
This is the **accepted version** of the journal article:

Ribas Artola, Àngela; Mattana, Stefania; Llurba, Rosa; [et al.]. «Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem : role of biologically-induced anoxic microsites». *Science of The Total Environment*, Vol. 685 (October 2019), p. 1075-1086. DOI 10.1016/j.scitotenv.2019.06.277

This version is available at <https://ddd.uab.cat/record/299937>

under the terms of the license

1 **Biochar application and summer temperatures reduce N₂O and enhance CH₄ emissions**
2 **in a Mediterranean agroecosystem: role of biologically-induced anoxic microsites**

3 Ribas A^{a,b}, Mattana S^a, Llurba R^{c,d}, Debouk H^{c,d}, Sebastià MT^{c,d}, Domene X^{a,b}.

4 ^a*CREAF, E08193 Cerdanyola del Vallès, Catalonia, Spain*

5 ^b*Univ Autònoma Barcelona, E08193 Cerdanyola del Vallès, Catalonia, Spain*

6 ^c*GAMES group & Dep HBJ, ETSEA, University of Lleida, Lleida 25198, Spain*

7 ^d*Laboratory of Functional Ecology and Global Change, Forest Sciences Centre of Catalonia,*

8 *Solsona 25280, Spain*

9

10 **ABSTRACT**

11 Biochar applications have been proposed for mitigating some soil greenhouse gas (GHG)
12 emissions. However, results can range from mitigation to no effects. To explain these
13 differences, mechanisms have been proposed but their reliability depend on biochar type,
14 soil and climatic conditions. Furthermore, it is found that the mitigation capacity is
15 dependent on how the biochar is ageing under field conditions.

16 The effects on N₂O, CH₄ and CO₂ emission rates of a gasification pine biochar (applied as
17 0, 5, and 30 tonnes ha⁻¹) were studied between 8 and 21 months of the application in an
18 alkaline soil cropped to barley under Mediterranean climate. Together with GHG, soil
19 chemical and biological properties were assessed, namely, changes in labile organic matter
20 content and nutrient status, and pH, as well as microbial abundance, activity, and
21 functional composition.

22 During the 2 years of the application, significant changes were observed at the highest rate
23 of biochar application such as higher contents of water, K⁺, Mg²⁺, SO₄²⁻, higher basal
24 respiration, and with non-significant changes in microbial community, though with some
25 temporal effects. Regarding GHG, N₂O decreases coupled with CH₄ increases in the
26 summer sampling were measured, although only for the highest application rate scenario.
27 Such effects were unrelated to pH, bioavailable nitrogen status, or bulk soil microbial
28 community shifts. We hypothesized that the key is the porous structure of our wood
29 biochar, which is able to provide more and diversified microbial microhabitats in

30 comparison to bulk soil. At higher temperatures in summer, biologically-induced anoxic
31 conditions in biochar pores acting as microsites may be promoted, where total
32 denitrification to N₂ occurs which leads to N₂O uptake, while CH₄ production is promoted.

33

34 **KEYWORDS:** gasification biochar; microsites; methanotrophs; mitigation; N₂O, CH₄ and
35 CO₂ gas exchange rates; N-cycle microbial functional groups.

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 **1. INTRODUCTION**

60 The increasing atmospheric concentrations of carbon dioxide (CO₂), methane (CH₄), and
61 nitrous oxide (N₂O) associated with some human activities are of major concern due to their
62 expected harmful impact on future climatic patterns. Soil is a key compartment regulating
63 the cycling, production, consumption, and storage of these gases (Gärdenäs et al., 2010),
64 with emissions regulated by a myriad of soil properties, processes and managements, such
65 as the application of biochar assessed in this study.

66 Soil CO₂ emission mainly results from microbial and root respiration, and is mostly linked
67 to temperature, water content, pH, nutrient and oxygen availability, as well as the quantity
68 and quality of the organic materials concerned (Balogh et al., 2011; Xu et al., 2006). On the
69 other hand, CH₄, with 25 times the global warming potential of CO₂ (IPCC, 2007), is
70 produced under anoxic conditions, but in aerated and drained soils it is easily oxidized
71 (Bodelier, 2011; Mosier et al., 1998). Nevertheless, methanogenesis may also take place
72 under well aerated and drained soils by alternative metabolisms (Conrad, 2007) or
73 microsites with anoxic conditions (Hagemann et al., 2016). Soil redox potential and
74 substrate availability determine the balance between methanogenesis and CH₄ oxidation.
75 Regarding N₂O atmospheric concentrations, with a global warming potential 298 times
76 that of CO₂ (IPCC, 2007), it mainly results from the last step of denitrification, a process
77 occurring in low oxygen environments and mostly carried out by heterotrophic bacteria
78 able to reduce NO₃⁻ (nitrifying bacteria) to nitrous oxide (N₂O) and then to N₂ (Paul and
79 Clark, 1996). This is why denitrification depends on NO₃⁻, which is mostly an end product
80 of the aerobic process of nitrification (Braker and Conrad, 2011). Both denitrification and
81 nitrification are controlled by moisture, temperature, pH, and the availability of oxygen
82 and metabolic substrates (Firestone and Davidson, 1989). In turn, the availability of CO₂
83 regulates nitrification, since most nitrifiers are chemoautotrophs, while the availability of
84 organic C is essential for denitrification, as most of the denitrifiers are facultative
85 anaerobic heterotrophic bacteria (Inglett et al., 2005, Levy-Booth et al., 2014). Other
86 alternative processes are able to produce N₂O, such as nitrifier denitrification,
87 chemodenitrification, and ammonia oxidation by methanotrophs (Bédard and Knowles,

88 1989; Heil et al., 2014; Kool et al., 2011; Wrage et al., 2001).
89 Biochar is a carbon-rich material intended to be used as soil amendment produced by
90 pyrolysis, i.e. thermal decomposition of biomass under a limited oxygen supply (Lehmann
91 and Joseph 2015). The broad variety of biochars in terms of physicochemical properties
92 mostly depends on the feedstock and production temperature used (Singh et al., 2012; Sohi
93 et al., 2010). Biochar's high sorption capacity and elevated recalcitrance to biodegradation
94 (Joseph et al., 2010; Keiluweit et al., 2010; Uchimiya et al., 2010, Uchimiya et al., 2012)
95 explain the current interest in these materials to improve soil nutrient retention and
96 pollution mitigation (Glaser et al., 2002, Major et al., 2010, Xiao et al. 2017), and carbon
97 sequestration (Goldberg, 1985; Laird, 2008; Lehmann, 2007). The liming capacity of some
98 biochars is also of interest in acidic soils (Van Zwieten et al., 2010), and more recently,
99 there is also interest in their potential role in the mitigation of soil greenhouse gases (GHG)
100 emissions (Major et al., 2010; Singh et al., 2010; Sohi et al., 2010; Spokas et al., 2012, Xiao
101 et al. 2017). The use of biochar for this purpose is heavily debated nowadays as an
102 integrative tool in agroecosystems (Woolf et al., 2010), since arable land can either behave
103 as a GHG source or as sink, contributing to 10-12% of the total annual GHG emissions
104 (IPCC, 2014, Erisman et al., 2011).
105 Biochar application has been shown to mitigate N_2O and CH_4 emissions from soils in some
106 studies (Cayuela et al., 2013; Feng et al., 2012; Karhu et al., 2011; Nelissen et al., 2014),
107 but not in others that failed to find any effect or that have demonstrated enhanced
108 emissions (Clough et al., 2010; Spokas and Reicosky, 2009; Van Zwieten et al., 2009;
109 Zimmerman et al., 2011). The biochar-mediated impacts on soil GHG production seem to
110 be either related to (i) biotic and abiotic processes intimately linked to the particular
111 biochar and soil considered (Atkinson et al., 2010; Lehmann et al., 2011; Shneour, 1966;
112 Spokas and Reicosky, 2009), or (ii) plausibly also to seasonality and the particular climatic
113 conditions of the site. The exact mechanisms responsible for these mitigation effects are
114 still unresolved (Lehmann et al., 2011; Warnock et al., 2007), although some authors have
115 recently argued that the impacts on soil microbial communities might be at least part of
116 the explanation (Khodadad et al., 2011; Lehmann et al., 2011). Microbial community

117 composition or activity shifts and the associated GHG emission changes, could be explained
118 by: (i) the changes in soil properties such as water availability, nutrient availability, and
119 pH buffering capacity and provision of electron donors (Ameloot et al., 2013a; Basso et al.,
120 2013, Harter et al., 2014), (ii) the creation of a more suitable habitat for microorganisms,
121 as biochar's high surface area and the refuge provided by its porosity against microbivores
122 (Quilliam et al., 2013), and (iii) the negative effects on particular microbial groups, such as
123 the demonstrated toxicity of compounds released by some fresh biochars able to inhibit
124 N₂O producing bacteria (Clough et al., 2010; Spokas et al., 2013).

125 Most studies have assessed the short-term effects of biochar on GHG, often under
126 laboratory conditions, despite the fact that biochar weathering under field conditions can
127 strongly change surface chemical functional groups and hence their effects on GHG over
128 time. Such changes are the result of abiotic processes (Cheng et al., 2006; Degroot et al.,
129 1991; Joseph et al., 2010; Puri et al., 1958) and biotic processes (Bird et al., 1999; Goldberg,
130 1985; Mul et al., 1998; Neeft et al., 1998; Watts, 1958). The limited attention in the
131 literature to this topic is surprising, given the critical interest for the duration of the GHG
132 suppression benefits under field conditions (e.g., Gaunt and Lehmann, 2008; Spokas et al.,
133 2012). Even more scarce are the studies carried out under Mediterranean climate and
134 alkaline soil conditions, with only one study available showing decreased N₂O emissions in
135 a wheat crop 3 months after the biochar application (Castaldi et al., 2011). Furthermore,
136 few studies have addressed the impacts of gasification biochars on GHG, despite their
137 particular physicochemical properties compared to slow and fast pyrolysis biochars (You et
138 al., 2017).

139 Therefore, the main objectives of this study were i) to describe the medium-term effects of
140 a gasification biochar, applied at low and high application rates, on N₂O, CH₄, and CO₂
141 emission rates in an alkaline Mediterranean soil. This will be observed under mesocosm
142 conditions and along an agronomical cycle 8 to 21 months after the biochar application,
143 taking special attention to describe changes related to different environmental conditions
144 over time; and ii) to relate such changes with chemical and microbiological properties to
145 reveal possible mechanisms behind the observed shifts in the emission patterns.

146

147 **2. MATERIALS AND METHODS**

148 ***2.1 Biochar and soil properties***

149 A pine chip (*Pinus pinaster* + *P. radiata*) gasification biochar was obtained from a pilot
150 gasification facility in Vitoria (Northern Spain). Details on its main properties are
151 described in Marks et al. (2014). The biochar's pH was 11.4, the electrical conductivity 644
152 $\mu\text{S cm}^{-1}$ at 25° C, and ash and elemental C, N, S content of 9.49%, 88.41%, 0.30%, and
153 0.06%, respectively. Volatile matter (VM) was relatively low in this biochar (8%) in
154 accordance with the biochar's high production temperature (Enders et al., 2012). Loss on
155 ignition (LOI) at 375° C was moderate for a wood biochar (88%), which corresponds to the
156 organic matter content. LOI at 550° C was 0.73% and LOI at 1100° C was 1%, representing
157 the soot and carbonate contents, respectively. The relatively high content of carbonates
158 explains the high pH of this biochar (Enders et al., 2012).

159 The soil used in this experiment was collected from an experimental agricultural soil at
160 the Autonomous University of Barcelona campus (Cerdanyola del Vallès, Catalonia, NE
161 Spain) and corresponded to the top layer (20 cm) of a loamy Typic Calcixerpt (**Table 1**).
162 The soil had been formerly used for grain production and no pesticides had been used for
163 at least 5 years. The high copper levels found in this soil were due to the prior use of copper
164 sulfate as a fungicide in the traditional vineyard cultures of this area, as found in many
165 soils in southern Europe (Brun et al., 2001), thus representing a realistic scenario.

166

167 ***2.2 Mesocosms setup***

168 Twenty-four field soil mesocosms, placed in the Autonomous University of Barcelona
169 Campus (41°29'53.34"N, 2°6'7.84"E) were installed on March 2011, each consisting of a 160
170 liters polypropylene box (53, 40.5 and 73 cm of inner height, width and length respectively)
171 with six holes (5 cm-diameter) in the bottom of the container that allowed proper drainage
172 of any excess water. To avoid soil loss through the holes, a plastic 2 mm mesh was placed
173 in the base of each container. The mesocosms were placed outdoors in two rows to enhance
174 their thermal isolation, and west-to-east oriented to ensure similar sunlight. We additionally

175 protected the boxes with a shading blanket. Each mesocosm was then filled with a 20 cm layer of
176 unamended soil then covered by a 23 cm layer of soil (with or without biochar), which
177 corresponded to 127 liters of uncompacted soil.

178 Unamended soil and two biochar addition rates were selected as treatments, consisting of
179 a 0, 5, and 30 t biochar ha^{-1} application, respectively, each treatment being randomly
180 assigned to eight microcosms out of twenty-four. These rates can be considered as low and
181 high application rates within the range reported in biochar agronomic experiments (Jeffery
182 et al., 2011, 2015). Due to the lower density of biochar compared to soil and to the volume-
183 based criteria used to fill the boxes, the amount of soil-mixture contained in each mesocosm
184 was slightly different depending on the treatment concerned, being 87, 85, and 77 kg of soil
185 for the 0, 5, and 30 tonnes ha^{-1} of biochar, respectively.

186 A feed barley (*Hordeum vulgare* L.) of the variety Graphic (RAGT, Palencia, Spain), was
187 annually seeded in the mesocosms in early January, after tillage, at a density of 300 seeds
188 m^{-2} (116 seeds per mesocosm), and harvested in July. Pig slurry was added annually as
189 fertilizer at the recommended dosage for this crop (100 kg N ha^{-1} year^{-1}), in a dosage
190 calculated based on its hydrolyzable (labile) N content (see Marks et al., 2016). Half of the
191 annual fertilization was carried out at seeding in early January, and the other half in mid-
192 April when seedlings were growing vigorously, in agreement with the usual agricultural
193 management practices in the area (Figure 1).

194

195 **2.3 Soil chemistry**

196 In fall 2011, and in spring, summer, and winter 2012 (and namely 8, 12, 16, and 21 months
197 after the application of the biochar), soil samplings were carried out together with gaseous
198 emission measurements, and microbial community characterization. Soil samples of each
199 plot were taken at 3 points with a core of 2.5 cm diameter auger at a 10 cm depth. The
200 same day of the sampling, soil samples were immediately sieved (2 mm mesh) and
201 homogenized. Water extracts (15 g soil:75 mL deionized water) were prepared and
202 vertically agitated at 60 rev min^{-1} for 2 h, centrifuged, and filtered with Whatman #42 filter
203 paper. The electrical conductivity (EC) and pH were determined immediately and the

204 extract was frozen at -20°C for determination of ion concentrations at a later date. Liquid
205 ion chromatography was used to determine water-soluble concentrations of major cations
206 and anions, simultaneously measured in a Dionex ICS-1100 ion chromatograph (Dionex,
207 Sunnyvale, USA), being cations (Na⁺, K⁺, Mg²⁺, Ca²⁺, and NH₄⁺) assessed by means of a
208 CS12A Dionex cation column on and anions (Cl⁻, NO₂⁻, NO₃⁻, HPO₄²⁻ and SO₄²⁻) by using a
209 AS4A-SC Dionex anion column on the same ion chromatograph.

210

211 ***2.4 Soil microbial biomass and activity***

212 A 30 g aliquot of the sieved and homogenized soil samples used for the chemical assays
213 above described was taken and stored at -20°C for molecular analysis while another 30 g
214 aliquot was immediately used for soil basal respiration and microbial biomass assessment.
215 Soil basal respiration (BAS) was evaluated in gas traps following Pell et al. (2006). The
216 same soil sample was then used to estimate microbial biomass by the fumigation-extraction
217 method following Brookes and Joergensen (2006): two portions of the moist soil (15 g dry
218 weight each) were weighed and noted as fumigated and non-fumigated sample batches.
219 Finally, the metabolic quotient ($q\text{CO}_2$) was calculated as $q\text{CO}_2 = (\mu\text{g CO}_2\text{-C g soil}^{-1} \text{ hour}^{-1} /$
220 $\mu\text{g MBC g soil}^{-1})$ (Anderson and Domsch, 1990).

221

222 ***2.5 Soil microbial functional gene abundance***

223 Soil DNA was extracted from soil samples using the MoBio ultraclean DNA soil kit (MoBio,
224 Laboratories Inc., CA) as instructed by the manufacturer. DNA concentration and quality
225 were spectrophotometrically assessed (NanoDrop 1000, Thermo Scientific, Waltham, MA,
226 USA), and by agarose gel electrophoresis.

