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Abstract

DNA metabarcoding is a technique used to survey biodiversity in many ecological settings, but
there are doubts about whether it can provide quantitative results, i.e. the proportions of each
species in the mixture as opposed to a species list. While there are several experimental
studies that report quantitative metabarcoding results, there are a similar number that fail to
do so. Here we provide the rationale to understand under what circumstances the technique

can be quantitative.

Basically, we simulate a mixture of DNA of S species with a defined initial abundance
distribution. In the simulated PCR, each species increases its concentration following a certain
amplification efficiency. The final DNA concentration will reflect the initial one when the
efficiency is similar for all species; otherwise, the initial and final DNA concentrations would be
poorly related. Although there are many known factors that modulate amplification efficiency,
we focused on the number of primer-template mismatches, arguably the most important one.
We used 15 common primers pairs targeting the mitochondrial COIl region and the

mitogenomes of ca. 1200 insect species.

The results showed that some primers pairs produced quantitative results under most
circumstances, whereas some other primers failed to do so. Many species, and a high diversity
within the mixture, helped the metabarcoding to be quantitative. In conclusion, depending on
the primer pair used in the PCR amplification and on the characteristics of the mixture analysed
(i.e., high species richness, low evenness), DNA metabarcoding can provide a quantitative

estimate of the relative abundances of different species.

Introduction

Ideally, metabarcoding should be a technique used to quantify species abundance in natural

communities (C; in Figure 1) using high-throughput DNA sequencing (HTS). This is normally
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accomplished by sampling the organisms in the community using a particular sampling method
(Si; Moriniére et al., 2016) or by collecting fragments of DNA shed from organisms
(environmental DNA or eDNA, E;; Taberlet, Coissac, Hajibababei, & Rieseberg, 2012). The
target can also be the subset of the community consumed by a predator or an herbivore in
what is termed diet analysis (D;; Pompanon et al., 2012); the diet is estimated from the DNA
remains in faecal samples or in the gut contents of the consumer (G;). In all cases, the DNA is
extracted into a solution with DNA of many species at relative abundances O;. Then, the
extracted DNA can be directly sequenced (shotgun metagenomics) or sequenced following
amplification via PCR of one or more genomic regions (amplicon metabarcoding). Finally, the
obtained DNA reads R; are assigned to species or OTUs (F;). Every process described in
Figure 1 introduces its own biases (Leray & Knowlton, 2017; Pompanon et al., 2012), and so
the estimation of the community composition C; (or D; in diet analysis) from the final read
abundance (Fj) is a daunting task that we are now just beginning to grasp (Barnes & Turner,
2016; Elbrecht, Vamos, Meissner, Aroviita, & Leese, 2017). Only when all biases are avoided

or corrected, will it be possible to perform quantitative metabarcoding.

The processes involved in the transformation of species counts or biomass (C; or D;) to the
DNA solution (O)) are complex. For instance, in the diet analysis, not all the DNA of the
consumed species (or even of different tissues of the same species) is digested with the same
efficiency. The case of environmental DNA is even worse, as there are many factors that affect
the production and stability of eDNA (origin, state, decay, transport, persistence; Barnes &
Turner, 2016). The extraction of DNA from samples (G, E; or S;) to the solution (O;) would
apparently be straightforward, but this is far from true for some organisms: Pornon et al. (2016)
report a difference of ca 300 times in the extracted DNA yield (before amplification) from the
same number of pollen grains of three plant species. These authors attribute this variability to
interspecific differences in pollen wall structure, pollen size, genome size, the number of

marker copies and DNA extraction efficiency.
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The processes leading from the extracted DNA (O)) to the relative species abundance (R)) are
no better. Amplicon metabarcoding (shaded region in Figure 1) is mostly affected by the PCR
amplification step using ‘universal’ primers targeting a certain region of the genome. Universal
primers do not perfectly match the DNA of all species, and so there is a variable number of
template-primer mismatches across species. Consequently, some species are better amplified
than others and the proportions in the final mixture do not reflect the original proportion of each
species (Elbrecht and Leese, 2015; Leray et al., 2013; Bista et al., 2018). There are other
complications in the PCR step that produce more biases; for instance, the use of indexed PCR
primers (used to minimize the per sample cost of sequencing by allowing the sequencing of
many samples in a single run) might induce further biases (Leray & Knowlton, 2017; O’Donnell,
Kelly, Lowell, & Port, 2016). The avoidance of the PCR step (shotgun metagenomics) would
in theory render a faithful list of R; (Bista et al., 2018), and this is what is mostly used in microbial
metabarcoding nowadays (Jovel et al., 2016). However, in eukaryotes, the scarcity of
assembled genomes and the vast amount of sequencing depth needed, makes shotgun
metabarcoding still unsuitable in most circumstances (Goémez-Rodriguez, Crampton-Platt,

Timmermans, Baselga, & Vogler, 2015; Zhou et al., 2013).

Whether the metabarcoding provides quantitative results has been usually evaluated using
mock communities of known composition that are amplified and sequenced, or using a
classical quantification method alongside the DNA metabarcoding. There is a growing number
of these studies and the results are contradictory (Table 1). Whilst many studies report a
significant quantification, albeit with a variable explanatory power, many others do not.
According to these results, the right question to ask is not whether, but in which circumstances,

is DNA metabarcoding quantitative.

