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Abstract 19 

DNA metabarcoding is a technique used to survey biodiversity in many ecological settings, but 20 

there are doubts about whether it can provide quantitative results, i.e. the proportions of each 21 

species in the mixture as opposed to a species list. While there are several experimental 22 

studies that report quantitative metabarcoding results, there are a similar number that fail to 23 

do so. Here we provide the rationale to understand under what circumstances the technique 24 

can be quantitative. 25 

Basically, we simulate a mixture of DNA of S species with a defined initial abundance 26 

distribution. In the simulated PCR, each species increases its concentration following a certain 27 

amplification efficiency. The final DNA concentration will reflect the initial one when the 28 

efficiency is similar for all species; otherwise, the initial and final DNA concentrations would be 29 

poorly related. Although there are many known factors that modulate amplification efficiency, 30 

we focused on the number of primer-template mismatches, arguably the most important one. 31 

We used 15 common primers pairs targeting the mitochondrial COI region and the 32 

mitogenomes of ca. 1200 insect species. 33 

The results showed that some primers pairs produced quantitative results under most 34 

circumstances, whereas some other primers failed to do so. Many species, and a high diversity 35 

within the mixture, helped the metabarcoding to be quantitative. In conclusion, depending on 36 

the primer pair used in the PCR amplification and on the characteristics of the mixture analysed 37 

(i.e., high species richness, low evenness), DNA metabarcoding can provide a quantitative 38 

estimate of the relative abundances of different species.  39 

 40 

Introduction 41 

Ideally, metabarcoding should be a technique used to quantify species abundance in natural 42 

communities (Ci in Figure 1) using high-throughput DNA sequencing (HTS). This is normally 43 
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accomplished by sampling the organisms in the community using a particular sampling method 44 

(Si; Morinière et al., 2016) or by collecting fragments of DNA shed from organisms 45 

(environmental DNA or eDNA, Ei; Taberlet, Coissac, Hajibababei, & Rieseberg, 2012). The 46 

target can also be the subset of the community consumed by a predator or an herbivore in 47 

what is termed diet analysis (Di; Pompanon et al., 2012); the diet is estimated from the DNA 48 

remains in faecal samples or in the gut contents of the consumer (Gi). In all cases, the DNA is 49 

extracted into a solution with DNA of many species at relative abundances Oi. Then, the 50 

extracted DNA can be directly sequenced (shotgun metagenomics) or sequenced following 51 

amplification via PCR of one or more genomic regions (amplicon metabarcoding). Finally, the 52 

obtained DNA reads Ri are assigned to species or OTUs (Fi). Every process described in 53 

Figure 1 introduces its own biases (Leray & Knowlton, 2017; Pompanon et al., 2012), and so 54 

the estimation of the community composition Ci (or Di in diet analysis) from the final read 55 

abundance (Fi) is a daunting task that we are now just beginning to grasp (Barnes & Turner, 56 

2016; Elbrecht, Vamos, Meissner, Aroviita, & Leese, 2017). Only when all biases are avoided 57 

or corrected, will it be possible to perform quantitative metabarcoding.  58 

The processes involved in the transformation of species counts or biomass (Ci or Di) to the 59 

DNA solution (Oi) are complex. For instance, in the diet analysis, not all the DNA of the 60 

consumed species (or even of different tissues of the same species) is digested with the same 61 

efficiency. The case of environmental DNA is even worse, as there are many factors that affect 62 

the production and stability of eDNA (origin, state, decay, transport, persistence; Barnes & 63 

Turner, 2016). The extraction of DNA from samples (Gi, Ei or Si) to the solution (Oi) would 64 

apparently be straightforward, but this is far from true for some organisms: Pornon et al. (2016) 65 

report a difference of ca 300 times in the extracted DNA yield (before amplification) from the 66 

same number of pollen grains of three plant species. These authors attribute this variability to 67 

interspecific differences in pollen wall structure, pollen size, genome size, the number of 68 

marker copies and DNA extraction efficiency. 69 
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The processes leading from the extracted DNA (Oi) to the relative species abundance (Ri) are 70 

no better. Amplicon metabarcoding (shaded region in Figure 1) is mostly affected by the PCR 71 

amplification step using ‘universal’ primers targeting a certain region of the genome. Universal 72 

primers do not perfectly match the DNA of all species, and so there is a variable number of 73 

template-primer mismatches across species. Consequently, some species are better amplified 74 

than others and the proportions in the final mixture do not reflect the original proportion of each 75 

species (Elbrecht and Leese, 2015; Leray et al., 2013; Bista et al., 2018). There are other 76 

complications in the PCR step that produce more biases; for instance, the use of indexed PCR 77 

primers (used to minimize the per sample cost of sequencing by allowing the sequencing of 78 

many samples in a single run) might induce further biases (Leray & Knowlton, 2017; O’Donnell, 79 

Kelly, Lowell, & Port, 2016). The avoidance of the PCR step (shotgun metagenomics) would 80 

in theory render a faithful list of Ri (Bista et al., 2018), and this is what is mostly used in microbial 81 

metabarcoding nowadays (Jovel et al., 2016). However, in eukaryotes, the scarcity of 82 

assembled genomes and the vast amount of sequencing depth needed, makes shotgun 83 

metabarcoding still unsuitable in most circumstances (Gómez-Rodríguez, Crampton-Platt, 84 

Timmermans, Baselga, & Vogler, 2015; Zhou et al., 2013). 85 

Whether the metabarcoding provides quantitative results has been usually evaluated using 86 

mock communities of known composition that are amplified and sequenced, or using a 87 

classical quantification method alongside the DNA metabarcoding. There is a growing number 88 

of these studies and the results are contradictory (Table 1). Whilst many studies report a 89 

significant quantification, albeit with a variable explanatory power, many others do not. 90 