227 Quantitative polymerase chain reaction (qPCR) was performed to assess the abundance of
228 following genes: 16S rRNA for the total bacterial numbers, *amoA* for bacterial and
229 archaeal ammonia oxidizers, *nirK* and *nirS* for nitrate reducers carrying a nitrite reductase
230 gene, *nosZ* for denitrifiers carrying the N₂O reductase gene, and *pmoA* for methanotrophs
231 carrying the methane oxidation. All the qPCR was conducted in 96 well plates using
232 7900HT Fast Real-Time PCR System (Applied Biosystems). The specific primer

233 combination and qPCR conditions used for each gene are shown in **Table S1**. Single PCR
234 reactions were prepared in a total volume of 20 μ l containing the following: 10 μ l of SYBR
235 Green qPCR Master Mix (Biotool), 0.5 μ l of forward and reverse primer (10 μ M) (Metabion);
236 0.5 μ l of dimethyl sulfoxide, DMSO, (Sigma); 3.5 μ l H₂O, and 5 μ l template DNA (4 ng μ l⁻¹). At the end of each run, melting curve analysis of the PCR products was conducted to
237 confirm that the fluorescence signal came from specific PCR products and not from primer-
238 dimers or other artifacts. Additionally, an agarose gel (2%) was run to check the correct
239 size of amplicons.

241 The qPCR standards were obtained from the following sources: the field control soil gDNA
242 (bacteria, bacterial *amoA* and archaeal *amoA*); *Sinorhizobium melioti* 1021 (*nirK* and *nosZ*);
243 *Ralstonia eutropha* H16 (*nirS*); *Acidithiobacillus ferrooxidans* (*nifH*) and *Methylomonas*
244 *methanica* (*pmoA*). The PCR amplified DNA from the soil samples and the cultured
245 microorganisms were purified using mi-Gel Extraction Kit (Metabion, Germany) and then
246 standard curves were generated based on quantified PCR products with a series of 1:10
247 dilutions ($R^2 \geq 0.99$ for each gene). All the samples and standards were analyzed in duplicate
248 and several negative controls were included. Amplification efficiencies were calculated as
249 $E = [10^{(1/slope)} - 1] * 100$, with the following results: 16S: 97-102%; bacterial *amoA* 88-93%;
250 archaeal *amoA* 87-93%; *nirK* 97-99%; *nosZ* 86-90%; *nirS* 82-84% *nifH* 87-93% and *pmoA*
251 87-90%; these values were consistent with those reported in analogous studies (Töwe et al.,
252 2010; Harter et al., 2014). The abundance of genes was expressed in copy numbers g dw
253 soil-1 according Behrens et al. (2008).

254

255 **2.6 Greenhouse gas exchange rates**

256 Four periods of exchange rates of carbon dioxide (CO₂), nitrous oxide (N₂O) and methane
257 (CH₄) were measured in the mesocosms. The temperature and precipitation during the
258 experimental period (**Figure 1**) were consistent with the predominant Mediterranean
259 climate of the area, which corresponds to a warm temperate climate with dry and hot
260 summers or C_{sa} in the Köppen–Geiger climate classification system (Kottek et al., 2006).
261 Within each sampling period, measurements were carried out over a 2-4 day period, once

262 to twice per day (herein referred as measurement events) between 9:00 and 17:00 h. The
263 gas exchange measurement system consisted of opaque static PVC chambers (60 cm height,
264 enough to allow measurements with grown vegetation, and an internal diameter of 25 cm)
265 connected to a photoacoustic field gas-monitor or PAS (INNOVA 1412, LumaSense
266 Technologies, Denmark) with a multiplexor system allowing twelve simultaneous or
267 sequential measurements. The chambers were placed in the soil by fitting them to PVC
268 rings (7 cm height, 25 cm inner diameter) inserted in the soil since the barley sowing to
269 ensure reasonable sealing of the system and to limit soil disturbance during
270 measurements. The limitations regarding the use of chambers (e.g. discontinuity of
271 measurements, lack of spatial integration, system disturbance) have been discussed widely
272 (de Klein and Harvey, 2012; Flechard et al., 2007; Hutchinson and Livingston, 2002;
273 Rochette and Eriksen-Hamel, 2008; Schrier-Uijl et al., 2009; etc.). All of these limitations
274 are taken into account when interpreting the results but with a limited impact on our
275 conclusions since providing absolute gas balance values for the studied system is not in the
276 scope of this study. Furthermore, it was not an aim of the study to describe GHG annual
277 fluxes dynamics but rather to check differences between biochar treatments at
278 environmentally contrasted moments of the year (e.g. colder, wetter winter versus hotter,
279 drier summer conditions.). The chambers were connected to the gas monitoring equipment
280 with Teflon tubing (2 mm internal diameter). The surface sampled area corresponded to
281 0.05 m² and the chamber volume to 0.03 m³. The nominal detection limits of the gases are:
282 3.4, 0.02 and 0.2 ppm for CO₂, N₂O, and CH₄, respectively. The PAS was calibrated prior
283 to the field campaigns by the equipment distributor (Moody et al., 2008). The analyzer was
284 used in the cross-interference and the water-interference modes (for more details on PAS
285 modus-operandi and comparability see Iqbal et al., 2013). Each measurement lasted 20-30
286 min. The accumulated gas concentrations were measured at regular time intervals (c. every
287 1-5 min) and those values were used to calculate the gas exchange rates. Since gas
288 concentrations changed linearly with time in the chambers, gas exchange rate values were
289 obtained from the slope of the linear fit to the concentration values (Jones, 1992). Data
290 were submitted to a quality assessment of drifts associated with warm-up process and/or

291 water interference, as recommended by Iqbal et al. (2013). Accordingly, 7% of the CH₄, and
292 1.5% of the N₂O of the exchange rates calculated were not included into the analyses.
293 Positive rate values indicate emission and negative rates denote uptake in soil.

294

295 **2.7 Data analysis**

296 The effect of biochar amendment rates on gas exchange rates, soil chemistry, and biological
297 properties was assessed by generalized mixed-effects models (GLMM) using the “nlme”
298 package by Pinheiro et al. (2016) of R software (R Core Team, 2013). For each gas (N₂O,
299 CH₄ and CO₂) and each rate of application of biochar (LR and HR, corresponding to 5 or 30
300 t ha⁻¹ respectively) we carried out a separate GLMM using the application of biochar
301 (amended versus unamended) and sampling (fall 2011, and winter, spring and summer
302 2012) as fixed factors and the mesocosm identity (from 1 to 24, n=8 for each dose of
303 application) and the measurement events (each of the 2-4 consecutive days of
304 measurements per sampling / or that corresponds to a series or batch of measurements) as
305 random factors. We preferred to analyze each rate of application separately because they
306 represent different application scenarios and therefore show different and even opposed
307 responses. Similarly, for the physicochemical and biological measurements, mixed-effects
308 models (GLMM) were also carried out considering the biochar addition or not and
309 samplings as fixed factors, and mesocosm identity as a random factor (see detailed models
310 in **Tables S1, S2, and S3**). For each mixed model, possible fixed factor interactions
311 structures were checked selecting the structure of the model with the lowest AIC (as
312 explained in Zuur et al., 2010). The model acceptance was based on the graphical
313 diagnostics of residuals to check their normality (QQ-plot and histogram), its homogeneity
314 (residuals *versus* fitted values), and the model fit (fitted values *versus* observed values).
315 Before the construction of the models, data exploration was conducted following Zuur et al.
316 (2010) recommendations, in order to check for outliers, collinearity and explanatory
317 variables relationships. When necessary, variables were transformed by using logarithm
318 (natural or log10) to avoid problems of extreme values or heteroscedasticity (see **Tables S2,**
319 **S3 and S4**).

320

321 **3. RESULTS**

322 ***3.1. Effects on soil physicochemical properties***

323 Considering the biochar effects along all of the experimental period (main effects), K^+
324 showed a significant increase (**Figure 2**), up to 25%, in the HR treatment compared to the
325 unamended mesocosms ($t=2.89$, $p=0.009$, **Table S1**). Additionally, in HR-mesocosms,
326 higher Mg^{2+} soil concentrations were found with respect to unamended ones ($t=2.08$,
327 $p=0.05$). Also, soil moisture content was significantly higher in HR-biochar amended plots
328 over the whole experiment ($t=2.29$, $p=0.0008$; **Table S2**), with a mean increase of around
329 15% compared to the unamended soil (**Figure 2**).

330 The interactions between temporality and treatment showed that in the summer sampling,
331 a lower soil moisture was predicted in the HR-biochar mesocosms by the GLMM compared
332 to unamended soil ($t=-2.74$, $p=0.009$, **Table S2**), agreeing with the greater water losses
333 observed in this treatment (**Figure 2**). In addition, a significant interaction indicated higher
334 summer depletion of SO_4^{2-} and K^+ in the HR treatment compared to unamended soil ($t=-$
335 2.40 , $p=0.02$ and $t=-2.56$, $p=0.03$ respectively; see **Figure 2** and **Table S2**).

336 For the other sampling times, a significantly higher NO_2^- depletion was observed in the
337 spring sampling in the HR versus controls ($t=-3.33$, $p=0.02$, **Table S2**, and **Figure 2**),
338 together with a marginally significant Ca^{2+} enrichment in HR compared to unamended soil
339 ($t=1.72$, $p=0.09$, **Table S2** and **Figure S1**). Meanwhile, in the winter sampling, marginally
340 significant depletion in NO_2^- ($t=-2.21$, $p=0.05$; **Table S2**, and **Figure 2**) and NH_4^+ ($t=-0.85$,
341 $p=0.06$; **Table S2**, and **Figure 2**) was found in the HR treatment, together with significant
342 higher NO_3^-/NH_4^+ ratios and $NO_2^-+NO_3^-/NH_4^+$ relationships in HR-applied soils ($t=2.47$,
343 $p=0.02$; and $t=2.31$, $p=0.03$ respectively, **Table S2**), as well as a decreased K^+ soil content
344 compared to unamended soil ($t=-2.80$, $p=0.01$, **Table S2**, and **Figure 2**).

345 In the LR-biochar mesocosms, during the whole experimental period (main effects), we
346 found a significant enhanced depletion of Na^+ content compared to unamended soil ($t=-$
347 2.05 , $p=0.05$, **Table S2**; **Figure S1**). However, in the spring the LR-applied mesocosms
348 presented Na^+ enrichment in comparison to unamended soil ($t=2.2$, $p=0.03$, **Table S2**,

349 **Figure S1**), as also observed for Ca^{2+} ($t=1.95$, $p=0.05$, **Table S2**, **Figure S1**) and Cl^- , although
350 in the last case marginally ($t=1.77$, $p=0.08$; see **Table S2**, **Figure S1**). In the winter
351 sampling, HPO_4^{2-} soil concentrations were enriched in LR compared to unamended
352 microcosms ($t=2.08$, $p=0.04$, **Table S2**, **Figure S1**), in a trend that was found in the HR-
353 mesocosms although it was not significant ($t=1.64$, $p=0.1$, **Table S2**).

354

355 **3.2. Effects on soil biological properties**

356 Significantly higher values of basal respiration (BR, **Figure 2**) were globally found in HR-
357 biochar-amended mesocosms along the experimental period ($t=2.48$, $p=0.02$; **Table S3**) but
358 not for microbial biomass carbon (MBC) or DOC (dissolved organic carbon, see **Figure S1**).
359 Similarly, the bacterial abundance did not vary significantly when measured as 16S rRNA
360 gene copy numbers (**Figure 3**, **Figure S2**), although for the winter sampling, a marginally
361 significant increase in HR-applied soils was detected ($t=1.7$, $p=0.09$; **Table S3**). Regarding
362 the functional gene abundance (**Figure 3**), no differences were found for high biochar
363 addition rate in *nirK*, *nosZ*, *nifH*, bacterial *amoA* (AOB) and archeal *amoA* gene (AOA)
364 copies number, with the exception of the marginally significant increase in *nirS/nirK* ratio
365 ($t=1.76$, $p=0.09$; **Table S3**). Similarly, no significant interactions were found between
366 sampling and HR application rate, with the exception of the marginally significant
367 temporal decrease in the AOA/AOB ratio (**Figure S2**) at the winter sampling, $t=-1.83$,
368 $p=0.07$; **Table S3**).

369 However, regarding LR addition rate scenario (see **Figure 3**), our results denoted a global
370 significant increase in the AOA/AOB ratio ($t=2.06$, $p=0.05$; **Table S3**), and a decrease in
371 *nosZ*/(AOA+AOB) ($t=-2.47$, $p=0.02$; **Table S3**) and *nosZ*/AOA ratios ($t=-2.13$, $p=0.05$; **Table**
372 **S3**). Regarding the interactions between LR-treatment and sampling, we demonstrated a
373 lower *nosZ*/(*nirS+nirK*) ratio in the summer sampling ($t=-2.24$, $p=0.03$; **Table S3**). Also,
374 although marginally, there was an increase in the spring sampling in the *nosZ*/(AOA+AOB)
375 ratio ($t=1.71$, $p=0.09$; **Table S3**) and a decrease in the *nosZ*/AOA ($t=-2.47$, $p=0.02$; **Table S3**)
376 and AOA/AOB ratios ($t=-1.88$, $p=0.06$; **Table S3**) in the winter sampling. In this last case,
377 the same trend was observed in the HR treatment although was marginally significant ($t=$

378 1.83, $p=0.07$; **Table S3**). Regarding the metabolic quotient ($q\text{CO}_2$), a marginally significant
379 interaction suggests a decrease in the spring sampling ($t=-1.82$, $p=0.07$; **Table S3**). For both
380 the HR and LR treatments, *pmoA* gene copies did not show any significant effects or
381 interactions with sampling time (**Figure 3**).

382

383 **3.3. Effects on GHG exchange rates**

384 Although no global effects of biochar addition rates were found for any of the measured
385 GHG along the samplings, significant interactions with sampling time were found for N_2O
386 and CH_4 . Namely, in the summer sampling, the N_2O emissions showed contrasting
387 responses in the different biochar treatments (**Figure 4**). In the HR treatment, a significant
388 and strong reduction was observed ($t=-2.34$, $p=0.02$, **Table S4**), with negative rates ($-0.07 \pm$
389 $0.08 \text{ N}_2\text{O mg m}^{-2} \text{ h}^{-1}$, $n=29$) compared to the positive rates observed in unamended
390 mesocosms ($0.29 \pm 0.13 \text{ N}_2\text{O mg m}^{-2} \text{ h}^{-1}$, $n=30$). On the contrary, positive rates were observed
391 in the LR treatment ($0.32 \pm 0.12 \text{ N}_2\text{O mg m}^{-2} \text{ h}^{-1}$, $n=32$), as observed in the controls, without
392 significant differences.

393 Regarding CH_4 emissions (**Figure 4**), a strong increase was observed in summer in the
394 biochar-amended mesocosms, with higher rates in HR ($8.88 \pm 2.57 \text{ mg m}^{-2} \text{ h}^{-1}$, $n=28$)
395 compared to the unamended mesocosms ($1.89 \pm 2.11 \text{ mg m}^{-2} \text{ h}^{-1}$, $n=29$) which was significant
396 ($t=2.25$, $p=0.03$, **Table S4**). In case a more extensively characterization of GHG would
397 confirm these patterns, the increase in CH_4 might offset the N_2O decrease related with the
398 HR biochar application in the soil. Again, the emissions in the LR treatment were not
399 significant ($2.35 \pm 2.45 \text{ mg m}^{-2} \text{ h}^{-1}$, $n=31$) compared to controls.

400 Soil CO_2 emissions were not significantly affected by the biochar treatments at any of the
401 application rates or samplings (**Figure 4, Table S4**). Average CO_2 exchanges rates ranged
402 between 0.37 and $0.27 \text{ CO}_2 \text{ g m}^{-2} \text{ h}^{-1}$ depending on the sampling, with 0.27 ± 0.009 for the
403 spring ($n=106$), and 0.37 ± 0.02 for the summer and winter sampling ($n=96$ and $n=48$,
404 respectively), and $0.38 \pm 0.09 \text{ CO}_2 \text{ g m}^{-2} \text{ h}^{-1}$ in fall ($n=83$).

