
This is the accepted version of the journal article:

Pérez-Solà, Cristina; Delgado-Segura, Sergi; Navarro-Arribas, Guillermo; [et
al.]. «Double-spending prevention for Bitcoin zero-confirmation transactions».
International Journal of Information Security, Vol. 18, Issue 4 (August 2019), p.
451-463. DOI 10.1007/s10207-018-0422-4

This version is available at https://ddd.uab.cat/record/280632

under the terms of the license

https://ddd.uab.cat/record/280632

International Journal of Information Security manuscript No.
(will be inserted by the editor)

Double-Spending Prevention
for Bitcoin Zero-Confirmation Transactions

Cristina Pérez-Solà B · Sergi Delgado-Segura · Guillermo

Navarro-Arribas · Jordi Herrera-Joancomart́ı

Received: date / Accepted: date

Abstract Zero-confirmation transactions, i.e., trans-

actions that have been broadcast but are still pending

to be included in the blockchain, have gained attention

in order to enable fast payments in Bitcoin, shorten-

ing the time for performing payments. Fast payments

are desirable in certain scenarios, for instance, when

buying in vending machines, fast food restaurants, or

withdrawing from an ATM. Despite being quickly prop-

agated through the network, zero-confirmation trans-

actions are not protected against double-spending at-

tacks, since the double spending protection Bitcoin of-

fers relies on the blockchain and, by definition, such

transactions are not yet included in it. In this paper, we

propose a double-spending prevention mechanism for

Bitcoin zero-confirmation transactions. Our proposal is

based on exploiting the flexibility of the Bitcoin script-
ing language together with a well-known vulnerability

of the ECDSA signature scheme to discourage attackers

from performing such an attack.

Keywords double-spending · Bitcoin · cryptocur-
rency · blockchain · ECDSA.

Mathematics Subject Classification (2010) 68M14

1 Introduction

Double spending, or spending a currency token more

than once, is the main security issue that digital cur-

rencies have to deal with. Unlike physical money, where

the physical token is hard to copy, and once it has been

Department of Information Engineering and Communica-
tions, Universitat Autònoma de Barcelona,
CYBERCAT-Center for Cybersecurity Research of Catalonia
E-mail: {cperez, sdelgado, gnavarro, jherrera}@deic.uab.cat

spent it passes effectively to the recipients’ hands, dig-

ital currency tokens can be easily copied and double

spent if security mechanisms are not correctly applied.

Bitcoin deals with this double spending problem by

building an append-only ledger, the blockchain, that is

replicated in every single Bitcoin full node. The block-

chain is made of blocks that are stacked on top of

each other. Blocks are made of entries, which contain

some source (inputs) and destination (outputs). En-

tries in the blockchain are called transactions, and they

are used to transfer bitcoins between different users,

typically identified by their Bitcoin addresses. Bitcoin

transfer is performed by using an unspent output of

a previous transaction (UTXO) as the input of a new

one. Therefore, Bitcoin transactions consume previous

outputs and generate new ones.

Transactions are broadcast over the Bitcoin P2P

network aiming to reach every single node. Nodes will

validate the correctness of the received transactions and

include the correct ones in their mempool. Such vali-

dation includes, among others checks, that the trans-

action does not claim any spent funds. Finally, every

valid transaction should be eventually included in a

new block. Hence, double spending is prevented once a

transaction is part of the blockchain, since it has been

proven that no previous transaction spends from the

same outputs, and future transactions will be prevented

to do so.1

However, transactions are not automatically included

in blocks. In the time between transaction broadcast-

ing and its inclusion, transactions are known as zero-

confirmation transactions, and they are just stored in

1 Although it can be argued that Bitcoin transactions are
not final since blockchain forks may always occur, throughout
this paper, to simplify the discussion, we assume that once a
transaction appears in the blockchain it is final.

2 Cristina Pérez-Solà B et al.

the mempool of the nodes that have received them.

