formula (26) applied to a circle it follows that Mm ≥ πm/2 and so we get∫

P /∈K
(ωm − sinm ω) dP ≥ −πmF +Mm

L2

2π
− πm−1

4

(
1−

(
3
4

)m)
∆

≥ πm−1

4

(
3

4

)m
∆ ≥ 0.

Finally, if some ck 6= 0 we have strict inequality in (29), hence the first inequality
becomes an equality only for circles. �
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