
This is the **accepted version** of the journal article:

Martos Arias, Soledad [et al.]. «Biochar application as a win-win strategy to mitigate soil nitrate pollution without compromising crop yields : a case study in a Mediterranean calcareous soil». *Journal of Soils and Sediments*, Vol. 20, Num. 1 (January 2020), p. 220-233 DOI 10.1007/s11368-019-02400-9

This version is available at <https://ddd.uab.cat/record/324613>

under the terms of the license.

1 **Biochar application as a win-win strategy to mitigate soil nitrate pollution without**
2 **compromising crop yields: a case study in a Mediterranean calcareous soil**

3

4 Soledad Martos^a, Stefania Mattana^b, Angela Ribas^{bc}, Elena Albanell^d, Xavier Domene^{bc}

5

6 ^aPlant Physiology Unit, Biosciences Faculty, Universitat Autònoma Barcelona, Cerdanyola del Vallès
7 08193, Spain

8 ^bCREAF, Cerdanyola del Vallès 08193, Spain

9 ^cEcology Unit, Biosciences Faculty, Universitat Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain

10 ^dRuminant Research Group, Department of Food and Animal Sciences, Universitat Autònoma Barcelona,
11 Cerdanyola del Vallès 08193, Spain

12

13 **Corresponding author**

14 Soledad Martos. Phone: +34 935811794. E-mail address: soledad.martos@uab.cat

15

16

17

18 **ABSTRACT**

19 *Purpose* The environmental benefits of biochar application, ranging from improvements in crop yield to
20 global change mitigation, have been extensively studied in the last decade. However, such benefits have
21 not been profusely demonstrated under a Mediterranean climate and still less in combination with high
22 pH soils. In our study, the short- to medium effects of biochar application on a soil-plant system under
23 Mediterranean conditions in an alkaline soil were assessed.

24 *Material and methods* Barley plants were grown in field mesocosms during three agronomical years at
25 three biochar addition rates (0, 5 and 30 t ha⁻¹). Related to soil, different physico-chemical parameters
26 were analyzed as well as microbial respiration, biomass and functional diversity. In the plant domain, *in*
27 *vivo* ecophysiology variables such as leaf transpiration rate, stomatal conductance, and photosynthesis
28 rate were determined while photosynthetic pigment content and soluble protein concentrations were
29 measured in the laboratory. Additionally, crop yield and nutrient composition were also analyzed. The
30 soil-plant connection was investigated by the N content ratio in both fractions establishing the nitrogen
31 efficiency in the system.

32 *Results and discussion* The highest rate of biochar amendment enhanced soil moisture and electrical
33 conductivity combined with an increase of SO₄²⁻, Cl⁻, Mg²⁺ and K⁺, and decrease of NO₃⁻ and HPO₄²⁻.
34 Notable variations regarding nutrition and moisture were induced in this Mediterranean alkaline soil after
35 biochar addition although pH remained stable. Contrastingly, there were no major effects on microbial
36 activity, but a lower abundance of the *nosZ* functional gene was found. Similarly, plant parameters were
37 unaffected regarding chemical composition and ecophysiology although biochar induced a higher
38 efficiency in the plant nitrogen uptake without increasing crop yield.

39 *Conclusions* Biochar addition at the highest rate (30 t ha⁻¹) reduced soil soluble nitrate although N uptake
40 by the plant remained invariable, in turn coupled to no effects on crop productivity. Our study showed
41 that, in a Mediterranean agroecosystem, a wood biochar produced by gasification was unable to increase
42 crop yield, but enhanced soil water retention, decreased the need for N fertilization, and decreased soil
43 soluble nitrate concentrations, something that could help to mitigate the excessive nitrate levels associated
44 with over-fertilization.

45 **KEYWORDS:** crop yield; gasification biochar; plant efficiency; plant nutrition; soil nutrition

46 **1 INTRODUCTION**

47 Biochar is a carbon-rich product produced by the thermal processing of biomass and intended to be applied
48 to soil for environmental management instead of being used for energy storage (Lehmann and Joseph 2015).
49 Research on the environmental benefits of biochar application has been an important topic in the last decade
50 in the fields of agronomy, global change and pollution mitigation, waste management and clean energy
51 production (Lehmann and Joseph 2015). Application of biochar may modify physicochemical and
52 biological soil properties of soil such as pH, electrical conductivity, cation exchange capacity, nutrient
53 concentration, porosity and microbial community (Blanco-Canqui 2017; El-Naggar et al. 2018; Shaaban et
54 al. 2018a; Sheng and Zhu 2018; Shi et al. 2018; Li et al. 2019). Regarding the agronomical benefits, it has
55 been suggested that biochar leads to increased yields by enhancing water and nutrient retention and liming,
56 with greatest effects on fertility in acid soils and those with coarse to medium texture (Jeffery et al. 2011).
57 This explains why yield increases in tropical soils, which are acidic and with low cation exchange capacity,
58 are disproportionately high in comparison to temperate soils, where crop yields are often already near their
59 maximum potential (Jeffery et al. 2017). The information available for biochar effects on Mediterranean
60 soils under non-irrigated field conditions is very scarce, despite their peculiarities. As indicative of the few
61 examples of that, Olmo et al. (2014) reported higher grain and aboveground biomass wheat yields in an
62 alkaline soil amended with a biochar made from olive-tree prunings, and Vaccari et al. (2011) also observed
63 increased wheat yield in an acid soil. However, Marks et al. (2016) failed to find effects on a barley crop
64 in an alkaline soil using the same biochar as in this study but at different application rates. It is worth
65 noticing that biochar application does not provide enough nutrients to cover crop demands, so concurrent
66 application of mineral or organic fertilization is generally implemented in experimental applications.

67 Some meta-analyses have shown that the increases in crop yields with biochar addition are coupled to
68 higher soil microbial biomass, total C, N, K, and P contents, water retention, pH, and rhizobia nodulation
69 (Jeffery et al. 2011, Biederman and Harpole 2013; Liu et al. 2018). However, while some studies have
70 shown a 300% increases in yield (Cornelissen et al. 2013), and most have observed lower enhancements
71 (around 10%), others have reported no effects or even negative responses (Jeffery et al. 2011). Despite the
72 limited number of available studies to issue strong statements, in a recent meta-analysis it has been shown
73 that positive effects would be expected between 5 and 50 t ha⁻¹ (Jeffery et al. 2015), although factors such
74 as soil type, management, biochar type (feedstock and pyrolysis procedure), crop type and local climate
75 could modulate this response in each scenario (Kavitha et al. 2018; Liu et al. 2018).

76 Several soil-plant mechanisms have been proposed to explain such positive effects on crop yield (Jeffery
77 et al. 2015; Kammann and Gruber 2015): i) by direct provision of nutrients, though limited in most biochars,
78 which explains why manure biochars provide better results than wood biochars; ii) by the reduced nutrient
79 losses due to biochar cation exchange capacity; iii) by liming in acidic soils, since most biochars have
80 neutral to alkaline pH; iv) by increasing water retention capacity, though there is a paucity of evidence; v)
81 by increasing soil temperature; vi) by adsorbing pollutants; vii) by bulk soil or rhizosphere biological effects
82 (community structure or function shifts); viii) by phytohormonal signaling interference (e.g. ethylene); and
83 ix) by the induction of pathogen resistance. Regarding the negative effects on crop yield, N immobilization,
84 excessive pH increases, release of phytotoxic substances such as sulphur or salts, and a reduction in
85 pesticide efficacy, have been proposed as mechanisms (Jeffery et al. 2015).

86 Our aim was to assess the effect of biochar on a cereal crop growing in alkaline soil under Mediterranean
87 conditions. For this purpose, we analyzed the effects of the application of a pine wood gasification biochar
88 on soil-plant system dynamics, by comprehensively assessing crop yield and plant ecophysiological
89 parameters, soil nutrient status, and the microbial community (abundance of some microbial functional
90 genes). The study was carried out in large mesocosms placed outdoors under Mediterranean conditions and
91 cropped to barley, the main crop in the area. The biochar effects were monitored along three cereal seasons
92 according to the Mediterranean agronomic calendar (October-June) following biochar application. This
93 study is of interest as it is centered on a relatively understudied type of biochar, under Mediterranean field
94 conditions and in an alkaline soil, and assessing short- to medium effects.

95

96 **2 MATERIALS AND METHODS**

97 **2.1 Soil and biochar properties**

98 The soil of this study corresponds to the top layer (20 cm) of a loamy Typic Calcixerpt used as the
99 experimental agricultural soil and located in the Autonomous University of Barcelona campus (Cerdanyola
100 del Vallès, Catalonia, NE Spain) (41°29'55.1"N, 2°06'07.5"E). The physicochemical properties of the
101 studied soil are available in Table 1. The soil had been formerly used for grapevine and grain production
102 and no pesticides had been applied for at least 5 years.

103 The biochar in this study was produced by gasification from *Pinus pinaster* and *P. radiata* wood chips.
104 Details on its main properties and production system are described in Table 2. The biochar had a pH of
105 10.4, an electrical conductivity of $1,100\mu\text{s cm}^{-1}$ at 25°C , and a dry matter and C, N, S content (in %) of
106 95.8, 86.9, 0.16, and 0.22%, respectively. It had a relatively low volatile matter (VM) (8%) due to its
107 elevated production temperature (Enders et al. 2012), and a moderate organic matter content for a wood
108 biochar (88% by loss on ignition (LOI) at 375°C), as well as a 0.73% content of soot and around 1% of
109 carbonates according to LOI at $1,100^\circ\text{C}$, which partly explains the high pH of this biochar.