According to these results, the right question to ask is not whether, but in which circumstances, 91 

is DNA metabarcoding quantitative. 92 

Here we do not attempt to tackle all the problems in quantitative metabarcoding depicted in 93 

Figure 1, but just a subset of them. We concentrate on the template-primer bias that 94 

complicates the quantification of the initial DNA concentration in a heterogeneous solution (Oi) 95 



5 
 

from the reads obtained after PCR amplification and HTS sequencing (Ri). We focus on this 96 

for two reasons. First, the process Oi  Ri is an obligatory step for diet (Gi), eDNA (Ei), and 97 

fresh or well conserved sample analyses (Si), and so our contribution can potentially benefit 98 

people in several fields. Second, whereas there are several causes that influence the number 99 

of reads Ri (i.e. genome size, mitochondrial copy number, …), the number of template-primer 100 

mismatches is probably the most important one (Elbrecht & Leese, 2015; Mao, Zhou, Chen, & 101 

Quan, 2012; Pinto & Raskin, 2012; Piñol, Mir, Gomez-Polo, & Agustí, 2015). We address the 102 

problem using a simple model that simulates the process of PCR amplification in 103 

heterogeneous mixtures. We test the model using the mitogenomes of ca. 1200 species of 104 

insects available in RefSeq and 15 primer pairs targeting the COI region (Elbrecht & Leese, 105 

2017a). Maybe the COI region is not the best suited for designing metabarcoding primers 106 

(Deagle, Jarman, Coissac, Pompanon, & Taberlet, 2014; Elbrecht et al., 2016), but it remains 107 

the region with most extensive information in genomic databases. The objectives are to 108 

evaluate in silico which primer pairs and which characteristics of species mixtures provide a 109 

quantitative relationship between the pre- and post-PCR marker abundance of the species in 110 

the mixture. 111 

 112 

Material and Methods 113 

Rationale of the model 114 

Let’s consider a mixture of DNA of S species each with original DNA concentration Oi that is 115 

PCR-amplified with a universal primer pair. Each species increases its concentration to Fi 116 

according to a certain efficiency i (here we are assuming that Ri in Figure 1 equals Fi, and so 117 

the biases in the bioinformatic pipeline from read number to species abundance are assumed 118 

to be negligible in the present application),119 

Fi = i · Oi      Eq. 1 120 
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i varies between 1 (no amplification) and 2c (maximum amplification, with c the number of 121 

PCR cycles). Fi will be proportional to Oi when i is the same for all species; on the other hand, 122 

when i is very different among species, Fi would poorly reflect Oi. This model is equivalent to 123 

the basic one of Suzuki and Giovannoni (1996). 124 

In DNA metabarcoding, only the relative proportions of each species in the mixture are of 125 

interest. Let’s call oi and fi the original and final relative concentration of DNA of species i in 126 

the mixture. These two magnitudes are related by an equation like the previous one 127 

fi = i · oi / a     Eq. 2 128 

where 𝑎 = ∑ ௜ · 𝑜௜
ௌ
௜ୀଵ  is a scaling constant to assure that 1 = ∑ 𝑓௜

ௌ
௜ୀଵ . Here i is the relative 129 

amplification efficiency of species i and belongs to the interval (0, 1].  130 

The application of the model is straightforward. First, it requires a pool of species and the 131 

primer pairs of interest. Second, a method to generate random mixtures of species with a 132 

certain initial abundance distribution (oi). Third, an estimation of the amplification efficiency i 133 

of each species in the mixture. Finally, the computation of fi using equation 2. Figure 2 134 

summarizes the computational pipeline that implements the model above. On its left-hand side, 135 

there are the procedures that calculate the template-primer mismatches for each combination 136 

of the species and primer pairs in the pool. In the right-hand side, there is the algorithm that 137 

performs many simulations for each primer pair and compares oi with fi. 138 

Primer pairs and species 139 

We only considered the 15 COI primer pairs targeting the mitochondrial Folmer region (Folmer, 140 

Black, Hoeh, Lutz, & Vrijenhoek, 1994) analysed by Elbrecht and Leese (2017a) (Tables 2 and 141 

3). The selection includes the most common universal primer pairs currently used for DNA 142 

metabarcoding of insects. We compiled a pool P of 1204 species of insects with an assembled 143 
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mitochondrial genome at RefSeq (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/ 144 

visited at 25-May-2017) (see the distribution of the species among orders in Figure S1).  145 

We calculated the number of primer-template mismatches for each primer and each 146 

mitochondrial genome using the function matchPattern of the R package Biostrings (Pagès, 147 

Aboyoun, Gentleman, & DebRoy, 2017). We limited the maximum number of mismatches per 148 

primer to five. When the primer mapped in more than one region, we choose the region with 149 

the lowest number of mismatches.  150 

Next, we combined the pairs of primers in table 3 and computed the total number of primer-151 

mismatches in the two primers and the amplicon length. We only retained the primer 152 

pair/genome combinations that produced an amplicon of length equal to the expected amplicon 153 

length for each primer pair (table 3). As primer pair #15 produced a very low number of useful 154 

species to analyse (table 3), it was not considered further here. 155 

Generation of random communities 156 

A subset of S species was randomly sampled from the pool of species P. The relative 157 

proportions of each species in the mixture was established following a geometric model 158 

(Magurran, 2004) 159 

𝑜௜ = 𝐶௞ · 𝑘 · (1 − 𝑘)௜ିଵ                                    Eq. 3 160 

Where oi is the proportion of the species i in the mixture, k is the parameter of the model and 161 