Therefore, during this time window, different transac-

tions spending the same outputs can be spread through

the Bitcoin P2P network.

Having received a transaction spending an unspent

output, the default behaviour of a node will be to store

the transaction in his local mempool and drop any other

incoming transactions trying to spend from the same

source. However, different nodes could receive different

transactions spending from the same source, and double

spending could be attempted. For instance, suppose two

transactions (tx1 and tx2) that spend the same output

from a previous transaction (tx0) are created by an at-

tacker A. tx1 is used to pay for some goods to B, while

tx2 is used to return the funds to the attacker. In this

scenario, if A can make B believe that tx1 is the only

transaction spending from tx0’s output, but tx2 finally

becomes included in a block, the attack is successful.

Figure 1 depicts the aforementioned example.

Notice that only one of the double-spending trans-

actions will be included in a block due to the double

spending protection that Bitcoin achieves by design.

However, in case tx2 is included in a block, tx1 will be

discarded and the double-spending attack will succeed.

In this paper, we propose a solution to mitigate the

double spending problem for Bitcoin zero-confirmation

transactions. In our proposal, any single observer who

identifies a double spending attempt may take part and

punish the attacker. Moreover, our solution discourages

the attacker even to attempt the double-spending, be-

cause doing so makes him risk losing an amount of bit-

coins bigger than the double-spent amount. Our solu-

tion benefits fast-payment scenarios, like in-shop pur-

chases or trading platforms, where the transfer bitcoin-

product/service cannot wait until the transaction is

confirmed in the blockchain. Finally, although this pa-

per is focused in Bitcoin transactions for conciseness, a

similar construction can be developed for other cryp-

tocurrencies with zero-confirmation transactions and

based on ECDSA signatures, for instance, Litecoin or

Dogecoin.

The paper is structured as follows. First, Section 2

reviews the state of the art in double-spending pro-

tection for fast payment transactions within Bitcoin.

Then, Section 3 introduces the most important con-

cepts about Bitcoin transactions, needed to understand

our contribution. Next, Section 4 explains our proposed

mechanism for discouraging double spending attempts.

Section 5 provides implementation details and Bitcoin

scripts to deploy the proposed scheme. After that, Sec-

tion 6 analyses the benefits each party obtains when ap-

plying the proposed protocol. Finally, Section 7 presents

the conclusions and provides guidelines for further re-

search.

2 State of the art

Double spending attacks on zero-confirmation transac-

tions in Bitcoin were first analyzed by Karame et al. [1,

2]. The authors showed how, with some reasonable as-

sumptions and without the need of special computa-

tion nor much network overhead, an attacker has a

great probability of succeeding with a double spend-

ing attack. Moreover, the authors also showed how ba-

sic countermeasures such as waiting a few seconds be-

fore accepting the payment or adding observers that

report back to the payee are not enough on their own

to avoid these type of attacks. Additionally, the authors

proposed to modify the Bitcoin protocol rules so that

nodes forward double spending transactions instead of

dropping them. By doing so all nodes may be notified of

double spending attempts. However, such a mechanism

eases denial of service attacks. Moreover, nodes receiv-

ing both transactions will not be able to distinguish

between the original and the double spending one.

The approach of monitoring observers has been im-

plemented by companies such as GAP600 [3] in order to

provide risk evaluation for accepting zero-confirmation

transactions. Nevertheless, the company does not pro-

vide details regarding the technique used to perform

the analysis nor the evaluation.

Regarding mitigation of double spending attacks,

Decker et al. [4] proposed some other countermeasures

that can reduce the merchant’s likelihood of being de-

ceived by an attacker: requiring the merchant to be con-

nected to a large random sample of nodes of the network

and not accepting incoming connections. By applying

such countermeasures the merchant ensures that the at-

tacker cannot send the transaction directly to him nor

should be able to identify his neighbours.

Other research studies have proven that this kind of

attacks was actually possible, and not only was the at-

tacker able to identify the merchant’s neighbours, but

also to make the merchant connect only to nodes con-

trolled by the attacker [5–7].