405

406 **4. DISCUSSION**

407 ***4.1. Soil physicochemical properties: water and ionic content shifts at the high biochar***
408 ***application rate scenario***

409 Within 8 to 21 months after application, higher water contents and soluble K^+ and Mg^{2+}
410 concentrations were found along the period of study under our high biochar application
411 rate scenario (30 t ha^{-1}), but not in the lower rate scenario (5 t ha^{-1}). This agrees with similar
412 studies that have reported enhanced soil water retention (Karhu et al., 2011; Novak and
413 Watts, 2013; Saarnio et al., 2013) and K^+ or Mg^{2+} nutrient contents (Angst and Sohi, 2013;
414 Lehmann et al., 2003; Novak et al., 2009). These findings could be related to the expected
415 enhancement of cation retention capacity of biochars or cation releases derived from
416 biochar or its mineralization of the labile biochar fraction, and biochar porosity in specific
417 case of moisture. Regarding any effects on soil pH, such as have been reported in some
418 studies (Jones et al., 2012; Major et al., 2010; Novak et al., 2009), and despite the high pH
419 of this gasification biochar (around 11), we failed to find any variation plausibly due to the
420 alkaline nature of the soil in this study (over 8). No effects were found for either of the
421 biochar rates tested for dissolved organic C (DOC), in contrast to other studies that found
422 increased values shortly after the application (Angst and Sohi, 2013; Lehmann et al., 2003;
423 Novak et al., 2009).

424 When variation within samplings were assessed, some significant trends (decreases) were
425 observed for NO_2^- (spring and winter sampling) and NH_4^+ contents (winter sampling), but
426 not for NO_3^- , although a non-significant trend to lower concentrations is suggested from
427 our results. However, the $NO_2^- + NO_3^- / NH_4^+$ ratio increased in the winter sampling of the
428 HR treatment. In the summer sampling, SO_4^{2-} , K^+ , and water content experienced declines
429 in the HR biochar-treated soils (**Figure 2**). For the other samplings, the only remarkable
430 effect is the increase in Ca^{2+} and Na^+ under HR of application.

431 The literature evidence suggests that biochar aging can increase its cation adsorption
432 capacity (Hale et al., 2012; Jones et al., 2011), as well as adsorption of nitrogen compounds
433 (Adams et al., 1988; Seredych and Bandosz, 2007; Uchimiya et al., 2012; Wang et al., 2012).
434 This might explain the higher contents of Mg^{2+} , Ca^{2+} , Na^+ , K^+ in soils amended with HR,

435 but not the nitrogen forms, for which we only found reductions in the nitrite and
436 ammonium contents in some samplings, or no effects in the specific case of nitrates. The
437 importance of cation adsorption in our study is probably small due to the time required for
438 biochar aging (Mia et al., 2017) and the initial low CEC of the gasification biochar of this
439 study (Pérez-Herrero, 2013). This suggests that the Mg^{2+} , Ca^{2+} , Na^+ , K^+ enrichment in HR
440 plots results from direct release from biochar or its initial mineralization (see biochar
441 characterization in Marks et al., 2014).

442

443 ***4.2. Soil microorganisms: increased activity without effects on abundance and functional
444 groups at the high application scenario***

445 Microbial abundance was not significantly higher in any of the biochar-amended
446 mesocosms, marginally at most, contrasting with other studies that have reported higher
447 microbial biomass (Ameloot et al., 2013b; Luo et al., 2013; Singh and Cowie, 2014), as
448 expected for biochar that could act as a more suitable habitat and a refuge from
449 microbivores (Lehmann et al., 2011; Thies et al., 2015). Concerning microbial activity,
450 measured as basal respiration (BR), and assessed under laboratory conditions, it was
451 significantly greater in soils where biochar had been applied, agreeing with other published
452 studies (Case et al., 2012; Saarnio et al., 2013), although we have only found significant
453 effects for the HR treatment, and uncoupled to any change in biomass or metabolic quotient
454 (qCO_2). The decrease in qCO_2 observed in other biochar studies (Jin, 2010), suggesting
455 higher carbon use efficiency of the microbial communities that have been interpreted as
456 improved soil quality (Franchini et al., 2007) due to a decreased energy spending on the
457 community (Anderson, 1994), was not observed in our study, with the exception of the
458 marginally significant effect in the spring sampling. Hence, we could not demonstrate the
459 expected biochar soil improvement for microorganisms, in agreement with Quilliam et al.
460 (2013). The sustained increased respiration in samples from HR biochar plots in all the
461 samplings (with no higher biomass levels or qCO_2 compared to controls) could suggest a
462 higher availability of labile carbon in this treatment and/or the result of community shifts.
463 Such a respiration increase was not observed under field conditions probably due to the

464 myriad of processes affecting CO₂ emissions in real scenarios. The lack of effects under
465 field conditions has been widely reported in the biochar literature, using different biochar
466 feedstocks (made from cereal remains, wood, shells, or manure), amendment rates (4–200
467 tons/ha), soil types (from silty clay to sandy), environmental conditions (from boreal to
468 subtropical climate), or experiment durations (from 25 days to 2.9 years) (Ameloot et al.,
469 2013b; Castaldi et al., 2011; Kammann et al., 2011; Karhu et al., 2011; Mukome et al.,
470 2013; Scheer et al., 2011; Singh et al., 2010; Spokas and Reicosky, 2009; Zhang et al.,
471 2012a).

472 Several studies have documented that biochar induces shifts in the microbial community
473 composition (Anderson et al., 2011; Ducey et al., 2013; Khodadad et al., 2011; Steinbeiss et
474 al., 2009). However, in our study, we could not demonstrate changes in the total and
475 relative abundance of N and C-cycle functional microbial groups (as total copies per gene,
476 and as percent of the 16S copies, respectively). These results agree with other studies that
477 failed to find effects on nitrification and denitrification functional genes abundance (AOA,
478 *nirS*, *nirK*, and *nosZ*) (Anderson et al., 2014; Dicke et al., 2015; Ducey et al., 2013; Imparato
479 et al., 2017; Prommer et al., 2014; Song et al., 2014; Xu et al., 2014). However, this
480 contrasts with Wang et al. (2013), who reported biochar-induced increases in *nirS* and *nosZ*
481 (denitrifiers) gene copy numbers together with a decrease in *nirK* copies, and with Harter
482 et al. (2014) who also reported higher *nosZ* copy numbers. This might partly explain the
483 lack of biochar effects on the soluble NO₂+NO₃ contents measured, and might agree with
484 the study by Castaldi et al. (2011), also carried out under Mediterranean conditions, who
485 reported no significant changes in nitrification in a field experiment.

486 However, we found changes in some functional group ratios under the LR treatment.
487 Namely, less denitrifiers per ammonia oxidizers were globally observed (lower
488 *nosZ*(AOA+AOB) and the *nosZ*AOA ratios). Similarly, less denitrifiers per nitrate
489 reducers were also found (*nosZ*(*nirS*+*nirK*)), but only for the summer samplings. In the
490 spring sampling, an increase in denitrifiers per Archaea ammonia oxidizers (*nosZ*AOA
491 ratios) was found. The relative decrease in denitrifiers may potentially lower the N₂O
492 removal capacity in LR plots (*nosZ* is associated with the conversion of N₂O to N₂), but this

493 was not associated with increased N₂O emissions. Regarding the HR treatment, where
494 significant N₂O mitigation was observed, no significant variation in functional ratios were
495 observed.

496

497 ***4.3. GHG exchange rates: reduced N₂O and enhanced CH₄ emissions in summer at the high
498 application scenario***

499 In our study, the higher N₂O and CH₄ emission rates were observed in the summer
500 sampling, after barley harvest, at least partly associated with the higher temperatures
501 (>35°C at 5-7 cm depth), while similarly lower rates were found in the other samplings.
502 Taking into consideration the biochar treatments, significant impacts on the N₂O and CH₄
503 emissions were observed, but not on the CO₂ exchange rates, ranging from mitigation to
504 emission enhancements.

505 In the summer sampling, N₂O emissions were significantly lower (and negative) at the HR
506 treatment compared to the positive emission rates observed in unamended soil and the LR
507 treatment, in contrast to the general negative rates observed for all the other samplings
508 and treatments. The N₂O mitigation by biochar addition in our study agrees with other
509 studies (Castaldi et al., 2011; Cayuela et al., 2013; Nelissen et al., 2014) which have
510 demonstrated this effect in biochars with low nitrogen content like the one in our study
511 (Cayuela et al., 2013), as expected for a wood biochar compared to animal manures or food
512 wastes (Spokas, 2013). This effect is coupled to an enhancement in the release of CH₄, with
513 the lack of changes in CO₂ emission rates.

514 Our results are of interest as they describe N₂O and CH₄ emissions (i) under field
515 conditions; ii) at the medium-term; and (iii) with a temporal sampling able to detect effects
516 restricted to particular environmental conditions (summer in our study). Our approach
517 contrasts with most of the available published studies, mostly under laboratory conditions
518 and assessing GHG effects shortly after the field biochar application, with incubation times
519 below 1 year (e.g., Bruun et al., 2011; Cayuela et al., 2010; Spokas, 2013). Only considering
520 short-term effects might bias the estimation of biochar on emission rates. Due to biochar
521 aging in soil, the time passed since the biochar application could strongly affect soil

522 processes and lead to unexpected outcomes that need to be assessed experimentally. As an
523 example, Nelissen et al. (2015), only observed short-term changes in aerobic nitrogen
524 transformations in the field shortly after the application but not after 1 year. The
525 experimental design of our study, assessing GHG effects 8 to 21 months following biochar
526 application might overcome such bias, and highlight the need to consider seasonality in
527 experimental designs to be able to enhance the precision of the climate change mitigation
528 capacity of biochar. Moreover, the contrasting results obtained in low and high application
529 scenarios in this study using the same biochar and soil, reveal that mitigation potential is
530 highly rate-dependent.

531

532 ***4.4. N₂O emission mitigation: net consumption in biochar anaerobic microsites***

533 The mechanisms of biochar interactions with N₂O have rarely been evaluated. and the
534 relative change (decrease, increase or no change) in emissions is a result of the net effect
535 of several abiotic and biotic mechanisms operating concurrently (Van Zwieten et al., 2015).
536 Several mechanisms have been proposed to explain N₂O emissions decrease after biochar
537 addition. Firstly, N₂O emissions could be decreased compared to the unamended soil due
538 to an increase in soil pH by the addition of biochars, which favors N gaseous emissions but
539 decreases the ratio N₂O:N₂ (Simek and Cooper, 2002). This mechanism is not plausible in
540 our study, as our soil pH was already alkaline, and accordingly unaffected by biochar
541 addition.

542 A second mechanism might be the N adsorption capacity of biochar, increasing with aging
543 (Singh et al., 2010), consequently reducing the availability of mineral N used by N-cycle
544 bacteria. The adsorption could be through the direct retention in biochar as NH₄⁺, or in the
545 specific case of NO₃⁻, by bridging through divalent or trivalent cations associated with
546 biochar surface (Mizuta et al., 2004; Mukherjee et al., 2011; Tsukagoshi et al., 2010), which
547 should end up slowing down N₂O emissions (Karhu et al., 2011; Kettunen and Saarnio,
548 2013). This mechanism is also unlikely in our study since the soluble (bioavailable) NH₄⁺,
549 NO₃⁻ and NO₂⁻ contents did not decrease in the HR treatment in summer, when N₂O rates
550 decreased significantly.

551 A third mechanism could be direct N₂O adsorption promoted by biochar's high specific
552 surface area (Peng et al., 2009). Although we cannot discard this possibility, we consider
553 this mechanism unlikely in our experiment since higher N₂O adsorption should be present
554 along the different samplings, which is not the case.

555 A fourth mechanism might be the shifts in microbial community structure or activity
556 associated with the modification of the soil habitat by biochar (Lehmann et al., 2011).
557 Specifically, biochar application can provide labile carbon and inorganic substances, or
558 even toxic compounds, can promote the retention of inorganic and organic compounds on
559 its highly reactive surface, and provide abundant pores potentially acting as refuge or as
560 more suitable microhabitats, hence potentially affecting microbial composition. Those
561 shifts can in turn lead to changes in microbial functions such as the N-cycle (Clough et al.,
562 2013). In our study, we failed to find any changes in total and relative abundance of N-
563 cycle functional groups, with the exception of some functional group ratios uncoupled with
564 the observed emissions. This was in contrast to other studies finding shifts (Ducey et al.,
565 2013; Harter et al., 2014; van Zwieten et al. 2014), but in agreement with others (Anderson
566 et al., 2014; Dicke et al., 2015). However, since significant impacts on N₂O were observed,
567 and no other mechanism seems to be applicable to our results, it is plausible that changes
568 in microbial activity (measured as transcripts) with no changes in the abundance
569 (measured as genes) could explain this disagreement. As an example of that, Xu et al.
570 (2014), failed to find any increase in AOA gene copy numbers, but did in the numbers of
571 the corresponding transcript, the latter explaining the increase in nitrification rates they
572 observed. All that said, we hypothesized that the key for the decreased N₂O emissions in
573 our study might result from the biochar porous structure that provides abundant
574 microsites which can become anoxic when water saturated (Hagemann et al., 2016) or
575 when microbial activity inside those pores is so intense that exhaust oxygen (Harter et al.,
576 2014; van Zwieten et. al., 2009). This is something that promotes complete denitrification
577 (from NO₃⁻ to N₂O and then completely reduced to N₂) using organic carbon as electron
578 donor, hence globally reducing N₂O emission rates (Hagemann et al., 2016). The summer
579 sampling positive N₂O emission rates in controls and LR scenario coupled to the negative

580 N₂O emissions in the HR scenario seem to support this hypothesis: the combination of
581 maximum microbial activity at the high summer temperatures in all the treatments
582 (**Figure 5**) with the HR scenario, with more biochar content and potentially more anoxic
583 microsites present, could explain the complete denitrification to N₂ by total N₂O
584 consumption. This highlights the need for N₂ measurements coupled to N₂O assessments
585 for a better understanding of the underlying mechanism for N₂O mitigation.

586

587 ***4.5 CH₄ emissions enhancement: net release from biochar anaerobic microsites***

588 Many studies, using different types of soils and biochars, have generally demonstrated that
589 biochar addition does not affect CH₄ fluxes in aerated (non-saturated) soils (Aguilar-Chávez
590 et al., 2012; Angst et al., 2014; Scheer et al., 2011; Spokas and Reicosky, 2009; Troy et al.,
591 2013; Wang et al., 2012). However, in some cases biochar addition can increase (Karhu et
592 al., 2011; Yu et al., 2013; Zhang et al., 2012b) or decrease net CH₄ oxidation (Spokas et al.,
593 2009; Spokas and Reicosky, 2009; Zhang et al., 2012b).

594 CH₄ is produced under anoxic conditions and this is when there is the lowest CH₄
595 consumption (oxidation) (Bodelier, 2011; Mosier et al., 1998), so one might expect minimum
596 emissions in summer, with the lower moisture contents. It has been suggested that biochar
597 improves soil aeration, through the increased macroporosity, especially in wood-derived
598 biochars (Downie et al., 2009), important in maintaining aerobic conditions in soil (Van
599 Zwieten et al., 2009). Thus, biochar could decrease anoxic conditions in soils, which could
600 potentially decrease CH₄ production and/or increase CH₄ oxidation (Van Zwieten et al.,
601 2009). However, our study showed maximum CH₄ emissions in summer and hence support
602 the idea that anoxic conditions in aerated and drained soils are present in microsites with
603 anoxic conditions (Hagemann et al., 2016), in agreement with the mechanism proposed for
604 N₂O. Our results disagree with those of Karhu et al. (2011), who studied plots in southern
605 Finland and concluded that the highest aeration in biochar-added soils caused decreased
606 CH₄ emission through enhanced CH₄ oxidation. This disagreement might be the result of
607 different main mechanisms explaining net CH₄ emissions and probably related to the
608 higher soil temperatures in our plots, under Mediterranean climate (26-53°C, with soil

609 moisture around 8-15%), compared to that in Karhu et al. (2011), under Boreal climate (17-
610 25°C, with soil moisture of 10-16%). The higher temperatures under the Mediterranean
611 climate, under similar water contents might promote higher bacterial activity and oxygen
612 consumption within biochar micropores, and therefore promote anoxic conditions in
613 microsites that allow net CH₄ emissions. This microsite biologically-induced anaerobiosis
614 hypothesis could be also supported by the significant reductions in SO₄²⁻ in summer plots
615 treated with biochar in our experiment, since sulphate reducers also operate under these
616 conditions (Segers, 1998). The strong decrease in SO₄²⁻ might agree with its preferential
617 use as electron acceptor (and conversion to HS) according to its higher potential redox in
618 comparison to the CO₂ used as electron acceptor for CH₄ production, which is a
619 thermodynamically less efficient process (Conrad, 1989; Lovley and Phillips, 1987;
620 Oremland, 1988).