110 **2.2 Experimental setup**

111 Twenty four field soil mesocosms were placed outdoors in the Autonomous University of Barcelona
112 Campus in March 2011, each consisting of a 160 liter polypropylene box (53, 40.5 and 73 cm of inner
113 height, width and length, respectively). The climate of the area is warm temperate, with dry and hot
114 summers (Csa of the Köppen-Geiger climate classification system, Köttek et al. 2006) (Fig. S1). The bottom
115 of the box had six holes (5 cm-diameter) and was covered by a 2-mm plastic mesh to allow water drainage
116 and reduce soil losses, respectively. Each box was filled with a 20 cm soil layer mimicking a B horizon,
117 and then an Ap horizon consisting of a 23 cm soil layer with or without biochar was added, to an initial soil
118 volume of 127 liters. Due to the lower density of biochar compared to soil, the Ap layer corresponded to
119 87, 85, and 77 kg (dw) of soil or soil-biochar mixture containing 0, 0.216 and 1.4305 kg of biochar,
120 respectively, and equivalent to a 0, 5, and 30 t ha^{-1} biochar addition rates. Eight mesocosms were prepared
121 for each biochar application rate. The mesocosms were positioned in two rows to enhance their thermal
122 isolation, and west-to-east oriented to ensure similar sunlight exposure. After their construction, a feed
123 barley (*Hordeum vulgare* L. Graphic variety) purchased at RAGT (Palencia, Spain), was annually seeded
124 at a density of 300 seeds m^{-2} (116 seeds per mesocosm), and cropped in June or July depending on the year.
125 A pig slurry was also added annually as fertilizer at a $100\text{ kg N ha}^{-1} \text{ year}^{-1}$ rate, the usual practice in the
126 area, estimated based on its hydrolysable (labile) N content (see Table S1). Annual fertilization (100 kg N
127 ha^{-1} applications) was split into two: one in early March together with seeding and the other in late April to
128 promote seedling growth. This corresponded to a total annual application of 37.5 g of pig slurry per
129 mesocosm.

130 **2.3 Soil sampling and analysis**

131 Soil samplings were carried out on the 11th of March 2011 (when biochar was supplemented), at mesocosms
132 setup, and on the 12th June 2011, 28th March and 5th June 2012, and on the 11th March and 4th June 2013
133 (Fig. S1). The sampling was carried out by collecting a single soil core 5.5 cm diameter x 7 cm height,
134 which was then air dried in the laboratory and sieved to 2 mm.

135 Soil samples (50 g) were water-saturated for 2 h and then drained for 24 h at room temperature. Moisture
136 was calculated as the weight loss after drying at 105°C overnight as follows: moisture (%) = ((FW –
137 DW)/DW) x 100), where FW=fresh weight and DR=dry weight.

138 A 1:5 (w/v) aqueous extract was prepared by adding 75 ml of deionized water to 15 g of soil and then
139 vertically agitating them in 150 ml polyethylene cups for 2 h at 60 rev min⁻¹. Then, the extract was
140 subsequently centrifuged and the supernatant was filtered through Whatman #42 paper filters. pH and
141 conductivity were immediately determined in those extracts, while a 10 ml aliquot was taken and diluted
142 to 1:10 and then stored frozen for the determination of ion content in all the samples at the end of the
143 experiment. In the last case, soluble Ca²⁺, K⁺, Mg²⁺, Na⁺, and NH₄⁺ were assessed with a CS12A Dionex
144 cation column on a Dionex ICS-1100 ion chromatograph (Dionex, Sunnyvale, USA), while Cl⁻, NO₂⁻, NO₃⁻
145 , HPO₄²⁻, and SO₄²⁻ were measured in a AS4A-SC Dionex anion column on a Dionex DX-100 ion
146 chromatograph (Dionex, Sunnyvale, USA).

147 The exchangeable NH₄⁺ in soil (10 g) was extracted by shaking with 50 ml of 2 M KCl (Maynard et al.
148 2007) and the ammonium content determined by the colorimetric method in Forster (1995).

149 **2.4 Soil microbial respiration, biomass and functional diversity**

150 All soil microbial parameters were analyzed 3, 12, 18, 24 and 30 months after the biochar addition, as
151 detailed in the previous section.

152 Soil microbial basal respiration and microbial biomass carbon were determined using an aliquot of 30 g
153 soil samples stored at 4°C. The soil basal respiration (BAS) was evaluated in gas traps following the
154 protocol of Pell et al. (2006). The same sample was then used to estimate microbial biomass by the
155 fumigation-extraction method according to protocol of Brookes and Joergensen (2006). Microbial biomass
156 carbon (MB) was calculated as MB = E / 0.38, where E is the difference between organic carbon extracted
157 from fumigated soil and from non-fumigated soil, and 0.38 is the conversion factor from E into microbial

158 biomass carbon. Finally, the metabolic quotient ($q\text{CO}_2$) was calculated as $q\text{CO}_2 = (\mu\text{g CO}_2\text{-C g soil}^{-1} \text{ hour}^{-1}) / (\mu\text{g MB}_c\text{-C g soil}^{-1})$ (Anderson and Domsch 1990).

160 The functional diversity was analyzed from soil aliquots stored at -20°C. Total DNA of soil samples was
161 extracted using the MoBio ultraclean DNA soil kit (MoBio, Laboratories Inc., CA, USA) according to the
162 manufacturer's instructions. DNA concentration and quality were spectrophotometrically controlled by
163 NanoDrop 1000 (Thermo Scientific, Waltham, MA, USA), and visually by agarose gel electrophoresis.
164 Quantitative polymerase chain reaction (qPCR) was performed to assess the abundance of the following
165 genes: *amoA* for the ammonia-oxidizing bacteria (AOB) and archaea (AOA); *nxrB* for the beta sub-unit of
166 nitrite-oxidase of *Nictrobacter* sp.; *nirK* and *nirS* for nitrite reducers to gaseous nitric oxide carrying a
167 nitrite reductase enzyme; *nosZ* for denitrifiers carrying the nitrous oxide reductase enzyme and; *nifH* for
168 N₂-fixing microbes to reduce it to NH₄⁺. Representative genes of the microbial nitrogen cycle are detailed
169 in Hagemann et al. (2016). All the qPCR were conducted in 96 well plates using 7900HT Fast Real-Time
170 PCR System (Applied Biosystems, CA, USA). The specific primer combination, qPCR conditions and
171 source of standard used for each gene are shown in Table S2. Single PCR reactions were prepared in 20 µl
172 of final volume containing SYBR Green qPCR Master Mix (Biotoools B&M Labs S.A., Madrid, Spain),
173 forward and reverse primer (10 µM, 0.5 µl each) (Metabion International AG, Planegg-Martinsried,
174 Germany); dimethyl sulfoxide, DMSO (0.5 µl), (Sigma-Aldrich, MI, USA); H₂O, and 5 µl template DNA
175 (4 ng µl⁻¹). Specificity of the fluorescence signal was confirmed by the melting curve analysis of the PCR
176 products at the end of each run. The correct size of amplicons was also checked by agarose gel (2%).
177 Amplification efficiencies, slope and R² of each qPCR assay are reported in Table S3.

178 **2.5 Plant sampling and analysis**

179 A single annual sampling was carried out for the germination, physiological, and yield measurements, each
180 carried out at different stages of barley development. Both the laboratory and the field physiological
181 parameters were determined together, at a similar crop stage, when plants had completely emerged ears and
182 fully developed flag leaves, which, depending on the climatic conditions each year, corresponded to late
183 April to early June. Plant germination was assessed around March, between the development of the first
184 shoot and the growth of the first tiller.

185 Regarding the field measurements, the chlorophyll activity (F_v / F_m ratio), a measurement of the maximum
186 potential quantum efficiency of Photosystem II, was assessed using a PAM-210 Chlorophyll Fluorometer

187 (Heinz Walz GmbH, Germany). Three leaves from three different plants per mesocosm were selected in
188 each mesocosm. For each leaf, around 5 cm of the central part of the leaf was wrapped with aluminum foil
189 for 20 min to provide dark conditions and to stop photosynthesis. Thereafter, the leaf's upper side was
190 placed in the fluorometer without removing the aluminum foil, to prevent the exposure to light, and only
191 then removed in order to measure the initial (F_0) and the maximum (F_m) fluorescence. Then, the
192 fluorescence variation (F_v) was calculated as [$F_v = F_m - F_0$], required for the calculation of the F_v / F_m ratio.
193 The leaf transpiration rate (E), the stomatal conductance (g_s), and the photosynthesis rate (A), were
194 measured with an LCpro portable infrared gas analyzer (ADC BioScientificLTd, Hoddesdon, EN, UK). To
195 integrate the rate of CO_2 assimilation and the water lost by transpiration, the intrinsic water use efficiency
196 (iWUE) was calculated by the A/ g_s ratio. The measurements were carried out in early June 2011, late April
197 2012 and early May 2013, when plants had completely emerged ears and fully developed flag leaves. The
198 flag leaf of three to four plants per mesocosms were measured at each sampling. The records for E, g_s , and
199 A in May 2013 had to be discarded due to technical problems during data acquisition.

200 Regarding the laboratory measurements, the photosynthetic pigment content and the soluble protein
201 concentrations were assessed in the flag leave of three randomly selected barley plants per mesocosm. The
202 samples were collected on the same dates in which the field measurements were performed. In each flag
203 leaf, four 1 cm-leaf disks were cut using a cork-borer. Two of the disks were immediately immersed in
204 liquid nitrogen and then stored at -80°C for further analysis. The other two were dehydrated at 60°C for 3
205 days for the assessment of leaf dry weight. The frozen discs were homogenized on 1 ml of bicine buffer
206 (pH 8) (Lawlor et al. 1989) with a mixer. The whole process was carried out on ice and under soft light to
207 avoid degradation of pigments and proteins. Chlorophyll a and b (Chla + b), and carotenoids were
208 determined according to Lichtenthaler and Welburn (1983). A sample of 100 μl of the homogenate was
209 mixed with 900 μl of absolute ethanol. After 10 min on ice and in the dark, the mix was centrifuged at
210 12,000 g for 2 min. The absorbance of supernatant was measured at 470, 649 and 665 nm for pigment
211 concentration (mg l^{-1}). Soluble proteins were measured following the method described by Bradford (1976).
212 After centrifugation of the resting volume (900 μl) at 12,000 g for 2 min, a sample of 20 μl of the
213 supernatant was mixed with 4 ml of Bradford reagent (1:5) (Bio-Rad Laboratories GmbH, Munich,
214 Germany). Absorbance was measured at 595 nm after 5 min and protein concentration (mg l^{-1}) was calculated
215 by comparison to a standard curve from 0 μg up to 100 μg of bovine albumin (BSA) (Amresco, Ohio,

216 USA). Pigment and protein contents were transformed based on dry weight to avoid the complications of
217 changing water content.

218 The yield was assessed at barley harvesting between mid-June and early July, when plants were totally
219 developed and senescent. All the aerial biomass was collected, and in the laboratory, the straw and the ears
220 were manually separated, dried at 70°C for 48 h, and weighed. The number of seedlings and ears per plot
221 were also determined. The average ear weight and straw weight per plot were estimated by dividing their
222 weight by their numbers in each mesocosm. The number of grains per ear was assessed by counting them
223 in 20 randomly selected ears from each mesocosm. The quantitative yield results in 2012 were discarded
224 due to the biasing effect of predation by wild boars in some of the microcosms.