Ultimately, none of the proposed countermeasures

forces attackers to stop trying, nor punishes them by

not doing so. However, if some penalty could be applied

to anyone who tries to perform such an attack, and

this penalty could be implemented by any node which

detects it (instead of just dropping the transactions),

attackers may be discouraged even to try it.

The idea of using penalties to discourage misbe-

haviour in protocols on top of cryptocurrencies is not

Double-Spending Prevention for Bitcoin Zero-Confirmation Transactions 3

From: A 1 BTC

Signed:

To: B
Required to unlock:

1 BTC

B’s signature

mAttackerFrom: Someone

Someone

1 BTC

Signed:

To: A
Required to unlock:

A’s signature

1 BTC

tx0

tx1

tx2

From: A 1 BTC

Signed:

To: A
Required to unlock:

1 BTC

A’s signature

mAttacker

Fig. 1 Double-spending transactions.

new [8]. However, recent proposals, such as the Light-

ning network [9], have popularized this approach, that

is now used in many other systems (e.g. mental poker

playing [10,11] or proof-of-space schemes [12]). In such

a way, and alternatively to other works [4], we address

the double spending problem in fast payments by in-

troducing a penalty for the attacker.

This penalty involves the disclosure of a private key.

A similar penalty mechanism has also been proposed

in [13] as a generic penalty for parties issuing contra-

dictory statements. Our proposal presents a simpler so-

lution, which does not require the use of additional pro-

tocols other than Bitcoin.

3 Background on Bitcoin transactions

As we have already stated, Bitcoin transactions are the

tool for value transfer in the Bitcoin protocol. Bitcoin

transfer is performed by using an unspent output of

a previous transaction (UTXO) as the input of a new

one. Therefore, Bitcoin transactions consume previous

outputs and generate new ones.

The input of a Bitcoin transaction is formed, mainly,

by three fields. The two first ones, namely previous

transaction id and previous output index, uniquely iden-

tify the UTXO that is being claimed by the input. The

third field, identified as scriptSig, provides the condi-

tions to be met by the transaction to be valid and the

payment be correctly performed. Such conditions were

defined in the transaction output that is going to be

spent. Both conditions, the specification in the output

and the fulfillment in the input, are codified using the

Bitcoin scripting language [14], a stack-based language

defined in the Bitcoin protocol.

The output of a Bitcoin transaction includes two

fields. The first one represents the value (in satoshis)

that the output is holding.2 The second field, named

scriptPubKey, defines the conditions to be fulfilled to

spend output.

Even though transactions within Bitcoin are, in most

cases, bound to Bitcoin addresses (locking conditions)

and redeemed providing digital signatures (unlocking

conditions), the Bitcoin scripting language is flexible

enough to allow the definition of many other scripts

that encode different conditions under which the out-

puts may be spent, as we describe in the next section.

3.1 The Bitcoin scripting language

In order to spend a UTXO, the locking conditions spec-

ified by the script in its scriptPubkey field have to be

met. The fulfilment of these conditions is provided by

the values included in the scriptSig field of the in-

put that spends the UTXO. To evaluate if an input can

spend a corresponding output, the code included in the

scriptPubKey is appended to the values included in the

scriptSig, and the complete set of instructions is exe-

cuted. Only if the execution evaluates to true, the input

is able to spend the UTXO. Notice that this general ap-

proach allows not only to spend UTXO based on digital

signatures but also to create much richer constructions,

the so-called smart contracts.

2 Notice inputs does not contain any value. The whole value
of an output is consumed when it is used as an input of a new
transaction. The difference between the amount claimed by
the inputs and the ones specified in the new outputs is the
fee collected by the miner.

