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Abstract

Forest management aimed to maximize timber production might impact soil fungi, especially
those symbiotically associated to tree roots. In this study, we analyse the temporal dynamics of
soil fungi along five sampling years after tree removal in a managed Pinus sylvestris stand in
northern Spain, where timber production is combined with regular mushroom harvesting. Two
management methods were tested: total and partial clear-cutting leaving retention trees for
seedling regeneration. Undisturbed, uncut plots were also included in the experiment as a
control treatment. The whole fungal community (phylotypes and ecological guilds) were
analysed by high-throughput lllumina MiSeq sequencing of fungal ITS1 amplicons. We
hypothesized that 1) ectomycorrhizal fungal communities will decrease after both clear-cutting
treatments with a concurrent increase in the abundance of saprotrophs, 2) the abundance and
diversity of the ectomycorrhizal guild will be more preserved in partially clear-cut than in total
clear-cut plots, and 3) the overall fungal diversity will decrease in the cut plots leading to major
losses of ectomycorrhizal species. Our results show that soil fungal composition changed across
the five years after clear-cutting by decreasing ectomycorrhizal fungi and increasing
saprotrophs. However, these changes did not significantly affect fungal diversity and there were
taxa-specific responses to tree harvest treatments. Boletus edulis, the most abundant
ectomycorrhizal species fruiting in the study area and a valuable local non-forest resource, was
negatively affected by either clear-cutting treatments. Soil fungal community composition in
partially clear-cut areas was not different from that of total clear-cut areas. Our results indicate
a strong effect of tree harvest on the relative abundance of ectomycorrhizal fungi along the first
years after clear-cutting. However, levels of fungal diversity were comparable to the undisturbed
forest, thus suggesting a potential further recovery of ectomycorrhizal fungi through the

colonization of the regenerated seedlings.
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1. Introduction

Forest management aimed to maximize timber production involves modifications of abiotic and
biotic conditions, both above- and below-ground, that significantly affects the diversity of soil
fungi with recognised functional importance (Paillet et al. 2010; Goldmann et al. 2015;
Lewandowski et al. 2015). Soil fungal communities are essential drivers of many ecosystem
processes such as soil organic matter decomposition, nutrient release, and water acquisition
(Smith and Read 2008). Thus, fungal community changes will have important consequences for
carbon sequestration, nutrient cycling and water acquisition by plants (Clemmensen et al. 2015).
Ectomycorrhizal fungi are particularly affected by tree harvest (Jones et al. 2003; Norvell and
Exeter 2004; Durall et al. 2006) since they depend on the carbon provided by the host trees
(Harvey et al. 1980; Pilz and Molina 2002; Jones et al. 2003; Luoma et al. 2004). Conversely,
fungal saprotrophs are involved in the decomposition of plant-derived litter and may be
favoured by the flush of litter and dead fine roots derived from clear-cutting (Kyaschenko et al.
2017). Previous studies carried out to determine the effect of forestry practices on
ectomycorrhizal fungi showed that the composition of the ectomycorrhizal communities several
years after clear-cutting may be different from that of undisturbed stands (Byrd et al. 2000;
Durall et al. 2006; Hartmann et al. 2012; Tomao et al. 2017).

Non-timber forest products, such as edible mushrooms, have not typically been included in
forest management plannings where timber production is the main objective. However, in
Mediterranean forests, wild edible mushrooms can reach a significant level of production which
may exceed 4-10 times the value of timber production, depending on the prediction model
(Palahi et al. 2009; Aldea et al. 2012). Consequently, the current trend of the forest management

plannings is to make non-wood forest products and their related ecosystem services (carbon
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sequestration, soil protection and water production) compatible to timber products (Kigtker
and Baskent 2017). Removal of photosynthetic host trees, which are the main energy sources
for sporocarp production, may cause the decrease of ectomycorrhizal fungi in the short term
(Amaranthus et al. 1994). The effects of tree cutting at several intensities showed a sharp
decrease in Boletus edulis Bull. soil mycelium biomass in Pinus sylvestris L. stands in Spain, and
no recovery was observed three years after tree cutting (Parladé et al. 2017). Other studies
showed that moderate tree thinning produce a temporal increase of sporocarp fruiting of
certain species as Lactarius spp. (Bonet el al. 2012; Tomao et al. 2017).

Changes in mycorrhizal fungal diversity in response to climate parameters and forest
management have been mainly evaluated through sporocarp assessments (Kropp and Albee
1996; Luoma et al. 2004; Martinez de Aragén et al. 2007; Bonet et al. 2012; Martinez-Pefia et al.
2012b) or mycorrhizal identification and counting (Jones et al. 2003, 2010; Barker et al. 2013).
These studies require a high level of expertise to identify fungal species and root morphotypes,
some of them with cryptic features, and may recover only a small proportion of the fungi present
in the sampled soil. In addition, the occurrence of fruiting bodies and the ectomycorrhizal
community inhabiting the soil are poorly correlated (Gardes and Bruns 1996; Dahlberg 2002).
Novel high-throughput DNA sequencing methods outperformed earlier approaches to identify
and analyse fungal communities, despite these novel techniques are not absent of
methodological biases and limitations from taxonomical identification to community profiling
(Lindahl et al. 2013). Recent studies using different sequencing platforms showed that the
ectomycorrhizal community was more influenced by environmental changes induced by harvest
than by the continuity of trees in a P. sylvestris stand (Varenius et al 2017). Kyaschenko et al.
(2017) studied the effects of clear-cutting on soil fungal communities in a chronosequence of
managed P. sylvestris and found a negative effect of tree harvest on the abundance and diversity
of ectomycorrhizal fungi and a proliferation of saprotrophs after clear-cutting. However, the