225 The nutrient uptake was assessed by grinding the straw and the ears to 1 mm and then analyzing their macro
226 and micronutrient content by near infrared reflectance spectroscopy (NIRS), by scanning the ground
227 samples from 1,100 to 2,500 nm using a NIRSystems 5000 scanning monochromator (FOSS, Hillerød,
228 Denmark). Reflectance was recorded in 2 nm steps, which gave 692 data points for each sample, as $\log(1/R)$, where R represents reflected energy. The samples were scanned in duplicate using closed ring cup
229 cells and the mean spectrum was calculated for each sample. The calibration process was performed
230 according to the procedure described by Foskolos et al. (2015). A more detailed description of this
231 procedure can be found in the Supplementary Material (Tables S4 and S5). A random subset of samples
232 (34 straw and grain ground samples) was used for NIRS calibration, analyzed by the following reference
233 methods: N by the Kjeldahl method, and Ca, Fe, K, Mg, Mn, P, S, and Zn by ICP-OES in an Optima 3200
234 R (Perkin-Elmer, Norwalk, CT, USA). The N efficiency of the plant-soil system was evaluated using three
235 different parameters. The first one was defined as the percentage of water-soluble N-NO_3^- concentration in
236 soil related to the plant N content (in %). The other two parameters were the nitrogen-accumulation
237 efficiency (NAE) and the nitrogen-use efficiency (NUE) according to the definition of Sembiring et al.
238 (1998). The nitrogen-accumulation efficiency was calculated as $\text{NAE} = (\text{Ns} - \text{Nsc}) / (\text{Nc} - \text{Ncc})$; where Ns
239 was the total N-NH_4^+ and N-NO_3^- accumulated in soil profile of the biochar applied plots, Nsc was the total
240 of N-NH_4^+ and N-NO_3^- accumulated in soil of non-amended plots, Nc was the N removed in crop of
241 fertilized plots and Ncc the N removed in crop of non-amended plots. The nitrogen-use efficiency was
242 calculated as $\text{NUE} = (\text{Nc} - \text{Ncc}) + (\text{Ns} - \text{Nsc})$ using the same nomenclature above. The nitrogen efficiency
243 refers to the whole plant (straw and grain).

245 **2.6 Statistics**

246 The experiment was conducted in a field soil mesocosm where three biochar addition rates (0, 5 and 30 t
247 ha^{-1}) were applied. Eight replicates per treatment were setup randomly assigned. Finally, a set of twenty
248 four data was statistically analyzed for all the parameters. Physiological factors were measured in three
249 plants as technical replicates but the mean per plot was calculated to reduce pseudoreplication. Data were
250 analyzed by the software Statistica 7.0 (Stat Soft, Inc. OK, USA). Normal distribution was checked by the
251 Kolmogorov-Smirnov test. Data that did not conform to a normal distribution were transformed with
252 logarithm corrections before applying parametrical tests. To check the statistical differences among groups,
253 a one-way ANOVA with repeated measures was used to compare the biochar treatments along the
254 experiment, and using the mesocosm identity as subject. The post-hoc test of Bonferroni was used for
255 pairwise comparisons between treatments within each sampling. Differences at $p < 0.05$ were considered
256 significant. Statistical results of the one-way ANOVA with repeated measures are detailed in Tables S6-
257 S17. Differences of the post-hoc test of Bonferroni are shown with different letters in the graphics.

258

259 **3 RESULTS**

260 **3.1 Biochar effect on soil**

261 The physical and chemical soil parameters are shown in Fig. 1 and Fig. 2. The application of pine wood
262 chips biochar to this soil at the two rates tested (5 and 30 t ha^{-1}) raised the moisture compared to non-
263 amended control soil (Fig. 1a). This effect was present at the highest rate (30 t ha^{-1}) in most samplings,
264 although this was generally not observed in the summer samplings. The electrical conductivity was also
265 higher in amended soils but the response was only associated with the highest application rate and restricted
266 to the three months following the application (Fig. 1b). Before the biochar addition, the pH of the
267 experimental soil was already basic (8.3, Table 1) and remained globally stable regardless of the quantity
268 of added biochar (Fig. 1c), despite the 11.4 pH of this pine-gasified wood (Marks et al. 2014). A significant
269 difference was only observed at the low dose of biochar three months after the application. However, this
270 effect reverted in the following measurements.

271 The ionic content of the biochar-applied soils was analyzed along 2011-2013 and some significant
272 differences among treatments were observed (Fig. 2). Namely, the supplementation of high amounts of
273 biochar on this soil (30 t ha^{-1}) induced a statistically significant reduction of NO_3^- and HPO_4^{2-} three months

274 after the addition, in a trend that disappeared after one year of the application (Fig. 2a, b). On the contrary,
275 SO_4^{2-} and Mg^{2+} increased their levels in soil after high biochar application (Fig. 2c, d), while this was also
276 observed for K^+ and Cl^- (Fig. 2e, f), but with increases persisting slightly over a year. Other mineral
277 components (Ca^{2+} , Na^+ , NH_4^+ and NO_2^-) were non-significantly different between biochar treatments along
278 the three years of the study (Fig. S2).

279 **3.2 Biochar effect to the soil-microbial parameters**

280 In Fig. 3, the effect of biochar addition three months after amendment is shown (11th June 2011), the only
281 sampling with statistically significant differences.

282 The microbial biomass carbon and microbial activity based on the soil basal respiration remained unaltered
283 three months after biochar application (Fig. 3a, b). The ecophysiological state of microbial biomass
284 represented by the metabolic quotient was also stable regardless of the amount of applied biochar (Fig. 3c).
285 However, the diversity of functional groups changed significantly three months after soil application of
286 high amounts of biochar (Fig. 3d). Specifically, the copy number of the *nosZ* gene, mediating the last step
287 of denitrification process, was reduced in our experiment. The second step of denitrification, nitrite
288 reduction to gaseous nitric oxide (NO) catalyzed by *nirS* or *nirK* was also marginally reduced ($p < 0.1$). A
289 decrease of *nirK* gene copies was detected in plots with 30 t ha^{-1} of biochar. In fact, there was a generalized
290 tendency to reduce the microbial transformation processes of the N cycle when soil was amended with the
291 highest quantity of biochar.

292 **3.3 Biochar effect on crop yield and quality**

293 **3.3.1 Crop physiology**

294 None of the studied physiological parameters revealed that plant growth on biochar-amended soils were
295 significantly affected (Fig. 4). The concentration of key components of the primary plant metabolism, such
296 as chlorophyll and proteins, showed similar values in biochar-applied and control soils (Fig. 4a, b). The
297 activity of chlorophylls, analyzed by the F_v / F_m ratio, was also stable regardless of the quantity of biochar
298 added to soil (Fig. 4c). Finally, the intrinsic water use efficiency, ratio of the photosynthesis rate (A), and
299 the stomatal conductance (g_s), confirmed the lack of a biochar effect on the basic physiological functioning
300 of barley plants with biochar addition in our plots (Fig. 4d).

301 **3.3.2 Crop performance**

302 The highest input of biochar increased the number of seedlings per plot in the first year (Fig. 5a). However,
303 this higher germination rate was not observed in the other two analyzed years. Similarly, the crop
304 performance or productivity, measured as the ear total weight per plot (Fig. 5b), did not suffer from
305 variations along the studied period. Three extra parameters related to crop production (ear number per plot,
306 number of grains per ear, and straw weight per plot) were also analyzed and no yield differences were
307 observed among treatments (Fig. S3).

308 **3.3.3 Crop nutrient content and uptake efficiency**

309 The nutrient analysis of barley (either for straw and grain) revealed no differences in plants growing at 0,
310 5 and 30 t biochar ha^{-1} , neither for macronutrients nor for micronutrients. The levels of nitrogen in mature
311 plants (straw and grain) (Fig. 6a) showed a similar content among biochar-applied soils and non-amended
312 soil. Minimal differences, in no case significant, were observed for the rest of elements (Fig. S4-S5).
313 However, the soil-to-plant N content ratio was estimated, herein referred as nitrogen efficiency, indicating
314 that nitrogen uptake was hindered, as lower values were observed in the first and second year in the 30 t
315 ha^{-1} treatment (Fig. 6b). These trends disappeared in the third year following the biochar application. The
316 N efficiency of the plant and soil system was further investigated using the Sembiring et al. (1998)
317 coefficients of the nitrogen-accumulation efficiency (NAE) and nitrogen-use efficiency (NUE). The
318 addition of biochar triggered a small and negative NAE ratio for the three studied years (Fig. 6c). The lower
319 amount of NO_3^- in amended plots (5 and 30 t ha^{-1}) compared to control plots was the main cause of the
320 negative response for this ratio. However, the nitrogen-use efficiency showed variable values along the
321 time period with negative percentages for the first and third year but positive for the second one (Fig. 6d).
322 The lower amount of N in soil amended plots compared to control plots was balanced by the N content in
323 the crop.

324

325 **4 DISCUSSION**

326 In this work, the effect of biochar amendment to a barley-cultivated soil in a Mediterranean ambient was
327 investigated along three agronomical seasons. After the biochar addition, physical and chemical variables
328 of the soil were studied and its effect on the soil biota and the crop yield and quality. All the analyzed
329 parameters were marked by important inter-annual variability, mostly explained by the rainfall differences
330 among years (Fig. S1). The Mediterranean climate regions are characterized by a high inter-annual

331 variability in precipitation that influences the capacity to sustain the biotic systems in this biome (Cid et al.
332 2017) potentially explaining the contrasting effects of biochar among years. An example of that was in
333 2011, when higher emerged seedling rates on plots amended at the higher biochar addition rate were
334 recorded, while the remaining crop parameters were unaffected (Fig. 5a). This result was coupled with a
335 high precipitation episode (around 80 mm) registered after the seed sowing that year (Fig. S1).

336 The biochar in this study was produced by gasification of pine wood chips at high production temperatures,
337 which yields a very stable material with moderate organic carbon content and that is highly alkaline. One
338 of the described soil impacts induced by the addition of biochar is the alkalization of soil pH (Atkinson et
339 al. 2010; Yuan et al. 2011; Shi et al. 2018), but the soil in this study has an already basic pH (8.3) and hence
340 was globally unaffected by the addition of biochar. However, other described changes such as the increase
341 of moisture and electrical conductivity were registered in biochar amended soils at least 3 months after the
342 application, in agreement with other studies (Singh et al. 2010; Karhu et al. 2011; Saarnio et al. 2013;
343 Blanco-Canqui 2017).