4 Cristina Pérez-Solà B et al.

Smart contracts can indeed specify complex condi-

tions.3 For instance, besides the popular Pay-to-Public-

Key-Hash (P2PKH) and the Pay-to-Public-Key (P2PK)

outputs where a standard digital signature must be pro-

vided to spend the UTXO, there exist multi-signature

constructions, where a UTXO is locked under n public

keys, and at least m matching signatures must be pro-

vided. Furthermore, even more, general constructions

can be deployed using Pay-to-Script-Hash (P2SH) out-

puts. P2SH outputs encode an ad-hoc set of instructions

in the form of a script. The hash of such script is set

as locking conditions in the scriptPubKey field of an

output. An input spending such an output must con-

tain the corresponding script, along with any necessary

data to make the whole script evaluate to true.

3.2 Digital signatures on Bitcoin

Digital signatures in Bitcoin are performed with the

Elliptic Curve Digital Signature Algorithm (ECDSA).

ECDSA has a set of system parameters: an elliptic

curve field and equation C, a generator G of the elliptic

curve C, and a prime q which corresponds to the order

of G. The values for these parameters are defined to be

secp256k1 [15] for Bitcoin.

Let ∗ be the operation of multiplying an elliptic

curve point by a scalar. Given a specific configuration of

the parameters and a private key d, the ECDSA signa-

ture algorithm over the message m is defined as follows:

1. Randomly choose an integer k in [1, q − 1]

2. (x, y) = k ∗G
3. r = x mod q

4. s = k−1(m+ rd) mod q

5. If either s or r are 0, go back to step 1.

6. Output: sig(m) = (r, s)

The ECDSA signature scheme is therefore proba-

bilistic, that is, there exist many different valid signa-

tures made with the same private key for the same mes-

sage. The selection of a specific signature from the set

of valid ones is determined by the election of the integer

k.

There exists a well known ECDSA signature vulner-

ability (also present in the non-elliptic curve signature

scheme of ElGamal and its popular variant, DSA [16,

17]) by which an attacker that observes two signatures

of different messages made with the same private key is

able to extract the private key if the signer reuses the

same k selected on step 1. Therefore, the selection of k

is critical to the security of the system.

3 An interested reader could refer to [14] for additional in-
formation about Bitcoin smart contracts and script types.

Indeed, given two ECDSA signatures that have been

created using the same k and the same private key,

sig1 = sig(m1) = (r, s1) and sig2 = sig(m2) = (r, s2)

with m1 ̸= m2, an attacker that obtains m1, sig1 and

m2, sig2 may derive the private key d:

1. Recall that, by definition of the signature scheme:

s1 = k−1(m1 + rd) mod q ⇒
ks1 = m1 + rd mod q

s2 = k−1(m2 + rd) mod q ⇒
ks2 = m2 + rd mod q

Note that, since r is deterministically created from k

and the fixed parameters of the scheme, the r values

of both signatures will be the same.

2. The attacker learns k by computing k = m2−m1

s2−s1
.

3. The attacker learns the private key d by computing

d = s1k−m1

r or d = s2k−m2

r .

Moreover, the leakage of private key information is

not only restricted to the case where the exact same k

values are used, but also to situations when similar k

values are generated [18,19].

Some Bitcoin wallets adopted deterministic ECDSA

after this vulnerability was found to affect some Bitcoin

transactions [20–22]. In deterministic ECDSA [23] the

determinism in the algorithm comes precisely from the

selection of k, which is derived from the message to

sign and the private key using an HMAC construction.

In this way, for a fixed message and private key, the

value k is always the same. The HMAC construction

ensures that the mapping between the message and k

appears random from the point of view of an observer

that does not know the private key. Key generation and

signature validation algorithms remain the same as in

the non-deterministic version of ECDSA. As we will see,

our proposal can be used both with deterministic and

non-deterministic ECDSA.

Taking advantage of this vulnerability to perform

a private key disclosure in Bitcoin has been previously

used for timestamping in data commitment schemes by

Clark and Essex [24].