621 However, other mechanisms might concur in the trend observed in the summer sampling
622 and associated with biochar application, such as: i) higher pH, which favours methanogens
623 over methanotrophs, the latter being strict aerobics, and thus favouring CH₄ production,
624 or ii) higher DOC contents which could contribute to more biologically-induced anoxic
625 conditions within biochar pores, and which is consistent with our measurements. However,
626 in our study we failed to find significant differences in the HR plots on any of these
627 parameters (**Figure S1**). Similarly, and as found for N₂O, bulk soil community shifts are
628 not plausible, at least in methanotrophs when measured as *pmoA* abundance (**Figure 3**).
629

630 CONCLUSIONS

631 Our study demonstrates a biochar impact on N₂O and CH₄ emissions within the two first
632 years following the application of a pine gasification biochar, under Mediterranean
633 conditions, when applied at relatively high rates (30 t ha⁻¹), but not at low rates (5 t ha⁻¹),
634 though restricted to the summer sampling. Such effects, unrelated to pH, bioavailable
635 nitrogen status, and microbial community shifts in bulk soil, were possibly related to the
636 porous structure of our wood biochar, which was able to provide microsites with clearly
637 different environmental conditions in comparison to bulk soil. We hypothesized that

638 despite the relatively low moisture contents, the higher summer temperatures promoted
639 biologically-induced anoxic conditions in biochar pores, where NO_3^- is totally denitrified to
640 N_2 thus leading to negative N_2O exchange rates, and where CH_4 could have net release
641 rates.

642 Our results highlight the need for an accurate assessment of biochar GHG mitigation
643 capacity, and hence considering the simultaneous assessment of the main GHG (N_2O , CH_4 ,
644 and CO_2), the seasonality of the emissions to fully cover the range of climatic conditions of
645 the area of study, and to assess medium- to long-term effects under field conditions to
646 include aging effects.

647

648 **ACKNOWLEDGEMENTS**

649 This work was funded by the CARBONET project (CGL2010-15766) of the Spanish
650 Ministry of Science and Innovation, but also partly by the projects BIOGEI (CGL2013-
651 49142-C2-1-R) and FERTICCHAR (AGL2015-70393-R) of the Spanish Ministry of Economy
652 and Competitiveness.

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667 REFERENCES

668 Adams, L.B., Hall, C.R., Holmes, R.J., Newton, R.A., 1988. An examination of how exposure
669 to humid air can result in changes in the adsorption properties of activated carbons.
670 *Carbon* 26, 451–459.

671 Aguilar-Chávez, Á., Díaz-Rojas, M., Cárdenas-Aquino, M.R., Dendooven, L., Luna-Guido,
672 M., 2012. Greenhouse gas emissions from a wastewater sludge-amended soil
673 cultivated with wheat (*Triticum* spp. L.) as affected by different application rates of
674 charcoal. *Soil Biology and Biochemistry* 52, 90–95.

675 Ameloot, N., Sleutel, S., Das, K.C., Kanagaratnam, J., Neve, S.D., 2013a. Biochar
676 amendment to soils with contrasting organic matter level: effects on N mineralization
677 and biological soil properties. *Global Change Biology Bioenergy* 7, 135–144.

678 Ameloot, N., De Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y.N., Prins,
679 W., Bouckaert, L., Sleutel, S., 2013b. Short-term CO₂ and N₂O emissions and
680 microbial properties of biochar amended sandy loam soils. *Soil Biology and*
681 *Biochemistry* 57, 401–410.

682 Anderson, T.-H., Domsch, K.H., 1990. Application of eco-physiological quotients (qCO₂ and
683 qD) on microbial biomasses from soils of different cropping histories. *Soil Biology and*
684 *Biochemistry* 22, 251–255.

685 Anderson, C.R., 1994. Physiological analysis of microbial communities in soil: Applications
686 and limitations. In: Ritz K., Dighton, J., Giller, K.E., (Eds.), *Beyond the Biomass.*
687 *Composition and Functional Analysis of Soil Microbial*, John Wiley and Sons, New
688 York, pp. 67–76.

689 Anderson, C.R., Condron, L.M., Clough, T.J., Fiers, M., Stewart, A., Hill, R.A., Sherlock,
690 R.R., 2011. Biochar induced soil microbial community change: implications for
691 biogeochemical cycling of carbon, nitrogen and phosphorus. *Pedobiologia* 54, 309–320.

692 Anderson, C.R., Hamonts, K., Clough, T.J., Condron, L.M., 2014. Biochar does not affect
693 soil n-transformations or microbial community structure under ruminant urine
694 patches but does alter relative proportions of nitrogen cycling bacteria. *Agriculture,*
695 *Ecosystems and Environment* 191, 63–72.

696 Angst, T.E., Six, J., Reay, D.S., Sohi, S.P., 2014. Impact of pine chip biochar on trace
697 greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system
698 in California. *Agriculture, Ecosystems and Environment* 191, 17–26.

699 Angst, T.E., Sohi, S.P., 2013. Establishing release dynamics for plant nutrients from
700 biochar. *Global Change Biology Bioenergy* 5, 221–226.

701 Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A., 2010. Potential mechanisms for achieving
702 agricultural benefits from biochar application to temperate soils: a review. *Plant and*
703 *Soil* 337, 1–18.

704 Balogh, J., Pintér, K., Fóti, Sz. Cserhalmi, D., Papp, M., Nagy, Z., 2011. Dependence of soil
705 respiration on soil moisture, clay content, soil organic matter, and CO₂ uptake in dry
706 grasslands. *Soil Biology and Biochemistry* 43, 1006–1013.

707 Basso, A.S., Miguez, F.E., Laird, D.A., Horton, R., Westgate, M., 2013. Assessing potential
708 of biochar for increasing water-holding capacity of sandy soils. *Global Change Biology
709 Bioenergy* 5, 132–143.

710 Bédard, C., Knowles, R., 1989. Physiology, biochemistry, and specific inhibitors of CH₄,
711 NH₄⁺, and CO oxidation by methanotrophs and nitrifiers. *Microbiological Reviews* 53,
712 68-84.

713 Bird, M.I., Moyo, C., Veenendaal, E.M., Lloyd, J., Frost, P., 1999. Stability of elemental
714 carbon in a savanna soil. *Global Biogeochemical Cycles* 13, 923–932.

715 Bodelier, P., 2011. Interactions between nitrogenous fertilizers and methane cycling in
716 wetland and upland. *Current Opinion on Environmental Sustainability* 3, 321-327.

717 Braker, G., Conrad, R., 2011. Diversity, structure, and size of N₂O-producing microbial
718 communities in soils—what matters for their functioning? *Advances in Applied
719 Microbiology* 75, 33–70.

720 Brookes, P.C., Joergensen, R.G., 2006. Microbial biomass measurements by fumigation-
721 extraction. In: Bloem, J., Hopkins, D.W., Benedetti, A., (Eds.), *Microbial Methods for
722 Assessing Soil Quality*. CABI Publishing, King's Lynn, pp. 77–83.

723 Behrens, S., Azizian, M.F., McMurdie, P.J., Sabalowsky, A., Dolan, M.E., Semprini, L.,
724 Spormann, A.M., 2008. Monitoring abundance and expression of "Dehalococcoides"
725 species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating
726 flow column. *Applied and Environmental Microbiology* 74, 5695–5703.

727 Brun, L.A., Maillet, J., Hinsinger, P., Pépin, M., 2001. Evaluation of copper availability to
728 plants in copper-contaminated vineyard soils. *Environmental Pollution* 111, 293–302.

729 Bruun, E.W., Müller-Stöver, D., Ambus, P., Hauggaard-Nielsen, H., 2011. Application of
730 biochar to soil and N₂O emissions: Potential effects of blending fast-pyrolysis biochar
731 with anaerobically digested slurry. *European Journal of Soil Science* 62, 581–589.

732 Case, S.D.C., McNamara, N.P., Reay, D.S., Whitaker, J., 2012. The effect of biochar
733 addition on N₂O and CO₂ emissions from a sandy loam soil—The role of soil aeration.
734 *Soil Biology and Biochemistry* 51, 125–134.

735 Castaldi, S., Riondino, M., Baronti, S., Esposito, F.R., Marzaioli, R., Rutigliano, F.A.,
736 Vaccari, F.P., Miglietta, F., 2011. Impact of biochar application to a Mediterranean
737 wheat crop on soil microbial activity and greenhouse gas fluxes. *Chemosphere* 85,
738 1464–1471.

739 Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Hanley, K., Enders, A., Lehmann, J.,
740 2013. Biochar and denitrification in soils: when, how much and why does biochar
741 reduce N₂O emissions? *Nature Scientific Reports* 3, 1732.

742 Cayuela, M.L., Oenema, O., Kuikman, P.J., Bakker, R.R., van Groenigen, J.W., 2010.
743 Bioenergy by-products as soil amendments? Implications for carbon sequestration
744 and greenhouse gas emissions. *Global Change Biology Bioenergy* 2, 201–213.

745 Cheng, C.-H., Lehmann, J., Thies, J.E., Burton, S.D., Engelhard, M.H., 2006. Oxidation of
746 black carbon by biotic and abiotic processes. *Organic Geochemistry* 37, 1477–1488.

747 Clough, T., Condron, L., Kammann, C., Müller, C., 2013. A review of biochar and soil
748 nitrogen dynamics. *Agronomy* 3, 275–293.

749 Clough, T.J., Bertram, J.E., Ray, J.L., Condron, L.M., O'Callaghan, M., Sherlock, R.R.,
750 Wells, N.S., 2010. Unweathered wood biochar impact on nitrous oxide emissions from
751 a bovine-urine-amended pasture soil. *Soil Science Society of America Journal* 74, 852–
752 860.

753 Conrad, R., 1989. Control of methane production in terrestrial ecosystems. In: Andrea MO
754 & Schimel DS (Eds) *Exchange of Trace Gases between Terrestrial Ecosystems and*
755 *the Atmosphere* (pp 39–58). Wiley, New York

756 Conrad, R., 2007. Microbial ecology of methanogens and methanotrophs. *Advances in*
757 *Agronomy* 96, 1–63.

758 de Klein, C., Harvey, M., 2012. Nitrous Oxide Chamber Methodology Guidelines. Global
759 Research Alliance on Agricultural Greenhouse Gases, Ministry for Primary
760 Industries, Wellington, New Zealand. <http://www.globalresearchalliance.org/>

761 Degroot, W.F., Osterheld, T.H., Richards, G.N., 1991. Chemisorption of oxygen and of nitric
762 oxide on cellulosic chars. *Carbon* 29, 185–195.

763 Dicke, C., Andert, J., Ammon, C., Kern, J., Meyer-Aurich, A., Kaupenjohann, M., 2015.
764 Effects of different biochars and digestate on N₂O fluxes under field conditions.
765 *Science of Total Environment* 524–525, 310–318.

766 Downie, A., Crosky, A., & Munroe, P. 2009. Physical properties of biochar. *Biochar for*
767 *environmental management: Science and technology*, 13–32.

768 Ducey, T.F., Ippolito, J.A., Cantrell, K.B., Novak, J.M., Lentz, R.D., 2013. Addition of
769 activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling
770 gene abundances. *Applied Soil Ecology* 65, 65–72.

771 Enders, A., Hanley, K., Whitman, T., Joseph, S., Lehmann, J., 2012. Characterization of
772 biochars to evaluate recalcitrance and agronomic performance. *Bioresources*
773 *Technology* 114, 644–653.

774 Erisman, J.W., Galloway, J., Seitzinger, S., Bleeker, A., Butterbach-Bahl, K., 2011.
775 Reactive nitrogen in the environment and its effect on climate change. *Current*
776 *Opinion on Environmental Sustainability* 3, 281–290.

777 Flechard, C.R., Ambus, P., Skiba, U., Rees, R.M., Hensen, A., van Amstel, A., van den Pol-
778 van Dasselaar, A., Soussana, J.F., Jones, M., Clifton-Brown, J., Raschi, A., Horvath,
779 L., Neftel, A., Jocher, M., Ammann, C., Leifeld, J., Fuhrer, J., Calanca, P., Thalman,
780 E., Pilegaard, K., Di Marco, C., Campbell, C., Nemitz, E., Hargreaves, K.J., Levy, P.E.,
781 Ball, B.C., Jones, S.K., van de Bulk, W.C.M., Groot, T., Blom, M., Domingues, R.,
782 Kasper, G., Allard, V., Ceschia, E., Cellier, P., Laville, P., Henault, C., Bizouard, F.,
783 Abdalla, M., Williams, M., Baronti, S., Berretti, F., Grosz, B., 2007. Effects of climate
784 and management intensity on nitrous oxide emissions in grassland systems across
785 Europe. *Agriculture, Ecosystems and Environment* 121, 135–152.

786 Feng, Y., Xu, Y., Yu, Y., Xie, Z., Lin, X., 2012. Mechanisms of biochar decreasing methane
787 emission from Chinese paddy soils. *Soil Biology and Biochemistry* 46, 80–88.

788 Firestone, M.K., Davidson, E.A., 1989. Microbiological basis of NO and N₂O production and
789 consumption in soil. In: Andreae, M.O., Schimel, D.S., (Eds.), Exchange of Trace
790 Gases Between Terrestrial Ecosystems and the Atmosphere. Wiley & Sons, New York,
791 pp- 7-21.

792 Franchini, J.C., Crispino, C.C., Souza, R.A., Torres, E., Hungria, M., 2007. Microbiological
793 parameters as indicators of soil quality under various management. *Soil and Tillage*
794 *Research* 92, 18-29.

795 Gärdenäs, A.I., Ågren, G.I., Bird, J.A., Clarholm, M., Hallin, S., Ineson, P., Kätterer, T.,
796 Knicker, H., Nilsson, I.S., Näsholm, T., Ogle, S., Paustian, K., Persson, T., Stendahl,
797 J., 2010. Knowledge gaps in soil carbon and nitrogen interactions – from molecular to
798 global scale. *Soil Biology and Biochemistry* 43, 702–717.

799 Gaunt, J.L., Lehmann, J., 2008. Energy balance and emissions associated with biochar
800 sequestration and pyrolysis bioenergy production. *Environmental Science and*
801 *Technology* 42, 4152–4158.

802 Glaser, B., Lehmann, J., Zech, W., 2002. Ameliorating physical and chemical properties of
803 highly weathered soils in the tropics with charcoal – a review. *Biology and Fertility*
804 *of Soils* 35, 219–230.

805 Goldberg, E.D., 1985. Black Carbon in the Environment: Properties and Distribution. John
806 Wiley & Sons Inc, New York.

807 Hale, S.E., Lehmann, J., Rutherford, D., Zimmerman, A.R., Bachmann, R.T.,
808 Shitumbanuma, V., O'Toole, A., Sundqvist, K.L., Arp, H.P.H., Cornelissen, G., 2012.
809 Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins
810 in biochars. *Environmental Sciences and Technology* 46, 2830–2838.

811 Hagemann, N., Arter, J., Behrens, S., 2016. Elucidating the Impacts of Biochar
812 Applications on Nitrogen Cycling Microbial Communities. In: Ralebitso-Senior T.,
813 and Orr C., (Eds.), Biochar application. Essential soil microbial Ecology. Elsevier,
814 United Kingdom pp 163-198.

815 Harter, J., Krause, H.-M., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., Kappler, A.,
816 Behrens, S., 2014. Linking N₂O emissions from biochar-amended soil to the structure
817 and function of the N-cycling microbial community. *ISME Journal* 8, 660–674.

818 Heil, J., Wolf, B., Brüggemann, N., Emmenegger, L., Tuzson, B., Vereecken, H., Mohn, J.,
819 2014. Site-specific ¹⁵N isotopic signatures of abiotically produced N₂O. *Geochimica et*
820 *Cosmochimica Acta* 139, 72–82.

821 Hutchinson, G.L., Livingston, G.P., 2002. Soil-atmosphere gas exchange. In: Dane, J.H.,
822 Topp, G.C., (Eds.), *Methods of Soil Analysis. Part 4.* SSSA, Madison, WI, pp. 1159–
823 1182.

824 IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working
825 Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
826 Change. Cambridge University Press, Cambridge, United Kingdom and New York,
827 NY, USA

828 IPCC, 2014. Climate Change 2014: Mitigation of Climate Change Contribution of Working
829 Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate
830 Change. Cambridge University Press, Cambridge, United Kingdom and New York,
831 NY, USA.

832 Inglett, P.W., Reddy, K.R., Corstanje, R., 2005. Anaerobic Soils. In: Hillel, D., Hatfield,
833 J.L., (Eds.), Encyclopedia of Soils in the Environment, Vol. 3. Elsevier, Amsterdam,
834 pp. 72-78.