Here we do not attempt to tackle all the problems in quantitative metabarcoding depicted in
Figure 1, but just a subset of them. We concentrate on the template-primer bias that

complicates the quantification of the initial DNA concentration in a heterogeneous solution (O))
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from the reads obtained after PCR amplification and HTS sequencing (Rj). We focus on this
for two reasons. First, the process O; > R;is an obligatory step for diet (G;), eDNA (E;), and
fresh or well conserved sample analyses (S;), and so our contribution can potentially benefit
people in several fields. Second, whereas there are several causes that influence the number
of reads R; (i.e. genome size, mitochondrial copy number, ...), the number of template-primer
mismatches is probably the most important one (Elbrecht & Leese, 2015; Mao, Zhou, Chen, &
Quan, 2012; Pinto & Raskin, 2012; Pifiol, Mir, Gomez-Polo, & Agusti, 2015). We address the
problem using a simple model that simulates the process of PCR amplification in
heterogeneous mixtures. We test the model using the mitogenomes of ca. 1200 species of
insects available in RefSeq and 15 primer pairs targeting the COI region (Elbrecht & Leese,
2017a). Maybe the COI region is not the best suited for designing metabarcoding primers
(Deagle, Jarman, Coissac, Pompanon, & Taberlet, 2014; Elbrecht et al., 2016), but it remains
the region with most extensive information in genomic databases. The objectives are to
evaluate in silico which primer pairs and which characteristics of species mixtures provide a
quantitative relationship between the pre- and post-PCR marker abundance of the species in

the mixture.

Material and Methods

Rationale of the model

Let’s consider a mixture of DNA of S species each with original DNA concentration O; that is
PCR-amplified with a universal primer pair. Each species increases its concentration to F;
according to a certain efficiency A; (here we are assuming that R;in Figure 1 equals F;, and so
the biases in the bioinformatic pipeline from read number to species abundance are assumed

to be negligible in the present application),

F/=A/'O/ Eq.1
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A varies between 1 (no amplification) and 2° (maximum amplification, with ¢ the number of
PCR cycles). F; will be proportional to O; when A, is the same for all species; on the other hand,
when A;is very different among species, F; would poorly reflect O;. This model is equivalent to

the basic one of Suzuki and Giovannoni (1996).

In DNA metabarcoding, only the relative proportions of each species in the mixture are of
interest. Let’s call o; and f; the original and final relative concentration of DNA of species i in

the mixture. These two magnitudes are related by an equation like the previous one
fi=Xi-oila Eq. 2

where a = Y3_, 4; - o; is a scaling constant to assure that 1 = ¥3_, f;. Here A, is the relative

amplification efficiency of species i and belongs to the interval (0, 1].

The application of the model is straightforward. First, it requires a pool of species and the
primer pairs of interest. Second, a method to generate random mixtures of species with a
certain initial abundance distribution (0;). Third, an estimation of the amplification efficiency A;
of each species in the mixture. Finally, the computation of fi using equation 2. Figure 2
summarizes the computational pipeline that implements the model above. On its left-hand side,
there are the procedures that calculate the template-primer mismatches for each combination
of the species and primer pairs in the pool. In the right-hand side, there is the algorithm that

performs many simulations for each primer pair and compares o, with f..

Primer pairs and species

We only considered the 15 COI primer pairs targeting the mitochondrial Folmer region (Folmer,
Black, Hoeh, Lutz, & Vrijenhoek, 1994) analysed by Elbrecht and Leese (2017a) (Tables 2 and
3). The selection includes the most common universal primer pairs currently used for DNA

metabarcoding of insects. We compiled a pool P of 1204 species of insects with an assembled
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mitochondrial genome at RefSeq (ftp:/ftp.ncbi.nim.nih.gov/refseqg/release/mitochondrion/

visited at 25-May-2017) (see the distribution of the species among orders in Figure S1).

We calculated the number of primer-template mismatches for each primer and each
mitochondrial genome using the function matchPattern of the R package Biostrings (Pagés,
Aboyoun, Gentleman, & DebRoy, 2017). We limited the maximum number of mismatches per
primer to five. When the primer mapped in more than one region, we choose the region with

the lowest number of mismatches.

Next, we combined the pairs of primers in table 3 and computed the total number of primer-
mismatches in the two primers and the amplicon length. We only retained the primer
pair/genome combinations that produced an amplicon of length equal to the expected amplicon
length for each primer pair (table 3). As primer pair #15 produced a very low number of useful

species to analyse (table 3), it was not considered further here.

Generation of random communities

A subset of S species was randomly sampled from the pool of species P. The relative
proportions of each species in the mixture was established following a geometric model

(Magurran, 2004)
0, =Cp-k-(1—-k)i? Eq. 3

Where o; is the proportion of the species i in the mixture, k is the parameter of the model and
C,=[1—(1-k)S]"! is a constant that makes Y5_, 0; = 1. The parameter k belongs to the
interval (0, 1). Small values of k produce communities in which the species have similar
abundances, whereas high values of k produce communities dominated by a few abundant

species.