3.3 Bitcoin transactions propagation

As we already pointed out, Bitcoin transactions are

propagated through a peer to peer network. Every node

of the network broadcasts the transactions he gener-

ates and propagates transactions received from other

network peers. As a protection against denial of ser-

vice attacks, every peer performs different validations

on every received transaction before its propagation,4

4 See [14] for all the validation details.

Double-Spending Prevention for Bitcoin Zero-Confirmation Transactions 5

like data format validation, digital signature verifica-

tion, or correctness checks over the values involved in

the transaction. Besides such validations, the node also

validates that the received transaction does not spend

an already spent output, either by a transaction already

in the blockchain or by a transaction included in the

node’s mempool. In case that some validation fails, the

node drops the transaction and, therefore, the transac-

tion is not propagated any further.

However, since Bitcoin Core 0.12, Bitcoin includes

a replace-by-fee mechanism (RBF) that allows trans-

actions to signal replaceability. This mechanism was

introduced to allow to increase the fee of an already

broadcast transaction to boost its odds of inclusion in

the blockchain. Therefore, if a transaction is flagged

as replaceable with RBF, it can be replaced from the

node’s mempool by a newer transaction that spends

the same outputs but includes a higher fee.5 Moreover,

this new transaction will also be further propagated

throughout the network, since it is considered a valid

transaction that replaces the previous one. This feature

ensures that when a transaction is flagged as a RBF, a

double spending transaction of the same UTXO will be

propagated further than a double spending of a regular

(non-RBF) transaction.

4 Double-spending prevention mechanism

Our proposed scheme discourages signers from perform-

ing double spending attacks in zero-confirmation trans-

actions used in fast payment scenarios. Fast payment

scenarios are those where the merchant delivers the

goods or services when seeing the payment transaction

in the Bitcoin network, without waiting for the transac-

tion to be confirmed. Examples of such scenarios are on-

site shopping where the buyer cannot wait 10 minutes

to leave the shop after purchase or in trading platforms

where a timely transaction can save/earn you money.

In our scenario, we assume that the adversary is the

buyer that pays for some goods to a merchant, and that

may have incentives to try to double-spend the payment

in order to finish the interaction with both the goods

and the payment amount.

We assume that he can perform a double-spending

attack by generating multiple transactions that spend

from the same output and broadcast them selectively in

the Bitcoin P2P network. Additionally, we also assume

all peers of the network have the same capabilities, that

is, they can generate and broadcast double spend trans-

5 Notice that this only affects transactions in the mempool,
since transactions included in the blockchain are final and
thus not replaceable.

actions (if they know the private key needed to generate

a signature).

In order to discourage double-spending attacks, we

propose a mechanism to construct special transaction

outputs. Such outputs can be spent with a single sig-

nature but have the property that if two different sig-

natures for the same output are disclosed (for instance,

in two different transactions spending the same output

as a double-spending attack), the private key used to

sign the transaction is revealed. This mechanism allows

any observer to generate a third transaction spending

the same output and sending the amount to an address

controlled by himself.

To allow such a construction, we propose a new Bit-

coin script that we call fixed-r pay-to-pubkey script

(FR-P2PK). This script is a variant of the standard

pay-to-pubkey (P2PK) script where a signature is re-

quired to redeem, but a FR-P2PK script adds an addi-

tional condition to be able to spend the output: the sig-

nature must be made with a specific r value. Then, due

to the ECDSA vulnerability described in Section 3.2,

this particular condition discourages double-spending

of that output. Indeed, if the sender generates another

transaction that spends the same output and propa-

gates it through the P2P network, the sender risks los-

ing all the funds deposited in the address, because any

peer that captures both transactions will be able to de-

rive the private key. Recall that the value r is computed

from the value k as described in Section 3.2, giving a

one to one correspondence between them.

4.1 Basic prevention mechanism

Let Alice be a user that wants to take advantage of the

proposed double-spending prevention mechanism and

let {PKa, SKa} be an ECDSA key pair belonging to

Alice.