344 Similarly, biochar supplementation altered the soluble ionic content of the receiving soils by increasing the
345 levels of SO_4^{2-} , Cl^- , Mg^{2+} and K^+ , and decreasing the concentration of NO_3^- and HPO_4^{2-} (Fig. 2). The
346 increment on some mineral elements can be directly linked to the contents of these components in the
347 biochar or the feedstock (Atkinson et al. 2010), while the decreases in some elements might be explained
348 by different mechanisms, involving increased soil inorganic N assimilation, accelerated losses by NH_3
349 volatilization and/or increased plant N uptake (Liu et al. 2018). Another plausible mechanism could be the
350 enhanced retention of cations (and anions) based on the highly porous nature of biochar. Porosity combined
351 with the small particle size in most part of biochars provides a large surface area for the direct or indirect
352 retention of anions and cations, respectively (the last by bridging) (Joseph et al. 2010; Lehmann and Joseph
353 2015). This could be in turn influenced by or associated with biochar aging in the specific case of soluble
354 N forms (Singh et al. 2010; Wang et al. 2012). As an example, it has been suggested that nitrate could be
355 retained through bridge-bonding with divalent cations or trivalent metals associated with the biochar
356 surface (Mizuta et al. 2004; Tsukagoshi et al. 2010). Ventura et al. (2013), who also found reduced nitrate
357 contents in biochar plots, hypothesized that the main mechanism is ammonia volatilization in the strong
358 alkaline environment generated around the biochar, which would compete with nitrate production by
359 nitrification. Phosphate, that also dropped in our experiment with biochar adition, has been observed to be
360 strongly absorbed by biochar due to their natural Mg and Ca content (Gunther et al. 2018). Bridge-bonding

361 with divalent cations is a plausible explanation as the Mg content is highly increased on the 30 t ha⁻¹
362 treatment (Fig. 2d). Contrastingly, a recent meta-analysis associated biochar application with a significant
363 enhancement (45%) of the soil available P, with the C:N ratio and biochar feedstock being the key factors
364 related to this positive effect (Gao et al. 2019). This divergent result, far of the scope of this study, will
365 deserve a deeper analysis in further experiments to fully understand the drop of HPO₄⁻ in this biochar-soil
366 system.

367 Our results confirmed that the addition of biochar globally affects the physicochemical properties of the
368 soil. However, the biological response is not in agreement with those changes, as shown by the lack of
369 effects on microbial biomass and activity of the microbiome (Fig. 3a-c). Biochar has been often
370 associated with modifications of the microbial community (Noyce et al. 2015; Mierzwa-Hersztek et al.
371 2017; Sheng and Zhu 2018) although the absence of microbial effects under field conditions has also been
372 widely reported (Castaldi et al. 2011; Scheer et al. 2011; Zhang et al. 2012; Ameloot et al. 2013). In a
373 similar study (Marks et al. 2016), carried out in analogous Mediterranean conditions, using the same
374 biochar and a similar alkaline soil, these authors failed to find significant effects on soil microbial
375 biomass, respiration, and metabolic coefficient. In our study, the only apparent effect was observed at the
376 higher biochar application rate, which induced a significantly lower abundance of the *nosZ* functional
377 gene in the bulk soil, responsible for the last step of the denitrification process where N₂O is reduced to
378 N₂ (Fig. 3d). This functional gene pertains to the denitrifier soil microorganisms functional group, that
379 catalyze the stepwise reduction of NO₃⁻ to N₂ by the functional genes *narG* and *napA* (nitrate reductases),
380 *nirK* and *nirS* (nitrite reductases), *norB* (nitric oxide reductase), and *nosZ* (nitrous oxide reductase),
381 respectively (Philippot et al. 2007; Harter et al. 2017; Kuypers et al. 2018). Since the abundance of *nirK*
382 /*nirS* genes in bulk soil was not significantly affected along the 96 days after the biochar application in
383 our study, the lower abundance of the *nosZ* functional gene in June 2011 would be unlikely be associated
384 with a decreased catalysis of N₂O to N₂. This situation would suggest a higher accumulation of N₂O,
385 similar to the results of Sanchez-Garcia et al. (2014), although numerous studies have related biochar with
386 the mitigation of nitrous oxide emissions via denitrification (Cayuela et al. 2014; Ameloot et al. 2016;
387 Harter et al. 2017; Liu et al. 2018). The emission rates of gases (N₂O and also CO₂) after biochar
388 application is also highly influenced by crop, soil type, biochar type used and N fertilization (Shaaban et
389 al 2018b; Sun et al. 2018; Yoo et al. 2018; Yu et al. 2018). Moreover, greenhouse gas measurements
390 carried out in June 2012 on the same mesocosm (Ribas et al. 2019) showed negative N₂O emission rates

391 in the higher biochar application rate compared to the lower application rate and the control.
392 Alternatively, the difference in *nosZ*, the last functional group of the denitrification process, could be
393 explained by the lower nitrate levels, which is also supported by our finding of decreased NO_3^-
394 concentration at the high biochar dose (Fig. 2a). Moreover, a decrease of NO_2^- was observed in the
395 experiment of Ribas et al. (2019) supporting the idea that the lower content of both substrates could
396 influence the rhythm of the denitrification process.

397

398 Despite the fact that *nosZ* gene abundance was statistically lower, a decreased N cycle in terms of
399 functional genes abundance (nitrification, denitrification and fixation) was observed at the higher biochar
400 concentrations (Fig. 3d). The *nosZ* gene has been revealed as the key to decreasing the emissions of N_2O
401 and different studies have related biochar addition with an enhanced activity of nitrous oxide reducers
402 (Harter et al. 2014; Harter et al. 2017). Biochar has also been related to a higher activity of the ammonia-
403 oxidizer groups (AOA and AOB) from the nitrification process (Prommer et al. 2014). These contrasting
404 results deserve a further study based on the activity of the nitrogen-cycling network functional groups for
405 this specific biochar-soil system.

406

407 Regarding the effect of biochar on plant physiology, no strong general effects were observed. Namely, the
408 physiological parameters were unaffected by biochar treatments, nor was there any biochar addition rate-
409 dependent response observed in our experimental data (Fig. 4). The effect of biochar on plant physiology
410 has not been exhaustively investigated and the primary metabolism components such as chlorophyll and
411 protein content have received even less attention. Positive effects of biochar application were recorded on
412 physiological parameters of wheat and rice (Rehman et al. 2017), and maize (Haider et al. 2015). On these
413 three monocots, biochar improved the soil-plant water relations and photosynthesis. In another study on
414 wheat, no significant effect was observed in the F_v / F_m ratio but a significant positive linear relationship
415 was demonstrated between biochar addition and the photosynthetic rate and stomatal conductance (Akhtar
416 et al. 2015). On the other hand, Rehman et al. (2017) also failed to find any relationship between biochar
417 addition and chlorophyll content in wheat and rice. However, it is important to remark that the studies are
418 not fully comparable with our study, since they were not developed under Mediterranean conditions or
419 alkaline soil, nor using the type of biochar in this study, and moreover, were carried out under stress
420 conditions of salinity, drought or heavy metal toxicity.

421 Regarding plant growth and yield, many studies have been developed and results of two meta-analyses
422 reported benefits in aboveground and crop productivity after adding biochar to soils (Jeffrey et al. 2011;
423 Biederman and Harpole 2013). Focused on cereals, between 7 to 60% yield increases have been reported
424 (Rogovska et al. 2014; Agegnehu et al. 2016; Si et al. 2018). This contrasts with our observations, where
425 crop yield or straw/grain productivity were not affected by biochar amendment (Fig. 5 and S3) but,
426 however, agree with other studies (Marks et al. 2016; Hansen et al. 2017). Marks et al. (2016) used the
427 same biochar in a different alkaline soil and described no crop improvements in the first three agronomical
428 seasons following the application. These findings seem to support the conclusions by Jeffrey et al. (2017),
429 whose global-scale meta-analysis found no effect of biochar on crop yield in temperate latitudes whereas a
430 25% average increase is observed in the tropics.

431 Concerning the crop composition, plant nitrogen content remained invariable regardless of the quantity of
432 biochar in soil (Fig. 6a). Plants absorb nitrogen from the soil mainly in the form of NO_3^- , and our results
433 revealed that plants were able to cope with the reduced soluble NO_3^- content at the high biochar dose and
434 not vary their total N content. Similarly, a tendency was also shown for plant P content (Fig. S4) and the
435 lower soil soluble HPO_4^{2-} (Fig. 2b). The explanation could be that there is a higher N and P uptake
436 efficiency of plants at high biochar dose. By calculating integrative indexes relating the N in soil to that in
437 plants (N efficiency, NAE and NUE) general decreased ratios in biochar were revealed (Fig. 6b-d), which
438 are interpreted as an increased N uptake efficiency. This means that plants amended with biochar were (or
439 had to be) more efficient in N acquisition compared to control plants. These results are consistent with
440 other authors' observations who have claimed that biochar has the capacity to improve N fertilizer use
441 efficiency in plants (Chan et al. 2007; Ding et al. 2010; Zhen et al. 2013; Haider et al. 2015; Wang et al.
442 2017). Barley plants in this biochar-amended soil were able to uptake, mobilize and load the same
443 amounts of N and P than control plants with lower soluble contents and equal crop yields, something that
444 might be of environmental interest for a decreased availability/leaching of nitrates in term of groundwater
445 protection. Since agrochemical fertilizers are the major contributors of water pollution (Addiscott et al.
446 1991) biochar amendments might ameliorate this effect (Liu et al. 2018).

447 Furthermore, the higher water retention in biochar plots in our study compared to other soil organic
448 amendments (Sombroek et al. 2003; Liang et al. 2006; Amonette and Joseph 2009; Novak et al. 2012)
449 and associated with the biochar high porosity is of interest. The plant available water fraction rather than
450 the total moisture content is the true measure of water availability (Baronti et al. 2013). Despite the fact

451 that we lack this information, the lack of effects of biochar on the intrinsic water use efficiency of barley
452 plants suggest that this higher moisture content does not provide higher water availability or that the
453 water provision is optimum in all the treatments. In the barley crop in this study both explanations might
454 be plausible, since barley cropping is carried out in the rainy period between late-winter and springtime.
455 In spite of that fact, higher soil moisture content might be of interest for other Mediterranean crops,
456 including those growing in summer, the most challenging season in this climate, characterized by scarce,
457 short and heavy rains and high temperatures.