ectomycorrhizal fungal community was re-established during stand development, thus
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maintaining functional diversity and the recycling of organic nutrient pools. Castafio et al.
(2018a) evaluated the effects of forest thinning on soil fungal communities and found fungal
community changes driven by inter-annual variation of environmental factors, rather than by
the forestry practices. The potential exoenzymatic activities of ectomycorrhizal communities
change after tree clear-cutting (Kohout et al. 2018) but potential functional complementarity
and redundancy may still support growth of the regenerated seedlings (Jones et al. 2010; Walker
et al. 2016).

Studies on ectomycorrhizal community succession after a disturbance such as clear-cutting or
fire are still scarce (De Roman and De Miguel 2005; Palfner et al. 2005; Twieg et al. 2007,
Goicoechea et al. 2009; Taudiére et al. 2017). Natural re-establishment of ectomycorrhizal fungi
after clear-cutting can be achieved by means of mycelium, sclerotia (vegetative resistance
structures formed by a few ectomycorrhizal species) and spores (Brundrett 1991). Mycelium and
hyphae from the mantle of old, dead or dying mycorrhizas can act as inoculum for the
regenerated seedlings (Ba et al. 1991). In addition, sclerotia can also be an inoculum source
(Ingleby et al. 1990), as well as spores of epigeous sporocarps from surrounding forests
dispersed by water, animals, and wind (Peay et al. 2012), or hypogeous sporocarps dispersed by
small mammals and arthropods (Miller et al. 1994). Effective inocula of fungi forming a resistant
propagule community can persist in the soil, thus contributing to the maintenance of species
richness in the ectomycorrhizal community (Taylor and Bruns 1999). It has also been found that
numbers of apparently active ectomycorrhizal root tips remain for at least one year after
logging, with signs of decay in density appearing after the second year (Harvey et al. 1980;
Hagerman et al. 1999).

Most of the experimental studies carried out on the dynamics of fungal communities after forest
management have been based on immediate or short-term (2-3 years) responses, and larger
data series are needed to extract stronger conclusions on fungal regeneration. In this study, we

analyse the temporal dynamics of soil fungi along five sampling years after total and partial clear-
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cutting in a managed Pinus sylvestris stand. We hypothesize that 1) ectomycorrhizal fungal
communities will decrease after both clear-cutting treatments with a concurrent increase in the
abundance of saprotrophs, 2) the abundance and diversity of the ectomycorrhizal guild will be
more preserved in partially clear-cut than in total clear-cut plots, and 3) the overall fungal
diversity will decrease in the clear-cut plots leading to major losses of ectomycorrhizal species.
2. Material & Methods

2.1 Study site

The study was conducted in a managed monospecific Scots pine (Pinus sylvestris) forest known
as ‘Pinar Grande’ in the Central Spanish plateau, province of Soria. This stand is located in the
Sistema Ibérico mountain range, covering an area of 12500 ha with an altitude between 1100
and 1500 m, with dominating West and East orientations. The accompanying vegetation
includes shrubs as Erica vagans, E. tetralix and herbs as Agrostis sp., Brachypodium sp.,
Cynosurus cristatus, Lotus sp., and Nardus stricta. Soils are Regosols, Luvisols, Cambisols and
Umbrisols (FAO, 1998) with a markedly acid pH (4- 5), sandy to sandy-loam texture, limited water
holding capacity, and low fertility levels. Average annual rainfall is 865 mm, 69 mm falling in July
and August, and 132 mm in September and October. Average annual temperature is 8.8°C being
July the warmest month with an average of 17.4°C, and January the coldest with an average of
1.9°C. The frost period begins in November and ends in April, with frequent frosts in late spring
and early autumn. The climatic variables along the experiment (mean annual T and mean
accumulated P) were obtained from the automatic weather station ‘La Cuerda del Pozo’, code
2-011, located in the Soria province, next to the experimental site (022-42’-W, 419-53’-N,
altitude 1150 m), and are given in Supplementary Table 1. Forest management consists of
alternate and periodic clear-cutting in mosaics with a rotation period of 130 years. In 1995,
eighteen fenced permanent plots of 150 m? each, assigned with five age classes, were
established in the forest site as a part of a long-term experiment to evaluate the yearly

production of fungal sporocarps (Martinez-Pefia 2009; Martinez-Pefia et al. 2012a).
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2.2 Experimental design

Three areas of 1 ha within the study site, each containing trees aged 101, 112, and 133-year-old,
were totally clear-cut in December 2012. Three additional areas sharing similar ecological
conditions, with trees aged 94, 138, and 113-year-old each, were partially clear-cut in the same
year, leaving parent trees for seed dispersal. In these areas, the number of trees per ha was
reduced from 437, 537, and 400, to 125, 137, and 125, respectively (1-2 trees left per 150 m?
plot). Three additional 150 m? control plots (uncut) located next to the cut areas with trees aged
between 55 and 134-year-old were also included in the design.

