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Z2Z4-Additive Cyclic Codes: Kernel and Rank
Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba, and Roger Ten-Valls

Abstract—A Z2Z4-additive code C ⊆ Zα
2 × Zβ

4 is called

cyclic if the set of coordinates can be partitioned into

two subsets, the set of Z2 coordinates and the set of Z4

coordinates, such that any cyclic shift of the coordinates

of both subsets leaves the code invariant. Let Φ(C) be

the binary Gray map image of C. We study the rank

and the dimension of the kernel of a Z2Z4-additive cyclic

code C, that is, the dimensions of the binary linear codes

〈Φ(C)〉 and ker(Φ(C)). We give upper and lower bounds

for these parameters. It is known that the codes 〈Φ(C)〉 and

ker(Φ(C)) are binary images of Z2Z4-additive codes that

we denote by R(C) and K(C), respectively. Moreover, we

show that R(C) and K(C) are also cyclic and we determine

the generator polynomials of these codes in terms of the

generator polynomials of the code C.

Keywords Z2Z4-additive cyclic codes, Gray map,

kernel, rank.
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I. INTRODUCTION

Denote by Z2 and Z4 the rings of integers modulo

2 and modulo 4, respectively. We denote the space of

n-tuples over these rings as Zn2 and Zn4 . A binary code

is any non-empty subset C of Zn2 , and if that subset is

a vector space then we say that it is a linear code. Any

non-empty subset C of Zn4 is a quaternary code and a

submodule of Zn4 is called a linear code over Z4.

In 1994, Hammons et al. discovered that some good

non-linear binary codes can be seen as the Gray map

images of linear codes over Z4, [10]. From then on, the

study of codes over Z4 and other finite rings has been

developing and the construction of Gray maps has been

a topic of study.

In Delsarte’s 1973 paper (see [6]), he defined additive

codes as subgroups of the underlying abelian group in a

translation association scheme. For the binary Hamming

scheme, namely when the underlying abelian group is of

order 2n, the only structures for the abelian group are

those of the form Zα2 ×Z
β
4 , with α+2β = n. This means

that the subgroups C of Zα2 × Z
β
4 are the only additive

codes in a binary Hamming scheme. Hence, the study

of codes in Zα2 × Z
β
4 became important. These codes

are called Z2Z4-additive codes. The main properties,

structure and duality of Z2Z4-additive codes are studied

in [3]. In [1], Z2Z4-additive cyclic codes are introduced

and in [4], the generator polynomials and duality are

studied. Conditions for the linearity of the binary images

of Z2Z4-additive cyclic codes are established in [5].
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Let C be a binary code on length n. We define the

rank of C as rank(C) = dim(〈C〉) and the kernel of C

as ker(C) = {v ∈ Zn2 | v + C = C} [2]. When the

binary code is not linear, the rank and the dimension of

the kernel give measures of “nonlinearity” of the code.

It is well known (see [15]) that a nonlinear binary code

containing the all-zero vector is the union of cosets of

its kernel. In general, it is harder to deal with nonlinear

codes than with linear ones. However, the representation

of nonlinear binary codes as the union of cosets of the

kernel allows some efficient algorithms to work with

these codes as it is shown in [17].

Two binary codes, C1 and C2, are said to be equivalent

if there is a vector v ∈ Zn2 and a permutation of

coordinates π such that C2 = {v + π(c) | c ∈ C1}. If

C1 and C2 are equivalent, then they have the same rank

and the same dimension of the kernel. Therefore, both,

the rank and the dimension of the kernel, are invariants

that are used to distinguish between nonequivalent binary

codes and, therefore, to classify them. These invariants

are studied for many different well-known families of

codes, for example, perfect codes in [16] or binary

Hadamard codes in [13]. In fact, for some families of

codes, they are used to give a complete classification as

in the case of Z4-linear Hadamard codes in [11], [14].

Both parameters have been the topic of study for Z4

and Z2Z4-additive codes in several papers (e.g. [8], [9],

[11], [14]) and also for cyclic codes over Z4 in [7]. In

this paper, we study the rank and the kernel of Z2Z4-

additive codes when such codes are also cyclic, taking

into account the known results for general codes over

Z4 and Z2Z4-additive codes [7]–[9].

The paper is organized as follows. In Section II,

we recall the necessary concepts and properties on

Z2Z4-additive codes and Z2Z4-additive cyclic codes.

In Section III, we give the main results of the paper

about the rank and the kernel of Z2Z4-additive cyclic

codes. We prove that both the binary span and the

kernel are binary images of Z2Z4-additive cyclic codes,

we determine the possible values of the dimensions of

the corresponding binary images, and we compute the

generator polynomials of these codes.

II. PRELIMINARIES

A. Z2Z4-additive codes

A Z2Z4-additive code C is a subgroup of Zα2 × Z
β
4

(see [3]). Since C is a subgroup of Zα2 × Z
β
4 , it is also

isomorphic to an additive group of the form Zγ2 × Zδ4
and it has |C| = 2γ+2δ codewords.

Let X (respectively Y ) be the set of Z2 (respectively

Z4) coordinate positions, so |X| = α and |Y | = β.

Unless otherwise stated, the set X corresponds to the

first α coordinates and Y corresponds to the last β

coordinates. Let CX be the binary punctured code of

C formed by deleting the coordinates outside X . Define

similarly the quaternary code CY .

Let Cb be the subcode of C generated by all order two

codewords and let κ be the dimension of (Cb)X , which

is a binary linear code. For the case α = 0, we write

κ = 0. With all these parameters, we say that a code C

is of type (α, β; γ, δ;κ).

For a vector u ∈ Zα2 × Z
β
4 we write u = (u |

u′), where u = (u0, . . . , uα−1) ∈ Zα2 and u′ =

(u′0, . . . , u
′
β−1) ∈ Zβ4 .

In [3], it is shown that a Z2Z4-additive code is

permutation equivalent to a Z2Z4-additive code with

standard generator matrix of the form

GS =


Iκ Tb 2T2 0 0

0 0 2T1 2Iγ−κ 0

0 Sb Sq R Iδ

 , (1)

where Ik is the identity matrix of size k× k; Tb, Sb are

matrices over Z2; T1, T2, R are matrices over Z4 with
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all entries in {0, 1} ⊂ Z4; and Sq is a matrix over Z4.

A Z2Z4-additive code C is said to be separable if C =

CX×CY . Otherwise the code is said to be non-separable.

Let u′ = (u′0, . . . , u
′
n−1) be an element of Zn4 such

that u′i = ũ′i+2û′i, for i = 0, . . . , n−1 and with ũ′i, û
′
i ∈

{0, 1}. As in [10], the Gray map φ from Zn4 to Z2n
2 is

defined by

φ(u′) = (û′0, . . . , û
′
n−1, ũ

′
0 + û′0, . . . , ũ

′
n−1 + û′n−1).

The extended Gray map Φ is the map from Zα2 × Z
β
4

to Zα+2β
2 given by

Φ(u | u′) = (u | φ(u′)).

B. Z2Z4-additive cyclic codes

Cyclic codes have been a primary area of study for

coding theory, [12]. Recently, the class of Z2Z4-additive

cyclic codes has been defined in [1].