458 Benefits of biochar are often limited to specific conditions and the effects on real applications should be
459 determined on a case-by-case basis. Our results are of interest as i) they provide information on a
460 relatively understudied type of biochar (gasified-wood biochar) under field conditions of calcareous soils
461 and Mediterranean climate, and assessing short to medium effects, ii) it is a comprehensive study on the
462 effects of biochar on soil chemical, physical and biological properties and its effects on plant physiology,
463 nutrition and crop yield, iii) they highlight the increased water retention and reduced soluble nitrate
464 contents induced by biochar without affecting crop productivity but associated with greater plant
465 nutritional efficiency.

466

467 **5 CONCLUSIONS**

468 • Biochar addition to a Mediterranean agroecosystem and an alkaline soil did not cause any effect on
469 plant nutrient uptake, crop yields or plant physiology.

470 • The lower soluble content of some soil macronutrients (N and P) associated with the addition of high
471 rates of biochar (30 t ha^{-1}) were not translated to lower N and P plant contents indicating a higher
472 uptake efficiency of plants.

473 • Our results confirm that biochar is a suitable soil amendment in Mediterranean agroecosystems in
474 which N fertilizer application might be moderated whenever yields are unaffected, potentially
475 allowing the mitigation of nitrate pollution and an increase in soil water retention.

476 • The decreased abundance of denitrifiers suggests a hampered denitrification process in our system
477 with a tendency to decrease fixation and nitrification.

478

479 **ACKNOWLEDGEMENTS**

480 This work was funded by the CARBONET project (CGL2010-15766) of the Spanish Ministry of Science
481 and Innovation and partly by the project FERTICHAR (AGL2015-70393-R) of the Spanish Ministry of
482 Economy and Competitiveness. We also want to thank Evan Marks and Gerardo Ojeda for their assistance
483 in the experiment setup.

484 Compliance with Ethical Standards: The authors declare that they have no conflict of interest.

485 **REFERENCES**

486 Addiscott TM, Powlson DS, Whitmore AP (1991) Farming, fertilizers and the nitrate problem. CAB
487 International, Wallingford, UK

488 Agegnehu G, Nelson PN, Bird MI (2016) The effects of biochar, compost and their mixture and nitrogen
489 fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of
490 Ethiopia. *Sci Total Environ* 569: 869-879

491 Akhtar SS, Andersen MN, Liu F (2015) Residual effects of biochar on improving growth, physiology and
492 yield of wheat under salt stress. *Agric Water Manage* 158:61-68

493 Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L,
494 Sleutel S (2013) Short-term CO₂ and N₂O emissions and microbial proper- ties of biochar amended
495 sandy loam soils. *Soil Biol Biochem* 57:401–410

496 Ameloot N, Maenhout P, Neve SD, Sleutel S (2016) Biochar-induced N₂O emission reductions after field
497 incorporation in a loam soil. *Geoderma* 267: 10-16

498 Amonette JE, Joseph S (2009) Characteristics of biochar: microchemical properties. In: Lehmann J,
499 Joseph S (eds) *Biochar for Environmental Management*. Earthscan, London, pp 33–52

500 Anderson TH, Domsch KH (1990) Application of ecophysiological quotients (QCO₂ and QD) on
501 microbial biomasses from soils of different cropping histories. *Soil Biol Biochem* 22:251-255

502 Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits
503 from biochar application to temperate soils: a review. *Plant Soil* 337:1-18

504 Baronti S, Vaccari FP, Miglietta F, Calzonari C, Lugato E, Orlandini S, Pini R, Zulian C, Genesio L
505 (2013) Impact of biochar application on plant water relations in *Vitis vinifera* (L.). *Eur J Agron*
506 53:38-44

507 Blanco-Canqui H (2017) Biochar and soil physical properties. *Soil Sci. Soc. Am. J.* 81: 687–692

508 Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a
509 meta-analysis. *GCB Bioenergy* 5:202-214

510 Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein
511 utilizing principle of protein-dye binding. *Anal Biochem* 72:248–254

512 Brookes PC, Joergensen RG (2006) Microbial biomass measurements by fumigation extraction, in:
513 Bloem J, Hopkins DW, Benedetti A (Eds.), *Microbial Methods for Assessing Soil Quality*. CABI
514 Publishing, King's Lynn, pp. 77–83.

515 Castaldi S, Riondino M, Baronti S, Esposito FR, Marzaioli R, Rutigliano FA, Vaccari FP, Miglietta F
516 (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and
517 greenhouse gas fluxes. *Chemosphere* 85:1464–1471

518 Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sanchez-Monedero MA (2014) Biochar's role
519 in mitigating soil nitrous oxide emissions: A review and meta-analysis. *Agric Ecosyst Environ*
520 191:5–16.

521 Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste
522 biochar as a soil amendment. *Aust J Soil Res* 45:629–634

523 Cid N, Bonada N, Carlson SM, Grantham TE, Gasith A, Resh VH (2017) High Variability Is a Defining
524 Component of Mediterranean-Climate Rivers and Their Biota. *Water* 9: 52
525 <https://doi.org/10.3390/w9010052>

526 Cornelissen G, Martinsen V, Shitumbanuma V, Alling V, Breedveld GD, Rutherford DW, Sparrevik M,
527 Hale SE, Obia A, Mulderm J (2013) Biochar effect on maize yield and soil characteristics in five
528 conservation farming sites in Zambia. *Agronomy-Basel* 3:256–274

529 Ding Y, Liu YX, Wu WX, Shi DZ, Yang M, Zhong ZK (2010) Evaluation of Biochar Effects on Nitrogen
530 Retention and Leaching in Multi-Layered Soil Columns. *Water Air Soil Pollut* 213:47–55

531 El-Naggar A, Awad YM, Tang XY, Liu C, Niazi NK, Jien SH, Tsang DCW, Song H, Yong SO, Sang SL
532 (2018) Biochar Influences Soil Carbon Pools and Facilitates Interactions with Soil: a Field
533 Investigation. *Land Degrad. Dev.* <https://doi.org/10.1002/ldr.2896>.

534 Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate
535 recalcitrance and agronomic performance. *Bioresour Technol* 114:644–653

536 Forster JC (1995) Soil sampling, handling, storage and analysis. In: *Methods in Applied Soil
537 Microbiology and Biochemistry*. Alef K and Nannipieri P (Eds.). Lodon Academic Press, 608 p

538 Foskolos A, Calsamiglia S, Chrenková M, Weisbjerg MR, Albanell E (2015) Prediction of rumen
539 degradability parameters of a wide range of forages and non-forages by NIRS. *Animal* 9:1163–1171

540 Gao S, DeLuca TH, Cleveland CC (2019) Biochar additions alter phosphorus and nitrogen availability
541 in agricultural ecosystems: A meta-analysis. *Sci Total Environ* 654: 463–472

542 Gunther S, Grunert M, Muller S (2018) Overview of recent advances in phosphorus recovery for fertilizer
543 production. *Eng. Life Sci.* 18: 434–439

544 Hagemann N, Arter J, Behrens S (2016) Elucidating the impacts of biochar applications on nitrogen
545 cycling microbial communities. In: Ralebitso-Senior T, and Orr C (Eds.), *Biochar application:
546 Essential soil microbial Ecology*. Elsevier, United Kingdom pp 163–198

547 Haider G, Koyro HW, Azam F, Steffens D, Müller C, Kammann C (2015) Biochar but not humic acid
548 product amendment affected maize yields via improving plant-soil moisture relations *Plant Soil* 395:
549 141–157

550 Hansen V, Muller-Stover D, Imparato V, Krogh PH, Jensen LS, Dolmer A, Hauggaard-Nielsen H (2017)
551 The effects of straw or straw-derived gasification biochar applications on soil quality and crop
552 productivity: A farm case study. *J Environ Manage* 186: 88–95

553 Harter J, El-Hadidi M, Huson DH, Kappler A, Behrens S (2017) Soil biochar amendment affects the
554 diversity of nosZ transcripts: Implications for N₂O formation. *Sci Rep* 7, 3338.
555 <https://doi.org/10.1038/s41598-017-03282-y>

556 Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, Scholten T, Kappler A, Behrens S (2014)
557 Linking N₂O emissions from biochar-amended soil to the structure and function of the N-cycling
558 microbial community. *ISME J* 8:660–674

559 Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of
560 biochar application to soils on crop productivity using meta-analysis. *Agric Ecosyst Environ*
561 144:175–187

562 Jeffery S, Abalos D, Spokas KA, Verheijen FGA (2015) Biochar effects on crop yield. In: Lehmann J,
563 Joseph S (eds) *Biochar for environmental management: Science, Technology and Implementation*.
564 pp. 1–13, Routledge, New York, USA.

565 Jeffery S, Abalos D, Prodana M, Bastos AC, Van Groenigen JW, Hungate BA, Verheijen F (2017)
566 Biochar boosts tropical but not temperate crop yields. *Environ Res Lett* 12:053001

567 Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., van Zwieten, L., Kimber,
568 S., Cowie, A., Singh, B. P., Lehmann, J., Foidl, N., Smernik, R. J., Amonette, J. E. (2010) An
569 investigation into the reactions of biochar in soil. *Aust. J. Soil Res.* 48, 501–515

570 Kammann C, Gruber ER (2015) Biochar effects on plant ecophysiology. In: Lehmann J, Joseph S (eds)
571 *Biochar for environmental management: Science, Technology and Implementation*. pp. 1–13,
572 Routledge, New York, USA.

573 Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH₄
574 uptake and water holding capacity—Results from a short-term pilot field study. *Agric Ecosyst*
575 *Environ* 140:309–313

576 Kavitha B, Reddy PVL, Kim B, Lee SS, Pandey SK, Kim KH (2018) Benefits and limitations of biochar
577 amendment in agricultural soils: A review. *J Environ Manage* 227: 146–154

578 Kotttek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate
579 classification updated. *Meteorol Z* 15:259–263

580 Kuypers MM, Marchant H K, Kartal B (2018) The microbial nitrogen-cycling network. *Nat. Rev.*
581 *Microbiol* 16:263–276

582 Lawlor DW, Kontturi M, Young AT (1989) Photosynthesis by flag leaves of wheat in relation to protein,
583 ribulose biphosphate carboxylase activity and nitrogen supply. *J Exp Bot* 40:43–52

584 Lehmann J, Joseph S (2015) Biochar for environmental management: an introduction. In: Lehmann J,
585 Joseph S (eds) *Biochar for environmental management: Science, Technology and Implementation*.
586 pp. 1–13, Routledge, New York, USA.