Soil sampling was performed annually in autumn along five years, from November 2012 (one
month before the clear-cutting treatments) to November 2016, in three 150 m? plots included
within each cutting area (total and partially cut). Five 250 cm?® soil samples were obtained
annually, along five years, with a metallic soil borer (2 cm radius, 20 cm deep) from each of the
nine experimental 150 m? plots (total clear-cut, partial clear-cut, and uncut). Soil samples were
taken randomly within each plot leaving a minimum distance of 30 cm to the nearest
tree/stump. A total of 225 soil samples were taken along the experiment.

2.3 Soil processing and DNA extraction

Soil samples were air-dried at room temperature, sieved through a 2 mm mesh, and maintained
at -20°C until further processing. DNA extraction was performed using the PowerSoil™ DNA
Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) from 0,25 g of sieved soil following the
manufacturer’s instructions. The five DNA extracts from each plot at each sampling date were
pooled to have a unique DNA sample per plot.

2.4 Soil fungal community analysis

Each of the 45 DNA pooled samples (9 plots x 5 years) was subjected to high-throughput lllumina
MiSeq sequencing (lllumina Inc., San Diego, CA, USA). Nuclear ribosomal ITS1 DNA markers from
each sample were amplified using the fungal-specific primers ITS1F (Gardes and Bruns 1993),

and ITS2 (White et al. 1990) attached to the Illumina overhang adapter sequences (lllumina
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2013). The average length of reads assigned to the ITS1F/ITS2 primers prior to quality checking
and trimming was 314 bp, excluding primers and overhang sequences (Op De Beeck et al. 2014).
A first-stage PCR was performed using a GeneAmp PCR System 9700 thermocycler (Life
Technologies, Carlsbad, CA, USA). PCR was conducted on 10 ng of template DNA employing an
initial denaturation of 3 min at 95°C, followed by 25 cycles of 95°C for 30s, 55°C for 30s, 72°C for
30s, and a final step of 72°C for 5 min. The amplicons obtained from each sample were subjected
to electrophoresis to detect successful amplification.

Illumina dual Indices (barcodes) with 8 nucleotide sequences were added to individual samples
in a second-stage PCR using the Nextera XT Index Kit and the following PCR conditions: 952C for
3 min, 8 cycles of 952C for 30s, 552C for 30s, 722C for 30s, and a final extension step of 72°C for
5 min. The amplicons were then cleaned up using AMPure XP beads, validated with a Bioanalyzer
DNA (Agilent Technologies, Santa Clara, CA) with a DNA 1000 chip, and submitted to
fluorometric quantification. An equimolar pool (library) with unique indices per sample was then
prepared. The amplicon library was sequenced with an Illumina MiSeq system using Reagent
Kits v2 at the Genetics and Bioinformatics Service, Autonomous University of Barcelona, Spain.

2.5 Quality filtering and bioinformatic analysis

Illumina reads were provided as demultiplexed FASTQ files. PIPITS automated pipeline (Gweon
et al. 2015) was used for fungal community analysis of the sequences generated on the MiSeq
platform using the UNITE fungal ITS reference training data set for taxonomic assignment

(http://sourceforge.net/projects/rdp-classifier/files/RDP_Classifier TrainingData), and the

UNITE UCHIME reference data set for chimera removal (http://unite.ut.ee/repository.php). In a

first step, the paired-end reads were joined using VSEARCH

(https://github.com/torognes/vsearch/) , the resulting FASTAQ files were quality filtered using

the FASTX-TOOLKIT (http://hannonlab.cshl.edu) , converted into a FASTA format, and merged

into a single file. In a second step, ITS regions were extracted and reoriented using ITSX and

sequences shorter than 100 bp were removed. In a third step, unique sequences were removed,
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the remaining sequences were clustered into OTUs at 97% similarity using VSEARCH, chimeras
were removed, and the representative OTUs were taxonomically assigned with the RDP
Classifier (Wang et al. 2007) against the UNITE fungal ITS reference data set. The results were
then translated into two types of OTU abundance tables. In the first table, typically known as
‘OTU abundance table’, an OTU was defined as a cluster of reads with the user-defined threshold
(97% sequence identity by default), motivated by the expectation that these correspond
approximately to species. In the second table, typically known as ‘phylotype abundance table’,
an OTU was defined as a cluster of sequences binned into the same taxonomic assignments. The

online FUNGuild application (www.stbates.org/guilds/entry.php) (Nguyen et al. 2016) was used

to assign ecological information to OTUs: Arbuscular Mycorrhizal, Ectomycorrhizal, Endophyte,
Ericoid Mycorrhizal, Fungal Parasite, Lichenized, Plant Pathogen, and Saprotroph. Sequence data
are archived at NCBI’s Sequence Read Archive under accession number PRINA540904

(www.ncbi.nlm.nih.gov/sra)

2.6 Statistical analyses

The fungal community data were subjected to multivariate analyses using CANOCO version 5.11
(Biometris, Wageningen Research Foundation, Wageningen, The Netherlands). Relative
abundance data of OTUs and phylotypes were log transformed for analyses.