Let u = (u | u′) ∈ Zα2 × Z
β
4 , then the cyclic shift

π is given by π(u) = (π(u) | π(u′)) where π(u) =

π(u0, u1, . . . , uα−1) = (uα−1, u0, u1, . . . , uα−2) and

π(u′) = (u′β−1, u
′
0, u
′
1, . . . , u

′
β−2) . We say that a Z2Z4-

additive code C is cyclic if π(C) = C.

There exists a bijection between Zα2 ×Z
β
4 and Rα,β =

Z2[x]/(xα − 1)× Z4[x]/(xβ − 1) given by

(u0, u1, . . . , uα−1 |u′0, . . . , u′β−1) 7→

(u0 + u1x+ · · ·+ uα−1x
α−1 |u′0 + · · ·+ u′β−1x

β−1).

Therefore, as usual in the study of cyclic codes, any

codeword is identified as a vector or as a polynomial.

From now on, the binary reduction of a polynomial

p(x) ∈ Z4[x] will be denoted by p̃(x). Let p(x) ∈ Z4[x]

and (b(x) | a(x)) ∈ Rα,β and consider the following

multiplication p(x) ? (b(x) | a(x)) = (p̃(x)b(x) |

p(x)a(x)). From [1], Rα,β is a Z4[x]-module with

respect to this multiplication.

Let u′(x) = ũ′(x) + 2û′(x) be the polynomial repre-

sentation of u′ ∈ Zn4 . Then, the polynomial version of

the Gray map is φ(u′(x)) = (û′(x), ũ′(x) + û′(x)). In

the following, a polynomial p(x) ∈ Z2[x] or Z4[x] will

be denoted simply by p.

Using the polynomial representation, an equivalent

definition of Z2Z4-additive cyclic codes is the following.

Definition 2.1 ( [1]): A subset C ⊆ Rα,β is called a

Z2Z4-additive cyclic code if C is a Z4[x]-submodule of

Rα,β .

From [1], if β is odd, we know that if C is a Z2Z4-

additive cyclic code then it is of the form

〈(b | 0), (` | fh+ 2f)〉, (2)

where fhg = xβ − 1 in Z4[x], b divides xα − 1

in Z2[x], and we can assume that deg(`) < deg(b).

The polynomials satisfying these conditions are said

to be in standard form. In this case, we have that

|C| = 2α−deg(b)4deg(g)2deg(h). From now on, we assume

that β is odd. Then f , g and h are pairwise coprime

polynomials. Since h and g are coprime, there exist

polynomials λ and µ, that will be used later along the

paper, such that

λh+ µg = 1. (3)

Lemma 2.2 ( [4, Corollary 2]): Let C be a Z2Z4-

additive cyclic code of type (α, β; γ, δ;κ) with C = 〈(b |

0), (` | fh+ 2f)〉. Then, b divides xβ−1
f̃

gcd(b, `) and b

divides h̃ gcd(b, `g̃).

We can put the generator matrix (1) in the following

form, called the standard form:
Iκ1

T Tb1 0 0 0

0 Iκ2
Tb2 2T2 0 0

0 0 0 2T1 2Iγ−(κ1+κ2) 0

0 0 S′ S R Iδ

 . (4)

The next theorem relates the parameters of the type

of a Z2Z4-additive code to its generator polynomials.
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Theorem 2.3 ( [4, Theorem 5 and Proposition 6]): Let

C be a Z2Z4-additive cyclic code of type (α, β; γ, δ =

δ1 + δ2;κ = κ1 + κ2) with C = 〈(b | 0), (` | fh+ 2f)〉,

where fhg = xβ − 1. Then,

γ = α− deg(b) + deg(h),

δ = deg(g),

κ = α− deg(gcd(`g̃, b)),

and

κ1 = α− deg(b), κ2 = deg(b)− deg(gcd(b, `g̃)),

δ1 = deg(gcd(b, `g̃))− deg(gcd(b, `)), and

δ2 = deg(g)− δ1.

It is well known that if C is a Z2Z4-additive code,

then the Z2Z4-linear code C = Φ(C) is not linear in

general. The linearity of these codes was studied in [9].

The key to establish this linearity was the fact that

Φ(v + w) = Φ(v) + Φ(w) + Φ(2v ∗w), (5)

where ∗ denotes the component-wise product. It follows

immediately that Φ(C) is linear if and only if 2v∗w ∈ C,

for all v,w ∈ C.

It is shown in [5] that, for a Z2Z4-additive cyclic code

C, CX is a binary cyclic code and CY is a linear cyclic

code over Z4. Moreover, if Φ(C) is linear, then φ(CY )

is also linear but the converse is not true in general. The

characterization of linear cyclic codes over Z4 of odd

length whose Gray map images are linear binary codes

was given in [18]. Let p be a divisor of xn− 1 in Z2[x]

with n odd and let ξ be a primitive nth root of unity over

Z2. The polynomial (p⊗ p) is defined as the divisor of

xn − 1 in Z2[x] whose roots are the products ξiξj such

that ξi and ξj are roots of p.

Theorem 2.4 ( [18, Theorem 20]): Let D = 〈fh+2f〉

be a Z4-additive cyclic code of odd length n and where

fhg = xn − 1. The following properties are equivalent:

1) gcd(f̃ , (g̃ ⊗ g̃)) = 1 in Z2[x];

2) φ(D) is a binary linear code of length 2n.

This result was generalized for Z2Z4-additive cyclic

codes of type (α, β; γ, δ;κ) with β odd.

Theorem 2.5 ( [5]): Let C = 〈(b | 0), (` | fh + 2f)〉

be a Z2Z4-additive cyclic code of length α+ β, β odd,

and where fhg = xβ − 1. The following properties are

equivalent:

1) gcd( f̃b
gcd(b,`g̃) , (g̃ ⊗ g̃)) = 1 in Z2[x];

2) Φ(C) is a binary linear code of length α+ 2β.

As a result, it is completely characterized when a

Z2Z4-additive code C has binary linear image under the

Gray map, just considering its generator polynomials.

The next step is study the rank and the dimension of the

kernel for those codes whose image Φ(C) is not linear.

III. KERNEL AND RANK OF Z2Z4-ADDITIVE CYCLIC

CODES

For an additive code C ⊆ Zα2 × Z
β
4 , the kernel of

Φ(C) is defined as ker(Φ(C)) = {v ∈ Zα+2β
2 |

v + Φ(C) = Φ(C)}. Define K(C) = {v ∈ Zα2 × Z
β
4 |

Φ(v) ∈ ker(Φ(C))}. Let rank(Φ(C)) = dim(〈Φ(C)〉)

and R(C) = {v | v ∈ Zα2 × Z
β
4 ,Φ(v) ∈ 〈Φ(C)〉}. It is

clear that K(C) ⊆ C ⊆ R(C).

It is known that if C is a Z2Z4-additive code, then

〈Φ(C)〉 and ker(Φ(C)) are both Z2Z4-linear codes ( [9]).

Therefore,R(C) and K(C) are both Z2Z4-additive codes.

In the next sections we will see that if the code C is a

Z2Z4-additive cyclic code, then R(C) and K(C) are also

Z2Z4-additive cyclic. Therefore, the following proposi-

tion will be useful to relate the generator polynomials of

C to the generator polynomials of R(C) and K(C).