Estimation of the PCR amplification efficiency
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It is acknowledged that the number of template-primer mismatches influences the efficiency of
the PCR reaction. However, much less is known about the nature of the relationship between
number of mismatches vs. efficiency. Here we use a basic model in which each new mismatch

reduces the efficiency in a certain proportion :

ﬂyi = B_mi Eq 4

Where m is the total number of primer-template mismatches in both the forward and the
reverse primers. According to this model, the number of mismatches has a multiplicative effect
on the amplification efficiency, and so when m; = 0, A; = 1 (perfect match and maximum

amplification efficiency); when m; = 1, A; = 1/B; when m; = 2, A; = 1/B%* and so on.

In this application, we used two different formulations of the model above. In the first one
(model 1), m is the number of template-primer mismatches in the entire length of both the
forward and reverse primers; in the second one (model 2), m is the number of template-primer
mismatches that occur only in the five 3’-end positions of both the forward and reverse primers.
We have done so because mismatches closer to the 3’ end of the primer has a greater effect
on the PCR efficiency than mismatches occurring further away from the 3’ end of the primer

(Stadhouders et al., 2010).

Parameters of the simulation

For this model to be useful, the parameters of the model S, k, and p must have realistic values,
i.e. they should correspond to values normally found in natural communities that could
eventually be subjected to DNA metabarcoding. The number of species in a sample can be
very different depending on the studied community. Here we are pretending to simulate
communities of insects in temperate areas, and so a reasonable range for S in samples of

temperate communities would be 5-100.
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To find reasonable values of k, we took advantage of a dataset of insects in tree canopies of
a citrus grove (Pifol, Espadaler, & Carnellas, 2012). We used biomass data of species of
Dermaptera, Coleoptera, Hemiptera, Neuroptera, Psocoptera, and Hymenoptera from 133
sampling events with 5 or more species. Then we fitted a geometric model (equation 3) to the
species biomass for every sampling event. The fitted k values varied between 0.2 and 0.95
(Figure S2a). The goodness of fit of the geometric model to the data was very high (Figure
S2b), indicating that the use of a geometric model to describe the relative proportions of the

species is sound.

The B value that relates the number of template-primer mismatches to the ampilification
efficiency was estimated from Pifiol et al. (2015), who report a significant negative relationship
between the logarithm of the amplification efficiency and the number of template-primer

mismatches:
logioy = —0.25 + 0.61 - (—my),r? = 0.73,F; 9 = 24.35,P = 0.0008
logipy = —1.09 4+ 1.73 - (—ms),r% = 0.81,F, o = 38.24,P = 0.0002

where mr is the total number of template-primer mismatches in the entire length of the both
primers, and ms is the total number of mismatches in the five 3’-end nucleotides of the forward
and reverse primers. We are not aware of any other study that explicitly states the relationship

between the number of template-primer mismatches and the amplification efficiency.

The above empirical relationships are equivalent to equation 4, where 3 can be estimated as
108", Thus, for model 1, B = 10°6' = 4.07 and for model 2, B = 10"73 = 53.70. The error in the
estimated values of the slope translates to the estimate of : the 95% interval of confidence

for B in model 1 is (2.1 to 7.8) and for model 2 is (12.6 to 234).

Simulations
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For each primer pair considered, we ran 10000 simulations using an R script that performed

the following steps (summarized in Figure 2):

1.

We generated a random number of species S in the community between 5 and 100.
(The random number and all those below followed a uniform distribution).

We randomly chose S species from the pool P of species.

We generated a random value of k between 0.2 and 0.95.

We used this k value to estimate the initial relative DNA concentration o; of each of the
S species in the community using equation 3.

We generated a random value of B in the interval (2, 8) for model 1 and in the interval
(12, 240) for model 2.

Using equation 4, we calculated the relative amplification efficiency A; of each species
in the community using the above [ value and the previously calculated number of
mismatches between this primer pair and each species. For model 1 we used the
number of template-primer mismatches in the entire length of the primers; for model 2
we used only the mismatches occurring in the five 3’-end positions of both primers.
Finally, we calculated the relative DNA concentration of each species in the mixture f;
from Equation 2 using the above estimates of A; and o..

Each simulation was summarized by the linear correlation coefficient r; between f; and
o, We also calculated whether the most abundant species at the beginning (0;) was

also the most abundant at the end of the PCR reaction (f).

Analysis of the results of the simulations

For each primer pair, we set the following statistical test:

Ho:r=0 (there is not a linear relationship between o; and f)

Hi:r#0 (there is a linear relationship between o; and f)

10
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To decide between Ho and Hy we considered the empirical 95% confidence interval (Cl) of the
ri distribution: when 0 € Cl we accepted Hoand when 0 ¢ Cl we accepted Hi. The probability

of error when accepting H1is 0.05.

For each set of simulations of each primer pair we also calculated the proportion in which the
same species was the most abundant before and after the simulated PCR reaction. If this value
was above 0.95, then it would be safe to consider that the observed most abundant species

was correctly guessed with a probability of 0.95.

Finally, with all the simulations of all the primer pairs we calculated using a linear model the
proportion of the variance of r (after the Fisher z-transformation) associated with the factors:

primer pair; S; k; B; and all 2-way interactions.