Principal components analysis (PCA) was used to obtain graphical representations of fungal
community similarity between both clear-cutting treatments and years. Variation partitioning
analysis was applied to study how much of the variation was explained by ‘clear-cutting
treatment’ and ‘sampling year’ as explanatory variables. The effects of cutting treatments on
fungal phylotypes and guild composition were separately tested by Redundancy Analysis (RDA)
and Monte-Carlo permutations (999 permutations). The effect of cutting on fungal community
composition over five years was evaluated using Principal Response Curves (PRC) to study the
temporal response to cutting treatments. The primary result of the PRC is a set of response

curves, representing temporal trajectories of community composition for each of the
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experimental treatments (Smilauer and Leps 2014). Each factor level is presented as a single
response curve in the plot where the horizontal axis represents the time and the vertical axis
the PRC score values. Here, year was defined as a factor with 5 levels (2012, 2013, 2014, 2015,
2016) whereas cutting was defined as explanatory factor with 3 levels (control, partial clear-
cutting and total clear-cutting). The reference level of the factor (uncut, control plots) has zero
PRC values and so its curve overlays the horizontal axis. The clear-cutting effect was tested for
significance using Monte Carlo simulations (999 permutations). Two independent tests were
carried out with i) relative abundance of phylotypes and ii) relative abundance of ecological
guilds.

Changes in the relative abundance of the most abundant phylotypes (represented with more
than 1000 sequences) in response to cutting treatments and year were analysed using linear
mixed effects models (LME) with JMP® 13.1.0 (SAS Institute, Inc.). ‘Plot’ was defined as random
term, whereas ‘year’ and ‘clear-cutting’ were defined as fixed terms.

Hill’s series of diversity indices: HO, H1, H2 (Hill 1973) were used to compare differences in
diversity values between cutting treatments for both, total fungal community and
ectomycorrhizal fungal community. HO corresponded to the phylotypes richness, H1
(representing the abundant phylotypes in a sample) was calculated as the exponential of the
Shannon’s diversity index, and H2 (representing the very abundant phylotypes in a sample) was
the inverse of the Simpson’s diversity index. Communities can be considered more diverse if
their diversity ranks higher at all three scale parameters. We did not rarefy the fungal
community due to the potential information loss. Instead, we included square-root transformed
total read counts per sample as an explaining variable to stand for the bias stemming from
differential sequencing success in different samples (Balint et al. 2015). LME models were used
to test significant changes in Hill's numbers between cutting treatments and years. ‘Plot’ was
defined as random term whereas ‘year’ and ‘cutting’ were defined as fixed terms.

3. Results

10
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From the 45 samples, we obtained a total of 895320 ITS1 fungal sequences to generate 3107
OTUs and 970 phylotypes. A 66% of the OTUs were identified at different taxonomic levels, being
the Ascomycotina the most abundant and accounting for 54% of the identified phyla.
Basidiomycotina accounted for 29%, followed by Mortierellomycota (9%), and the rest of the
phyla: Mucoromycota, Glomeromycota, Rozellomycota and Chytridiomycota which accounted,
altogether, for 8%. A total of 529 phylotypes were assigned to ecological guilds. Most of them
(67%) were assigned as saprotrophs, whereas 16% were ectomycorrhizal, and the rest of
ecological guilds ranged between 2-4%.

The variation in soil fungal communities after unconstrained linear PCA corresponding to
different clear-cutting treatments and years is shown in Fig. 1 for phylotypes (a) and ecological
guilds (b) and approximates the dissimilarity of their composition. Variation partitioning shown
in Supp. Fig. 1 reveals that clear-cutting treatments explained 16.1% of the total variation at the
phylotype level (a), and 14.9% at the ecological guild level (b). The sampling year accounted for
3.4 and 16.8%, respectively. The negative values of the shared variation fraction (c sectors in
Supp. Fig. 1) indicated that the joint explanatory effects of ‘cutting’ and ‘sampling year’ variables
are stronger than the sum of their marginal effects.

The variation in fungal phylotypes composition explained by treatments (cutting and year) is
summarized in Fig. 2a. RDA analysis showed that explanatory variables (cutting treatments and
sampling year) accounted for 23.98% of the total variation (Pseudo F = 2.0; P=0.002). The RDA
biplot showed a clear dissimilarity in phylotypes composition between year 2012 (before clear-
cutting) and the following years after clear-cutting (2013-2016) which were grouped. Clear-
cutting treatments also showed highly dissimilar phylotypes composition to each other. Boletus
edulis, the most abundant ectomycorrhizal fungus in the area, was associated to control, uncut
plots.