Proposition 3.1: Let C0 = 〈(b | 0), (` | fh+ 2f)〉 and

C1 = 〈(b′ | 0), (`′ | f ′h′+ 2f ′)〉 be Z2Z4-additive cyclic

codes with C0 ⊆ C1. Then,

1) f ′ divides f ;
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2) gcd(b′, `′) divides gcd(b, `).

Proof: Since C0 ⊆ C1, we have that (C0)Y = 〈fh+

2f〉 ⊆ (C1)Y = 〈f ′h′+2f ′〉. Therefore, by [7, Theorem

3], f ′ divides f .

As C0 and C1 are cyclic Z2Z4-additive codes, clearly

(C0)X = 〈gcd(b, `)〉 and (C1)X = 〈gcd(b′, `′)〉. Finally,

(C0)X ⊆ (C1)X implies that gcd(b′, `′) divides gcd(b, `).

�

In order to study the rank and the kernel of a Z2Z4-

additive code C, it is necessary to consider the code Cb.

Proposition 3.2 ( [5]): Let C be a Z2Z4-additive cyclic

code with C = 〈(b | 0), (` | fh+ 2f)〉. Then, Cb = 〈(b |

0), (µ̃`g̃ | 2f)〉.

Note that, if C = Cb, (5) is satisfied and the code Φ(C)

is linear. In this case, δ = 0 and, by Theorem 2.3, g = 1.

Therefore Cb = 〈(b | 0), (` | 2f)〉.

A. Kernel of Z2Z4-Additive Cyclic Codes

In this section, we will study the kernel of Z2Z4-

additive cyclic codes. We will prove that, for a Z2Z4-

additive cyclic code C, the code K(C) is also cyclic

and we will establish some properties of its generator

polynomials. We will show that there does not exist a

Z2Z4-additive cyclic code for all the possible values of

the dimension of the kernel as for general Z2Z4-additive

codes.

Let C be a Z2Z4-additive code. By (5), we can give

the following definition of K(C) (see [9]):

K(C) = {v ∈ C | 2v ∗w ∈ C,∀w ∈ C}.

Lemma 3.3: Let C be a Z2Z4-additive code. Then,

K(C)Y ⊆ K(CY ).

Proof: Let C be a Z2Z4-additive cyclic. Let v =

(v | v′) ∈ C. We have that v ∈ K(C) if and only if

2v ∗w ∈ C, ∀w = (w | w′) ∈ C. Since 2v ∗w = (0 |

2v′ ∗ w′), we have that if v ∈ K(C) then v′ ∈ K(CY )

and the statement follows. �

Example 1: Let C be the Z2Z4-additive cyclic code in
Z2[x]
〈x−1〉 ×

Z4[x]
〈x3−1〉 generated by 〈(1 | x+ 1)〉, where f = 1

and h = x− 1. Note that C is of type (1, 3; 1, 2; 1) and

the generator matrix of C in standard form, (1), is
1 2 0 0

0 3 1 0

0 3 0 1

 .

Since f = 1, by Theorem 2.4, we know that K(CY ) =

CY = 〈(x + 1)〉. We have that the generator matrix of

K(C) in standard form is
1 2 0 0

0 2 2 0

0 2 0 2


and therefore K(C) = 〈(1 | 2)〉. Hence, K(C)Y  

K(CY ).

The following theorems determine an upper and a

lower bound for the kernel of a Z2Z4-additive code

and that there exists a Z2Z4-additive code of type

(α, β; γ, δ;κ) for all possible values of the kernel.

Theorem 3.4 ( [9]): Let C be a Z2Z4-additive

code with parameters (α, β; γ, δ;κ). Then γ + δ ≤

dim(ker(Φ(C)) ≤ γ + 2δ.

Theorem 3.5 ( [9]): Let α, β, γ, δ, κ be integers satis-

fying

α, β, γ, δ, κ ≥ 0, α+ β > 0,

0 < δ + γ ≤ β + κ and κ ≤ min(α, γ).
(6)

Then, there exists a Z2Z4-linear code C of type

(α, β; γ, δ;κ) with dim(ker(C)) = γ + 2δ − k̄ if and

only if
k̄ = 0, if s = 0,

k̄ ∈ {0} ∪ {2, . . . , δ} and k̄ even, if s = 1,

k̄ ∈ {0} ∪ {2, . . . , δ}, if s ≥ 2,

where s = β − (γ − κ)− δ.
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We will see that not all possible values for the kernel

of a Z2Z4-additive code C are possible if C is cyclic.

First, we will determine some properties of the kernel

of a Z2Z4-additive cyclic code.

Proposition 3.6: Let C = 〈(b | 0), (` | fh+ 2f)〉 be a

Z2Z4-additive cyclic code. Then,

α− deg(b) + deg(h) + deg(g) ≤ |K(C)|

≤ α− deg(b) + deg(h) + 2 deg(g).

Proof: Straightforward from Theorems 3.4 and 2.3.

�

Note that the upper bound is sharp when the code has

binary linear image, i.e., C = K(C). Moreover, the lower

bound is tight when K(C) only has the all-zero vector

and all order two codewords; that is, C = Cb.

Proposition 3.7: Let C be a Z2Z4-additive cyclic code,

then K(C) ⊆ CX ×K(CY ).

Proof: Let v = (v, v′) ∈ K(C). For all w =

(w,w′) ∈ C, 2v ∗w ∈ C since v is in the kernel. Then

v ∈ CX and 2v′ ∗w′ ∈ CY , for all w′ ∈ CY which gives

v′ ∈ K(CY ) and v ∈ CX×K(CY ) and the result follows.

�

Proposition 3.8: If C is a separable Z2Z4-additive code

then K(C) = CX ×K(CY ).

Proof: Let v ∈ CX × K(CY ), then 2v ∗ w = (0 |

2v′ ∗w′) for all w ∈ C. Since v′ ∈ K(CY ), we have 2v′ ∗

w′ ∈ CY . Moreover, since C is a separable Z2Z4-additive

cyclic code, 2v ∗ w = (0 | 2v′ ∗ w′) ∈ C. Therefore,

v ∈ K(C) and CX ×K(CY ) ⊆ K(C).

Finally, by Proposition 3.7, we have K(C) ⊆ CX ×

K(CY ). �

The following example shows that if the Z2Z4-

additive code C is non-separable, then the kernel is not

necessarily CX ×K(CY ).

Example 2: Let C = 〈(1 | x+ 1)〉, the Z2Z4-additive

code of Example 1, with CX = 〈1〉 and CY = 〈x + 1〉.

We have seen that K(CX) = CX , K(CY ) = CY and

K(C) = 〈(1 | 2)〉. Therefore K(C) ( CX ×K(CY ).

Therefore, if the code is non-separable, the equality is

not satisfied in general.

From Proposition 3.7, we obtain that

dim(ker(Φ(C))) ≤ κ+ dim(ker(φ(CY ))). However, we

can give a bound that is more accurate.

Proposition 3.9: Let C be a Z2Z4-additive code, then

dim(ker(Φ(C))) ≤ κ1 + dim(ker(φ(CY ))).

Proof: Define C0 = {v = (v | v′) ∈ C | v′ = 0}.

We have that C0 ⊆ K(C), and dim(ker(C0)) = κ1.