𝐶௞ = [1 − (1 − 𝑘)ௌ]ିଵ is a constant that makes ∑ 𝑜௜ = 1ௌ
௜ୀଵ . The parameter k belongs to the 162 

interval (0, 1). Small values of k produce communities in which the species have similar 163 

abundances, whereas high values of k produce communities dominated by a few abundant 164 

species. 165 

Estimation of the PCR amplification efficiency 166 
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It is acknowledged that the number of template-primer mismatches influences the efficiency of 167 

the PCR reaction. However, much less is known about the nature of the relationship between 168 

number of mismatches vs. efficiency. Here we use a basic model in which each new mismatch 169 

reduces the efficiency in a certain proportion : 170 

௜ = 𝛽ି௠೔                                                     Eq. 4 171 

Where m is the total number of primer-template mismatches in both the forward and the 172 

reverse primers. According to this model, the number of mismatches has a multiplicative effect 173 

on the amplification efficiency, and so when mi = 0, i = 1 (perfect match and maximum 174 

amplification efficiency); when mi = 1, i = 1/; when mi = 2, i = 1/; and so on. 175 

In this application, we used two different formulations of the model above. In the first one 176 

(model 1), m is the number of template-primer mismatches in the entire length of both the 177 

forward and reverse primers; in the second one (model 2), m is the number of template-primer 178 

mismatches that occur only in the five 3’-end positions of both the forward and reverse primers. 179 

We have done so because mismatches closer to the 3’ end of the primer has a greater effect 180 

on the PCR efficiency than mismatches occurring further away from the 3’ end of the primer 181 

(Stadhouders et al., 2010). 182 

Parameters of the simulation 183 

For this model to be useful, the parameters of the model S, k, and  must have realistic values, 184 

i.e. they should correspond to values normally found in natural communities that could 185 

eventually be subjected to DNA metabarcoding. The number of species in a sample can be 186 

very different depending on the studied community. Here we are pretending to simulate 187 

communities of insects in temperate areas, and so a reasonable range for S in samples of 188 

temperate communities would be 5-100. 189 



9 
 

To find reasonable values of k, we took advantage of a dataset of insects in tree canopies of 190 

a citrus grove (Piñol, Espadaler, & Cañellas, 2012). We used biomass data of species of 191 

Dermaptera, Coleoptera, Hemiptera, Neuroptera, Psocoptera, and Hymenoptera from 133 192 

sampling events with 5 or more species. Then we fitted a geometric model (equation 3) to the 193 

species biomass for every sampling event. The fitted k values varied between 0.2 and 0.95 194 

(Figure S2a). The goodness of fit of the geometric model to the data was very high (Figure 195 

S2b), indicating that the use of a geometric model to describe the relative proportions of the 196 

species is sound.  197 

The  value that relates the number of template-primer mismatches to the amplification 198 

efficiency was estimated from Piñol et al. (2015), who report a significant negative relationship 199 

between the logarithm of the amplification efficiency and the number of template-primer 200 

mismatches: 201 

𝑙𝑜𝑔ଵ଴𝑦 = −0.25 + 0.61 · (−𝑚்), 𝑟ଶ = 0.73, 𝐹ଵ,ଽ = 24.35, 𝑃 = 0.0008 202 

𝑙𝑜𝑔ଵ଴𝑦 = −1.09 + 1.73 · (−𝑚ହ), 𝑟ଶ = 0.81, 𝐹ଵ,ଽ = 38.24, 𝑃 = 0.0002 203 

where mT is the total number of template-primer mismatches in the entire length of the both 204 

primers, and m5 is the total number of mismatches in the five 3’-end nucleotides of the forward 205 

and reverse primers. We are not aware of any other study that explicitly states the relationship 206 

between the number of template-primer mismatches and the amplification efficiency. 207 

The above empirical relationships are equivalent to equation 4, where  can be estimated as 208 

10slope. Thus, for model 1,  = 100.61 = 4.07 and for model 2,  = 101.73 = 53.70. The error in the 209 

estimated values of the slope translates to the estimate of : the 95% interval of confidence 210 

for  in model 1 is (2.1 to 7.8) and for model 2 is (12.6 to 234).  211 

Simulations 212 
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For each primer pair considered, we ran 10000 simulations using an R script that performed 213 

the following steps (summarized in Figure 2): 214 

1. We generated a random number of species S in the community between 5 and 100. 215 

(The random number and all those below followed a uniform distribution). 216 

2. We randomly chose S species from the pool P of species. 217 

3. We generated a random value of k between 0.2 and 0.95.  218 

4. We used this k value to estimate the initial relative DNA concentration oi of each of the 219 

S species in the community using equation 3. 220 

5. We generated a random value of  in the interval (2, 8) for model 1 and in the interval 221 

(12, 240) for model 2. 222 

6. Using equation 4, we calculated the relative amplification efficiency i of each species 223 

in the community using the above  value and the previously calculated number of 224 

mismatches between this primer pair and each species. For model 1 we used the 225 

number of template-primer mismatches in the entire length of the primers; for model 2 226 

we used only the mismatches occurring in the five 3’-end positions of both primers. 227 