The double spending prevention mechanism is made

of two phases: initialization, that is performed before

the payment is made, and fast-payment, where the pay-

ment is executed.

4.1.1 Initialization

The initialization phase is performed beforehand. Dur-

ing this phase, Alice generates a funding transaction

that transfers some funds from an output in her con-

trol to a FR-P2PK output also under her control. In

order to do so, Alice chooses a random integer k and

a public key PKa (for which she knows the associated

secret key SKa), constructs the FR-P2PK output, and

sends some funds to an output in her control (see Figure

2).

6 Cristina Pérez-Solà B et al.

Alice broadcasts the funding transaction and waits

for the transaction to be confirmed, upon which the

initialization phase is considered terminated.

A single funding transaction may include multiple

FR-P2PK outputs (with different public keys) in order

to allow Alice to use the proposed prevention mecha-

nism multiple times. Therefore, there is no need to per-

form the initialization phase before every fast-payment,

as long as Alice has enough funds stored in FR-P2PK

outputs. Alice may repeat the initialization phase if she

runs out of unspent FR-P2PK outputs. Additionally,

notice that Alice remains in control of all the funds de-

posited by the funding transaction, and she is able to

transfer them back to a standard output whenever she

wants.

Alice’s signature

 (fixed)

σ BTC

σ BTC

Signed:

To: Alice

From: Alice

Alice

Required to unlock:

funding tx

σ BTC
Signed:

From: Someone

σ BTC
Required to unlock:

To: Alice

Someone

Alice’s signature

Fig. 2 Creation of the funding transaction.

At some point in the future, Alice wants to send

some amount of bitcoins to another user Bob. Alice does

not want to wait for the confirmation of the transaction

and Bob is not willing to accept the transaction

without confirmation. So they decide to use the pro-
posed double-spending prevention mechanism, execut-

ing the fast-payment phase.

4.1.2 Fast payment

Alice creates a fast-payment transaction that pays to

Bob spending from the FR-P2PK output of the funding

transaction. The input script in the fast-payment trans-

action forces Alice (the redeemer) not only to prove she

has the private key SKa associated with the given pub-

lic key PKa by creating a valid signature, but also to

deliver a signature that has been made using the spe-

cific k value that Alice chose during the initialization

phase (see Figure 3). Alice broadcasts the fast-payment

transaction to the Bitcoin P2P network.

Then, when Bob sees the fast-payment transaction

in his mempool, he can validate that the output script

of the funding transaction spent by the fast payment

transaction is indeed a FR-P2PK script. If the valida-

tion is correct, Bob knows that if Alice tries to double

Alice’s signature

 (fixed)

σ BTC

σ BTC

Signed:

To: Alice

From: Alice

Alice

Required to unlock:

funding tx fast payment tx

To: Bob
Required to unlock:

σ BTC

Bob’s signature

 Alice
(fixed)

From: Alice σ BTC
Signed:

Fig. 3 Fast payment transaction.

spend the transaction she takes the risk of losing the

Bitcoins of that output.

If Alice decides to try to double spend the fast-

payment transaction (see Figure 4, double-spending at-

tempt), she needs to create a double spending trans-

action that also spends the FR-P2PK output of the

funding transaction. This double spending transaction

has to be valid, so it needs to include a (second) signa-

ture made with SKa and the k value chosen on the ini-

tialization phase. Hence the moment the double spend

transaction is created, there exist two different signa-

tures made with the same private key SKa using the

same r. The signatures will be indeed different since

the signed content (i.e. the transactions) will also be

different. Recall that, because of the ECDSA vulner-

ability mentioned above, knowing two different signa-

tures made by the same private key with the same k

value is enough to derive the private key used to sign.

As a consequence, if Alice broadcasts the double

spend transaction, she risks losing her funds. This hap-

pens because any observer that receives both trans-

actions (the fast-payment transaction and the double-

spending transaction) will be able to derive Alice’s se-

cret key SKa and, as a consequence, create a third

transaction, the penalty transaction that also spends

the FR-P2PK output of the funding transaction but

that sends the bitcoins to the observer. Note that this

strategy may be performed simultaneously by any ob-

server, ending with multiple penalty transactions, as it

is depicted in Figure 4.