The effects of explanatory variables (clear-cutting treatments and sampling year) on fungal

guilds response are summarized in Fig. 2b. Here, RDA analysis showed that explanatory variables

11
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accounted for 36.16% of the total variation (Pseudo-F = 3.6; P=0.002). The generated biplot also
showed a clear dissimilarity in guild composition between year 2012 (before clear-cutting
treatments) and the rest of the years, being 2015 and 2016 the most similar to each other. The
three cutting treatments also showed a dissimilarity in guilds composition. Ectomycorrhizal and
ericoid fungi were associated to uncut treatments, whereas saprotrophs, lichenized and
arbuscular mycorrhizal fungi were associated to partial clear-cut treatments and to the third and
fourth years after cutting. Endophytes, plant pathogens and parasitic fungi were mostly found
in total clear-cut plots and along the two first years after cutting. A negative correlation was
found between ectomycorrhizal fungi and saprotrophs.

Principal response curves (PRC) showed a significant effect of clear-cutting treatments on soil
fungal phylotypes along time (Fig. 3a) (Pseudo-F=0.4; P=0.044). Soil fungal communities in both,
total and partial clear-cuttings, showed a similar trend and parallel responses over time in the
ordination plot, with differences that can be attributed to the initial variability already existing
in the year 2012, before the clear-cutting treatments. The scores in the additional vertical axis
next to PRC (Fig. 3a) showed that the relative appearance of phylotypes as the ectomycorrhizal
Boletus edulis and the root-associated Archaeorhizomyces fungal class was much lower in the
clear-cut plots as compared with the uncut plots.

The results of PRC analysis with ‘guilds’ as response variable are shown in Fig. 3b. Ecological
guilds were significantly affected by the clear-cutting treatments over time (Pseudo-F=0.8;
P=0.006). PRC curves for both clear-cutting treatments also showed parallel responses and a
progressive dissimilarity with the reference plots (control) across years. The scores in the
additional vertical axis showed that the ectomycorrhizal and ericoid mycorrhizal guilds were
associated to the uncut, control plots whereas fungal plant pathogens and fungal parasites were
associated to both clear-cutting treatments.

Linear mixed effects models considering ‘cutting treatments’, ‘years’, and their interaction as

fixed terms, and ‘plot’ as random term for the phylotypes represented by 1000 or more

12
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sequences are summarized in Table 1. Clear-cutting had no effect on most of the species except
for Boletus and Eurotiales in which cutting treatments decreased the number of sequences. The
sampling year had significant effects for Archaeorhizomyces, Eurotiales, Geminibasidium,
Microdochium, Mortierella, Oidiodendron, Tremellales and Umbelopsis.

Hill's diversity values of the total fungal community (total fungal phylotypes) and the
ectomycorrhizal fungal community (ectomycorrhizal phylotypes) are represented in Fig. 4 and
Supp. Table 2. No significant differences in any of the Hill’s diversity parameters between the
cutting treatments were found. However, the sampling year affected significantly the
parameters N1 and N2 of the total fungal phylotypes, with a sharp and significant decrease of

the abundant and very abundant phylotypes across the years after cutting.

4, Discussion

The results presented in this study show that soil fungal dynamics across five years after tree
harvest was dependent on the clear-cutting treatments (uncut, partial clear-cutting and total
clear-cutting) and the sampling year. Fungal phylotypes and the composition of ecological guilds
were different between plots subjected to the two clear-cutting treatments. However, the
differences in fungal composition between the sampling years after clear-cutting (2013-2016)
were more marked in ecological guilds than in total fungal phylotypes. Direct studies on short-
term fungal dynamics after tree clear-cutting are scarce in the literature. Castafio et al. (2018a)
found that changes of a fungal community across 4 years after forest thinning in a dry
Mediterranean forest were driven by inter-annual variation in precipitation and temperature,
and not by the thinning treatment. A former study on the dynamics of the mycelium of the edible
ectomycorrhizal fungus Boletus edulis, carried out in the same experimental area as in the
present study, showed a sharp decrease on this fungal species as soon as 7 months after partial
and total clear-cutting treatments, and no recovery was observed 3 years later (Parladé et al.

2017). Kohout et al. (2018) assessed the dynamics in fungal community structure during a 2-year
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period following clear-cutting and detected profound changes in soil decomposition processes
and fungal community composition. On the other hand, Jones et al. (2010) and Barker et al
(2013) measured extracellular enzymes in ectomycorrhizal communities 2-3 years after tree
harvesting practices and found changes in the structure of the ectomycorrhizal communities
before and after the disturbance but functional similarities. Similarly, Kyaschenko et al. (2017)
suggested that the maintenance of functional diversity in the ectomycorrhizal fungal community
may sustain long-term production by retaining the symbiotic capacity able to recycle the organic
nutrients.