7. Finally, we calculated the relative DNA concentration of each species in the mixture fi 228 

from Equation 2 using the above estimates of i and oi. 229 

8. Each simulation was summarized by the linear correlation coefficient ri between fi and 230 

oi. We also calculated whether the most abundant species at the beginning (oi) was 231 

also the most abundant at the end of the PCR reaction (fi). 232 

 233 

Analysis of the results of the simulations 234 

For each primer pair, we set the following statistical test: 235 

H0: r = 0 (there is not a linear relationship between oi and fi) 236 

H1: r ≠ 0 (there is a linear relationship between oi and fi) 237 
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To decide between H0 and H1 we considered the empirical 95% confidence interval (CI) of the 238 

ri distribution: when 0 ∈ CI we accepted H0 and when 0 ∉ CI we accepted H1. The probability 239 

of error when accepting H1 is 0.05. 240 

For each set of simulations of each primer pair we also calculated the proportion in which the 241 

same species was the most abundant before and after the simulated PCR reaction. If this value 242 

was above 0.95, then it would be safe to consider that the observed most abundant species 243 

was correctly guessed with a probability of 0.95. 244 

Finally, with all the simulations of all the primer pairs we calculated using a linear model the 245 

proportion of the variance of r (after the Fisher z-transformation) associated with the factors: 246 

primer pair; S; k; ; and all 2-way interactions.  247 

All the calculations were conducted with R in-house scripts (R Core Team, 2016) also using 248 

the database manager SQLite (Müller, Wickham, James, & Falcon, 2017). 249 

 250 

Results 251 

Number of mismatches 252 

Considering the entire length of both the forward and the reverse primers, the median of the 253 

number of template-primer mismatches was 0 for primer pairs #10 to #14, 1 for primer pair #7, 254 

and 3 or higher for the rest of primer pairs (Figure 3A). When only the five 3’-end positions of 255 

each primer were considered, the median of the number of template-primer mismatches was 256 

2 for primer pair #4, 1 for primer pairs #2 and #5, and 0 for the remainder (Figure 3B). Primer 257 

pairs #10 and #14 were especially good, as more than 99% of the tested species (~1150) had 258 

no template-primer mismatches in the five 3’-terminal positions. 259 

Relationship oi-fi 260 
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Considering the entire length of both the forward and the reverse primers, the simulations of 261 

primer pairs #1, #2, #3, and #5 generated an empirical 95% confidence interval (CI) for the 262 

linear correlation coefficient that included the 0 value, indicating that it is not justified to assume 263 

a significant linear relationship between oi and fi (Figure 4A). The opposite was true for the rest 264 

of primer pairs. The relationship oi-fi was especially good for primers pairs #10 to #14, and to 265 

a lesser extent to primer pair #7; for all these primer pairs, it is safe to assume that the final 266 

concentration of DNA after the PCR reaction (fi) quantitatively reflects what was there initially 267 

(oi). However, for none of the primer pairs analysed it is safe to assume that the most abundant 268 

species after the PCR reaction was the most abundant initially (Table 4). 269 

The overall picture was slightly better when only the five 3’-terminal bases of both primers were 270 

considered (Model 2). In this case, only primer pairs #4 and #5 generated a CI for r that 271 

included the 0 value, while the opposite was true for the rest of them (Figure 4B). Primer pairs 272 

#10, #11, #12, and #14 where again especially good, generating CI that were always above 273 

the value of r=0.9. In addition, for primers pairs #10 to #14, it is safe to assume that the most 274 

abundant species was correctly attributed (Table 4). 275 

Effect of the characteristics of the mixture of species on the correlation oi-fi 276 

The mixture of the species is characterised in the model by S and k. When the number of 277 

species S in the random sample was low (5-15) the relationship oi-fi was not significant for all 278 

the primers pairs except #10 to #14 (Model 1; Figure S3-A) and for #10 to #14, #3, #6 and #8 279 

(Model 2; Figure S3-B). When S was high (51-100) all primer pairs produced a significant linear 280 

correlation between oi-fi for both models (Figure S3-CD).  281 

Low values of the parameter k of the geometric distribution (i.e., species with not very different 282 

abundances; k < 0.45) produced worst results, especially for Model 1, that when k was higher 283 

(k > 0.70), where only primer pair #5 (Model 1) and #4 and #5 (Model 2) had a 95% CI that 284 

included the 0 value (Figure S4).  285 
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Relative importance of each factor on the magnitude of the correlation oi-fi 286 

We decomposed the variance of the correlation coefficient r in the 140 000 runs (14 primers 287 

pairs x 10000 runs each) according to the factors considered in Model 1 and 2 (Table 5). For 288 

both models 1 and 2, the main factor was the choice of primer pair that accounts for more 20% 289 

of the total variance; k (models 1 and 2) and  (model 1) also had some importance in the 290 

decomposition, but not S. However, in both models most of the variance was unexplained by 291 

the considered factors. This implies that there are more important reasons on top of those 292 

considered above that affect the correlation coefficient r. In the model, the main reason is the 293 

idiosyncratic species composition of each simulated mixture; this means that two simulations 294 

with identical S, k and  values, but with a different choice of species will likely produce a very 295 

different value of r. 296 

The primer pairs that do better (Figure 4) are those with fewer template-primer mismatches 297 

(Figure 5-AB). Indeed, the mean number of mismatches per primer is linearly correlated with 298 

the mean r of the simulations for both models. However, and following the rationale of the 299 

model, the mean r was even better correlated with the standard deviation of the number of 300 

mismatches per primer (Figure 5-CD). Consequently, a proxy for the potential of a certain 301 

primer pair for conducting quantitative metabarcoding would be the mean, or even better, the 302 

standard deviation, of the template-primer mismatches of that primer within the pool of the 303 

genomes of interest. 304 

 305 

Discussion  306 

The model is intended to establish whether the results of a part of the metabarcoding analysis, 307 

but not of the entire metabarcoding pipeline (Figure 1), are likely to be quantitative. By 308 

quantitative we more precisely mean that there exists a significant linear correlation (at a 309 

certain significance level) between the relative DNA concentration before and after the PCR 310 
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reaction (Oi and Fi in Figure 1) using a particular primer set and a group of organisms. What 311 

the model does not provide is the certainty of a significant relationship for a given analysis. 312 

This approach may have greater utility for the analysis of eDNA samples or community DNA 313 

than for gut content analyses, given the additional sources of error associated with digestion. 314 