835 Imparato, V., Hansen, V., Santos, S.S., Nielse, T.k., Giagnoni, L., Hauggaard-Nielsen, H.,
836 Johansen, A., Renella, G., Winding, A., 2017. Gasification biochar has limited effects
837 on functional and structural diversity of soil microbial communities in a temperate
838 agroecosystem. *Soil Biology and Biochemistry* 99, 128-136.
839

840 Iqbal, J., Castellano, M.J., Parkin, T.B., 2013. Evaluation of photoacoustic infrared
841 spectroscopy for simultaneous measurement of N_2O and CO_2 gas concentrations and
842 fluxes at the soil surface. *Global Change Biology* 19, 327-336.
843

844 Jeffery, S., Verheijen, F.G., van der Velde, M., Bastos, A.C., 2011. A quantitative review of
845 the effects of biochar application to soils on crop productivity using meta-analysis.
846 *Agriculture, Ecosystems and Environment* 144, 175-187.
847

848 Jeffery, S., Abalos, D., Spokas, K., Verheijen, F.G.A., 2015. Biochar Effects on Crop Yield.
849 In: Lehmann, J., Joseph, S. (eds.) *Biochar for Environmental Management Science,
850 Technology and Implementation*, 2nd Edition.
851

852 Jin, H. Characterization of microbial life colonizing biochar and biochar-amended soils.
853 PhD Dissertation, College of Agriculture and Life Sciences, Cornell University.
854

855 Jones, H., 1992. Plants and microclimate. A quantitative approach to environmental plant
856 physiology. Cambridge University Press, Cambridge
857

858 Jones, D.L., Murphy, D.V., Khalid, M., Ahmad, W., Edwards-Jones, G., DeLuca, T.H., 2011.
859 Short-term biochar-induced increase in soil CO_2 release is both biotically and
860 abiotically mediated. *Soil Biology and Biochemistry* 43, 1723-1731.
861

862 Jones, D.L., Rousk, J., Edwards-Jones, G., DeLuca, T.H., Murphy, D.V., 2012. Biochar-
863 mediated changes in soil quality and plant growth in a three year field trial. *Soil
864 Biology and Biochemistry* 45, 113-124.

865 Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J., van Zwieten,
866 L., Kimber, S., Cowie, A., Singh, B.P., Lehmann, J., Foidl, N., Smernik, R.J.,
867 Amonette, J.E., 2010. An investigation into the reactions of biochar in soil. *Australian
868 Journal of Soil Research* 48, 501-515.

869 Juottonen, H., Galand, P.E., Yrjälä, K., 2006. Detection of methanogenic Archaea in peat:
870 comparison of PCR primers targeting the *mcrA* gene. *Research in Microbiology* 157,
871 914-921.

872 Kammann, C.I., Linsel, S., Gößling, J.W., Koyro, H.-W., 2011. Influence of biochar on
873 drought tolerance of *Chenopodium quinoa* Wild and on soil-plant relations. *Plant and
874 Soil* 345, 195-210.

875 Karhu, K., Mattila, T., Bergström, I., Regina, K., 2011. Biochar addition to agricultural soil
876 increased CH_4 uptake and water holding capacity-Results from a short-term pilot
877 field study. *Agriculture, Ecosystems and Environment* 140, 309-313.

878 Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., 2010. Dynamic molecular structure
879 of plant biomass-derived black carbon (biochar). *Environmental Science and
880 Technology* 44, 1247-1253.

881 Kettunen, R., Saarnio, S., 2013. Biochar can restrict N₂O emissions and the risk of nitrogen
882 leaching from an agricultural soil during the freeze-thaw period. *Agriculture and
883 Food Science* 22, 373–379.

884 Khodadad, C.L.M., Zimmerman, A.R., Green, S.J., Uthandi, S., Foster, J.S., 2011. Taxa-
885 specific changes in soil microbial community composition induced by pyrogenic carbon
886 amendments. *Soil Biology and Biochemistry* 43, 385–392.

887 Kool, D.M., Dolfing, J., Wrage, N., Van Groenigen, J.W., 2011. Nitrifier denitrification as
888 a distinct and significant source of nitrous oxide from soil. *Soil Biology and
889 Biochemistry* 43, 174–178.

890 Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of Köppen-Geiger
891 climate classification updated. *Meteorologische Zeitschrift* 15, 259–263.

892 Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing
893 bioenergy, permanently sequestering carbon, while improving soil and water quality.
894 *Agronomy Journal*, 100, 178–181.

895 Lehmann J (2007) Bio-energy in the black. *Frontiers in Ecology and the Environment*, 5,
896 381–387.

897 Lehmann, J., da Silva, J.P. Jr., Steiner, C., Nehls, T., Zech, W., Glaser, B., 2003. Nutrient
898 availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central
899 Amazon basin: Fertilizer, manure and charcoal amendments. *Plant and Soil* 249,
900 343–357.

901 Lehmann, J., Joseph, S., 2015. Biochar for environmental management: An introduction.
902 In: Lehmann, J., Josep, S. (Eds), *Biochar for Environmental Management*, Routledge,
903 pp. 33–46.

904 Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011.
905 Biochar effects on soil biota—a review. *Soil biology and Biochemistry* 43, 1812–1836.

906 Levy-Booth, D.J., Prescott, C.E., Grayston, S.J., 2014. Microbial functional genes involved
907 in nitrogen fixation, nitrification and denitrification in forest ecosystems. *Soil Biology
908 and Biochemistry* 75, 11–25.

909 Lovley, D.R., Phillips, E.J., 1987. Competitive mechanisms for inhibition of sulfate
910 reduction and methane production in the zone of ferric iron reduction in sediments.
911 *Applied and Environmental Microbiology* 53, 2636–2641.

912 Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., Devonshire, B.J., Brookes, P.C., 2013.
913 Microbial biomass growth, following incorporation of biochars produced at 350°C or
914 700°C, in a silty-clay loam soil of high and low pH. *Soil Biology and Biochemistry*
915 57, 513–523.

916 Major, J., Lehmann, J., Rondon, M., Goodale, C., 2010. Fate of soil-applied black carbon:
917 downward migration, leaching and soil respiration. *Global Change Biology* 16, 1366–
918 1379.

919 Marks, E.A.N., Alcañiz, J.M., Domene, X., 2014. Unintended effects of biochars on short-
920 term plant growth in a calcareous soil. *Plant and Soil* 385, 87–105.

921 Marks, E. A., Mattana, S., Alcañiz, J.M., Pérez-Herrero, E., Domene, X., 2016. Gasifier
922 biochar effects on nutrient availability, organic matter mineralization, and soil fauna
923 activity in a multi-year Mediterranean trial. *Agriculture, Ecosystems and*
924 *Environment* 215, 30-39.

925 Mia, S., Dijkstra, F.A., Singh, B., 2017. Long-Term aging of biochar: A molecular
926 understanding with the agricultural and environmental implications. *Advances in*
927 *Agronomy* 141, 1-51.

928 Michotey, V., Mejean, V., Bonin, P., 2000. Comparison of methods for quantification of
929 cytochrome cd (1)-denitrifying bacteria in environmental marine samples. *Applied*
930 *and Environmental Microbiology* 66, 1564-1571.

931 Mizuta, K., Matsumoto, T., Hatake, Y., Nishihara, K., Nakanishi, T., 2004. Removal of
932 nitrate- nitrogen from drinking water using bamboo powder charcoal. *Bioresources*
933 *Technology* 95, 255-257.

934 Moody, L.B., Li, H., Burns, R.T., Xin, H., Gates, R.S., Hoff, S.J., Overhults, D.G., 2008. A
935 quality assurance project plan for monitoring gaseous and particulate matter
936 emissions from broiler housing. *American Society of Agricultural and Biological*
937 *Engineers*, 1-27.

938 Mosier, A.R., Duxbury, J.M., Freney, J.R., Hinemeyer, O., Minami, K., Johnson, D.E., 1998.
939 Mitigating Agricultural Emissions of Methane. *Climate Change* 40, 39-80.

940 Mukherjee, A., Zimmerman, A. R., Harris, W., 2011. Surface chemistry variations among
941 a series of laboratory-produced biochars. *Geoderma* 163, 247-255.

942 Mukome, F.N.D., Six, J., Parikh, S.J., 2013. The effects of walnut shell and wood feedstock
943 biochar amendments on greenhouse gas emissions from a fertile soil. *Geoderma* 200-
944 201, 90- 98.

945 Mul, G., Neeft, J.P.A., Kapteijn, F., Moulijn, J.A., 1998. The formation of carbon surface
946 oxygen complexes by oxygen and ozone. The effect of transition metal oxides. *Carbon*
947 36, 1269-1276.

948 Neeft, J.P.A., Makkee, M., Moulijn, J.A., 1998. Catalytic oxidation of carbon black – I
949 Activity of catalysts and classification of oxidation profiles. *Fuel* 77, 111-119.

950 Nelissen, V., Rütting, T., Huygens, D., Ruysschaert, G., Boeckx, P., 2015. Temporal
951 evolution of biochar's impact on soil nitrogen processes – a ¹⁵N tracing study. *Global*
952 *Change Biology Bioenergy* 7, 635-645.

953 Nelissen, V., Saha, B.K., Ruysschaert, G., Boeckx, P., 2014. Effect of different biochar and
954 fertilizer types on N₂O and NO emissions. *Soil Biology and Biochemistry* 70, 244-255.

955 Novak, J.M., Watts, D.W., 2013. Augmenting soil water storage using uncharred
956 switchgrass and pyrolyzed biochars. *Soil Use Manage* 29, 98-104.

957 Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., Niandou, M.A.S,
958 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil.
959 *Soil Science* 174, 105-112.

960 Oremland, R.S., 1988. The biogeochemistry of methanogenic bacteria. In: Zehnder, A.J.B.,
961 (Ed.), *The Biology of Anaerobic Microorganisms*. John Wiley & Sons, New York, pp.
962 405–447.

963 Paul, E.A., Clark, F.E., 1996. *Soil Microbiology and Biochemistry*. Academic Press, San
964 Diego, pp. 340.

965 Pell, M., Stenstrom, J., Granhall, U., 2006. Soil respiration. In: Bloem, J., Hopkins, D.W.,
966 Benedetti, A., (Eds.), *Microbiological Methods for Assessing Soil Quality*. CABI
967 Publishing, King's Lynn, pp.117-126.

968 Peng, Y., Zhang, F., Xu, C., Xiao, Q., Zhong, Y., Zhu, W., 2009. Adsorption of nitrous oxide
969 on activated carbons. *Journal of Chemistry and Engineering Data* 54, 3079–3081.

970 Pérez-Herrero, E. 2013. Efecte sobre la capacitat d'intercanvi catiònic del sòl i la retenció
971 de nutrients de les aplicacions de biochar en sòls agrícoles. Undergraduate Project
972 Dissertation, Department of Animal Biology, Plant Biology and Ecology, Autonomous
973 University of Barcelona.

974 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2016. *_nlme: Linear and*
975 *Nonlinear Mixed Effects Models_*. R package version 3.1-128, <URL: <http://CRAN.R-project.org/package=nlme>>.

977 Prommer, J., Wanek, W., Hofhansl, F., Trojan, D., Offre, P., Urich, T., Schleper, C.,
978 Sassmann, S., Kitzler, B., Soja, G., Hood-Nowotny, R.C., 2014. Biochar decelerates
979 soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable
980 field trial. *PLoS ONE* 9 (1), e86388.

981 Puri, B., Singh, D.D., Nath, J., Sharma, L., 1958. Chemisorption of oxygen on activated
982 charcoal and sorption of acids and bases. *Industrial and Engineering Chemistry* 50,
983 1071–1074.

984 Quilliam, R.S., Glanville, H.C., Wade, S.C., Jones, D.L., 2013. Life in the 'charosphere' -
985 does biochar in agricultural soil provide a significant habitat for microorganisms? *Soil*
986 *Biology and Biochemistry* 65, 287–293.

987 R Core Team, 2013. R: A language and environment for statistical computing. R
988 Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org/>

989 Rochette, P., Eriksen-Hamel, N.S., 2008. Chamber measurements of soil nitrous oxide flux:
990 are absolute values reliable? *Soil Science Society of America Journal* 72, 331–342.

991 Saarnio, S., Heimonen, K., Kettunen, R., 2013. Biochar addition indirectly affects N₂O
992 emissions via soil moisture and plant N uptake. *Soil Biology and Biochemistry* 58,
993 99–106.

994 Scheer, C., Grace, P.R., Rowlings, D.W., Kimber, S., Van Zwieten L., 2011. Effect of biochar
995 amendment on the soil-atmosphere exchange of greenhouse gases from an intensive
996 subtropical pasture in northern New South Wales, Australia. *Plant and Soil* 345, 47–
997 58.

998 Schrier-Uijl, A.P., Kroon, P.S., Hensen, A., Leffelaar, P.A., Berendsea, F., Veenendaala,
999 E.M., 2009. Comparison of chamber and eddy covariance-based CO₂ and CH₄ emission
1000 estimates in a heterogeneous grass ecosystem on peat. *Agriculture and Forest
1001 Meteorology* 150, 825-831.

1002 Segers, R., 1998. Methane production and methane consumption: a review of processes
1003 underlying wetland methane fluxes. *Biogeochemistry* 41, 23–51.

1004 Seredych, M., Bandosz, T.J., 2007. Mechanism of ammonia retention on graphite oxi- des:
1005 role of surface chemistry and structure. *The Journal of Physical Chemistry C*, 111,
1006 15596–15604.

1007 Shneour, E.A., 1966. Oxidation of graphitic carbon in certain soils. *Science* 151, 991–992.

1008 Simek, M., Cooper, J. E., 2002. The influence of soil pH on denitrification: Progress towards
1009 the understanding of this interaction over the last 50 years. *European Journal of Soil
1010 Science* 53, 345–354.

1011 Singh, B.P., Cowie, A.L., 2014. Long-term influence of biochar on native organic carbon
1012 mineralization in a low-carbon clayey soil. *Nature Scientific Reports* 4, 3687.

1013 Singh, B.P., Cowie, A.L., Smernik, R.J., 2012. Biochar carbon stability in a clayey soil as a
1014 function of feedstock and pyrolysis temperature. *Environmental Science and
1015 Technology* 46, 11770–11778.

1016 Singh, B.P., Hatton, B.J., Balwant, S., Cowie, A.L., Kathuria, A., 2010. Influence of
1017 biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils.
1018 *Journal of Environmental Quality* 39, 1224–1235.

1019 Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R., 2010. A review of biochar and its use and
1020 function in soil. In: Sparks, D., (Ed.), *Advances in Agronomy*, vol. 105, Elsevier, New
1021 York, pp. 47–82.

1022 Song, Y., Zhang, X., Ma, B., Chang, S., Gong, J., 2014. Biochar addition affected the
1023 dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline
1024 soil. *Biology and Fertility of Soils* 50, 321–332.

1025 Spokas, K.A., 2013. Impact of biochar field aging on laboratory greenhouse gas production
1026 potentials. *Global Change Biology Bioenergy* 5, 165–176

1027 Spokas, K.A., Reicosky, D., 2009. Impacts of sixteen different biochars on soil greenhouse
1028 gas production. *Annals of Environmental Science* 3, 179–193.

1029 Spokas, K.A., Koskinen, W.C., Baker, J.M., Reicosky, D.C., 2009. Impacts of woodchip
1030 biochar additions on greenhouse gas production and sorption/degradation of two
1031 herbicides in a Minnesota soil. *Chemosphere* 77, 574–581.

1032 Spokas, K.A., Cantrell, K.B., Novak, J.M., Archer, D.W., Ippolito, J.A., Collins, H.P.,
1033 Boateng, A.A., Lima, I.M., Lamb, M.C., McAlloon, A.J., Lentz, R.D., Nichols, K.A.,
1034 2012. Biochar: a synthesis of its agronomic impact beyond carbon sequestration.
1035 *Journal of Environmental Quality* 41, 973–989.

1036 Steinbeiss, S., Gleixner, G., Antonietti, M., 2009. Effect of biochar amendment on soil
1037 carbon balance and soil microbial activity. *Soil Biology and Biochemistry* 41, 1301–
1038 1310.

1039 Thies, J.E., Rillig, M.C., Gruber, E., 2015. Biochar effects on the abundance, activity and
1040 diversity of the soil biota. In: Lehman, J., Joseph, S., (Eds), *Biochar for Environmental
1041 Management: Science, Technology, and Implementations*. Routledge, Abingdon, UK,
1042 pp. 327–389.

1043 Throback, I.N., Enwall, K., Jarvis, A., Hallin, S., 2004. Reassessing PCR primers targeting
1044 *nirS*, *nirK* and *nosZ* genes for community surveys of denitrifying bacteria with DGGE.
1045 *FEMS Microbiology Ecology* 49, 401–417.

1046 Töwe, S., Albert, A., Kleineidam, K., Brankatschk, R., Dümig, A., Welzl, G., Munch, J.C.,
1047 Zeyer, J., Schloter, M., 2010. Abundance of microbes involved in nitrogen
1048 transformation in the rhizosphere of *Leucanthemopsis alpina* (L.) Heywood grown in
1049 soils from different sites of the Damma glacier forefield. *Microbial Ecology* 60, 762–
1050 770

1051 Troy, S.M., Lawlor, P.G., O'Flynn, C.J., Healy, M.G., 2013. Impact of biochar addition to
1052 soil on greenhouse gas emissions following pig manure application. *Soil Biology and*
1053 *Biochemistry* 60, 173–181.