All the calculations were conducted with R in-house scripts (R Core Team, 2016) also using

the database manager SQLite (Mduller, Wickham, James, & Falcon, 2017).

Results

Number of mismatches

Considering the entire length of both the forward and the reverse primers, the median of the
number of template-primer mismatches was 0 for primer pairs #10 to #14, 1 for primer pair #7,
and 3 or higher for the rest of primer pairs (Figure 3A). When only the five 3’-end positions of
each primer were considered, the median of the number of template-primer mismatches was
2 for primer pair #4, 1 for primer pairs #2 and #5, and 0 for the remainder (Figure 3B). Primer
pairs #10 and #14 were especially good, as more than 99% of the tested species (~1150) had

no template-primer mismatches in the five 3’-terminal positions.

Relationship o-f;

11
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Considering the entire length of both the forward and the reverse primers, the simulations of
primer pairs #1, #2, #3, and #5 generated an empirical 95% confidence interval (Cl) for the
linear correlation coefficient that included the 0 value, indicating that it is not justified to assume
a significant linear relationship between o; and f; (Figure 4A). The opposite was true for the rest
of primer pairs. The relationship o-f; was especially good for primers pairs #10 to #14, and to
a lesser extent to primer pair #7; for all these primer pairs, it is safe to assume that the final
concentration of DNA after the PCR reaction (f) quantitatively reflects what was there initially
(0/). However, for none of the primer pairs analysed it is safe to assume that the most abundant

species after the PCR reaction was the most abundant initially (Table 4).

The overall picture was slightly better when only the five 3’-terminal bases of both primers were
considered (Model 2). In this case, only primer pairs #4 and #5 generated a Cl for r that
included the 0 value, while the opposite was true for the rest of them (Figure 4B). Primer pairs
#10, #11, #12, and #14 where again especially good, generating Cl that were always above
the value of =0.9. In addition, for primers pairs #10 to #14, it is safe to assume that the most

abundant species was correctly attributed (Table 4).

Effect of the characteristics of the mixture of species on the correlation o-f;

The mixture of the species is characterised in the model by S and k. When the number of
species S in the random sample was low (5-15) the relationship o-f; was not significant for all
the primers pairs except #10 to #14 (Model 1; Figure S3-A) and for #10 to #14, #3, #6 and #8
(Model 2; Figure S3-B). When S was high (51-100) all primer pairs produced a significant linear

correlation between orf; for both models (Figure S3-CD).

Low values of the parameter k of the geometric distribution (i.e., species with not very different
abundances; k < 0.45) produced worst results, especially for Model 1, that when k was higher
(k > 0.70), where only primer pair #5 (Model 1) and #4 and #5 (Model 2) had a 95% CI that

included the 0 value (Figure S4).

12
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Relative importance of each factor on the magnitude of the correlation o-f;

We decomposed the variance of the correlation coefficient r in the 140 000 runs (14 primers
pairs x 10000 runs each) according to the factors considered in Model 1 and 2 (Table 5). For
both models 1 and 2, the main factor was the choice of primer pair that accounts for more 20%
of the total variance; k (models 1 and 2) and B (model 1) also had some importance in the
decomposition, but not S. However, in both models most of the variance was unexplained by
the considered factors. This implies that there are more important reasons on top of those
considered above that affect the correlation coefficient r. In the model, the main reason is the
idiosyncratic species composition of each simulated mixture; this means that two simulations
with identical S, k and B values, but with a different choice of species will likely produce a very

different value of r.

The primer pairs that do better (Figure 4) are those with fewer template-primer mismatches
(Figure 5-AB). Indeed, the mean number of mismatches per primer is linearly correlated with
the mean r of the simulations for both models. However, and following the rationale of the
model, the mean r was even better correlated with the standard deviation of the number of
mismatches per primer (Figure 5-CD). Consequently, a proxy for the potential of a certain
primer pair for conducting quantitative metabarcoding would be the mean, or even better, the
standard deviation, of the template-primer mismatches of that primer within the pool of the

genomes of interest.

Discussion

The model is intended to establish whether the results of a part of the metabarcoding analysis,
but not of the entire metabarcoding pipeline (Figure 1), are likely to be quantitative. By
quantitative we more precisely mean that there exists a significant linear correlation (at a

certain significance level) between the relative DNA concentration before and after the PCR

13
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reaction (O; and F; in Figure 1) using a particular primer set and a group of organisms. What
the model does not provide is the certainty of a significant relationship for a given analysis.
This approach may have greater utility for the analysis of eDNA samples or community DNA
than for gut content analyses, given the additional sources of error associated with digestion.
Also, the number of different species in the mix is likely to be much lower in predator/herbivore

gut samples than in eDNA samples.

It is also important to realize that the model only considers one of the many factors that affect
the PCR amplification efficiency, i.e. the number of template-primer mismatches. Among the
non-considered factors there are variable mtDNA copy number, the genome size, the position
and type of the mismatches (Stadhouders et al., 2010), and the G+C content of the amplicon
(Wintzingerode, Gdbel, & Stackebrandt, 1997). However, we are aware of only one study that
explicitly correlated the number of mismatches with the ampilification efficiency. In that study,
the variance explained by the number of mismatches was ~0.75 of the total (Pifiol et al., 2015),
so there is only a mere ~0.25 of the total variance in the amplification efficiency left to be
explained by the rest of the unaccounted factors mentioned above. Thus, this model makes
the strong assumption that the PCR amplification efficiency mainly depends on the number of
template-primer mismatches, and considering the empirical information available so far, it is a

reasonable assumption.