587 Li Z, Song Z, Bhupinder PS, Wang H (2019) The impact of crop residue biochars on silicon and nutrient
588 cycles in croplands. *Sci Total Environ* 659: 673–680

589 Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luizao FJ,
590 Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. *Soil Sci Soc*
591 *Am J* 70:1719–1730

592 Lichthenthaler HK, Wellburn A (1983) Determinations of total carotenoids and chlorophylls a and b of
593 leaf extracts in different solvents. *Biochem Soc Trans* 11:591–592

594 Liu Q, Zhang Y, Liu B, Amonette JE, Lin Z, Liu G, Ambus P, Xie Z (2018) How does biochar influence
595 soil N cycle? A meta-analysis. *Plant Soil* <https://doi.org/10.1007/s11104-018-3619-4>

596 Marks EAN, Alcañiz JM, Domene X (2014) Unintended effects of biochars on short-term plant growth in
597 a calcareous soil. *Plant Soil* 385:87–105

598 Marks EAN, Mattana S, Alcañiz JM, Pérez-Herrero E, Domene X (2016) Gasifier biochar effects on
599 nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year
600 Mediterranean trial. *Agric Ecosyst Environ* 215:30–39

601 Maynard DG, Kalra YP, Crumbaugh JA (2007) Nitrate and Exchangeable Ammonium Nitrogen. In:
602 Carter MR and Gregorich EG (Eds). *Soil Sampling and Methods of Analysis*. 2nd Edition. Canadian
603 Society of Soil Science. CRC Press, Taylor and Francis Group, Boca Raton, FL. 1264 p

604 Mierzwa-Hersztek M, Klimkowicz-Pawlas A, Gondek K (2017) Influence of poultry litter and poultry
605 litter biochar on soil microbial respiration and nitrifying bacteria activity. *Waste Biomass*
606 *Valorization* 1–11.

607 Mizuta K, Matsumoto T, Hatake Y, Nishihara K, Nakanishi T (2004) Removal of nitrate- nitrogen from
608 drinking water using bamboo powder charcoal. *Bioresour Technol* 95:255–257

609 Novak JM, Busscher WJ, Watts DW, Amonette JE, Ippolito JA, Lima IM, Gaskin J, Das KC, Steiner C,
610 Ahmedna M, Rehrha D, Schomberg H (2012) Biochars Impact on Soil-Moisture Storage in an
611 Ultisol and Two Aridisols. *Soil Sci* 117:310-320

612 Noyce GL, Basiliko N, Fulthorpe R, Sackett TE, Thomas SC (2015) Soil microbial responses over 2
613 years following biochar addition to a north temperate forest. *Biol. Fertil. Soils* 51: 649–659

614 Olmo M, Albuquerque JA, Barrón V, del Campillo MC, Gallardo A, Fuentes M, Villar R (2014) Wheat
615 growth and yield responses to biochar addition under Mediterranean climate conditions. *Biol Fertil*
616 *Soils* 50:1177-1187

617 Pell M, Stenstrom J, Granhall U (2006) Soil respiration. In: Bloem J, Hopkins DW, Benedetti A (Eds.),
618 *Microbiological Methods for Assessing Soil Quality*. CABI Publishing, King's Lynn.

619 Philippot L, Hallin S, Schloter M (2007) Ecology of denitrifying prokaryotes in agricultural soil. *Adv.*
620 *Agron* 96:249–305

621 Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja
622 G, Hood-Nowotny RC (2014) Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates
623 Soil Nitrification in a Temperate Arable Field Trial. *Plos One* 9:e86388

624 Rehman MZ, Khalid H, Akmal F, Ali S, Rizwan M, Qayyum MF, Iqbal M, Khalid MU, Azhar M (2017)
625 Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat
626 and rice under rotation in an effluent irrigated field. *Environ Pollut* 227:560-568

627 Ribas A, Mattana S, Llurba R, Debouk H, Sebastia MT, Domene X (2019) Biochar application and
628 summer temperatures reduce N_2O and enhance CH_4 emissions in a Mediterranean agroecosystem:
629 Role of biologically-induced anoxic microsites. *Sci Total Environ* 685: 1075-1086

630 Rogovska N, Laird DA, Rathke SJ, Karlen DL (2014) Biochar impact on Midwestern Mollisols and
631 maize nutrient availability. *Geoderma* 230: 340–347

632 Saarnio S, Heimonen K, Kettunen R (2013) Biochar addition indirectly affects N_2O emissions via soil
633 moisture and plant N uptake. *Soil Biol Biochem* 58:99–106

634 Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on
635 the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern
636 New South Wales, Australia. *Plant Soil* 345:47–58

637 Sembiring H, Raun WR, Johson GV (1998) Nitrogen Accumulation Efficiency: Relationship Between
638 Excess Fertilizer and Soil-Plant Biological Activity in Winter Wheat. *J Plant Nutr* 21:1235-1252

639 Shaaban M, Van Zwieten L, Bashir S, Younas A, Nuñez-Delgado A, Chhajro MA, Kubar KA, Ali U,
640 Rana MS, Mehmood MA, Hu R (2018a) A concise review of biochar application to agricultural
641 soils to improve soil conditions and fight pollution. *J Environl Manag* 228: 429–440

642 Shaaban M, Wu Y, Khalid MS, Peng QA, Xu X, Wu L, Younas A, Bashir S, Mo Y, Lin S (2018b)
643 Reduction in soil N₂O emissions by pH manipulation and enhanced nosZ gene transcription under
644 different water regimes. *Environ Pollut* 235: 625–631

645 Sanchez-Garcia M, Roig A, Sanchezmonedero MA, Cayuela ML (2014) Biochar increases soil N₂O
646 emissions produced by nitrification-mediated pathways. *Front. Environ. Sci.* 2: 25

647 Sheng Y, Zhu L (2018) Biochar alters microbial community and carbon sequestration potential across
648 different soil pH. *Sci. Total Environ.* 622: 1391–1399

649 Shi RY, Li JY, Jiang J, Kamran MA, Xu RK, Qian W (2018) Incorporation of corn straw biochar
650 inhibited the re-acidification of four acidic soils derived from different parent materials. *Environ.*
651 *Sci. Pollut. Res.* 25: 9662–9672

652 Si L, Xie Y, Ma Q, Wu L (2018) The short-term effects of rice straw biochar, nitrogen and phosphorus
653 fertilizer on rice yield and soil properties in a cold waterlogged paddy field. *Sustainability* 10: 537–
654 544

655 Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as
656 a soil amendment. *Aust J Soil Res* 48:516–525

657 Sombroek W, Ruivo ML, Fearnside PM, Glaser B, Lehmann J (2003) Amazonian Dark Earths as carbon
658 stores and sinks. In: Lehmann J, Kern DC, Glaser B, and Woods WI (Eds). *Amazonian Dark Earths:*
659 origin, properties, management. Dordrecht, Netherlands: Kluwer Academic Publishers

660 Sun X, Han X, Ping F, Zhang L, Zhang K, Chen M, Wu W (2018) Effect of rice straw biochar on nitrous
661 oxide emissions from paddy soils under elevated CO₂ and temperature. *Sci. Total. Environ.* 628:
662 1009–1016

663 Tsukagoshi S, Fukui M, Shinoyama H, Noda K, Ikegami F (2010) The effect of charcoal amendment on
664 the lettuce growth and NO₃-N discharge from the soil medium. *Acta Hortic* 852:319–324

665 Vaccari FP, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F (2011) Biochar as a
666 strategy to sequester carbon and increase yield in durum wheat. *Eur J Agron* 34:231–238

667 Ventura M, Sorrenti G, Panzacchi P, George E, Tonon G (2013) Biochar reduces short-term nitrate
668 leaching from A horizon in an apple orchard. *J Environ Qual* 42:76–82

669 Wang J, Pan X, Liu Y, Zhang X, Xiong Z (2012) Effects of biochar amendment in two soils on
670 greenhouse gas emissions and crop production. *Plant Soil* 360: 287–298

671 Wang ZY, Chen L, Sun FL, Luo XX, Wang HF, Liu GC, Xu ZH, Jiang ZX, Pan B, Zheng H (2017)
672 Effects of adding biochar on the properties and nitrogen bioavailability of an acidic soil. *Eur J Soil*
673 *Sci* 68:559–572

674 Yoo G, Lee YO, Won TJ, Hyun JG, Ding W (2018) Variable effects of biochar application to soils on
675 nitrification-mediated N₂O emissions. *Sci. Total Environ.* 626: 603–611

676 Yu Z, Chen L, Pan S, Li Y, Kuzyakov Y, Xu J, Brookes PC, Luo Y (2018) Feedstock determines biochar-
677 induced soil priming effects by stimulating the activity of specific microorganisms: feedstock of
678 biochar determines priming effects. *Eur. J. Soil Sci.* <https://doi.org/10.1111/ejss.12542>

679 Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at
680 different temperatures. *Bioresour Technol* 102:3488–3497

681 Zhang A, Bian R, Pan G, Cui L, Hussain Q, Li L, Zheng J, Zheng J, Zhang X, Han X, Yu X (2012)
682 Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese
683 rice paddy: A field study of 2 consecutive rice growing cycles. *Field Crop Res* 127:153–160

684 Zheng H, Wang Z, Deng X, Herbert S, Xing B (2013) Impacts of adding biochar on nitrogen retention
685 and bioavailability in agricultural soil. *Geoderma* 206:32–39
686

687 **TABLES**

688 **Table 1** Physicochemical properties of the soil used for the mesocosms construction

Parameter	Units	Value
Ph	-	8.3
EC	$\mu\text{S}/\text{m}$ (25°C 1:5 w/v)	200
Sand	%	36.4
Silt	%	44.9
Clay	%	18.7
C	%	2.63
N	%	0.18
C/N	%	14.6
CEC	$\text{cmol}(+)/\text{kg}$	13.9
Cd	mg/kg	<0.1
Cu	mg/kg	121
Cr	mg/kg	25
Ni	mg/kg	19
Pb	mg/kg	35
Zn	mg/kg	104

689

690 **Table 2** Characterization of the used biochar

Feedstock	Production method	Production temperature
<i>Pinus pinaster</i> & <i>P. radiata</i> wood chip	Gasification	600 – 900 °C
Parameter	Units (method)	Value
pH	(H_2O , 1:10)	10.4
EC	μSm^{-1} (25°C, 1:5 w/v)	1,100
C	% (elemental analyzer)	86.9
N	% (elemental analyzer)	0.16
S	% (ICP-OES)	0.22
Carbonats	% (ASTM D4373)	2.75
Dry matter	% (Gravimetry)	95.8