Also, the number of different species in the mix is likely to be much lower in predator/herbivore 315 

gut samples than in eDNA samples. 316 

It is also important to realize that the model only considers one of the many factors that affect 317 

the PCR amplification efficiency, i.e. the number of template-primer mismatches. Among the 318 

non-considered factors there are variable mtDNA copy number, the genome size, the position 319 

and type of the mismatches (Stadhouders et al., 2010), and the G+C content of the amplicon 320 

(Wintzingerode, Göbel, & Stackebrandt, 1997). However, we are aware of only one study that 321 

explicitly correlated the number of mismatches with the amplification efficiency. In that study, 322 

the variance explained by the number of mismatches was ~0.75 of the total (Piñol et al., 2015), 323 

so there is only a mere ~0.25 of the total variance in the amplification efficiency left to be 324 

explained by the rest of the unaccounted factors mentioned above. Thus, this model makes 325 

the strong assumption that the PCR amplification efficiency mainly depends on the number of 326 

template-primer mismatches, and considering the empirical information available so far, it is a 327 

reasonable assumption. 328 

When summarizing which factors most affect the correlation between the pre- and post-PCR 329 

DNA concentrations (oi-fi) it stands out that the most important of them all was not included in 330 

the model (i.e., the unexplained variance in Table 5). This unexplained variance is the 331 

idiosyncratic species composition of the mixture and their relative abundances. The following 332 

example shows that there can be huge effects even when all the model parameters are the 333 

same. In the mixture of table 6a (S = 10, k = 0.4,  = 4) the linear correlation oi-fi is highly 334 

significant (r = 0.996, P < 0.001). In the mixture in table 6b, the species (and the parameters 335 

of the model) are the same as in 6a, but now the most abundant species is #8 instead of #1; 336 



15 
 

in this case the relationship oi-fi becomes non-significant (r = 0.46, P > 0.05). This example 337 

shows that it is impossible to be sure that a particular metabarcoding analysis will produce a 338 

significant oi-fi correlation, unless we know in advance the exact composition of the species in 339 

the mixture. For this reason, we highlighted above that our analysis can only provide the 340 

likelihood of the PCR step of a certain metabarcoding experiment being quantitative, but never 341 

its certainty. 342 

Table 5 also shows that the factors considered in the model are also important. Below we 343 

discuss the importance of the selected primer sets and the macroscopic characteristics of the 344 

mixture, i.e. the species richness S and the slope (k) of their relative abundances. 345 

Choice of primer pairs 346 

The choice of primer pairs is the most important decision to make for DNA metabarcoding. The 347 

model suggests that some of the primers tested in this study are better suited than others for 348 

quantitative DNA metabarcoding. Among the primer pairs tested here, the best choice seems 349 

to be the primer pair #10 (Gibson et al., 2014) and the primer pairs #11 to #14 (Elbrecht & 350 

Leese, 2017a). All of them guarantee (with a probability of 0.95) a significant linear relationship 351 

oi-fi; moreover, the linear correlation coefficient between pre- and post-PCR DNA 352 

concentrations is likely to be high (in the range 0.4 – 1) (Figure 4). The rest of the primer pairs, 353 

except #4 and #5, also provide significant results, but with lower r values. Primers sets #10 to 354 

#14 are highly degenerated, so, it is justified that they amplify better in silico than other sets 355 

with a much lower degeneracy (e.g., #4 and #5).  356 

The primer pair #10 (Gibson et al., 2014) was developed to amplify a 310 bp region of many 357 

families of arthropods. This primer contains the universal base inosine (I); in our calculations, 358 

we considered that inosine could pair any base, but, in reality, its capacity to pair with the four 359 

bases is variable (Martin, Castro, Aboul-ela, & Tinoco, 1985); besides, the use of inosine 360 

increases the price of the primers. The four primer pairs of Elbrecht and Leese (2017a) are all 361 
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possible combinations of two forward and two reverse primers that produce amplicons of 362 

different length. As these primers pairs were developed recently, they have been hardly used 363 

by other researchers for DNA metabarcoding (Krehenwinkel et al., 2017); considering our 364 

results, we would recommend their use. In any case, in vivo validations of primers sets with 365 

mock samples of the species of interest is still advisable before embarking on a metabarcoding 366 

study. 367 

The above recommendation does not imply that the rest of the primers are of no use in 368 

metabarcoding. Some of them can have great coverage of some groups, like primers #5 that 369 

are particularly good for Lepidoptera (Zeale, Butlin, Barker, Lees, & Jones, 2011) and have 370 

been used with profit for the characterisation of the diet of bats (Clare, Symondson, & Fenton, 371 

2014). 372 

Characteristics of the mixture of species 373 

The number of species in the mixture and their relative abundance were also important in the 374 

quantification of the species. The number of species S does not explain the magnitude of r 375 

(Table 5) but affect the width of the CI of r (Figure S3). When S is low, most primer pairs (#1 376 

to #9) give a CI of r that includes the value r=0; on the contrary, when S is high all tested primer 377 

pairs guarantee (at the 95% level) a quantitative metabarcoding. This result is a consequence 378 

of the higher effect that an outlier (e.g., one species with one of more mismatches, but very 379 

abundant initially, in an assemblage where most species have no mismatches) has on r when 380 

S is low that when S is high. Thus, as a rule, the higher the number of species in the mixture, 381 

the higher the likelihood of the results reflecting the original relative abundance of the species. 382 