When summarizing which factors most affect the correlation between the pre- and post-PCR
DNA concentrations (o-f) it stands out that the most important of them all was not included in
the model (i.e., the unexplained variance in Table 5). This unexplained variance is the
idiosyncratic species composition of the mixture and their relative abundances. The following
example shows that there can be huge effects even when all the model parameters are the
same. In the mixture of table 6a (S = 10, k = 0.4, B = 4) the linear correlation o-f; is highly
significant (r = 0.996, P < 0.001). In the mixture in table 6b, the species (and the parameters

of the model) are the same as in 6a, but now the most abundant species is #8 instead of #1;

14
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in this case the relationship o-f; becomes non-significant (r = 0.46, P > 0.05). This example
shows that it is impossible to be sure that a particular metabarcoding analysis will produce a
significant o-f; correlation, unless we know in advance the exact composition of the species in
the mixture. For this reason, we highlighted above that our analysis can only provide the
likelihood of the PCR step of a certain metabarcoding experiment being quantitative, but never

its certainty.

Table 5 also shows that the factors considered in the model are also important. Below we
discuss the importance of the selected primer sets and the macroscopic characteristics of the

mixture, i.e. the species richness S and the slope (k) of their relative abundances.

Choice of primer pairs

The choice of primer pairs is the most important decision to make for DNA metabarcoding. The
model suggests that some of the primers tested in this study are better suited than others for
quantitative DNA metabarcoding. Among the primer pairs tested here, the best choice seems
to be the primer pair #10 (Gibson et al., 2014) and the primer pairs #11 to #14 (Elbrecht &
Leese, 2017a). All of them guarantee (with a probability of 0.95) a significant linear relationship
o-fi; moreover, the linear correlation coefficient between pre- and post-PCR DNA
concentrations is likely to be high (in the range 0.4 — 1) (Figure 4). The rest of the primer pairs,
except #4 and #5, also provide significant results, but with lower r values. Primers sets #10 to
#14 are highly degenerated, so, it is justified that they amplify better in silico than other sets

with a much lower degeneracy (e.g., #4 and #5).

The primer pair #10 (Gibson et al., 2014) was developed to amplify a 310 bp region of many
families of arthropods. This primer contains the universal base inosine (l); in our calculations,
we considered that inosine could pair any base, but, in reality, its capacity to pair with the four
bases is variable (Martin, Castro, Aboul-ela, & Tinoco, 1985); besides, the use of inosine

increases the price of the primers. The four primer pairs of Elbrecht and Leese (2017a) are all
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possible combinations of two forward and two reverse primers that produce amplicons of
different length. As these primers pairs were developed recently, they have been hardly used
by other researchers for DNA metabarcoding (Krehenwinkel et al., 2017); considering our
results, we would recommend their use. In any case, in vivo validations of primers sets with
mock samples of the species of interest is still advisable before embarking on a metabarcoding

study.

The above recommendation does not imply that the rest of the primers are of no use in
metabarcoding. Some of them can have great coverage of some groups, like primers #5 that
are particularly good for Lepidoptera (Zeale, Butlin, Barker, Lees, & Jones, 2011) and have
been used with profit for the characterisation of the diet of bats (Clare, Symondson, & Fenton,

2014).

Characteristics of the mixture of species

The number of species in the mixture and their relative abundance were also important in the
quantification of the species. The number of species S does not explain the magnitude of r
(Table 5) but affect the width of the CI of r (Figure S3). When S is low, most primer pairs (#1
to #9) give a Cl of rthat includes the value r=0; on the contrary, when Sis high all tested primer
pairs guarantee (at the 95% level) a quantitative metabarcoding. This result is a consequence
of the higher effect that an outlier (e.g., one species with one of more mismatches, but very
abundant initially, in an assemblage where most species have no mismatches) has on r when
S is low that when S is high. Thus, as a rule, the higher the number of species in the mixture,
the higher the likelihood of the results reflecting the original relative abundance of the species.
These results have a relevant corollary for diet analysis: DNA metabarcoding is more likely to
provide a quantitative diet for polyphagous than for stenophagous predators. This implies that
it would be more quantitative when analysing polyphagous species in diverse tropical
ecosystems than in less diverse temperate ecosystems. Thus, good dietary quantification

would be expected, for example, for larger predators eating many small prey (e.g. an
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insectivorous bird or bat) than for a small predator (e.g. an insect) that may be polyphagous

but have few prey in its guts at any moment in time.

The relative abundance of the species in the mixture also affects the quantification of species
by metabarcoding. When the relative abundance of the species is similar among them (k low)
the method was less reliable that when a few species were very abundant and the rest were
not (k high) (Figure S4). This behaviour is easy to understand by observing equation 2 that
describes the PCR reaction. The linear correlation o-f; is going to be higher when the variance

of o; (in relation to A;) is also high.