4.2 Disincentive-based prevention mechanism

The basic prevention method described in the previ-

ous section has a clear drawback. Suppose that Alice

performs a purchase to Bob’s shop and Bob accepts

a fast transaction from Alice. When such transaction

is received, Bob delivers the goods to Alice. However,

once Alice has the goods, she may try to perform a

double-spending attack. In case an observer sees both

the fast-payment transaction and the double-spending

Double-Spending Prevention for Bitcoin Zero-Confirmation Transactions 7

Alice’s signature

 (fixed)

σ BTC

σ BTC

Signed:

To: Alice

From: Alice

Alice

Required to unlock:

funding tx

To: Alice'
Required to unlock:

double-spending tx

Alice' ‘s signature

penalty txj

fast payment tx

σ BTC

 Alice
(fixed)

From: Alice σ BTC
Signed:

To: Bob
Required to unlock:

σ BTC

Bob’s signature

 Alice
(fixed)

From: Alice σ BTC
Signed:

 Alice
(fixed)

From: Alice
Signed:

(σ * γ) BTC

To: Observer1
Required to unlock:

Observer1’s signature

(σ * γ) BTC

 Alice
(fixed)

From: Alice
Signed:

σ BTC

To: Observer1
Required to unlock:

Observer1’s signature

(σ * γ) BTC

 Alice
(fixed)

From: Alice
Signed:

σ BTC

To: Observer1
Required to unlock:

Observer1’s signature

(σ * γ) BTC

 Alice
(fixed)

From: Alice
Signed:

σ BTC

To: Observer1
Required to unlock:

Observer1’s signature

σ BTC

Double-spending
 attempt

Fig. 4 Transactions involved in the scheme.

transaction, he constructs the penalty transaction, and

manages to get it accepted in the blockchain, Alice loses

her funds but Bob does not receive the payment. In

that case, Bob may have complied with his part of

the agreement (e.g. delivered the bought goods) but

will not receive the agreed amount of bitcoins in ex-

change. Alice would have paid the agreed amount of

bitcoins to a third party (the observer) instead of pay-

ing them to Bob, but she would remain in possession of

the goods. The observer would obtain the total amount

of the transaction. As a consequence, Alice will not lose

anything by trying the double-spend (just the amount

she is already willing to pay for it), and thus the pro-

posed method may not be discouraging enough to pre-

vent double spending attempts.

However, a minor modification to the method may

be enough to discourage Alice from attempting any

double-spend: enforcing that the amount deposited to

the FR-P2PK output of the funding transaction is higher

than the paid amount by a certain factor λ. Recall that

a Bitcoin UTXO must be spent in its totality (i.e. it is

not possible to spend a part of a UTXO). Therefore, if

the FR-P2PK output has an amount bigger than what

Alice must pay to Bob, Alice proceeds to create the

fast-payment transaction including two different out-

puts: one that pays to Bob the agreed amount, and

the other that pays back to her the change. This has

no consequences on the normal operation of the proto-

col, that is, if Alice well-behaves, Bob ends up with his

payment and Alice gets her change back. However, be-

cause the whole FR-P2PK output is spent, if Alice tries

to double-spend the fast payment she risks losing the

entire amount of the FR-P2PK output, and not only

the amount paid to Bob.

As we will discuss in Section 6, by adjusting the λ

factor Alice’s penalty for double-spending can also be

adjusted (and thus Bob’s confidence on the fast pay-

ment).

Moreover, note that the fast-payment transaction

may also have multiple inputs spending different FR-

P2PK outputs which in turn allows Alice to perform

payments of different amounts and with varying levels

of penalty without having to freeze a high quantity of

bitcoins into FR-P2PK outputs.