These results have a relevant corollary for diet analysis: DNA metabarcoding is more likely to 383 

provide a quantitative diet for polyphagous than for stenophagous predators. This implies that 384 

it would be more quantitative when analysing polyphagous species in diverse tropical 385 

ecosystems than in less diverse temperate ecosystems. Thus, good dietary quantification 386 

would be expected, for example, for larger predators eating many small prey (e.g. an 387 
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insectivorous bird or bat) than for a small predator (e.g. an insect) that may be polyphagous 388 

but have few prey in its guts at any moment in time. 389 

The relative abundance of the species in the mixture also affects the quantification of species 390 

by metabarcoding. When the relative abundance of the species is similar among them (k low) 391 

the method was less reliable that when a few species were very abundant and the rest were 392 

not (k high) (Figure S4). This behaviour is easy to understand by observing equation 2 that 393 

describes the PCR reaction. The linear correlation oi-fi is going to be higher when the variance 394 

of oi (in relation to i) is also high. 395 

Relationship between the number of mismatches and amplification efficiency 396 

Here we considered that all mismatches have the same importance and that each new 397 

mismatch reduces the amplification efficiency in the same factor  (equation 4). However, there 398 

are other characteristics of the mismatches, besides their total number, that affect the 399 

amplification efficiency.  400 

It is known that mismatches near the 3’-end of the primer have a higher effect than in other 401 

positions of the primer (Bru, Martin-Laurent, & Philippot, 2008; Stadhouders et al., 2010). We 402 

partially took into account this effect by using two versions of the model, one considering all 403 

mismatches in both primers (model 1) and one considering only the mismatches in the five 3’-404 

terminal positions of both primers (model 2). The results produced similar conclusions with 405 

both versions of the model regarding which primers produced better quantitative results.  406 

It is also known that some types of mismatch reduce more than others the amplification 407 

efficiency (Kwok et al., 1990; Stadhouders et al., 2010; Wright et al., 2014). In general, it has 408 

been reported a general purine-purine > pyrimidine-pyrimidine > purine-pyrimidine hierarchy 409 

of mismatch impact (Stadhouders et al., 2010), but there are some discrepancies. In addition, 410 

most of the studies refer only to the 4-5 bases in the 3’-end of the primers, and very little is 411 

known about mismatches in the rest of the primer positions (Sipos et al., 2007). 412 
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Considering that there is not enough quantitative information about the effect of the mismatch 413 

position and type throughout the entire length of the primer, we preferred to keep the model 414 

simple. More experimental work in this respect would be needed to parametrise with 415 

confidence more realistic models of amplification efficiency. It is worth mentioning that other 416 

models already consider the position, adjacency and type of the mismatches (Elbrecht & 417 

Leese, 2017b), but their parametrisation is limited as it is based on the scarce empirical 418 

information available. 419 

If proved robust, the assumption that the amplification efficiency depends basically on the 420 

number of template-mismatches suggests a possible avenue for quantifying mixtures amplified 421 

with any primer set. Once (or when) the species composition of the mixture is known, and 422 

given the number of primer-template mismatches, it would be possible to estimate the initial 423 

abundance of each species (oi) using equation 2 in reverse. Thus, it should be possible, at 424 

least in theory, to quantify the relative composition of any mixture in two steps: the first one 425 

would provide the list of species and the second one the relative abundance of each one. 426 

Limitations of the model 427 

The model was applied to approximately 1200 species of insects with a sequenced 428 

mitogenome in RefSeq. The model says nothing about other genomic regions, groups of 429 

organisms, or sets of primers. For instance, it could be perfectly possible that some of the 430 

primers that did not perform well in our analysis, behave much better for a subset of insect 431 

orders. However, it is fair to suppose that the same kind of conclusion would be obtained 432 

elsewhere: some primer pairs would do better than others, mixtures with more species would 433 

do better than mixtures with fewer species, and mixtures with less evenness would also do 434 

better than mixtures with a higher evenness. So, it would be worthwhile to conduct similar 435 

studies to the present one using different primers and relevant groups of organisms before 436 

embarking on metabarcoding experiments. 437 
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The model has implicitly assumed that all species in the mixture are amplified to some extent 438 

in the simulated PCR. This assumption is at odds with the fact that all primers fail to amplify 439 

some species (Brandon-Mog et al., 2015; Mao et al., 2012). This is of little importance in our 440 

approach. If some species fail to amplify its final concentration would be fi = 0; in our model fi 441 

would be a very small number, but never 0. However, as we calculate the linear correlation oi-442 

fi without any transformation of the raw data, the fact that fi is 0 or a very small number like, 443 

let’s say 0.00001, is of minor importance. 444 

It is also important to mention that, implicitly, we considered that the initial DNA concentration 445 

was proportional to some measure of abundance, like biomass or individual number, but this 446 

is not necessarily the case, especially when multiple-copy markers are used. In plants, there 447 

is the added problem of ploidy. Unfortunately, interspecific comparisons using single copy 448 

nuclear markers are not usually viable in dietary analysis, as multi-copy targets are needed to 449 

amplify the degraded DNA associated with herbivory and predation. In addition, whilst there is 450 

some information about gene copy number across taxa in prokaryotes (i.e., 16S rRNA gene; 451 

Farrelly, Rainey, & Stackebrandt, 1995), and even ways to use this information for a posteriori 452 

correction of read numbers (Angly et al., 2014), we are not aware of any reliable data on 453 

mtDNA copy number across arthropod species. 454 

Despite the overwhelming complexity of the entire metabarcoding process (Figure 1), the 455 

model presented here offers some hope for making the process more quantitative. By simply 456 

choosing a primer set with a low variance in the number of mismatches it is possible to obtain 457 

greater quantitative accuracy. It is true that other sources of bias remain unchanged, like 458 

different digestion rates for DNA from different species, but the results presented here would 459 

help to reduce the overall bias.  460 
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Table 1. A compilation of experiments attempting to establish whether DNA metabarcoding can be said to be quantitative. The goodness of fit was usually estimated as the Pearson or Spearman 667 
squared correlation coefficient; its significance is given as NS (P > 0.05), * (P< 0.05), ** (P<0.01), and *** (P<0.001). 668 