Relationship between the number of mismatches and amplification efficiency

Here we considered that all mismatches have the same importance and that each new
mismatch reduces the amplification efficiency in the same factor 3 (equation 4). However, there
are other characteristics of the mismatches, besides their total number, that affect the

amplification efficiency.

It is known that mismatches near the 3’-end of the primer have a higher effect than in other
positions of the primer (Bru, Martin-Laurent, & Philippot, 2008; Stadhouders et al., 2010). We
partially took into account this effect by using two versions of the model, one considering all
mismatches in both primers (model 1) and one considering only the mismatches in the five 3’-
terminal positions of both primers (model 2). The results produced similar conclusions with

both versions of the model regarding which primers produced better quantitative results.

It is also known that some types of mismatch reduce more than others the amplification
efficiency (Kwok et al., 1990; Stadhouders et al., 2010; Wright et al., 2014). In general, it has
been reported a general purine-purine > pyrimidine-pyrimidine > purine-pyrimidine hierarchy
of mismatch impact (Stadhouders et al., 2010), but there are some discrepancies. In addition,
most of the studies refer only to the 4-5 bases in the 3’-end of the primers, and very little is

known about mismatches in the rest of the primer positions (Sipos et al., 2007).
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Considering that there is not enough quantitative information about the effect of the mismatch
position and type throughout the entire length of the primer, we preferred to keep the model
simple. More experimental work in this respect would be needed to parametrise with
confidence more realistic models of amplification efficiency. It is worth mentioning that other
models already consider the position, adjacency and type of the mismatches (Elbrecht &
Leese, 2017b), but their parametrisation is limited as it is based on the scarce empirical

information available.

If proved robust, the assumption that the amplification efficiency depends basically on the
number of template-mismatches suggests a possible avenue for quantifying mixtures amplified
with any primer set. Once (or when) the species composition of the mixture is known, and
given the number of primer-template mismatches, it would be possible to estimate the initial
abundance of each species (0;) using equation 2 in reverse. Thus, it should be possible, at
least in theory, to quantify the relative composition of any mixture in two steps: the first one

would provide the list of species and the second one the relative abundance of each one.

Limitations of the model

The model was applied to approximately 1200 species of insects with a sequenced
mitogenome in RefSeq. The model says nothing about other genomic regions, groups of
organisms, or sets of primers. For instance, it could be perfectly possible that some of the
primers that did not perform well in our analysis, behave much better for a subset of insect
orders. However, it is fair to suppose that the same kind of conclusion would be obtained
elsewhere: some primer pairs would do better than others, mixtures with more species would
do better than mixtures with fewer species, and mixtures with less evenness would also do
better than mixtures with a higher evenness. So, it would be worthwhile to conduct similar
studies to the present one using different primers and relevant groups of organisms before

embarking on metabarcoding experiments.

18



438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

The model has implicitly assumed that all species in the mixture are amplified to some extent
in the simulated PCR. This assumption is at odds with the fact that all primers fail to amplify
some species (Brandon-Mog et al., 2015; Mao et al., 2012). This is of little importance in our
approach. If some species fail to amplify its final concentration would be f; = 0; in our model f;
would be a very small number, but never 0. However, as we calculate the linear correlation o-
fi without any transformation of the raw data, the fact that f; is 0 or a very small number like,

let’s say 0.00001, is of minor importance.

It is also important to mention that, implicitly, we considered that the initial DNA concentration
was proportional to some measure of abundance, like biomass or individual number, but this
is not necessarily the case, especially when multiple-copy markers are used. In plants, there
is the added problem of ploidy. Unfortunately, interspecific comparisons using single copy
nuclear markers are not usually viable in dietary analysis, as multi-copy targets are needed to
amplify the degraded DNA associated with herbivory and predation. In addition, whilst there is
some information about gene copy number across taxa in prokaryotes (i.e., 16S rRNA gene;
Farrelly, Rainey, & Stackebrandt, 1995), and even ways to use this information for a posteriori
correction of read numbers (Angly et al., 2014), we are not aware of any reliable data on

mtDNA copy number across arthropod species.

Despite the overwhelming complexity of the entire metabarcoding process (Figure 1), the
model presented here offers some hope for making the process more quantitative. By simply
choosing a primer set with a low variance in the number of mismatches it is possible to obtain
greater quantitative accuracy. It is true that other sources of bias remain unchanged, like
different digestion rates for DNA from different species, but the results presented here would

help to reduce the overall bias.
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Table 1. A compilation of experiments attempting to establish whether DNA metabarcoding can be said to be quantitative. The goodness of fit was usually estimated as the Pearson or Spearman
squared correlation coefficient; its significance is given as NS (P > 0.05), * (P< 0.05), ** (P<0.01), and *** (P<0.001).

abundance

Organisms Marker Goodness of fit Significance | Reference

Eight fish and one amphibian species in mesocosms compared with DNA metabarcoding | citb, 12S,16S  |0.49-0.88 *E o ¥H* Evans et al. (2016)

Calanoid copepods measured as biomass and by DNA metabarcoding COl, 16S, 18S 0.26-0.83 NS to *** Clarke, Beard, Swadling, & Deagle (2017)

Mock community of 41 species of nematodes at variable abundances LSU, SSU rRNA  |Not given NS Porazinska et al. (2009)