1054 Tsukagoshi, S., Fukui, M., Shinoyama, H., Noda, K., Ikegami, F., 2010. The effect of
1055 charcoal amendment on the lettuce growth and NO_3^- -N discharge from the soil
1056 medium. *Acta Horticulturae* 852, 319–324.

1057 Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H., 2010. Contaminant
1058 immobilization and nutrient release by biochar soil amendment: roles of natural
1059 organic matter. *Chemosphere* 80, 935–940.

1060 Uchimiya, S.M., Wartelle, L.H., Boddu, V.M., 2012. Sorption of triazine and
1061 organophosphorus pesticides on soil and biochar. *Journal of Agricultural and Food*
1062 *Chemistry* 60, 2989–2997.

1063 van Zwieten, L., Singh, B.P., Joseph, S., Kimber, S., Cowie, A., Chan, K.Y., 2009. Biochar
1064 and emissions of non- CO_2 greenhouse gases from soil. In: Lehmann, J., Joseph, S.,
1065 (Eds.), *Biochar for Environmental Management: Science and Technology*, Earthscan,
1066 London, pp. 227–249.

1067 van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S., Cowie,
1068 A., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic
1069 performance and soil fertility. *Plant and Soil* 327, 235–246.

1070 van Zwieten, L., Singh, B.P., Kimber, S.W.L., Murphy, D.V., Macdonald, L.M., Rust, J.,
1071 Morris, S., 2014. An incubation study investigating the mechanisms that impact N_2O
1072 flux from soil following biochar application. *Agriculture, Ecosystems and*
1073 *Environment* 191, 53–62.

1074 van Zwieten, L., Kammann, C., Cayuela, M., Singh, B. P., Joseph, S., Kimber, S., Donne,
1075 S., Clough, T., Spokas, K.A, 2015. Biochar effects on nitrous oxide and methane
1076 emissions from soil. In: Lehmann, J., Joseph, J., (Eds.) *Biochar for Environmental*
1077 *Management: Science, Technology and Implementation*, Routledge, New York, pp.
1078 489–520.

1079 Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig, M.C., 2007. Mycorrhizal responses to
1080 biochar in soil – concepts and mechanisms. *Plant and Soil* 300, 9–20.

1081 Watts, H., 1958. The oxidation of charcoal by nitric oxide and the effect of some additives.
1082 *Transactions of the Faraday Society* 54, 93–105.

1083 Wang, C., Lu, H., Dong, D., Deng, H., Strong, P.J., Wang, H., Wu, W., 2013. Insight into
1084 the effects of biochar on manure composting: evidence supporting the relationship
1085 between N_2O emission and denitrifying community. *Environmental and Science*
1086 *Technology* 47, 7341–7349.

1087 Wang, J., Pan, X., Liu, Y., Zhang, X., Xiong, Z., 2012. Effects of biochar amendment in two
1088 soils on greenhouse gas emissions and crop production. *Plant and Soil* 360, 287–298.

1089 Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S., 2010. Sustainable
1090 biochar to mitigate global climate change. *Nature Communications* 1, 56.

1091 Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O., 2001. Role of nitrifier
1092 denitrification in the production of nitrous oxide. *Soil Biology and Biochemistry* 33,
1093 1723–1732.

1094 Xu, J.M., Tang, C., Chen, Z.L., 2006. Chemical composition controls residue decomposition
1095 in soils differing in initial pH. *Soil Biology and Biochemistry* 38, 544–552.

1096 Xu, H.J., Wang, X.H., Li, H., Yao, H.Y., Su, J.Q., Zhu, Y.G., 2014. Biochar impacts soil
1097 microbial community composition and nitrogen cycling in an acidic soil planted with
1098 rape. *Environmental Science and Technology* 48, 9391–9399.

1099 You, S., Ok, Y.S., Chen, S.S., Tsang, D.C.W., Kwon, E.E., Lee, J., Wang, C.-H., 2017. A
1100 critical review on sustainable biochar system through gasification: Energy and
1101 environmental applications. *Bioresource Technology* 246, 242–253.

1102 Yu, L., Tang, J., Zhang, R., Wu, Q., Gong, M., 2013. Effects of biochar application on soil
1103 methane emission at different soil moisture levels. *Biology and Fertility of Soils* 49,
1104 119–128.

1105 Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X.
1106 Han, X., Yu, X., 2012a. Effects of biochar amendment on soil quality, crop yield and
1107 greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice
1108 growing cycles. *Field Crops Research* 127, 153–160.

1109 Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X., 2012b. Effect of biochar
1110 amendment on maize yield and greenhouse gas emissions from a soil organic carbon
1111 poor calcareous loamy soil from Central China Plain. *Plant and Soil* 351, 263–275.

1112 Zimmerman, A.R., Gao, B., Ahn, M.Y., 2011. Positive and negative carbon mineralization
1113 priming effects among a variety of biochar-amended soils. *Soil Biology and*
1114 *Biochemistry* 43, 1169–1179.

1115 Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A., Smith, G., 2010. *Mixed Effects Models and*
1116 *Extensions in Ecology with R*. Springer, New York.

1117 Xiao, R., Awasthi, M.K., Li, R., Park, J., Pensky, S.M., Wang, Q., Wang, J.J., Zhang, Z.,
1118 2017. Recent developments in biochar utilization as an additive in organic solid waste
1119 composting: A review. *Bioresource Technology* 246, 203–213.

1120

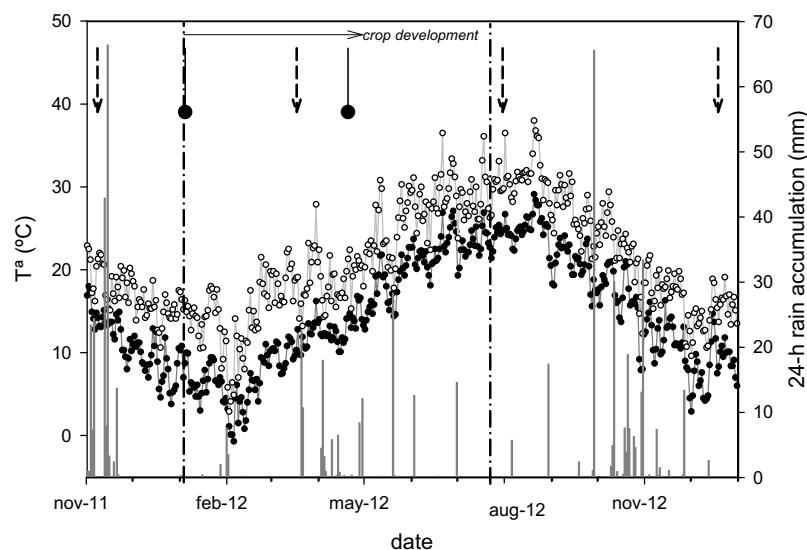
1121
1122 **FIGURE CAPTIONS**
1123

1124 **Figure 1.** Mean daily temperature (empty dots), maximum daily
1125 temperature (filled dots), and 24-hour accumulated precipitation during the
1126 study period in Cerdanyola del Vallès, the closest weather station (c.a 4 km
1127 from experimental set up). Data has been provided by the Meteorological
1128 Service of Catalonia (XEMEC). The arrows in the top indicate the sampling
1129 dates. The figure contains also culture information: 2 periods of fertilization
1130 (black dots) and the period of crop development from seeding to harvesting
1131 (vertical lines).

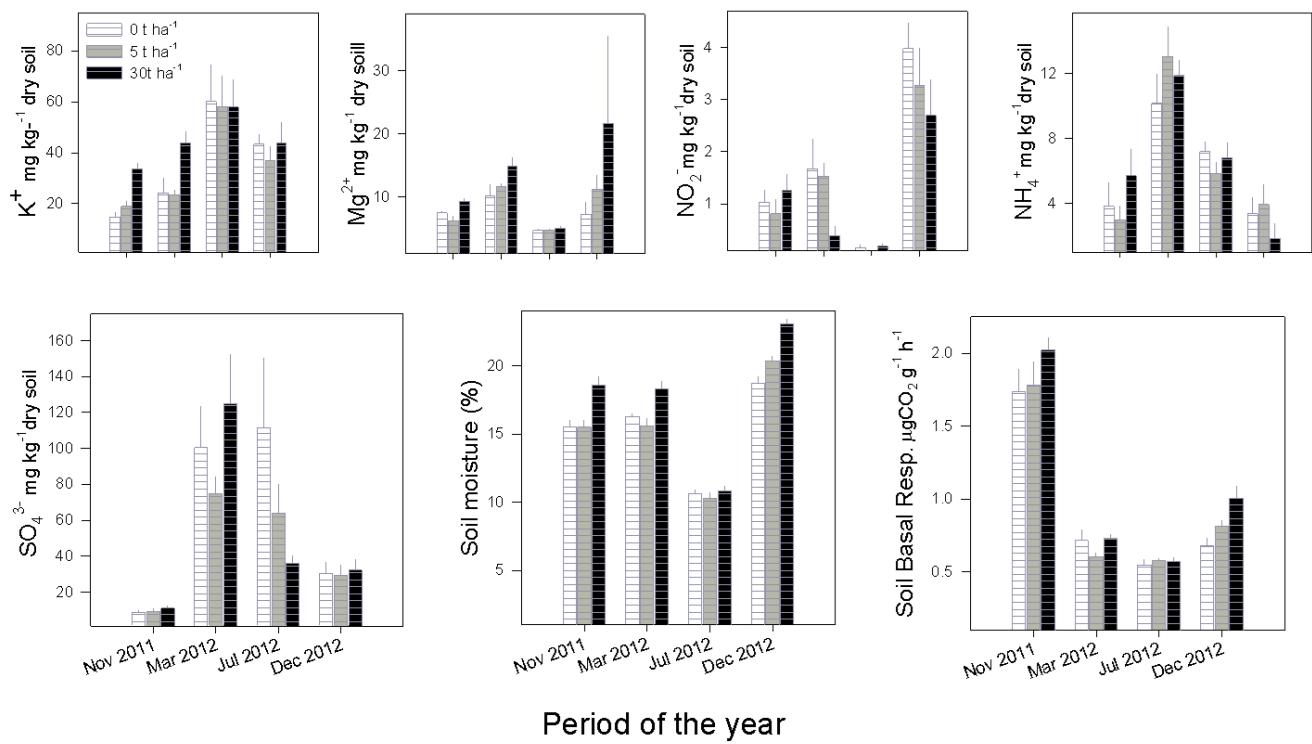
1132
1133 **Figure 2.** Mean soil water-soluble ions, moisture, and basal respiration per
1134 sampling and biochar treatments. Only those with significant changes
1135 during the experimental period are shown (see Table S2 for the GLMM
1136 probability values).

1137
1138 **Figure 3.** Heatmap of bacterial gene abundance (\log_{10} of the copies number)
1139 during the experiment in the different biochar addition treatments.

1140
1141 **Figure 4.** Mean emission rates of N_2O , CH_4 and CO_2 per sampling and
1142 biochar treatment.


1143
1144 **Figure 5.** N_2O and CH_4 emission relationship with soil temperature (at 5-7
1145 cm depth) in the control and the highest application rate treatments.

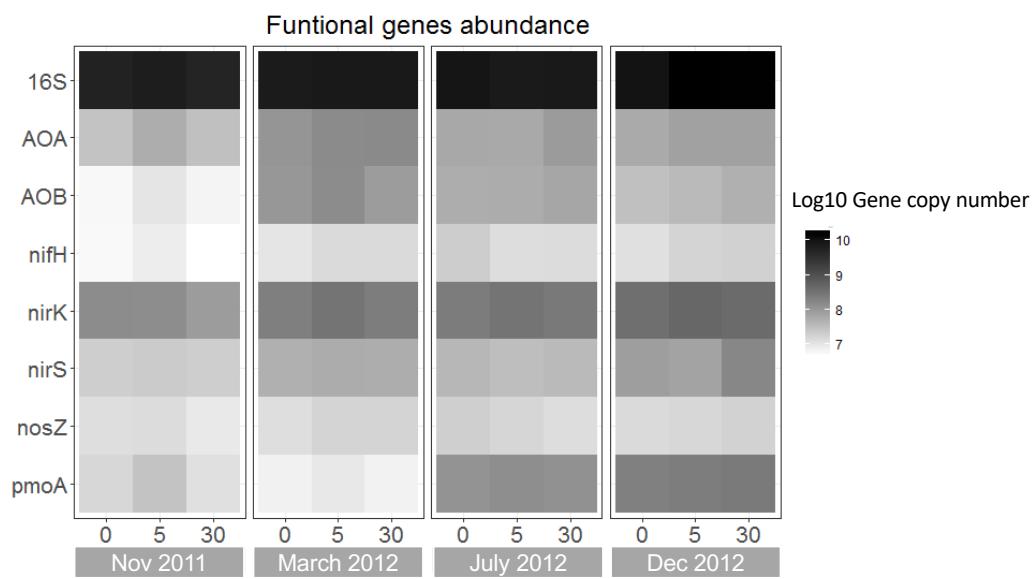
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159


1 **Figure 1**

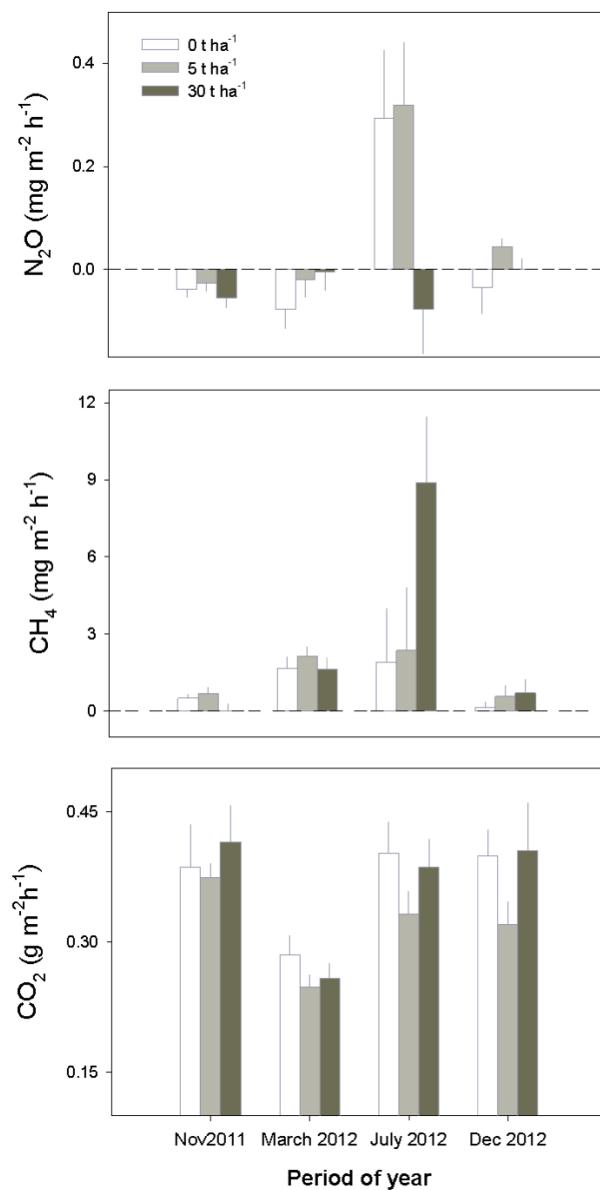
2

3

1 **Figure 2**


2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1 **Figure 3**


2

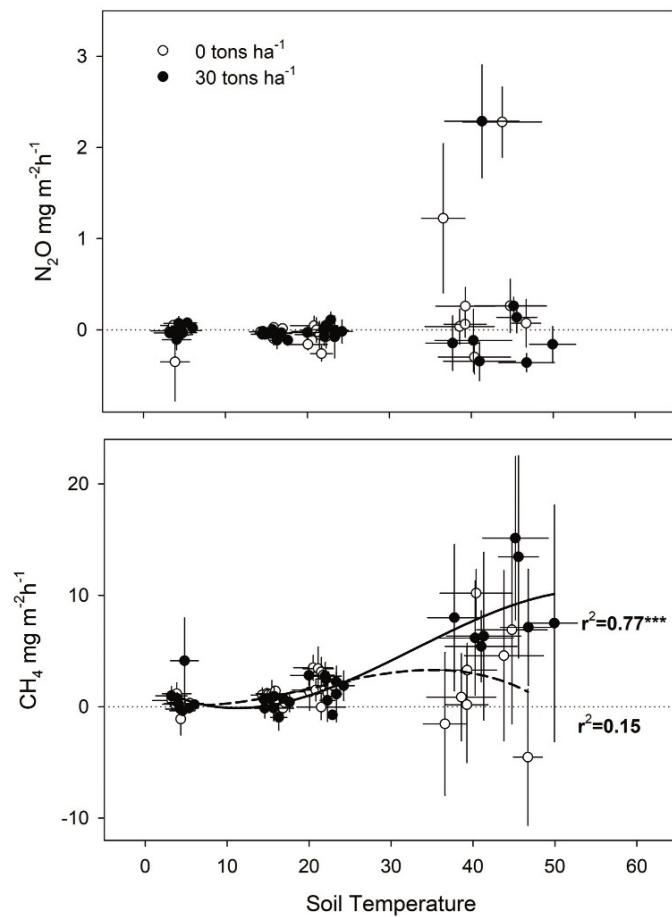
3

4

1 **Figure 4**

2

3


4

5

6

7

1 **Figure 5**

2
3
4
5

Supplementary Materials

Table S1. Primers and thermal profiles used for real-time PCR quantification of the different target genes.