Organisms Marker Goodness of fit Significance Reference 
Eight fish and one amphibian species in mesocosms compared with DNA metabarcoding cit b, 12S, 16S 0.49-0.88 ** to *** Evans et al. (2016) 
Calanoid copepods measured as biomass and by DNA metabarcoding COI, 16S, 18S 0.26-0.83 NS to *** Clarke, Beard, Swadling, & Deagle (2017) 
Mock community of 41 species of nematodes at variable abundances LSU, SSU rRNA Not given NS Porazinska et al. (2009) 
Analysis of faeces of seals fed with 3 species of fish in known proportions 16S Not given NS Deagle, Thomas, Shaffer, Trites, & Jarman 

(2013) 
Three samples of airborne pollen measured by classical methods and by DNA 
metabarcoding 

trnL 0.23-0.45 
 

*** Kraaijeveld et al. (2015) 

Nine samples of pollen assemblages measured by classical methods and by DNA 
metabarcoding 

rbcL Negative to 0.55 NS to ** Hawkins et al. (2015) 

Six samples of pollen assemblages measured by classical methods and by DNA 
metabarcoding 

ITS2, matK, rbcL Negative to 0.88 NS to * Richardson et al. (2015) 

Marine nematodes identified morphologically and by DNA metabarcoding 18S Not given NS Dell’Anno, Corinaldesi, Riccioni, & 
Danovaro (2015) 

Lake fish assemblages of 16 fish species measured as eDNA and compared with estimates 
from surveys 

12S, cit b 0.05-0.70 NS to *** Hänfling et al. (2016) 

Mock communities of 4 to 9 insect species common in dung fauna in variable proportions COI 0.01 0.86 NS to * Blanckenhorn, Rohner, Bernasconi, 
Haugstetter, & Buser (2016) 

Plants in rumen contents measured by DNA metabarcoding and by macroscopic 
identification 

trnL 0.15 – 0.27 ** Nichols, Akesson, & Kjellander (2016) 

Natural marine fish assemblages measured as eDNA and as trawl catches. In addition, a 
mock community of 5 fish species at variable abundances 

12S Natural: 0.10– 0.14 
Mock: 0.81 

* to *** Thomsen et al. (2016) 

Mock community of an equimolar mix of 12 species of insects and spiders COI Not given NS Piñol et al. (2015) 
Mock community of 8 species of soil protist of 4 different phyla at variable abundances 18S Not given NS Geisen, Laros, Vizcaíno, Bonkowski, & de 

Groot (2015) 
Mock community of 6 species of zooplankton at variable abundances 18S 0.96 ** Albaina, Aguirre, Abad, Santos, and 

Estonba (2016) 
Mock community of 6 species of Collembola at variable abundances COI, 16S 0.83 – 0.98 *** Saitoh et al. (2016) 
Mock community of an equimolar mix of 34 species of aquatic invertebrate belonging to 
6 different phyla 

COI Not given NS Leray and Knowlton (2017) 

Mock community of 10 species of freshwater bivalve and gastropod molluscs at variable 
abundance 

16S 0.79 – 0.92 * Klymus, Marshall, & Stepien (2017) 

669 
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Table 2. Universal primers targeting the mitochondrial COI region used in this study. 670 

Name Strand Sequence (5  3’) Reference 
LCO1490 F GGTCAACAAATCATAAAGATATTGG Folmer et al. (1994) 

HC02198  R TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. (1994) 

Uni-MinibarR1 R GAAAATCATAATGAAGGCATGAGC Meusnier et al. (2008) 

Uni-MinibarF1 F TCCACTAATCACAARGATATTGGTAC Meusnier et al. (2008) 

ZBJ-ArtF1c F AGATATTGGAACWTTATATTTTATTTTTGG Zeale et al. (2010) 

ZBJ-ArtR2c  R WACTAATCAATTWCCAAATCCTCC Zeale et al. (2010) 

mlCOIintF F GGWACWGGWTGAACWGTWTAYCCYCC Leray et al. (2013) 

mlCOIintR R GGRGGRTASACSGTTCASCCSGTSCC Leray et al. (2013) 

LepF1 F ATTCAACCAATCATAAAGATATTGG Hebert, Penton, Burns, 
Janzen, & Hallwachs (2004) 

EPT-long-univR  R AARAAAATYATAAYAAAIGCGTGIAIIGT Hajibabaei, Spall, Shokralla, 
& Konynenburg (2012) 

MLepF1-Rev R CGTGGAAAWGCTATATCWGGTG Brandon-Mong et al. (2015) 

Ill_C_R R GGIGGRTAIACIGTTCAICC Shokralla et al. (2015) 

Ill_B_F F CCIGAYATRGCITTYCCICG Shokralla et al. (2015) 

BF1 F ACWGGWTGRACWGTNTAYCC Elbrecht and Leese (2017a) 

BF2 F GCHCCHGAYATRGCHTTYCC Elbrecht and Leese (2017a) 

BR1 R ARYATDGTRATDGCHCCDGC Elbrecht and Leese (2017a) 

BR2 R TCDGGRTGNCCRAARAAYCA Elbrecht and Leese (2017a) 

ArF5 F GCICCIGAYATRKCITTYCCICG Gibson et al. (2014) 

ArR5 R GTRATIGCICCIGCIARIACIGG Gibson et al. (2014) 

jgLCO1490 F TITCIACIAAYCAYAARGAYATTGG Geller, Meyer, Parker, & 
Hawk (2013) 

jgHCO2198 R TAIACYTCIGGRTGICCRAARAAYCA Geller et al. (2013) 

L499 F ATTAATATACGATCAACAGGAAT Van Houdt, Breman, 
Virgilio, & De Meyer (2010) 

H2123d R TAWACTTCWGGRTGWCCAAARAATCA Van Houdt et al. (2010) 