Analysis of faeces of seals fed with 3 species of fish in known proportions 16S Not given NS Deagle, Thomas, Shaffer, Trites, & Jarman
(2013)

Three samples of airborne pollen measured by classical methods and by DNA | trnL 0.23-0.45 *Ex Kraaijeveld et al. (2015)

metabarcoding

Nine samples of pollen assemblages measured by classical methods and by DNA | rbcL Negative to 0.55 NS to ** Hawkins et al. (2015)

metabarcoding

Six samples of pollen assemblages measured by classical methods and by DNA | ITS2, matK, rbcL |Negative to 0.88 NS to * Richardson et al. (2015)

metabarcoding

Marine nematodes identified morphologically and by DNA metabarcoding 18S Not given NS Dell’lAnno, Corinaldesi, Riccioni, &
Danovaro (2015)

Lake fish assemblages of 16 fish species measured as eDNA and compared with estimates | 12S, citb 0.05-0.70 NS to *** Héanfling et al. (2016)

from surveys

Mock communities of 4 to 9 insect species common in dung fauna in variable proportions | COI 0.01 0.86 NS to * Blanckenhorn, Rohner, Bernasconi,
Haugstetter, & Buser (2016)

Plants in rumen contents measured by DNA metabarcoding and by macroscopic | trnL 0.15-0.27 *x Nichols, Akesson, & Kjellander (2016)

identification

Natural marine fish assemblages measured as eDNA and as trawl catches. In addition, a | 12S Natural: 0.10—0.14| * to *** Thomsen et al. (2016)

mock community of 5 fish species at variable abundances Mock: 0.81

Mock community of an equimolar mix of 12 species of insects and spiders COl Not given NS Pifiol et al. (2015)

Mock community of 8 species of soil protist of 4 different phyla at variable abundances 18S Not given NS Geisen, Laros, Vizcaino, Bonkowski, & de
Groot (2015)

Mock community of 6 species of zooplankton at variable abundances 18S 0.96 ** Albaina, Aguirre, Abad, Santos, and
Estonba (2016)

Mock community of 6 species of Collembola at variable abundances COl, 16S 0.83-0.98 Hokx Saitoh et al. (2016)

Mock community of an equimolar mix of 34 species of aquatic invertebrate belonging to | COI Not given NS Leray and Knowlton (2017)

6 different phyla

Mock community of 10 species of freshwater bivalve and gastropod molluscs at variable | 16S 0.79 -0.92 * Klymus, Marshall, & Stepien (2017)
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Table 2. Universal primers targeting the mitochondrial COI region used in this study.

Name Strand | Sequence (5 2 3’) Reference

LCO1490 F GGTCAACAAATCATAAAGATATTGG Folmer et al. (1994)

HC02198 R TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. (1994)

Uni-MinibarR1 R GAAAATCATAATGAAGGCATGAGC Meusnier et al. (2008)

Uni-MinibarF1 F TCCACTAATCACAARGATATTGGTAC Meusnier et al. (2008)

ZBJ-ArtFlc F AGATATTGGAACWTTATATTTTATTTTTGG | Zeale et al. (2010)

ZBJ-ArtR2c R WACTAATCAATTWCCAAATCCTCC Zeale et al. (2010)

mICOlintF F GGWACWGGWTGAACWGTWTAYCCYCC Leray et al. (2013)

mICOlintR R GGRGGRTASACSGTTCASCCSGTSCC Leray et al. (2013)

LepF1 F ATTCAACCAATCATAAAGATATTGG Hebert, Penton, Burns,
Janzen, & Hallwachs (2004)

EPT-long-univR R AARAAAATYATAAYAAAIGCGTGIAIIGT Hajibabaei, Spall, Shokralla,
& Konynenburg (2012)

MLepF1-Rev R CGTGGAAAWGCTATATCWGGTG Brandon-Mong et al. (2015)

IN_C_R R GGIGGRTAIACIGTTCAICC Shokralla et al. (2015)

I _B_F F CCIGAYATRGCITTYCCICG Shokralla et al. (2015)

BF1 F ACWGGWTGRACWGTNTAYCC Elbrecht and Leese (2017a)

BF2 F GCHCCHGAYATRGCHTTYCC Elbrecht and Leese (2017a)

BR1 R ARYATDGTRATDGCHCCDGC Elbrecht and Leese (2017a)

BR2 R TCDGGRTGNCCRAARAAYCA Elbrecht and Leese (2017a)

ArF5 F GCICCIGAYATRKCITTYCCICG Gibson et al. (2014)

ArR5 R GTRATIGCICCIGCIARIACIGG Gibson et al. (2014)

jgLC01490 F TITCIACIAAYCAYAARGAYATTGG Geller, Meyer, Parker, &
Hawk (2013)

jgHC02198 R TAIACYTCIGGRTGICCRAARAAYCA Geller et al. (2013)

L499 F ATTAATATACGATCAACAGGAAT Van Houdlt, Breman,
Virgilio, & De Meyer (2010)

H2123d R TAWACTTCWGGRTGWCCAAARAATCA Van Houdt et al. (2010)
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Table 3. Primer pairs used in this study. Primer names as in table 2. Primer pair #15 was
not further considered because it provided much fewer species with useful data than the
other 14 primer pairs.