Our results confirm the first hypothesis that clear-cutting causes a sharp decrease of the relative
abundance of the ectomycorrhizal fungal guild and an increase of saprotrophs and arbuscular
mycorrhizal fungi in the short term after the clear-cutting treatments. However, saprotrophs
were more abundant in partially clear-cut than in total clear-cut plots, where a higher amount
of pathogenic, parasitic, and endophytic fungi was found. Kyaschenko et al. (2017) found a
proliferation of saprotrophic fungi in total clear-cut P. sylvestris stands which correlated with
enzymes involved in holocellulose decomposition. Moreover, root endophytic fungi may have
animportant role on the early stages after clear-cutting by their contribution to the initial phases
of decomposition of host tissues (Kohout et al. 2018). Long-term studies showed that the
relative abundance of root-associated communities (i.e. ectomycorrhizal and ericoid
mycorrhizal fungi) increased while saprotrophic communities decreased 50 years after logging
(Chen et al. 2019), suggesting a progressive recovery of root-associated communities with time.
Partially clear-cut plots leaving retention trees may lifeboat ectomycorrhizal fungi and mitigate
the negative effects of clear-cutting on biodiversity (Fedrowitz et al. 2014). The efficiency of this
practice has been found to be significant only close to the tree (Luoma et al. 2006; Jones et al.
2008). Recent studies in regenerated P. sylvestris stands in Sweden showed that retention of
seed trees failed to mitigate the impact of harvesting on ectomycorrhizal species composition

and diversity (Varenius et al. 2017). However, other studies show that retention trees may
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harbour most of the ectomycorrhizal taxa found in conifer forests (Sterkenburg et al. 2019). In
the present study, the communities of ectomycorrhizal fungi in both partial and total clear-cut
plots were not clearly separated, as shown by the Principal Response Curves (PRC) analysis
across the 5-year samplings (Fig. 3), and our second starting hypothesis could not be confirmed.
Fungal communities change in response to climatic conditions (Fernandez et al., 2016; Hartmann
et al., 2017; Solly et al., 2017). Intra-annual spatio temporal changes of community composition
in Mediterranean forests have been correlated significantly with soil moisture and temperature
(Castafio et al. 2018b). In addition, inter-annual changes are partly driven by annual variation in
precipitation and temperature (Castafio et al. 2018a). The results from PRC showed a decrease
in the relative abundance of ectomycorrhizal fungi such as Boletus edulis and root-associated
Archaeorhizomyces (Pinto-Figueroa et al. 2019) in the clear-cut plots. The increase of relative
abundance of saprotrophic phylotypes, such as Umbelopsis, in our clear-cut plots, can be caused
by the short-term decomposition processes occurring in soil after clearcutting (Kohout et al.
2018). The increase of the relative abundance of endophitic fungi (including Pucciniomycotina
and root parasites) in the clear-cut plots may indicate their important role at the early stages of
root decomposition after clear-cutting (Hilszczariska 2016). Compared to ectomycorrhizal fungi,
root endophytes generally feature greater enzymatic capabilities for degradation of the complex
organic compounds formed a few months after clearcutting (Schlegel et al. 2016).

Hill’s diversity values showed no significant changes in fungal diversity between the different
clear-cutting treatments. Similar results were found in a forest thinning experiment carried out
in Mediterranean forests (Castafio et al. 2018b) and were attributed to the survival of
ectomycorrhizal species (the most affected by tree removal) supported by the remaining trees
(Varenius et al. 2017). In addition, surviving propagules (spores and sclerotia) may be able to
persist long time through unfavourable conditions and disperse into new environments (Nguyen
et al. 2012), or colonize regeneration seedlings (Cline et al. 2005). Similarly, fungal diversity and

richness of ectomycorrhizal communities in Pseudotsuga menziesii forests submitted to clear-
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cutting, with manual removal of timber and soil retention, were comparable to the undisturbed
forest (Barker et al. 2013). However, Hill’s diversity parameters N1 and N2 were significantly
lower when analysing total fungal phylotypes across years, indicating a decrease of the
abundant and very abundant phylotypes in the years following clear-cutting, and suggesting a
relative homogenization of fungal abundances following the disturbance. These results do not
support the third hypothesis that tree removal affects ectomycorrhizal assemblies. Instead, the
conservation of soil propagules seems to be more important that the removal of the tree hosts
in the study area, at least during the first years after disturbance when the natural regeneration
occurs.

Univariate GLM analyses considering the most abundant fungal taxa (represented by more than
1000 sequences) showed a significant effect of clear-cutting in the abundance of Boletus and
Eurotiales, with no significant interaction with the sampling year. In all cases, the effect of clear-
cutting was to decrease the abundance of these species in relation to control (uncut) plots and
no significant differences were found between the two clear-cutting treatments (partial and
total clear-cutting). The results obtained for Boletus are especially interesting because the
sporocarps of this fungal genus contributes to the highest ectomycorrhizal biomass in the study
area (26.6%) (Martinez-Pefia 2009) where it is particularly sought as one of the main non-wood
forest products. Recent studies on the effects of cutting on mycelium dynamics of B. edulis using
specific DNA quantification showed similar results as those obtained in the present study, with
a significant and rapid decrease of B. edulis mycelium biomass starting one month after clear-
cutting and maintained at least for three years (Parladé et al. 2017). However, previous results
in the area showed that the production is resumed after cutting, reaching up to 16.2 kg of
sporocarps/ha 30 years after tree removal (Ortega-Martinez et al. 2011; De la Varga et al. 2013).
The quantitative use of high-throughput sequencing data has been much debated since the
abundance of genetic markers does not reflect biomass in the samples (Lindahl et al. 2013).