Let v = (v | v′) ∈ K(C). If v′ = 0, then v ∈ C0.

Otherwise, v′ ∈ K(C)Y ⊆ K(CY ) by Lemma 3.3 and,

therefore, dim(ker(Φ(C))) ≤ κ1 + dim(ker(φ(CY ))).

�

From the generator matrix G of C given in (4), we

have that the code CY has a generator matrix of the form
2T2 0 0

2T1 2Iγ−(κ1+κ2) 0

S R Iδ

 . (7)

By [4, Proposition 1], we know that the code CY has

type 4δ2γ−κ1 . The minimum value for the dimension of

ker(φ(CY )) is δ + γ − κ1.

Theorem 3.10: Let C be a Z2Z4-additive code. If

K(CY ) has minimum size, then K(C) has minimum size.

Proof: If K(CY ) has minimum size, by Proposition

3.9, then dim(ker(Φ(C))) ≤ κ1 + δ + γ − κ1 = γ + δ.

�

In the previous statements, we compute an upper

bound of the kernel of a Z2Z4-additive code C by

considering the kernel of a code over Z4. Now we

shall give the exact value of the kernel of a Z2Z4-

additive code C in terms of CX and the kernel of a linear
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code over Z4, C′. As we have seen, in the case of a

separable code C, the code C′ is exactly CY and the value

dim(ker(Φ(C))) is dim(ker(CX)) + dim(ker(φ(CY ))),

where CY is a cyclic code over Z4. If the code C is not

separable, then C′ is not necessarily cyclic.

Let C be a Z2Z4-additive code with generator matrix

in the form of (4) and let C′ be the subcode generated

by (
0 0 0 2T1 2Iγ−(κ1+κ2) 0

0 0 S′ S R Iδ

)
. (8)

Theorem 3.11: Let C be a Z2Z4-additive with gener-

ator matrix in the form of (4) and let C′ be the subcode

generated by the matrix in (8). Then dim(ker(Φ(C)) =

κ1 + κ2 + dim(ker(φ(C′Y ))).

Proof: Let C be a Z2Z4-additive cyclic code with

generator matrix G in the form of (4). Let {ui = (ui |

u′i)}
γ
i=1 be the first γ rows and {vj = (vj | v′j)}δj=1 the

last δ rows of G. Define the codes C̄ = 〈{ui}κ1+κ2
i=1 〉,

C′ = 〈{ui}γi=κ1+κ2+1, {vj}δj=1〉.

By [9], v ∈ K(C) if and only if 2v∗w ∈ C for all w ∈

C. We have that v ∈ C̄ is of order 2 and hence 2v∗w =

0, ∀w ∈ C. Then, C̄ ⊆ K(C) and dim(ker(C̄)) = κ1+κ2.

Let v = (v | v′) ∈ C′. Since 2v ∗w = 0 for all w ∈ C̄,

we have that v ∈ K(C) if and only if 2v ∗ w ∈ C′

for all w ∈ C′; that is, v ∈ K(C′). Finally, 2v ∗ w =

(0 | 2v′ ∗ w′) ∈ C′ if and only if 2v′ ∗ w′ ∈ C′Y , and

hence dim(ker(Φ(C′))) = dim(ker(φ(C′Y ))). Therefore,

dim(ker(Φ(C))) = κ1 + κ2 + dim(ker(φ(C′Y ))). �

Now we will establish the kernel of a Z2Z4-additive

cyclic code taking into account its generator polynomi-

als. In the following theorem we shall prove that if C is

a Z2Z4-additive cyclic code, then K(C) is also cyclic.

This result is a generalization of the case when C is a

linear cyclic code over Z4 that is given in [7].

Theorem 3.12: Let C be a Z2Z4-additive cyclic code.

Then K(C) is a Z2Z4-additive cyclic code.

Proof: We know that K(C) is a Z2Z4-additive code

so we just have to show that if u = (u | u′) ∈ K(C) then

π(u) ∈ K(C). That is, we want to show that 2π(u)∗w ∈

C, for all w ∈ C.

Let u ∈ K(C),w ∈ C. Then 2π(u) ∗ w = π(2u ∗

π−1(w)). We have that u ∈ K(C) and π−1(w) ∈ C,

therefore 2u ∗ π−1(w) ∈ C by (5). Since the code C is

cyclic, π(2u ∗ π−1(w)) ∈ C, which gives that 2π(u) ∗

w ∈ C, and π(u) ∈ K(C). �

Corollary 3.13: Let C = 〈(b | 0), (` | fh + 2f)〉

be a Z2Z4-additive cyclic code, where fhg = xβ − 1.

Then, K(C) = 〈(bk | 0), (`k | fkhk + 2fk)〉, where

fkhkgk = xβ − 1 and

1) f divides fk;

2) gcd(b, `) divides gcd(bk, `k).

Proof: By Theorem 3.12, K(C) is cyclic and

therefore K(C) = 〈(bk | 0), (`k | fkhk + 2fk)〉, where

fkhkgk = xβ − 1. Since K(C) ⊆ C, the result follows

from Proposition 3.1. �

Let C = 〈(b | 0), (` | fh + 2f)〉 be a Z2Z4-additive

cyclic code, where fhg = xβ−1. In [5] it is proved that

C = 〈(b | 0), (`′ | fh), (µ̃`g̃ | 2f)〉, (9)

where `′ = `− µ̃`g̃.

Lemma 3.14: Let C = 〈(b | 0), (` | fh + 2f)〉 be a

Z2Z4-additive cyclic code, where fhg = xβ − 1. Let

〈(b | 0), (`k | fhk + 2f)〉 ⊂ C, for k|g. Then `k =

k̃`+ (1− k̃)µ̃`g̃ (mod b), for µ in (3).

Proof: Let C = 〈(b | 0), (`′ | fh), (µ̃`g̃ | 2f)〉,

where `′ = `− µ̃`g̃, as in (9). Since (`k | fhk+2f) ∈ C

and (`k | fhk+ 2f) = c1(b | 0) + c2(`′ | fh) + c3(µ̃`g̃ |

2f), we obtain c2 = k, c3 = 1 and `k = k̃`′ + µ̃`g̃

(mod b) = k̃`+ (1− k̃)µ̃`g̃ (mod b). �
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Theorem 3.15: Let C = 〈(b | 0), (` | fh + 2f)〉 be a

Z2Z4-additive cyclic code, where fhg = xβ − 1. Then,

K(C) = 〈(b | 0), (`k | fhk + 2f)〉, where k divides g

and `k = k̃`+ (1− k̃)µ̃`g̃ (mod b), for µ in (3).

Proof: By Theorem 3.12, K(C) is cyclic and

then K(C) = 〈(bk | 0), (`k | fkhk + 2fk)〉. Clearly,

bk = b. Since Cb ⊆ K(C) ⊆ C, by Proposition 3.2

and Proposition 3.1, we conclude that fk = f . Since

K(C)Y = 〈fhk+2f〉 ⊆ CY , with an argument analogous

to that of [7, Theorem 9] we obtain that hk = hk with

k a divisor of g.

Let `′ = ` − µ̃`g̃. By (9), (`′ | fh), (µ̃`g̃ | 2f) ∈ C.