id Forward Primer Reverse Primer | Amplicon length (bp) | Number of species
with useful data

#1 | LCO1490 HC02198 658 1003

#2 LepFl MLepF1-Rev 218 1035

#3 LepFl EPT-long-univR 127 1048

#4 | Uni-MinibarF1 Uni-MinibarR1 127 800

#5 | ZBJ-ArtFlc ZBJ-ArtR2c 157 937

#6 | jgLCO1490 mICOlintR 319 944

#7 | mICOlintF jgHCO2198 313 1162

#8 | LCO1490 IN_C_R 325 1014

#9 | Ill_B_F HC02198 418 1143

#10 | ArF5 ArR5 310 1157

#11 | BF2 BR1 322 1146

#12 | BF1 BR2 316 1155

#13 | BF2 BR2 421 1157

#14 | BF1 BR1 217 1143

#15 | L499 H2123d 178 480
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677  Table 4. Proportion of runs in which the same species is most abundant both before and
678  after the simulated PCR reaction for Model 1 and Model 2 simulations. Proportion based
679  on 10000 simulation runs per primer pair. It is indicated in bold face whether it is safe (at
680 o = 0.95) to conclude which species is the most abundant in the mixture.

Primer Model 1 | Model 2
pair
1 0.42 0.65
2 0.43 0.51
3 0.42 0.94
4 0.49 0.41
5 0.36 0.50
6 0.55 0.85
7 0.63 0.76
8 0.52 0.94
9 0.53 0.67
10 0.94 1.00
11 0.88 0.98
12 0.81 0.98
13 0.91 0.97
14 0.79 1.00

681

682
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Table 5. Percentage of the variance in the linear correlation coefficient r explained by

each parameter involved in the simulations using models 1 and 2.

Factor Model 1 | Model 2
Primer pair (pp) | 23.0 20.9
S 0.1 0

Kk 11.8 2.2
B 2.0 0
pp:S 0 0
pp:k 0.9 0.9
pp:B 0.2 0
Sk 0 0
S:B 0 0
k:B 0 0
unexplained 62.0 76.0
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Table 6. Two hypothetical mixtures of ten species, with the number of mismatches of
each species, its original and final DNA concentration (o; and f), and its amplification
efficiency (B = 4). The mixture B is the same as the mixture A, but for the swap of o; of
species #1 and #8.

A

Hsp mry; 0; e fi

1 0 0,403 |1,000 |0,437
2 0 0,241 |1,000 |0,261
3 0 0,145 |1,000 |0,157
4 0 0,087 |1,000 |0,094
5 1 0,052 |0,250 |0,014
6 1 0,031 |0,250 |0,008
7 0 0,019 |1,000 |0,021
8 2 0,011 |0,063 |0,001
9 1 0,007 |0,250 |0,002
10 0 0,004 |1,000 |0,004

B

Hsp mry; 0; e fi

1 0 0,011 |1,000 |0,020
2 0 0,241 |1,000 |0,434
3 0 0,145 |1,000 |0,261
4 0 0,087 |1,000 |0,157
5 1 0,052 |0,250 |0,023
6 1 0,031 |0,250 |0,014
7 0 0,019 |1,000 |0,034
8 2 0,403 |0,063 |0,045
9 1 0,007 |0,250 |0,003
10 0 0,004 |1,000 |0,007
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Figure 1. Conceptual diagram of the process of quantitative DNA metabarcoding, from
the usual targets (relative abundance of diet components, D;, or species in a community
Ci) to the final assignment of abundances to species (F;). The sub index i indicates the
abundance of species i in the multispecies mixture. This study covers the process of
amplicon metabarcoding (O; > A 2 R)).
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Figure 2. Flow diagram of the pipeline used in this study. On the left-hand side,
calculations of template-primer mismatches for each primer pair and genome, both for
all the nucleotides in both the forward and reverse primers (mr; model 1) and only on
five 3’-terminal nucleotides (ms; model 2). On the right-hand side, the algorithm that
generates random mixtures of species at random initial abundances (0;), estimates an
amplification efficiency for each species based on the number of template-primer
mismatches, and simulates a PCR reaction to produce a final relative abundance of each

species (fi).
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713  Figure 3. Boxplot of number of template-primer mismatches for each primer pair. (A)
714  Model 1 considers the total number of mismatches in both the forward and reverse
715  primers. (B) Model 2 considers only the mismatches in the five 3’-terminal positions of
716  both primers. Primer pair numbering is the same as in Table 3.
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721  Figure 4. Ninety-five percent confidence interval (95% ClI) for the Pearson correlation r
722  for each primer pair analysed for Model 1 (A) and Model 2 (B). For primer pairs #10 and
723  #14in B, the Cl is so small that the arrowheads could not be plotted. When the CI cuts
724  the vertical line at r = 0 it indicates that it is not possible to consider that r > 0 (with a
725  probability of 0.95). Primer pair numbering is the same as in Table 3.
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733

Figure 5. Relationship between the simulated mean of r and the mean number of
template-primer mismatches (A, B) and the standard deviation of the number of
mismatches (C, D) for model 1 (A, C) and model 2 (B, D); mr = number of mismatches
in the entire length of both primers; ms = number of mismatches in the five 3’-end
positions of both primers.
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