Diverging numbers of rDNA repeats in different species, differences in extractability, and a
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variable number of primer-template mismatches (Pifiol et al. 2015) may lead to important
guantitative biases. However, in our case we had the opportunity of analysing the same field
samples using specific Tagman® real-time PCR for B. edulis quantification (Parladé et al. 2017),
and high-throughput lllumina sequencing (in this study) and obtained similar results.

The order Eurotiales also showed a significant decrease in cut plots. This order comprises both
saprotrophic and ectomycorrhizal species and has been found to be abundant in soil litter, but
their relative proportion decrease in the soil mycelium decomposition processes following
experimental soil disturbances (Brabcova et al. 2016), and forest pest attacks (Veseld et al.
2019).

Our study demonstrates that clear-cutting significantly affects soil fungal composition in a
managed Pinus sylvestris forest across five years by decreasing ectomycorrhizal fungi and
increasing saprotrophs. However, these changes do not affect fungal diversity and the different
species are not affected in the same way. Partial clear-cutting leaving parent trees to facilitate
seedling regeneration showed no different ectomycorrhizal communities as compared to clear-
cut areas. Although long-term spontaneous regeneration of key ectomycorrhizal fungi occurs,
further research involving tracking the ectomycorrhizal status of the regenerated seedlings
would improve the integrated management of forests aimed to improve edible mushrooms

production.
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Table 1. Clear-cutting treatment and sampling year effects on the most abundant phylotypes
(represented by more than 1000 sequences). P values in bold show a significant effect (p<0,05)
after Linear Mixed Model analysis, including clear-cutting treatment and year as fixed terms and
plot as random term. Data were log-transformed for the analysis (Y’'=log(Y*1000+1)). TotSeq:
Total sequences, SAPR: Saprotrophs, ECTO: Ectomycorrhizal, ENDP: Endophytes, ERIC: Ericoids,

FPAR: Fungal parasites.

Phylotype Total Sequences Guild p Cutting pYear plinteraction Effect (**)
Archaeorhizomyces 80589 SAPR 0.0792 0.0092 0.036 D,
Boletus 1366 ECTO 0.0026 0.4484 0.3134 D
Cenococcum 1944 ECTO 0.9653 0.8573 0.3751
Ceratobasidiaceae 1127 SAPR 0.5365 0.5408 0.5745
Chaetosphaeriaceae 1797 SAPR 0.506 0.1237 0.1051

Clavulina 2325 ECTO 0.3181 0.6956 0.9577

Cortinarius * 1005 ECTO 0.5606 0.1206 0.0574

Eurotiales 18448 SAPR 0.0038 0.0025 0.1368 D
Geminibasidium 5540 SAPR 0.1929 0.0459 0.1261 D
Hypocreales 15858 SAPR 0.124 0.7582 0.1475

Luellia 1931 SAPR 0.2399 0.291 0.4599
Microdochium 1343 ENDP 0.3701 0.0251 0.1257 |
Mortierella 420021 SAPR 0.0784 <.0001 0.036 I,D
Oidiodendron 15453 ERIC 0.0854 0.0132 0.2439 D
Pseudeurotium 1446 SAPR 0.4304 0.2779 0.0286

Russula 10138 ECTO 0.5239 0.0019 0.0018 D
Saccharomycetales 2498 SAPR 0.0817 0.2682 0.1352

Sistotrema 1736 ECTO 0.5838 0.4661 0.4624
Trechispora 1263 SAPR 0.5183 0.3735 0.5521
Tremellales 3136 FPAR 0.0663 0.0051 0.0621 I
Umbelopsis 46225 SAPR 0.0567 0.0495 0.6046 D

*: Including 6 sequences of Cortinariaceae
**. D: Decrease with cutting or year respect to control
I: Increase with cutting or year respect to control
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Fig. 1. Variation in soil fungal community composition on the 45 soil samples after unconstrained
linear PCA (Principal Component Analysis) ordination of fungal phylotypes (a) and fungal guilds
(b). Response data have been log-transformed for the analysis (Y'=log(Y*1000+1)). The sampling
year is indicated next to each point with different colours representing the clear-cutting
treatments. Points marked with the year 2012 (in red) represent the plots before clear-cutting

and the color indicates the assigned treatment (control, partial clear-cutting and total clear-

cutting) applied in December 2012.
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Fig. 2. Variation in fungal community composition explained by treatments (clear-cutting and

year) after performing constrained redundancy analysis (RDA) ordination of fungal phylotypes

(a) and fungal guilds (b). Response data have been log-transformed for the analysis

(Y’=log(Y*1000+1)). CONTROL: Uncut plots; PCUT: partially clear-cut plots; TCUT: total clear-cut

plots. In graph a) only the 30 best-fitting phylotypes are represented.
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Fig. 3. Principal response Curves (PRC) for the first RDA axis showing the effects of clear-cutting
treatments on fungal phylotypes (a) and fungal guilds (b) composition over five years. The
reference level of the cutting factor (uncut) is represented by a straight horizontal line overlaying
the horizontal axis. The one-dimensional diagram in the right side shows the response variables
(phylotypes or guilds) scores on the corresponding RDA axis. PCUT: Partial clear-cutting; TCUT:

Total clear-cutting; CONTROL: Uncut plots.
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Fig. 4. Hill's diversity values of the total fungal phylotypes (a, b) and the ectomycorrhizal

phylotypes (c, d) across the clear-cutting treatments and the sampling years. PCUT: Partial clear-
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708  Supplementary Table 1. Climatic conditions in the study area (monthly accumulated

709 Precipitation and monthly mean Temperature) during the experiment samplings (years 2012-

710 2016).
Year Month Accumulated P (mm) Mean T (2C)
2012 1 11.1 1.3
2012 2 15.8 -0.7
2012 3 32.3 5
2012 4 132.7 3.9
2012 5 48 10
2012 6 16.4 15.6
2012 7 40.4 17.1
2012 8 4.4 18.2
2012 9 49.4 13.1
2012 10 72.4 9.2
2012 11 51.7 4.3
2012 12 59.7 1.3
2013 1 66.3 3.1
2013 2 159.3 4.1
2013 3 235.5 5.3
2013 4 89.7 8
2013 5 73.5 9.3
2013 6 48.5 15.1
2013 7 38.9 20.3
2013 8 8.8 19.5
2013 9 52.1 16.4
2013 10 81.5 11.9
2013 11 37.4 6.2
2013 12 112.3 3.2
2014 1 123.7 3.85
2014 2 125.3 3.32
2014 3 54.7 6.83
2014 4 78 11.12
2014 5 38.3 11.48
2014 6 31.1 16.38
2014 7 60.2 17.90
2014 8 9.1 18.99
2014 9 70.2 17.33
2014 10 63.3 14.19
2014 11 159.9 7.29
2014 12 28.4 427
2015 1 79 3.34
2015 2 66.9 1.83
2015 3 88.6 7.02
2015 4 35.7 9.92
2015 5 12.8 13.89
2015 6 97.0 17.64
2015 7 15.6 22.20
2015 8 77.7 19.23
2015 9 33.8 14.19
2015 10 40.4 11.20
2015 11 48.2 8.73
2015 12 8 5.21
2016 1 191.2 4.77
2016 2 175.3 4.21
2016 3 75.1 4.29
2016 4 78.8 7.49
2016 5 58.1 12.10
2016 6 26.1 16.84
2016 7 48.8 20.31
2016 8 3.3 20.23
2016 9 8.4 16.72
2016 10 25.6 11.97
2016 11 101.1 5.54
2016 12 14.2 4.65
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Supplementary Table 2. Cutting treatment and year effects on belowground fungal diversity
(Hil’s Numbers NO, N1, and N2) for the a) total fungal community, and b) ectomycorrhizal

community.

a) Total fungal community (phylotypes)

Fixed Effect Tests. NO (Species Richness)

Source Nparm DF DFDen F Ratio Prob > F
Treatment 2 2 6.356 3.5408 0.0926
Year 4 4 23.95 2.0748 0.1157
Year*Treatment 8 8 23.85 0.7334 0.6615

Fixed Effect Tests. N1 (Exponential of Shannon diversity index)

Source Nparm DF DFDen F Ratio Prob > F
Treatment 2 2 6.331 0.3615 0.7101
Year 4 4 23.55 5.4210 0.0031*
Year*Treatment 8 8 23.48 2.3399 0.0521

Fixed Effect Tests. N2 (Inverse of Simpson diversity index)

Source Nparm DF DFDen F Ratio Prob > F
Treatment 2 2 6.02 0.0331 0.9676
Year 4 4 23.17 8.8684 0.0002*
Year*Treatment 8 8 23.12 3.4003 0.0100*

b) Ectomycorrhizal community

Fixed Effect Tests. NO (Species Richness)

Source Nparm DF DFDen F Ratio Prob > F
Treatment 2 2 5.023 1.3728 0.3345
Year 4 4 23.24 1.9077 0.1429
Year*Treatment 8 8 22.94 0.1656 0.9935

Fixed Effect Tests. N1 (Exponential of Shannon diversity index)

Source Nparm DF DFDen F Ratio Prob > F
Treatment 2 2 6.018 0.3678 0.7068
Year 4 4 24.57 1.7712 0.1668
Year*Treatment 8 8 24.25 0.7979 0.6101

Fixed Effect Tests. N2 (Inverse of Simpson diversity index)

Source Nparm DF DFDen F Ratio Prob > F
Treatment 2 2 5.901 0.2102 0.8162
Year 4 4 24.79 1.5024 0.2319
Year*Treatment 8 8 24.43 0.8088 0.6014
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Supplementary Fig. 1. Variance partitioning analyses including the clear-cutting treatment and
the sampling effects on a) fungal phylotypes response, and b) fungal guilds response. Values
show the fraction of variation explained by each parameter, as well as the shared contribution
of each of the parameter’s combination.

a) b)

Cutting Year Cutting Year
Significance tests Significance tests:
Tested Fraction F P Tested Fraction F P
a+b+c 2.6 0.002 a+b+c 4.1 0.002
a+c 4.7 0.002 a+c 4.2 0.006
b+c 1.2 0.088 b+c 2.9 0.002
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