Therefore, `k = k̃`′ + µ̃`g̃ (mod b) = k̃`+ (1− k̃)µ̃`g̃

(mod b). �

Theorem 3.5 shows that there exists a Z2Z4-additive

code for all possible values of the kernel for a given type

(α, β; γ, δ;κ). Considering the last theorem, the next

example illustrates that this result is not true for Z2Z4-

additive cyclic codes; i.e., for a given type (α, β; γ, δ;κ)

there does not always exist a Z2Z4-additive cyclic code

for all possible values of the kernel. Furthermore, it

shows that there does not always exist a Z2Z4-additive

cyclic code for a given type (α, β; γ, δ;κ).

Example 3: By Theorem 3.5, there exists a

Z2Z4-additive code C of type (2, 7; 2, 3; κ) with

dim(ker(Φ(C))) = kd, for all kd ∈ {5, 6, 8}. We will

see that there does not exist any cyclic Z2Z4-additive

code of type (2, 7; 2, 3;κ), with dimension of the kernel

in {6, 8}.

Let α = 2 and β = 7. We have that x7 − 1 = (x −

1)(x3 + 2x2 + x+ 3)(x3 + 3x2 + 2x+ 3). Let C = 〈(b |

0), (` | fh+2f)〉 be a Z2Z4-additive cyclic code of type

(2, 7; 2, 3;κ), where fhg = x7 − 1.

By Theorem 2.3, deg(g) = 3 and deg(b) = deg(h) ≤

2. Let {p3, q3} = {(x3 + 2x2 + x + 3), (x3 + 3x2 +

2x+ 3)}. Assume without loss of generality that g = p3

and, since deg(h) ≤ 2, we have that q3 divides f . It

is easy to see that gcd(q3, (p̃3 ⊗ p̃3)) 6= 1 and therefore

gcd( f̃b
gcd(b,`g̃) , (g̃⊗g̃)) 6= 1. Hence, by Theorem 2.5, there

does not exist a Z2Z4-additive code of type (2, 7; 2, 3;κ)

with linear Gray image. Thus, dim(ker(Φ(C))) 6= 8.

By Theorem 3.15, K(C) = 〈(b | 0), (`k | fhk + 2f)〉

where k divides g. By the previous argument, k 6= 1 and

then we have that k = g = p3 and K(C) = 〈(b | 0), (`k |

2f)〉. Therefore K(C) does not contain codewords of

order 4, thus dim(ker(Φ(C))) = γ + δ = 5.

Finally, we will give Z2Z4-additive cyclic codes of

type (2, 7; 2, 3;κ), for different values of κ. Recall that

κ ≤ min{α, γ} = 2 and κ = α− deg(gcd(b, `g̃)), then

• κ = 2: C = 〈(x−1 | 0), (1 | (x3 +2x2 +x+3)(x−

1)+2(x3 +2x2 +x+3))〉, or C = 〈(x−1 | 0), (1 |

(x3+3x2+2x+3)(x−1)+2(x3+3x2+2x+3))〉.

• κ = 1: C = 〈(x−1 | 0), (0 | (x3+3x2+2x+3)(x−

1)+2(x3+3x2+2x+3))〉, or C = 〈(x−1 | 0), (0 |

(x3 + 2x2 +x+ 3)(x− 1) + 2(x3 + 2x2 +x+ 3))〉.

• κ = 0: In this case, deg(gcd(b, `g̃)) = 2 and

therefore, gcd(b, `g̃) = x2− 1. Note that p̃3 and q̃3

are not divisors of x2 − 1 over Z2, thus there does

not exist ` with deg(`) < 2 such that `g̃ = x2 − 1.

There does not exist a Z2Z4-additive cyclic code of

type (2, 7; 2, 3; 0).

The statement in Theorem 3.15 is also true for

any maximal Z2Z4-additive cyclic subcode of a Z2Z4-

additive cyclic code C whose Gray image is a linear

subcode of Φ(C).

Corollary 3.16: Let C = 〈(b | 0), (` | fh + 2f)〉

be a cyclic code, where fhg = xβ − 1. Then, if C1
is a maximal Z2Z4-additive cyclic subcode with Φ(C1)

linear, then C1 = 〈(b | 0), (`k | fhk + 2f)〉, where k

divides g and `k = k̃` + (1 − k̃)µ̃`g̃ (mod b), for µ in

(3).
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The kernel of a binary code is the intersection of all its

maximal linear subspaces. Therefore, if C1, C2, . . . Cs are

all the maximal subcodes of a Z2Z4-additive code C such

that Φ(Ci) is a linear subcode of Φ(C), for 1 ≤ i ≤ s,

then

K(C) =

s⋂
i=1

Ci. (10)

In [7] it is proved that if C1 = 〈fh1 + 2f〉 and C2 =

〈fh2 + 2f〉 are quaternary cyclic codes of odd length

n, then C1 ∩ C2 = 〈f lcm(h1, h2) + 2f〉. We will give a

similar result for Z2Z4-additive cyclic codes.

Proposition 3.17: Let C = 〈(b | 0), (l | fh + 2f)〉 be

a Z2Z4-additive cyclic code. Let C1 = 〈(b | 0), (lk1 |

fhk1 + 2f)〉 and C2 = 〈(b | 0), (lk2 | fhk2 + 2f)〉

be Z2Z4-additive maximal subcodes of C whose images

under the Gray map are linear subcodes of Φ(C). Then,

C1 ∩ C2 = 〈(b | 0), (lk′ | fhk′ + 2f)〉,

where k′ = lcm(k1, k2) and `k′ = k̃′` + (1 − k̃′)µ̃`g̃

(mod b), for µ in (3).

Proof: Let C = 〈(b | 0), (l | fh+ 2f)〉 be a Z2Z4-

additive cyclic code and let Ci = 〈(b | 0), (lki | fhki +

2f)〉 be a Z2Z4-additive maximal subcode of C whose

image under the Gray map is a linear subcode of Φ(C).

We first consider (C1)Y ∩ (C2)Y . By [7], (C1)Y ∩

(C2)Y = 〈f lcm(hk1, hk2) + 2f〉 = 〈fhk′ + 2f〉,

where k′ = lcm(k1, k2). Since 〈(b|0)〉 ∈ C1 ∩ C2, we

have C1 ∩ C2 = 〈(b | 0), (lk′ | fhk′ + 2f)〉, where

`k′ = k̃′` + (1 − k̃′)µ̃`g̃ (mod b), for µ in (3) by

Lemma 3.14. �

Lemma 3.18: Let C be a Z2Z4-additive cyclic code

and let D be a maximal cyclic subcode with linear binary

image. Then, K(C) ⊆ D.

Proof: If K(C) 6⊆ D, then consider the Z2Z4-

additive code D′ generated by K(C) ∪ D ∪ {2u ∗ v |

u,v ∈ K(C)∪D}. Since the binary image of K(C)∪D

is cyclic, D′ is a cyclic subcode of C. Moreover, since

2u ∗ v ∈ D′, for all u,v ∈ D′, we have that D′ has

linear binary image, leading to a contradiction since we

are assuming that D is maximal. �

Theorem 3.19: Let C = 〈(b | 0), (` | fh + 2f)〉 be a

Z2Z4-additive cyclic code, where fhg = xβ−1. Assume

that k1, . . . , ks are the divisors of g of minimum degree

such that

gcd

(
f̃ b

gcd(b, ` g̃
k̃i

)
,

(
g̃

k̃i
⊗ g̃

k̃i

))
= 1,

for i = 1, . . . , s. Then,

K(C) = 〈(b | 0), (`′k | fhk′ + 2f)〉,

where k′ = lcm(k1, . . . , ks) and `k′ = k̃′`+(1− k̃′)µ̃`g̃

(mod b), for µ in (3).