691

692 **FIGURE CAPTIONS**

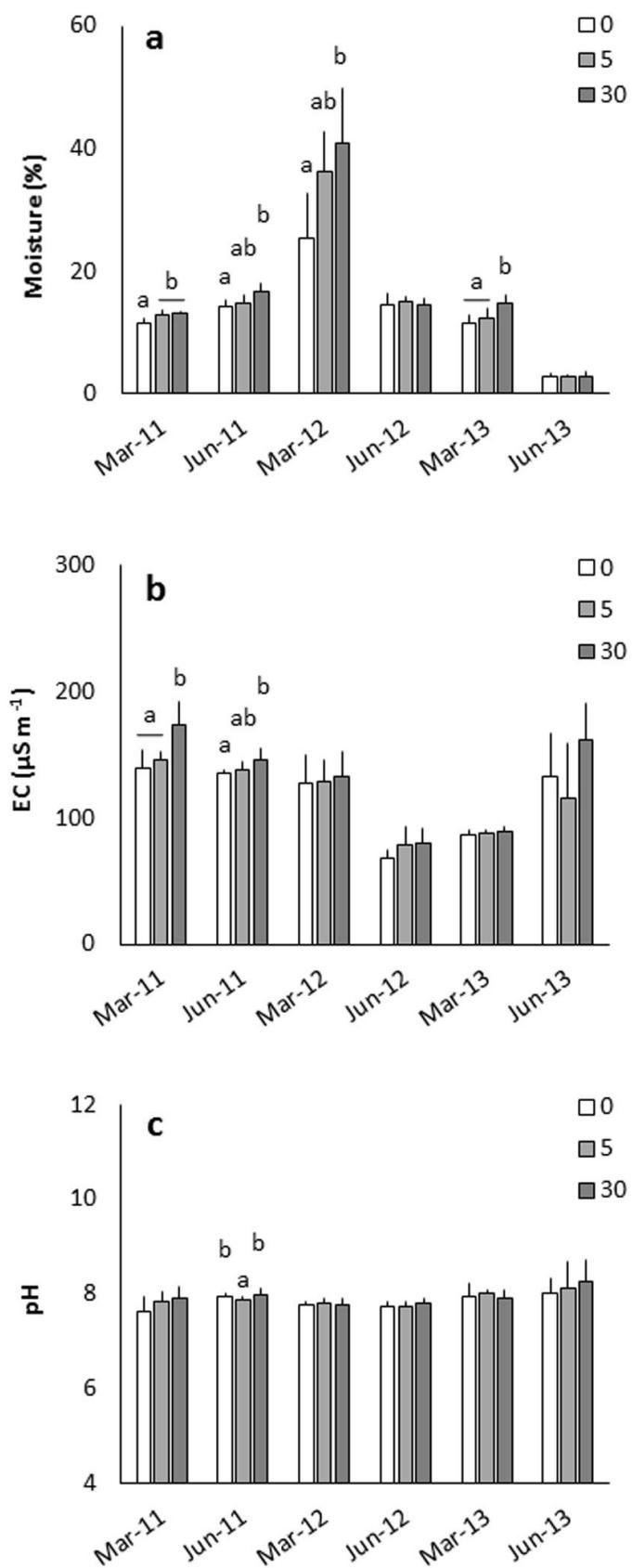
693 **Fig. 1** Moisture (a), electrical conductivity (EC) (b), and pH (c) in soils amended with three biochar

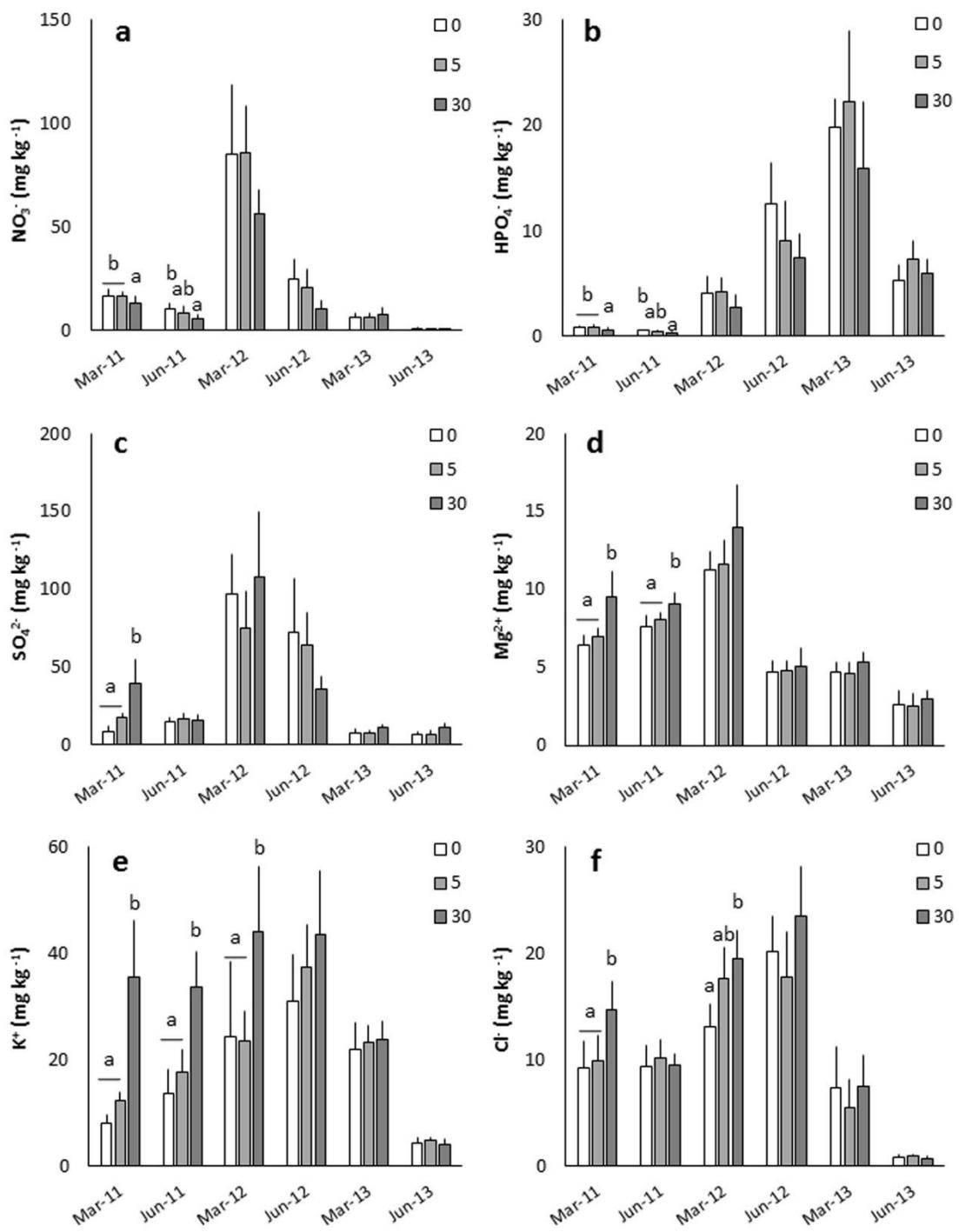
694 concentrations (0, 5 and 30 t ha^{-1}) at 6 different samplings along three years of *Hordeum vulgare* cropping.

695 Biochar was amended once in March of 2011. Error bars correspond to the standard deviation (n=8).

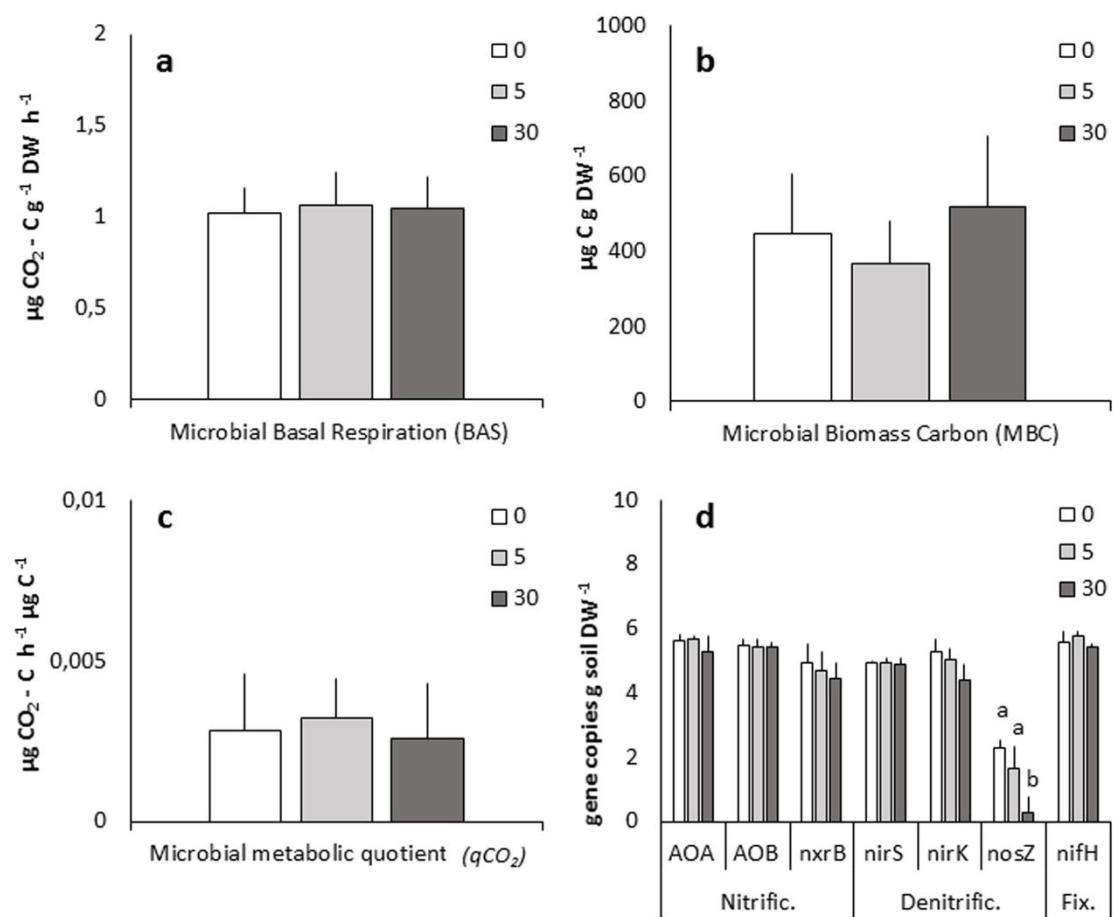
696 Different letters indicate statistically significant differences among treatments for a specific sampling

697 **Fig. 2** Ionomic composition of NO_3^- (a), HPO_4^{2-} (b), SO_4^{2-} (c), Mg^{2+} (d), K^+ (e), and Cl^- (f) in soils amended
698 with three biochar concentrations (0, 5 and 30 t ha^{-1}) at 6 different samplings along three years of *H. vulgare*
699 crop. Biochar was amended once in March of 2011. Error bars correspond to the standard deviation (n=8).