Target gene	Primers	Thermal profile	Number of cycles	Reference
16S rRNA	EUB338 EUB518	95°C- 45 s / 53°C- 45 s / 72°C,-45 s	40	Fierer et al., 2005
<i>nifH</i>	<i>nifHF</i> <i>nifHR</i>	95 °C – 45 s/ 55 °C – 45 s/ 72 °C – 45 s	40	Rosch et al; 2002
<i>amoA</i> AOA	<i>amo19F</i> CrenamoA16r48x	95°C, 45 s / 55°C, 45 s / 72°C, 45 s	40	Leininger et al., 2006 Schauss et al., 2009
<i>amoA</i> AOB	<i>amoA1F</i> <i>amoA2R</i>	95 °C – 45 s/ 60 °C – 45 s/ 72 °C – 45 s	40	Francis et al; 2005
<i>nirK</i>	<i>nirK876C</i> <i>nirK1040</i>	95 °C – 15 s/63 °C – 30 s/72 °C – 30 s 95 °C – 15 s/58 °C – 30 s/72 °C – 30 s	6 ^a 40	Henry et al; 2004
<i>nosZ</i>	<i>nosZ2F</i> <i>nosZ2R</i>	95 °C – 15 s/65 °C – 30 s/72 °C – 30 s 95 °C – 15 s/60 °C – 30 s/72 °C – 30 s	6 ^a 40	Henry et al; 2006
<i>nirS</i>	<i>nirScd3aF</i> <i>nirSR3cd</i>	95 °C –15 s/ 57 °C – 30 s/ 60 °C – 15 s	40	Michotey et al. (2000) Throback et al. (2004)
<i>pmoA</i>	A189 A682	95 °C –30 s/58.5 °C – 30 s/72 °C – 30 s	40	Juottonen et al., 2006

^a touchdown -1°C for cycle

Table S2. Generalized mixed models (GLMM) evaluating the effect of biochar addition on soil chemical properties (only the models with significant or nearly significant results are shown): a) Linear mixed-effects model fit by REML we carried out in R software (lme4 package) with the formula `lme.var.<-lme(var.~HR-biochar, random=~1|Mesocosm)`, where HR-biochar corresponds to the biochar application rate comparison between 0 versus 30 t ha⁻¹, and season corresponds to each of the sampled periods during the year (fall 2011, springtime 2012, summer 2012 or winter 2012); and b) similarly, in this case linear mixed-effects model with the formula `lme.var.<-lme(var.~LD-biochar, random=~1|Mesocosm)`, where LD-biochar corresponds to the biochar application rate comparison between 0 versus 5 t ha⁻¹. For each model, the transformation method of the response variable is shown together with the number of available observations (n) used for each model construction. Rows in bold highlight statistically significant results (p<0.05) regarding biochar amendments.

a. HR- of biochar application

Potassium, ln(x), n=64

Random effects	Variance
Mesocosm	0.26
Residual	0.52

Fixed Effects	Value	Std. error	df	t	p
intercept	2.62	0.21	42	12.70	0.0000
HR-biochar	0.87	0.29	14	2.98	0.0099
factor (spring)	0.21	0.26	42	0.78	0.44
factor (summer)	1.29	0.26	42	4.94	0.0000
factor (winter)	1.10	0.26	42	4.20	0.0001
HR-biochar*factor(spring)	0.04	0.37	42	0.12	0.90
HR-biochar*factor(summer)	-0.83	0.37	42	-2.56	0.03
HR-biochar*factor(winter)	-0.97	0.37	42	-2.80	0.01

Magnesium, ln(x+2), n=64

Random effects	Variance
Mesocosm	0.09
Residual	0.50

Fixed Effects	Value	Std. error	df	t	p
intercept	2.19	0.14	45	15.24	0.0000
HR-biochar	0.28	0.13	14	2.08	0.05
factor (spring)	0.24	0.18	45	1.37	0.17
factor (summer)	-0.42	0.18	45	-2.36	0.02

factor (winter)	-0.06	0.18	45	-0.36	0.72
-----------------	-------	------	----	-------	------

Calcium, $\ln(x)$, n=64

Random effects	Variance
Mesocosm	0.045
Residual	0.43

Fixed Effects	Value	Std. error	df	t	p
intercept	5.09	0.15	42	33.53	0.0000
HR-biochar	-0.05	0.21	14	-0.22	0.83
factor (spring)	-0.13	0.21	42	-0.62	0.53
factor (summer)	-0.39	0.21	42	-1.86	0.07
factor (winter)	0.96	0.21	42	4.50	0.0001
HR-biochar*factor(spring)	0.52	0.30	42	1.72	0.09
HR-biochar*factor(summer)	-0.06	0.30	42	-0.21	0.83
HR-biochar*factor(winter)	0.06	0.30	42	0.20	0.84

Nitrite, $\ln(x+2)$, n=64

Random effects	Variance
Mesocosm	0.06
Residual	0.27

Fixed Effects	Value	Std. error	df	t	p
intercept	1.08	0.11	66	5.37	0.0000
HR-biochar	0.07	0.006	22	0.88	0.39
factor (spring)	0.14	0.13	66	2.43	0.01
factor (summer)	-0.32	0.13	66	-3.39	0.001
factor (winter)	0.68	0.13	66	6.76	0.0000
HR-biochar*factor(spring)	-0.44	0.008	66	-3.33	0.02
HR-biochar*factor(summer)	-0.05	0.008	66	-0.46	0.78
HR-biochar*factor(winter)	-0.37	0.008	66	-2.21	0.05

Ammonium, $\ln(x+1)$, n=64

Random effects	Variance
Mesocosm	2.08e-05
Residual	0.64

Fixed Effects	Value	Std. error	df	t	p
intercept	1.26	0.23	42	5.51	0.0000
HR-biochar	0.35	0.32	14	1.09	0.29
factor (spring)	0.94	0.32	42	2.90	0.005
factor (summer)	0.82	0.32	42	2.55	0.01
factor (winter)	0.05	0.32	42	0.15	0.87
HR-biochar*factor(spring)	-0.01	0.45	42	-0.03	0.97

HR-biochar*factor(summer)	-0.42	0.45	42	-0.91	0.36
HR-biochar*factor(winter)	-0.85	0.45	42	-1.88	0.06

Phosphate, $\ln(x)$, n=64

Random effects	Variance
Mesocosm	0.21
Residual	0.42

Fixed Effects	Value	Std. error	df	t	p
intercept	0.83	0.16	42	4.99	0.0000
HR-biochar	-0.003	0.23	14	-0.01	0.99
factor (spring)	0.84	0.21	42	4.05	0.0002
factor (summer)	1.41	0.21	42	6.75	0.0000
factor (winter)	0.82	0.21	42	3.94	0.0003
HR-biochar *factor(spring)	-0.15	0.29	42	-0.51	0.61
HR-biochar*factor(summer)	-0.33	0.29	42	-1.13	0.26
HR-biochar*factor(winter)	0.48	0.29	42	1.64	0.10

Sulphate, $\ln(x)$, n=63

Random effects	Variance
Mesocosm	2.3e-05
Residual	0.69

Fixed Effects	Value	Std. error	df	t	p
intercept	1.91	0.24	41	7.82	0.0000
HR-biochar	0.39	0.35	14	1.13	0.28
factor (spring)	2.42	0.35	41	6.99	0.0000
factor (summer)	2.43	0.36	41	6.78	0.0000
factor (winter)	1.22	0.35	41	3.53	0.001
HR-biochar*factor(spring)	-0.04	0.48	41	-0.07	0.94
HR-biochar*factor(summer)	-1.20	0.48	41	-2.40	0.02
HR-biochar*factor(winter)	-0.16	0.48	41	-0.32	0.74

$\text{NO}_3^-/\text{NH}_4^+$, $\ln(x+2)$, n=63

Random effects	Variance
Mesocosm	1.8-05
Residual	0.60

Fixed Effects	Value	Std. error	df	t	p
intercept	1.81	0.21	41	8.58	0.0000
HR-biochar	-0.37	0.30	14	-1.25	0.23
factor (spring)	0.41	0.31	41	1.34	0.19
factor (summer)	-0.36	0.30	41	-1.21	0.23

factor (winter)	-0.05	0.30	41	-0.17	0.86
HR-biochar*factor(spring)	0.03	0.43	41	0.07	0.93
HR-biochar*factor(summer)	0.37	0.42	41	0.89	0.38
HR-biochar*factor(winter)	1.04	0.42	41	2.47	0.02

NO₂+NO₃⁻/NH₄⁺, ln(x+2), n=63

Random effects	Variance
Mesocosm	1.8-05
Residual	0.62

Fixed Effects	Value	Std. error	df	t	p
intercept	1.90	0.22	41	8.62	0.0000
HR-biochar	-0.35	0.31	14	-1.23	0.28
factor (spring)	0.33	0.32	41	1.02	0.31
factor (summer)	-0.45	0.31	41	-1.44	0.16
factor (winter)	0.09	0.31	41	0.30	0.76
HR-biochar*factor(spring)	-0.001	0.45	41	-0.003	0.99
HR-biochar*factor(summer)	0.35	0.44	41	0.80	0.43
HR-biochar*factor(winter)	1.02	0.44	41	2.31	0.03

Moisture, ln(x), n=64

Random effects	Variance
Mesocosm	0.02
Residual	0.08

Fixed Effects	Value	Std. error	df	t	p
intercept	2.74	0.03	42	91.49	0.0000
HR-biochar	0.18	0.04	14	2.29	0.0008
factor (spring)	0.05	0.04	42	1.28	0.21
factor (summer)	-0.38	0.04	42	-9.38	0.0000
factor (winter)	-0.07	0.04	42	4.67	0.0000
HR-biochar*factor(spring)	-0.16	0.06	42	-1.18	0.33
HR-biochar*factor(summer)	-0.09	0.06	42	-2.74	0.009
HR- biochar*factor(winter)	0.03	0.06	42	0.49	0.63

b. LR- of biochar application

Sodium, ln(x+1), n=64

Random effects	Variance
Mesocosm	0.14
Residual	0.58

Fixed Effects	Value	Std. error	df	t	p

intercept	2.05	0.21	42	9.74	0.0000
LR-biochar	-0.61	0.29	14	-2.05	0.05
factor (spring)	0.39	0.29	42	1.37	0.18
factor (summer)	0.46	0.29	42	1.59	0.11
factor (winter)	0.001	0.29	42	0.003	0.99
LR-biochar*factor(spring)	0.89	0.41	42	2.20	0.03
LR-biochar*factor(summer)	0.46	0.41	42	1.14	0.26
LR-biochar*factor(winter)	0.50	0.41	42	1.23	0.22

Calcium, ln(x), n=64

Random effects	Variance
Mesocosm	0.04
Residual	0.46

Fixed Effects	Value	Std. error	df	t	p
intercept	5.09	0.16	42	31.08	0.0000
LR-biochar	-0.25	0.23	14	-1.09	0.29
factor (spring)	-0.13	0.23	42	-0.58	0.56
factor (summer)	-0.39	0.23	42	-1.72	0.09
factor (winter)	0.96	0.23	42	4.17	0.0002
LR-biochar*factor(spring)	0.63	0.32	42	1.95	0.05
LR-biochar*factor(summer)	0.23	0.32	42	0.70	0.48
LR-biochar*factor(winter)	0.31	0.32	42	0.96	0.34

Chlorine, ln(x), n=64

Random effects	Variance
Mesocosm	0.05
Residual	0.76

Fixed Effects	Value	Std. error	df	t	p
intercept	2.47	0.27	42	9.19	0.0000
LR-biochar	-0.63	0.38	14	-1.65	0.12
factor (spring)	0.03	0.38	42	0.09	0.92
factor (summer)	0.75	0.38	42	-0.35	0.72
factor (winter)	-0.13	0.38	42	6.76	0.0000
LR-biochar*factor(spring)	0.95	0.54	42	1.77	0.08
LR-biochar*factor(summer)	0.74	0.54	42	1.38	0.17
LR-biochar*factor(winter)	0.89	0.54	42	1.65	0.10

Phosphate, ln(x), n=64

Random effects	Variance
Mesocosm	0.15
Residual	0.43

Fixed Effects	Value	Std. error	df	t	p
intercept	0.83	0.16	42	5.08	0.0000
LR-biochar	0.02	0.23	14	0.07	0.94
factor (spring)	0.84	0.22	42	3.09	0.0003
factor (summer)	1.41	0.22	42	6.51	0.0000
factor (winter)	0.82	0.22	42	3.79	0.0005
LR-biochar*factor(spring)	0.07	0.31	42	0.23	0.82
LR-biochar*factor(summer)	0.31	0.31	42	1.00	0.32
LR-biochar*factor(winter)	0.63	0.31	42	2.08	0.04

Table S3. Generalized mixed models (GLMM) evaluating the effect of biochar addition on soil biological activity properties (only the models with significant or nearly significant results are shown). a. Linear mixed-effects model fit by REML we carried out in R software (lme4 package) with the formula `lme.X<-lme(X~HR-biochar, random=~1|Mesocosm)`, where HR-biochar corresponds to the biochar application rate comparison between 0 versus 30 t ha⁻¹, and season corresponds to each of the sampled periods during the year (fall 2011, springtime 2012, summer 2012 or winter 2012); and b. correspondingly, in this case linear mixed-effects model with the formula `lme.var.<-lme(var.~LD-biochar, random=~1|Mesocosm)`, where LD-biochar corresponds to the biochar application rate comparison between 0 versus 5 t ha⁻¹. For each model, the transformation method of the response variable is shown together with the number of available observations (n) used for each model construction. Rows in bold highlight statistically significant results (p<0.05) regarding biochar amendments.

a. HR- of biochar application

Basal Respiration, untransf., n=63

Random effects	Variance
Mesocosm	7.86e-06
Residual	0.23

Fixed Effects	Value	Std. error	df	t	p
intercept	1.74	0.08	41	21.48	0.0000
HR-biochar	0.28	0.11	14	2.48	0.02
factor (spring)	-1.02	0.11	41	-8.93	0.0000
factor (summer)	-1.19	0.11	41	-10.40	0.0000
factor (winter)	-1.06	0.11	41	-9.23	0.0000
HR-biochar*factor(spring)	-0.27	0.16	41	-1.62	0.11
HR-biochar*factor(summer)	-0.26	0.16	41	-1.62	0.11
HR-biochar*factor(winter)	0.04	0.16	41	0.25	0.80

16S RNA, log₁₀(x), n=64

Random effects	Variance
Mesocosm	0.04
Residual	0.18

Fixed Effects	Value	Std. error	df	t	p
intercept	9.72	0.06	42	146.24	0.0000
HR-biochar	-0.02	0.09	14	-0.18	0.85
factor (spring)	0.14	0.09	42	1.54	0.13
factor (summer)	0.26	0.09	42	2.80	0.007

factor (winter)	0.25	0.09	42	2.78	0.008
HR-biochar*factor(spring)	0.08	0.13	42	0.64	0.53
HR-biochar*factor(summer)	-0.07	0.13	42	-0.55	0.58
HR-biochar*factor(winter)	0.22	0.13	42	1.70	0.09

nirS/nirK, untransf., n=64

Random effects	Variance
Mesocosm	4.6e-06
Residual	0.20

Fixed Effects	Value	Std. error	df	t	p
intercept	0.17	0.07	42	2.48	0.02
HR-biochar	0.18	0.10	14	1.76	0.09
factor (spring)	0.13	0.10	42	1.34	0.18
factor (summer)	0.04	0.10	42	0.44	0.66
factor (winter)	0.07	0.10	42	0.73	0.47
HR-biochar*factor(spring)	-0.21	0.14	42	-1.49	0.14
HR-biochar*factor(summer)	-0.20	0.14	42	-1.43	0.16
HR-biochar*factor(winter)	-0.04	0.14	42	-0.26	0.79