Proof: Assume that k1, . . . , ks are the divisors of g

of minimum degree such that

gcd

(
f̃ b

gcd(b, ` g̃
k̃i

)
,

(
g̃

k̃i
⊗ g̃

k̃i

))
= 1,

for i = 1, . . . , s. Let Di be a cyclic subcode of C, where

Di = 〈(b | 0), (`ki | fhki+2f)〉, for some `ki . Note that

Φ(Di) is linear by Theorem 2.5. Since ki is a polynomial

of minimum degree dividing g, we have that Di is a

maximal cyclic subcode of C with linear binary image.

Then each Di extends to Ci which is a maximal subcode

of C, not necessarily cyclic, with linear binary image.

Note that every maximal code with linear image must

contain a cyclic code with linear image, e.g., every maxi-

mal code contains K(C) that is cyclic with linear image.

By Lemma 3.18, we know K(C) ⊆ Di and, therefore

K(C) ⊆ ∩iDi. But ∩iCi = K(C) ⊆ ∩iDi ⊆ ∩iCi, so

K(C) = ∩iDi. By Corollary 3.16 and Proposition 3.17,

the result follows. �

Example 4: Let x7 − 1 = (x − 1)p3q3 over Z4. Let

C = 〈(1 | 0), (0 | f)〉 of type (1, 7; 1, 6; 1) with f =

(x− 1), h = 1 and g = p3q3.
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Note that gcd( f̃b
gcd(b,`g̃) , (g̃⊗g̃)) = x−1 6= 1. We have

that all maximal cyclic subcodes of C with binary linear

image are C1 = 〈(1 | 0), (0 | fp3 + 2f)〉, and C2 = 〈(1 |

0), (0 | fq3 + 2f)〉. Clearly, k′ = lcm(p3, q3) = p3q3

and then K(C) = 〈(1 | 0), (0 | fp3q3 + 2f)〉 = 〈(1 |

0), (0 | 2f)〉.

B. Rank of Z2Z4-Additive Cyclic Codes

In this section, we will study the rank of a Z2Z4-

additive cyclic code C. We will prove that R(C) is

also cyclic and we will establish some properties of

its generator polynomials. However, we will show that

there does not exist a Z2Z4-additive cyclic code for

all possible values of the rank, in contrast to what is

exhibited in the following results for a Z2Z4-additive

code.

Proposition 3.20 ( [9]): Let C be a Z2Z4-linear code

of binary length n = α + 2β and type (α, β; γ, δ;κ).

Then, rank(Φ(C)) ∈ {γ + 2δ, . . . ,min(β + δ + κ, γ +

2δ +
(
δ
2

)
)}.

Theorem 3.21 ( [9]): Let α, β, γ, δ, κ be integers

satisfying (6). Then, there exists a Z2Z4-linear code C

of type (α, β; γ, δ;κ) with rank(Φ(C)) = r if and only

if

r ∈ {γ + 2δ, . . . ,min(β + δ + κ, γ + 2δ +

(
δ

2

)
)}.

Proposition 3.22 ( [9]): Let C be a Z2Z4-additive

code of type (α, β; γ, δ;κ) and let C = Φ(C). Let G

be a generator matrix of C as in (1) and let {ui}γi=1

be the rows of order two and {vj}δj=1 the rows of

order four in G. Then, 〈C〉 is generated by {Φ(ui)}γi=1,

{Φ(vj),Φ(2vj)}δj=1 and {Φ(2vj ∗vk)}1≤j<k≤δ . More-

over, 〈C〉 is both binary linear and Z2Z4-linear.

Corollary 3.23 ( [7]): Let C be a Z2Z4-additive code

of type (α, β; γ, δ;κ) and let C = Φ(C). Let G be a

generator matrix of C as in (1) and let {ui}γi=1 be the

rows of order two and {vj}δj=1 the rows of order four

in G. Then,

R(C) = C ∪ 〈{2vj ∗ vk}1≤j<k≤δ〉.

Lemma 3.24: Let C be a Z2Z4-additive code. Then,

R(C)Y = R(CY ).

Proof: Let {ui = (ui | u′i)}
γ
i=1 be the first γ

rows and {vj = (vj | v′j)}δj=1 the last δ rows of G. By

Corollary 3.23,R(C) = C∪〈{2vj∗vk}1≤j<k≤δ〉. By the

same argument, R(CY ) = CY ∪ 〈{2v′j ∗ v′k}1≤j<k≤δ〉.

Since 2vj ∗ vk = (0 | 2v′j ∗ v′k) for all 1 ≤ j < k ≤ δ,

the statement follows. �

The following theorem shows that if C is Z2Z4-

additive cyclic code, then R(C) is also cyclic. As in

the case of K(C), this theorem is a generalization of the

case when C is a linear cyclic code over Z4 [7].

Theorem 3.25: Let C be a Z2Z4-additive cyclic code.

Then R(C) is a Z2Z4-additive cyclic code.

Proof: Let x ∈ R(C). By Corollary 3.23, R(C) is

generated by C and {2v∗w | v,w ∈ C}, then x = u+2v∗

w, for some u, v,w ∈ C. As C is a Z2Z4-additive cyclic

code, π(u), π(v), π(w) ∈ C and 2π(v) ∗ π(w) ∈ R(C).

Thus, π(x) = π(u) + 2π(v) ∗π(w) ∈ R(C) and R(C) is

a Z2Z4-additive cyclic code. �

The next proposition is straightforward from Theo-

rems 3.21 and 2.3.

Proposition 3.26: Let C be a Z2Z4-additive cyclic

code. Then

α− deg(b) + deg(h) + 2 deg(g) ≤ rank(Φ(C)) ≤

min
(
α+ β + deg(g)− deg(gcd(b, `g̃)),

α− deg(b) + deg(h) + 2 deg(g) +

(
deg(g)

2

))
.

For a Z2Z4-additive cyclic code C, define C1 = 〈(b |

0)〉 and C2 = 〈(` | fh + 2f)〉. Since C = C1 ∪ C2 and
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C1 ∩ C2 = {0}, we have that

rank(Φ(C)) = rank(Φ(C1)) + rank(Φ(C2)). (11)

If the code C is separable, then ` = 0 and

rank(Φ(C1)) = rank(CX). Moreover, C2 = 〈(0 | fh +

2f)〉, and therefore rank(Φ(C2)) = rank(φ(CY )). We

obtain the following result.

Proposition 3.27: If C is a separable Z2Z4-additive

cyclic code, then R(C) = R(CX) × R(CY ) and

rank(Φ(C)) = κ1 + rank(φ(CY )).

Note that, if C is not separable, rank(Φ(C)) is not

necessarily equal to κ1 + rank(φ(CY )) as it is shown in

the following example.

Example 5: Consider the Z2Z4-additive code gener-

ated by the following matrix.