700 Different letters indicate statistically significant differences among treatments for a specific sampling


701 **Fig. 3** Soil basal respiration (a), microbial biomass carbon (b), microbial metabolic quotient (c) and, copy
702 number of genes encoding for enzymes that catalyze process of the microbial transformation processes
703 (nitrification, denitrification and fixation) of the nitrogen cycle (d). Soils were amended with three biochar
704 concentrations (0, 5 and 30 t ha^{-1}) and graphics represent the sampling data of June 2011, three months later
705 the biochar was added. Error bars correspond to the standard deviation (n = 8). Different letters indicate
706 statistically significant differences among treatments

707 **Fig. 4** Chlorophyll (a + b) concentration (a), soluble proteins concentration (b), chlorophyll fluorescence
708 (c), and intrinsic water use efficiency (iWUE) (d) in *H. vulgare* leaves. Plants were cultivated in amended
709 soils with different biochar concentrations (0, 5 and 30 t ha^{-1}) along three years. Biochar was amended once
710 in March of 2011. iWUE data from 2013 were not acceptable due to technical problems. Error bars
711 correspond to the standard deviation (n=8)

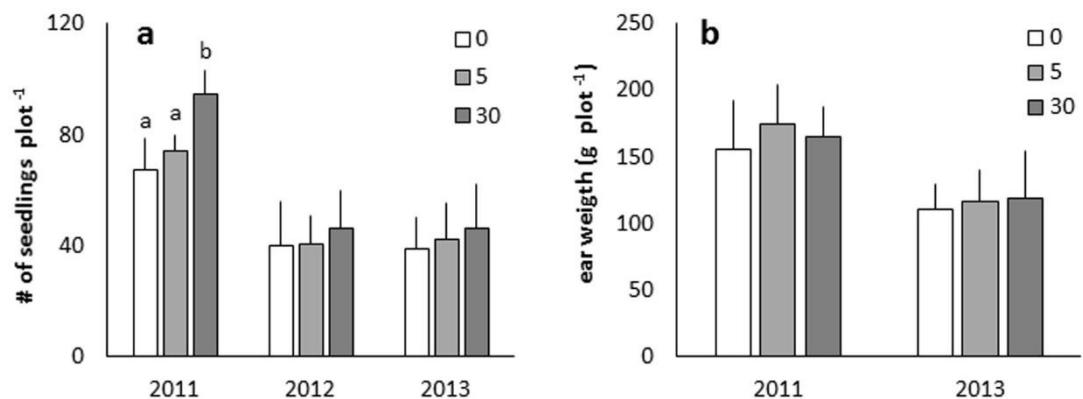

712 **Fig. 5** Effects of the biochar application rates (0, 5 and 30 t ha^{-1}) along the experiment (2011-2013) on
713 germination rate (as the number of *H. vulgare* seedlings per plot) (a) and average of ear weight (b). Biochar
714 applied once on March 2011. The yield in 2012 was not assessed due to the impact of predation by wild
715 boars. Error bars correspond to the standard deviation (n = 8). Different letters indicate statistically
716 significant differences among treatments for the corresponding year

717 **Fig. 6** Nitrogen content in mature plants of *H. vulgare* (g Kg^{-1}) (a), N efficiency as the to N total in soil
718 (mg of N- NO_3 and N- NH_4 Kg^{-1}) compared to N total in plant (mg N Kg^{-1}) (b), Nitrogen accumulation
719 efficiency (NAE) in % (d) and Nitrogen use efficiency (NUE) in % (d). Barley plants were cultivated in
720 amended soils with different biochar concentrations (0, 5 and 30 t ha^{-1}) along three years. Biochar was
721 amended once in March of 2011. Error bars correspond to the standard deviation (n=8). Different letters
722 indicate statistically significant differences among treatments for a specific year


728 **Figure 3**

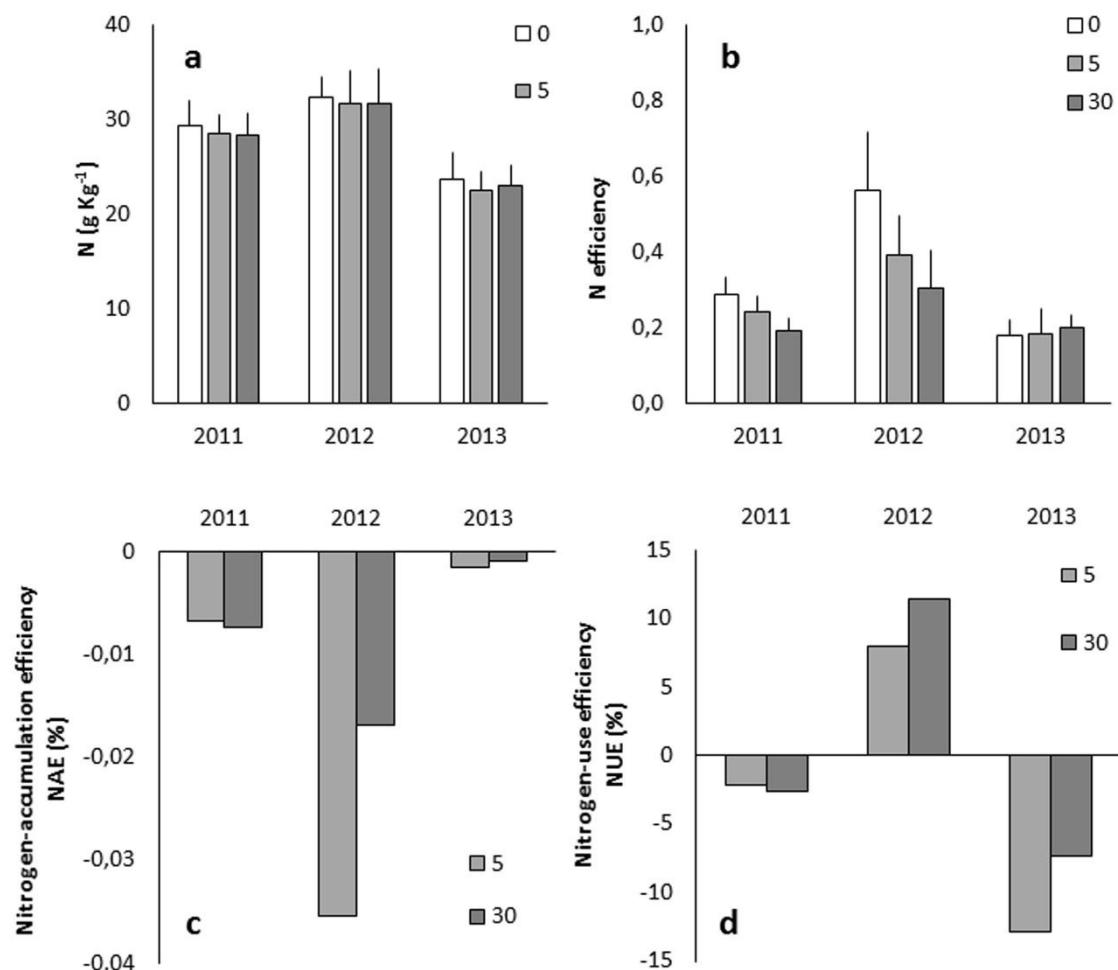
729

730


731 **Figure 4**

732

733


734 **Figure 5**

735

736

737 **Figure 6**

738

739

740 **SUPPLEMENTARY MATERIAL**

741 **1. SUPPLEMENTARY TABLES**

742 **Table S1** Characterization of the pig slurry

743 **Table S2** Source of the standard for each bacterial *strains* and thermal profiles for qPCR of the different
744 target genes

745 **Table S3** Results of the amplification efficiencies for the different genes

746 **Information about the Near Infrared Reflectance Spectroscopy (NIRS) calibrations**

747 **Table S4** Population statistics of calibration data set used for the estimation of chemical composition values
748 from the near-infrared measurements

749 **Table S5** Calibration and cross-validation statistics for the determination of chemical composition
750 parameters by near-infrared analysis

751 **2. SUPPLEMENTARY FIGURES**

752 **Fig. S1** Mean daily and maximum daily temperature (white and filled dots, respectively), and 24-hours
753 accumulated precipitation (grey bars) along the experimental period (2011-2013) in the Cerdanyola del
754 Vallès weather station, 8.5 km far from the experimental field. Data provided by Meteorological Service
755 of Catalonia (Meteocat). Arrows indicate the plant and soil measurement events

756 **Fig. S2** Ionomic composition of NO_2^- , NH_4^+ , Na^+ , and Ca^{2+} in soils amended with three biochar
757 concentrations (0, 5 and 30 t ha^{-1}) at 6 different samplings along three years of *H. vulgare* crop. Biochar
758 was amended in March of 2011. Error bars correspond to the standard deviation (n=8)

759 **Fig. S3** Effects of the biochar application rates (0, 5 and 30 t ha^{-1}) along the experiment (2011-2013) on
760 quantitative effects on yield, measured as the number of *H. vulgare* ears per mesocosm; the number of
761 grains per ear per mesocosm; and the average of straw weight. Biochar applied once on March 2011. The
762 yield in 2012 was not assessed due to the impact of predation by wild boars. Error bars correspond to the
763 standard deviation (n = 8). Different letters indicate statistically significant differences among treatments
764 for the corresponding year

765

766 **Fig. S4** Percentage of macronutrients (P, S, Ca, Mg and K) in plants (grain and straw) of *H. vulgare*.
767 Plants were cultivated on amended soils with different biochar concentrations (0, 5 and 30 t ha⁻¹) along
768 three years. Biochar was amended once in March of 2011. Error bars correspond to the standard deviation
769 (n=8)

770 **Fig. S5** Percentage of micronutrient (Fe, Mn and Zn) in plants (grain and straw) of *H. vulgare*. Plants
771 were cultivated on amended soils with different biochar concentrations (0, 5 and 30 t ha⁻¹) along three
772 years. Biochar was amended once in March of 2011. Error bars correspond to the standard deviation
773 (n=8)

774