Archaeal amoA (AOA)/ Bacterial amoA (AOB), untransf., n=64

Random effects	Variance
Mesocosm	0.95
Residual	2.60

Fixed Effects	Value	Std. error	df	t	p
intercept	5.31	0.98	42	5.41	0.000
HR-biochar	1.93	1.38	14	1.39	0.18
factor (spring)	-4.03	1.30	42	-3.09	0.003
factor (summer)	-3.94	1.30	42	-3.02	0.004
factor (winter)	-1.79	1.30	42	-1.37	0.17
HR-biochar*factor(spring)	-1.01	1.84	42	-0.55	0.58
HR-biochar*factor(summer)	-1.34	1.84	42	-0.72	0.47
HR-biochar*factor(winter)	-3.37	1.84	42	-1.83	0.07

b. LR- of biochar application

Metabolic quotient (qCO₂), untransf., n=64

Random effects	Variance
Mesocosm	9.6e-08
Residual	0.001

Fixed Effects	Value	Std. error	df	t	p
intercept	0.004	0.0004	42	10.53	0.0000

LR-biochar	0.0007	0.0006	14	1.16	0.26
factor (spring)	-0.0008	0.0006	42	-1.41	0.16
factor (summer)	-0.0024	0.0006	42	-3.86	0.0004
factor (winter)	0.00002	0.0006	42	0.03	0.97
LR-biochar*factor(spring)	-0.27	0.16	42	-1.82	0.07
LR-biochar*factor(summer)	-0.26	0.16	42	-1.03	0.31
LR-biochar*factor(winter)	0.04	0.16	42	0.28	0.77

nosZ/nirS+nirK, untransf., n=64

Random effects	Variance
Mesocosm	8.03e-07
Residual	0.04

Fixed Effects	Value	Std. error	df	t	p
intercept	0.09	0.01	42	6.56	0.0000
LR-biochar	0.02	0.02	14	1.36	0.19
factor (spring)	-0.03	0.02	42	-1.79	0.08
factor (summer)	-0.005	0.02	42	-0.29	0.77
factor (winter)	-0.06	0.02	42	-2.95	0.005
LR-biochar*factor(spring)	-0.03	0.03	42	-1.19	0.23
LR-biochar*factor(summer)	-0.06	0.03	42	-2.24	0.03
LR-biochar*factor(winter)	-0.03	0.03	42	-1.15	0.25

Archeal amoA (AOA) / Bacterial amoA (AOB), untransf., n=64

Random effects	Variance
Mesocosm	0.81
Residual	4.99

Fixed Effects	Value	Std. error	df	t	p
intercept	5.31	1.78	42	2.97	0.005
LR-biochar	5.19	2.53	14	2.06	0.05
factor (spring)	-4.03	2.49	42	-1.61	0.003
factor (summer)	-3.94	1.30	42	-1.58	0.004
factor (winter)	-1.79	2.49	42	-0.72	0.17
LR-biochar*factor(spring)	-5.15	3.53	42	-1.46	0.58
LR-biochar*factor(summer)	-5.39	3.53	42	-1.53	0.47
LR-biochar*factor(winter)	-6.62	3.53	42	-1.88	0.06

nosZ/(AOA+AOB), untransf., n=64

Random effects	Variance
Mesocosm	1.5e-06
Residual	0.13

Fixed Effects	Value	Std. error	df	t	p

intercept	0.43	0.05	42	9.09	0.0000
LR-biochar	-0.16	0.06	14	-2.47	0.02
factor (spring)	-0.36	0.06	42	-5.48	0.0000
factor (summer)	-0.25	0.06	42	-3.83	0.0004
factor (winter)	-0.27	0.06	42	-4.15	0.0002
LR-biochar*factor(spring)	0.16	0.09	42	1.71	0.09
LR-biochar*factor(summer)	0.14	0.09	42	1.48	0.14
LR-biochar*factor(winter)	0.15	0.09	42	1.61	0.11

nosZ/Archeal amoA (AOA), untransf., n=64

Random effects	Variance
Mesocosm	4.8e-06
Residual	0.17

Fixed Effects	Value	Std. error	df	t	p
intercept	0.53	0.06	42	8.48	0.0000
LR-biochar	-0.18	0.08	14	-2.13	0.05
factor (spring)	-0.40	0.08	42	-4.65	0.0000
factor (summer)	-0.17	0.08	42	-1.92	0.06
factor (winter)	-0.28	0.08	42	-3.26	0.002
LR-biochar*factor(spring)	0.18	0.12	42	1.46	0.14
LR-biochar*factor(summer)	0.12	0.12	42	0.98	0.33
LR-biochar*factor(winter)	0.15	0.12	42	1.25	0.21

Table S4. Generalized mixed models (GLMM) evaluating the effects of biochar addition on N₂O, CH₄, and CO₂ exchange rates. a. Linear mixed-effects model fit by REML we carried out in R software (lme4 package) with the formula lme.gas<-lme(gas~HR-biochar, random=~1|Event/Mesocosm), where HR-biochar corresponds to the biochar application rate comparison between 0 versus 30 t ha⁻¹, season corresponds to each of the periods during the sampled years (fall 2011, springtime 2012, summer 2012 or winter 2012), and event to each of the 2-4 consecutive days of measurements per season; and b. similarly, in this case linear mixed-effects model with the formula lme.gas<-lme(gas~LD-biochar, random=~1|Event/Mesocosm), where LD-biochar corresponds to the biochar application rate comparison between 0 versus 5 t ha⁻¹. For each model, the transformation method of the response variable is shown together with the number of available observations (n) used for each model construction. Rows in bold highlight statistically significant results (p<0.05) regarding biochar amendments.

N₂O (mg m⁻² h⁻¹),

a. HR- of biochar application, $\ln(x+10)$, n=199

Random effects	Variance
Event	9.5e-07
Mesocosm in Event	2.9e-05
Residual	0.39

Fixed Effects	Value	Std. error	df	t	p
Intercept	-0.04	0.08	129	-0.54	0.59
HR-biochar	-0.02	0.11	59	-0.16	0.87
spring	-0.06	0.11	129	-0.58	0.56
summer	0.15	0.11	129	1.43	0.15
fall	-0.04	0.12	129	-0.32	0.75
HR-biochar*spring	0.12	0.15	129	0.83	0.41
HR-biochar*summer	-0.35	0.15	129	-2.34	0.02
HR-biochar*fall	0.09	0.17	129	0.56	0.58

b. LR- of biochar application, $\ln(x+10)$, n=204

Random effects	Variance
Event	0.04
Mesocosm in Event	0.02
Residual	0.06

Fixed Effects	Value	Std. error	df	t	p
Intercept	1.57	0.02	126	74.41	0.00

LR-biochar	0.003	0.02	63	0.17	0.87
spring	-0.002	0.02	126	-0.11	0.91
summer	0.09	0.02	126	4.67	0.00
fall	-0.01	0.02	126	-0.52	0.60
LR-biochar*spring	0.008	0.02	129	0.33	0.74
LR-biochar*summer	-0.004	0.03	126	-0.14	0.88
LR-biochar*fall	0.01	0.03	126	0.45	0.65

CH₄ (mg m⁻² h⁻¹),

a. HR- of biochar application, $\ln(x+25)$, n=197

Random effects	Variance
Event	0.014
Mesocosm in Event	2.2e-05
Residual	0.29

Fixed Effects	Value	Std. error	df	t	p
Intercept	3.24	0.06	127	52.96	0.0000
HR-biochar	-0.02	0.09	59	-0.24	0.81
spring	0.04	0.08	127	0.49	0.63
Summer	-0.06	0.08	127	-0.78	0.43
Fall	-0.02	0.09	127	-0.17	0.86
HR-biochar*spring	0.02	0.11	127	0.19	0.85
HR-biochar*summer	0.26	0.12	127	2.25	0.03
HR-biochar*fall	0.04	0.13	127	0.30	0.76

b. LR- of biochar application, $\ln(x+25)$, n=202

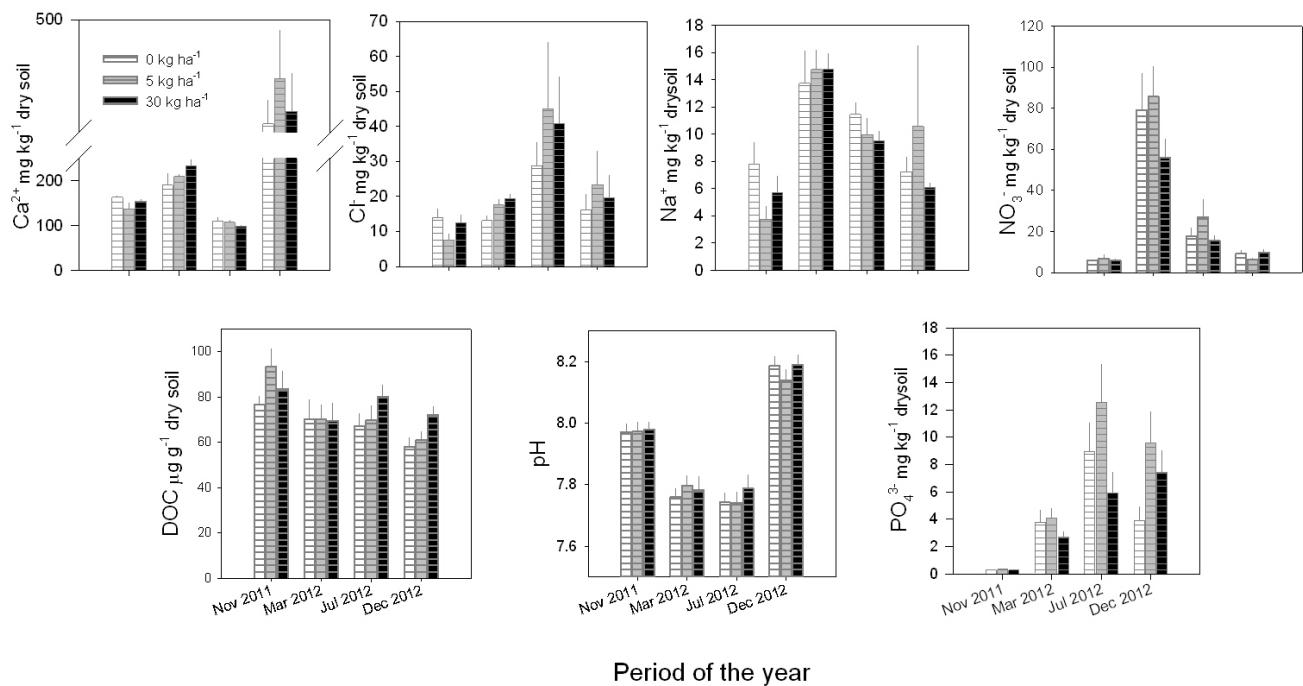
Random effects	Variance
Event	1.88e-07
Mesocosm in Event	1.46e-05
Residual	0.34

Fixed Effects	Value	Std. error	df	t	p
Intercept	3.24	0.06	124	46.86	0.0000
HR-biochar	0.006	0.09	63	0.07	0.95
spring	0.04	0.09	124	0.44	0.66
summer	-0.06	0.09	124	-0.67	0.50
fall	-0.01	0.11	124	-0.13	0.89
HR-biochar*spring	0.01	0.13	124	0.09	0.92
HR-biochar*summer	-0.04	0.13	124	-0.29	0.77
HR-biochar*fall	0.009	0.15	124	0.06	0.95

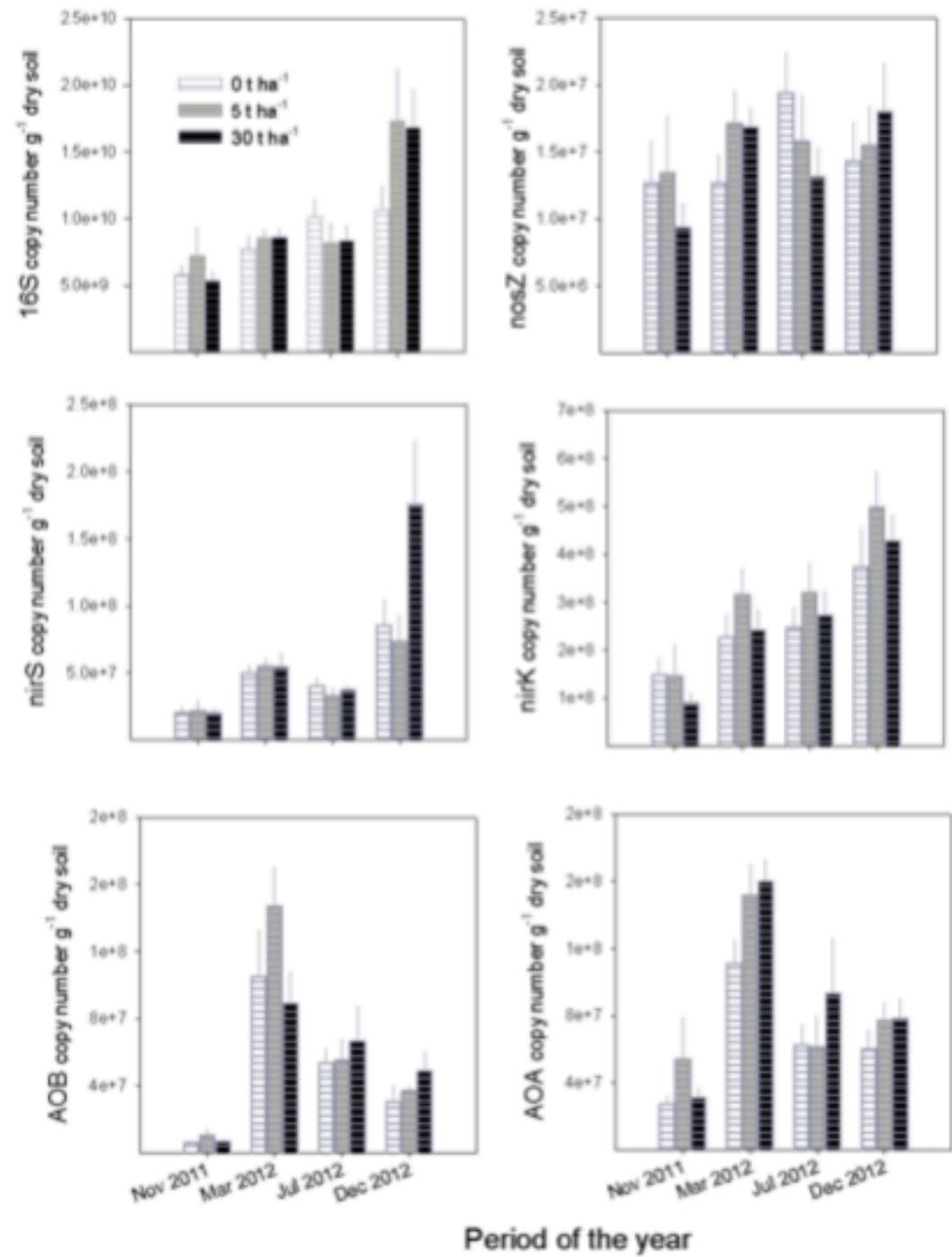
CO_2 ($\text{g m}^{-2} \text{h}^{-1}$),

a. HR- of biochar application, untransf., n=204

Random effects	Variance
Event	4.3e-06
Mesocosm in Event	0.06
Residual	0.16


Fixed Effects	Value	Std. error	df	t	p
Intercept	0.39	0.03	134	11.23	0.0000
HR-biochar	0.03	0.05	59	0.62	0.54
spring	-0.10	0.04	134	-2.33	0.02
summer	0.01	0.04	134	0.33	0.74
fall	0.01	0.05	134	0.29	0.77
HR-biochar*spring	-0.05	0.06	134	-0.85	0.40
HR-biochar*summer	-0.04	0.06	134	-0.74	0.46
HR-biochar*fall	-0.03	0.07	134	-0.40	0.69

b. LR- of biochar application, untransf., n=206


Random effects	Variance
Event	0.014
Mesocosm in Event	0.07
Residual	0.13

Fixed Effects	Value	Std. error	df	t	p
Intercept	0.38	0.03	128	12.73	0.0000
LR-biochar	-0.0004	0.04	63	-0.01	0.99
spring	-0.10	0.04	128	-2.82	0.005
summer	0.03	0.04	128	0.84	0.40
fall	0.006	0.04	128	0.13	0.89
LR-biochar*spring	-0.04	0.05	128	-0.85	0.40
LR-biochar*summer	-0.07	0.06	128	-1.15	0.26
LR-biochar*fall	-0.09	0.06	128	-1.45	0.15

Figure S1. Mean soil water-soluble content of other ions (see Table S1 for the GLMM probability values), dissolved organic carbon (DOC) and pH during the experiment in the different biochar addition treatments.

Figure S2. Abundance of bacterial gene copies during the experiment in the different biochar addition treatments.