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 2 0 0

0 0 0 1 1 0

0 0 0 1 0 1


(12)

In [5, Example 2] it was proved that φ(CY ) is binary

linear whereas Φ(C) is not binary linear. In this ex-

ample we have that κ1 = 2. Since φ(CY ) is linear,

rank(φ(CY )) = 5. Nevertheless, Φ(C) is not binary

linear and rank(Φ(C)) = 8 > 5 + 2.

In fact, rank(Φ(C)) is always greater or equal to κ1 +

rank(φ(CY )).

Proposition 3.28: Let C be a Z2Z4-additive cyclic

code, then rank(Φ(C)) ≥ κ1 + rank(φ(CY )).

Proof: Let C be a Z2Z4-additive cyclic code. By

(11), rank(Φ(C)) = rank(Φ(C1)) + rank(Φ(C2)) =

κ1 + rank(Φ(C2)) . By Proposition 3.22, in order to

determine the rank, we have to consider the set of vectors

2v ∗ w, for v = (v | v′),w = (w | w′) ∈ C. Since

for all v ∈ C if w ∈ C1 we obtain 2v ∗ w = 0,

we just have to consider v,w ∈ C2. We have that

if 2v′ ∗ w′ 6∈ CY then 2v ∗ w 6∈ C. Therefore,

rank(Φ(C2)) ≥ rank(φ((C2)Y )) = rank(φ(CY )) and,

therefore, rank(Φ(C1)) ≥ κ1 + rank(φ(CY )). �

Now we can determine the rank of a Z2Z4-additive

code C as the rank of CX and the rank of a linear code

over Z4, C′. As in the case of the kernel, when C is

separable we have seen that C′ = CY , but if C is not

separable such a code C′ may not be cyclic over Z4.

Theorem 3.29: Let C be a Z2Z4-additive cyclic code

with generator matrix in the form of (4) and let C′ be

the subcode generated by the matrix in (8). Then,

rank(Φ(C)) = κ1 + κ2 + rank(φ(C′Y )).

Proof: Let C be a Z2Z4-additive cyclic code with

generator matrix G in the form of (4). Let {ui = (ui |

u′i)}
γ
i=1 be the first γ rows and {vj = (vj | v′j)}δj=1 the

last δ rows of G. Define the codes C̄ = 〈{ui}κ1+κ2
i=1 〉 and

C′ = 〈{ui}γi=κ1+κ2+1, {vj}δj=1〉.

By Corollary 3.23 we have that

R(C) = 〈{ui}γi=1, {vj}
δ
j=1, {2vj ∗ vk}1≤j<k≤δ〉,

R(C̄) = 〈{ui}κ1+κ2
i=1 〉, and

R(C′) = 〈{ui}γi=κ1+κ2+1, {vj , 2vj}
δ
j=1,

{2vj ∗ vk}1≤j<k≤δ〉.

Note that R(C) = R(C̄) ∪ R(C′). Moreover, R(C̄) ∩

R(C′) = {0} due to the fact that for all 1 ≤ j < k ≤ δ,

2vj ∗vk = (0 | 2v′j ∗ v′k) 6∈ C̄. Therefore, rank(Φ(C)) =

rank(Φ(C̄)) + rank(Φ(C′)) = κ1 + κ2 + rank(Φ(C′)).

Finally, by Lemma 3.24, rank(Φ(C′)) = rank(φ(C′Y ))

and the statement follows. �

Theorem 3.30: Let C = 〈(b | 0), (` | fh + 2f)〉 be a

Z2Z4-additive cyclic code, where fhg = xβ − 1. Then,

R(C) = 〈(br | 0), (`r | fh + 2 fr )〉, where r is a divisor

of f and br divides b.
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Proof: By Theorem 3.25, R(C) is a Z2Z4-additive

cyclic code, therefore R(C) = 〈(br | 0), (`r | frhr +

2fr)〉. Since (b | 0) ∈ R(C), it is clear that br divides b.

By [9, Lemma 3], C and R(C) have the same number of

order four codewords and since C ⊆ R(C) we have that

frhr = fh. Then gr = g. By Proposition 3.1, we know

that fr divides f and hence there exists r ∈ Z4[x] such

that fr = f
r and hr = hr. Therefore, R(C) = 〈(br |

0), (`r | fh+ 2 fr )〉. �

Let C〈(b | 0), (` | fh+2f)〉 be a Z2Z4-additive cyclic

code. In the following example, we will see that R(C) =

〈(br | 0), (`r | frhr+2fr)〉, where br 6= b, if we consider

the generator polynomials of R(C) in standard form.

Example 6: Let x7 − 1 = (x − 1)p3q3 over Z4. Let

C = 〈((x − 1) | 0), (1 | (x − 1) + 2)〉, with f = 1, h =

x−1 and g = p3q3. If we compute R(C) we obtain that

R(C) = 〈(1 | 0), (0 | (x− 1) + 2)〉.

As it is shown in Theorem 3.21, there exists a Z2Z4-

additive code for any possible value of the rank. Nev-

ertheless, the following example gives a particular type

(α, β; γ, δ;κ) such that it is not possible to construct

a Z2Z4-additive cyclic code with a specific, and valid,

value of the rank.

Example 7: Let C = 〈(b | 0), (` | fh + 2f)〉 be

a Z2Z4-additive cyclic code of type (2, 7; 2, 3;κ). By

Theorem 3.21, rank(Φ(C)) ∈ {8, 9, 10, 11}. We will see

that there does not exist any cyclic Z2Z4-additive code

of type (2, 7; 2, 3;κ), C, with rank(Φ(C)) ∈ {8, 9, 10}.

Let x7−1 = (x−1)p3q3 over Z4, with p3 and q3 as in

Example 3. By Theorem 2.3, deg(g) = 3 and deg(b) =

deg(h) ≤ 2. Assume without loss of generality that g =

p3 and, since deg(h) ≤ 2, we have that q3 divides f .

We have already proved, in Example 3, that there does

not exist a Z2Z4-additive code of type (2, 7; 2, 3;κ) with

linear Gray image. Thus, rank(Φ(C)) 6= 8.

By Theorem 3.30, R(C) = 〈(b | 0), (`r | frhr +2fr)〉

where r divides f and hr = hr. Since rank(Φ(C)) ∈

{8, 9, 10, 11}, we have that deg(r) ≤ 3 as |R(C)| =

4322+deg(r) ≤ 211. Since gcd(q̃3, p̃3 ⊗ p̃3) 6= 1 we

have that q3 must divide r. Therefore deg(r) ≥ 3, and

by the previous argument, we know that r = q3. So,

rank(Φ(C)) /∈ {9, 10}.

Finally, we will give Z2Z4-additive cyclic codes of

type (2, 7; 2, 3;κ), for different values of κ, such that

rank(Φ(C)) = 11. Recall that κ ≤ min{α, γ} = 2 and

κ = α− deg(gcd(b, `g̃)), then

• κ = 2: C = 〈(x−1 | 0), (1 | (x3 +2x2 +x+3)(x−

1)+2(x3 +2x2 +x+3))〉, or C = 〈(x−1 | 0), (1 |

(x3+3x2+2x+3)(x−1)+2(x3+3x2+2x+3))〉.