  671 
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Table 3. Primer pairs used in this study. Primer names as in table 2. Primer pair #15 was 672 
not further considered because it provided much fewer species with useful data than the 673 
other 14 primer pairs. 674 

id Forward Primer Reverse Primer Amplicon length (bp) Number of species 
with useful data 

#1 LCO1490 HC02198 658 1003 
#2 LepF1 MLepF1-Rev 218 1035 
#3 LepF1 EPT-long-univR 127 1048 
#4 Uni-MinibarF1 Uni-MinibarR1 127 800 
#5 ZBJ-ArtF1c ZBJ-ArtR2c 157 937 
#6 jgLCO1490 mlCOIintR 319 944 
#7 mlCOIintF jgHCO2198 313 1162 
#8 LCO1490 Ill_C_R 325 1014 
#9 Ill_B_F HC02198 418 1143 
#10 ArF5 ArR5 310 1157 
#11 BF2 BR1 322 1146 
#12 BF1 BR2 316 1155 
#13 BF2 BR2 421 1157 
#14 BF1 BR1 217 1143 
#15 L499 H2123d 178 480 

 675 

  676 
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Table 4. Proportion of runs in which the same species is most abundant both before and 677 
after the simulated PCR reaction for Model 1 and Model 2 simulations. Proportion based 678 
on 10000 simulation runs per primer pair. It is indicated in bold face whether it is safe (at 679 
 = 0.95) to conclude which species is the most abundant in the mixture. 680 

Primer  
pair 

Model 1 Model 2 

1 0.42 0.65 
2 0.43 0.51 
3 0.42 0.94 
4 0.49 0.41 
5 0.36 0.50 
6 0.55 0.85 
7 0.63 0.76 
8 0.52 0.94 
9 0.53 0.67 
10 0.94 1.00 
11 0.88 0.98 
12 0.81 0.98 
13 0.91 0.97 
14 0.79 1.00 

 681 

  682 
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Table 5. Percentage of the variance in the linear correlation coefficient r explained by 683 
each parameter involved in the simulations using models 1 and 2. 684 

Factor Model 1 Model 2 
Primer pair (pp) 23.0 20.9 
S 0.1 0 
k 11.8 2.2 
 2.0 0 
pp:S 0 0 
pp:k 0.9 0.9 
pp: 0.2 0 
S:k 0 0 
S: 0 0 
k: 0 0 
unexplained 62.0 76.0 

  685 
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Table 6. Two hypothetical mixtures of ten species, with the number of mismatches of 686 
each species, its original and final DNA concentration (oi and fi), and its amplification 687 
efficiency ( = 4). The mixture B is the same as the mixture A, but for the swap of oi of 688 
species #1 and #8. 689 

A      B     
#sp mTi oi ei fi  #sp mTi oi ei fi 
1 0 0,403 1,000 0,437  1 0 0,011 1,000 0,020 
2 0 0,241 1,000 0,261  2 0 0,241 1,000 0,434 
3 0 0,145 1,000 0,157  3 0 0,145 1,000 0,261 
4 0 0,087 1,000 0,094  4 0 0,087 1,000 0,157 
5 1 0,052 0,250 0,014  5 1 0,052 0,250 0,023 
6 1 0,031 0,250 0,008  6 1 0,031 0,250 0,014 
7 0 0,019 1,000 0,021  7 0 0,019 1,000 0,034 
8 2 0,011 0,063 0,001  8 2 0,403 0,063 0,045 
9 1 0,007 0,250 0,002  9 1 0,007 0,250 0,003 
10 0 0,004 1,000 0,004  10 0 0,004 1,000 0,007 

  690 
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Figure 1. Conceptual diagram of the process of quantitative DNA metabarcoding, from 691 
the usual targets (relative abundance of diet components, Di, or species in a community 692 
Ci) to the final assignment of abundances to species (Fi). The sub index i indicates the 693 
abundance of species i in the multispecies mixture. This study covers the process of 694 
amplicon metabarcoding (Oi  Ai  Ri).     695 
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Figure 2. Flow diagram of the pipeline used in this study. On the left-hand side, 698 
calculations of template-primer mismatches for each primer pair and genome, both for 699 
all the nucleotides in both the forward and reverse primers (mT; model 1) and only on 700 
five 3’-terminal nucleotides (m5; model 2). On the right-hand side, the algorithm that 701 
generates random mixtures of species at random initial abundances (oi), estimates an 702 
amplification efficiency for each species based on the number of template-primer 703 
mismatches, and simulates a PCR reaction to produce a final relative abundance of each 704 
species (fi). 705 
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Figure 3. Boxplot of number of template-primer mismatches for each primer pair. (A) 713 
Model 1 considers the total number of mismatches in both the forward and reverse 714 
primers. (B) Model 2 considers only the mismatches in the five 3’-terminal positions of 715 
both primers. Primer pair numbering is the same as in Table 3. 716 
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Figure 4. Ninety-five percent confidence interval (95% CI) for the Pearson correlation r 721 
for each primer pair analysed for Model 1 (A) and Model 2 (B). For primer pairs #10 and 722 
#14 in B, the CI is so small that the arrowheads could not be plotted. When the CI cuts 723 
the vertical line at r = 0 it indicates that it is not possible to consider that r > 0 (with a 724 
probability of 0.95). Primer pair numbering is the same as in Table 3. 725 
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Figure 5. Relationship between the simulated mean of r and the mean number of 728 
template-primer mismatches (A, B) and the standard deviation of the number of 729 
mismatches (C, D) for model 1 (A, C) and model 2 (B, D); mT = number of mismatches 730 
in the entire length of both primers; m5 = number of mismatches in the five 3’-end 731 
positions of both primers. 732 
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