• κ = 1: C = 〈(x−1 | 0), (0 | (x3+3x2+2x+3)(x−

1)+2(x3+3x2+2x+3))〉, or C = 〈(x−1 | 0), (0 |

(x3 + 2x2 +x+ 3)(x− 1) + 2(x3 + 2x2 +x+ 3))〉.

• κ = 0: As in Example 3, there does not exist a

Z2Z4-additive cyclic code of type (2, 7; 2, 3; 0).

Proposition 3.31: Let C = 〈fh+2f〉 be a cyclic code

over Z4 of length n, with fhg = xn − 1. Then,

R(C) =
〈
fh+ 2

f

r

〉
,

where r is the Hensel lift of gcd(f̃ , g̃ ⊗ g̃).

Proof: From [7], we have that R(C) = 〈fh+ 2 fr 〉,

where r divides f .

Since R(C) is the minimum cyclic code over Z4

containing C whose image under the Gray map is

linear, we have that r is the polynomial of minimum

degree dividing f satisfying that 〈fh + 2 fr 〉 has linear

image. This is equivalent, by [18], to the condition

gcd
(
f̃
r̃ , g̃ ⊗ g̃

)
= 1. Therefore, the polynomial r of

minimum degree dividing f satisfying this condition is

the Hensel lift of gcd(f̃ , g̃ ⊗ g̃). �

Proposition 3.32: Let C = 〈(b | 0), (` | fh + 2f)〉 be

a Z2Z4-additive cyclic code, where fhg = xβ − 1, such
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that Φ(C) is not linear and φ(CY ) is linear. Then,

R(C) = 〈(br | 0), (`r | fh+ 2f)〉,

where br = gcd(b, µ̃g̃`), µ is as in (3), and `r = `− µ̃g̃`

(mod br).

Proof: Let C = 〈(b | 0), (` | fh + 2f)〉

be a Z2Z4-additive cyclic code, CY = 〈fh + 2f〉.

Let G be a generator matrix of C as in (1) and let

{ui = (ui | u′i)}
γ
i=1 be the rows of order two and

{vj = (vj | v′j)}δj=1 the rows of order four in G.

By Corollary 3.23, R(C) = C ∪ 〈{2vj ∗ vk}1≤j<k≤δ〉.

We have that Φ(C) is not linear, therefore there exist

i, k ∈ {1, . . . , δ} such that 2vj ∗vk = (0 | 2v′j ∗v′k) 6∈ C.

Since φ(CY ) is linear, 2v′j ∗ v′k ∈ 〈2fh, 2f〉. Moreover,

〈(0 | 2fh)〉 ∈ C and therefore R(C) = C ∪ 〈(0 | 2f)〉.

Considering the generator polynomials of R(C) and µ

as in (3), we have

R(C) = 〈(b | 0), (`− µ̃g̃` | fh), (µ̃g̃` | 2f), (0 | 2f)〉

= 〈(b | 0), (µ̃g̃` | 0), (`− µ̃g̃` | fh+ 2f)〉

= 〈(gcd(b, µ̃g̃`) | 0), (`− µ̃g̃` | fh+ 2f)〉.

Therefore, considering the generator polynomials of

R(C) in standard form, we have that br = gcd(b, µ̃g̃`)

and `r = `− µ̃g̃` (mod br). �

Theorem 3.33: Let C = 〈(b | 0), (` | fh + 2f)〉 be a

Z2Z4-additive cyclic code, where fhg = xβ − 1. Then,

R(C) = 〈(br | 0), (`r | fh+ 2
f

r
)〉,

where r is the Hensel lift of gcd(f̃ , g̃ ⊗ g̃), br =

gcd(b, µ̃g̃`), µ is as in (3), and `r = `− µ̃g̃`.

Proof: Let C = 〈(b | 0), (` | fh+ 2f)〉 be a Z2Z4-

additive cyclic code. By Theorem 3.30, R(C) = 〈(br |

0), (`r | fh + 2 fr )〉, where r is a divisor of f and br

divides b.

Consider the quaternary code CY = 〈fh + 2f〉.

By Lemma 3.24, we have that (R(C))Y = R(CY ).

Therefore, by Proposition 3.31, R(CY ) =
〈
fh + 2 fr

〉
,

where r is the Hensel lift of gcd(f̃ , g̃ ⊗ g̃). Note that

R(CY ) = CY ∪
〈
2 fr
〉
.

From Corollary 3.23, C = C ∪ 〈{2vj ∗ vk}1≤j<k≤δ〉,

where {ui = (ui | u′i)}
γ
i=1 are the rows of order four

of the generator matrix of C as in (1). Note that, for all

uj ,uk, 1 ≤ j ≤ k ≤ δ, 2uj ∗ uk = (0 | 2u′j ∗ u′k),

where 2u′j ∗ u′k ∈ R(CY ) = CY ∪ 〈2 fr
〉

and, therefore,

(0 | 2u′j ∗ u′k) ∈ C ∪ 〈(0 | 2 fr )
〉
. Hence, we have that

R(C) = C ∪ 〈(0 | 2 fr )
〉
.

Therefore, for µ as in (3),

R(C) = 〈(b | 0), (`− µ̃g̃` | fh), (µ̃g̃` | 2f), (0 | 2 fr )〉

= 〈(b | 0), (µ̃g̃` | 0), (`− µ̃g̃` | fh+ 2 fr )〉

= 〈(gcd(b, µ̃g̃`) | 0), (`− µ̃g̃` | fh+ 2 fr )〉.

From the last equation, and considering the generator

polynomials ofR(C) in standard form, we have that br =

gcd(b, µ̃g̃`) and `r = `− µ̃g̃` (mod br). �

Example 8: Let α = 3 and β = 7. Consider, as in

Example 3, C = 〈(x − 1 | 0), (0 | x − 1)〉 where f =

x − 1 and h = 1. As we have seen, C does not have

linear binary image. Then, by Theorem 3.33, we have

that R(C) = 〈(1 | 0), (0 | (x− 1) + 2)〉 where r = f =

x− 1.

Example 9: Let α = 3 and β = 15. Consider C =

〈(x−1 | 0), (1 | fh+2f)〉 where f = x4 +2x2 +3x+1

and h = (x − 1)(x4 + x3 + x2 + x + 1). Then, by

Theorem 3.33, we have that R(C) = 〈(1 | 0), (0 | fh+

2 fr )〉 where r = f = x4 + 2x2 + 3x+ 1.

IV. CONCLUSIONS

Given a Z2Z4-additive cyclic code C, we have shown

that the codes K(C) and R(C) are also Z2Z4-additive
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cyclic. We have computed the generator polynomials

of these codes in terms of the generator polynomials

of C. Using these results, we have concluded that the

dimensions of the binary images of K(C) and R(C), i.e.

the dimension of the kernel and the rank of C, cannot

take all the possible values as for a general Z2Z4-additive

code. In other words, if a Z2Z4-additive code is cyclic,

then the set of possible values for the rank and the

dimension of the kernel becomes more restrictive.
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[9] C. Fernández-Córdoba, J. Pujol, M. Villanueva, “Z2Z4-linear

codes: rank and kernel,” Designs, Codes and Cryptography, vol.

56, pp. 43-59, 2010.

[10] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane,
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