Notice that Bob does not get refunded in case of

fraud. The objective of this work to counteract poten-

tial frauds by penalizing Alice. An alternative approach

to refund Bob could be designed but remains out of the

scope of the current proposal.

4.2.1 The role of the observers

The funding transaction is confirmed before starting

the fast-payment phase, so any full node of the net-

work is aware of its existence. Moreover, because it has

an output with an easily identifiable script, the FR-

P2PK script, any observer aware of the specification of

our proposed mechanism is able to identify the trans-

8 Cristina Pérez-Solà B et al.

action as a funding transaction belonging to our proto-

col. Therefore, such an observer will be able to monitor

his mempool, looking for transactions that spend the

FR-P2PK output. Once a transaction spending from

the FR-P2PK output is seen, the observer is able to

actively listen to the network, searching for any other

transaction spending the same output. If the observer is

able to catch a double-spending transaction, he should

be able to construct a penalty transaction, moving the

funds to an address controlled by himself. If the ob-

server does not capture a double spending transaction,

he may stop this active listening period and return to

its normal behaviour when a transaction spending the

FR-P2PK output is included in the blockchain.

To achieve the maximum level of propagation, and

thus to spread awareness of the double-spending at-

tempt, fast-payment transactions are flagged with replace-

by-fee (RFB). By forcing a customer to flag a transac-

tion in such a way a merchant enables the forwarding of

future double-spending transactions, that could be de-

tected by a higher number of nodes, increasing the odds

of an observer receiving two instances of the transaction

and, therefore, publishing a punishment transaction.

Note that even though transactions are flagged with

RBF, some actors may not have incentives to propagate

duplicate transactions. This is the case, for instance, of

miners that are aware of the protocol, that may prefer

to mine their own penalty transaction instead of prop-

agating a third-party penalty transaction (after hav-

ing sent any of the other transactions). However, many

other actors would indeed propagate penalty transac-

tions, for instance: non-miner observers, that need to

send their penalty transaction to a miner for inclusion

in a block; nodes not participating in the protocol (e.g.

nodes running the standard bitcoin client), that propa-

gate RBF transactions by default; or nodes just aware

of one of the transactions, that would not even be aware

of which of the transactions it is.

5 Implementation details

In this Section, we describe how to construct the FR-

P2PK output of the funding transaction as well as the

inputs of the transactions that spend it, taking into

account Bitcoin’s signature format and scripting lan-

guage.

First of all, notice that it would be possible to en-

capsulate the proposed FR-P2PK script into a standard

P2SH output. However, doing so makes the funding

transaction no longer recognizable as belonging to our

protocol by external observers. Therefore, an observer

that is aware of the existence of our protocol would be

able to detect that the mechanism is being used only

after one of the transactions spending the encapsulated

FR-P2PK is seen in the network. This transaction will

include the FR-P2PK script in the scriptSig (input

script). The moment the observer processes this script,

he can start the active listening period in which he looks

for other transactions spending from the same funding

transaction output. Because timing is critical in our sce-

nario, we argue that using directly a FR-P2PK output

in the funding transaction is the best alternative.

In a Bitcoin transaction, signatures are represented

by a single hexadecimal value, which corresponds to the

DER encoding of the two-element sequence of the r and

s integers that make up an ECDSA signature. Figure 5

describes the format of a Bitcoin signature. Each inte-

ger r and s (see Section 3.2 regarding the notation) is

encoded with three different fields: a 1-byte field with

the 0x02 flag denoting the integer type, a 1-byte field

with the size l of the integer (in bytes), and an l-byte

field with the integer value itself. Then, the signature

includes a 1-byte field with a flag denoting a sequence

(0x30), a 1-byte field with the length of the sequence,

the sequence of the two integers, and finally a 1-byte

field with the hash type, a flag that indicates the parts

of the transaction that are hashed and signed.

02len(z) htlen(r) r 02 len(s) s30

1 1 1 1 32-33 1 1 132-33 byte length
hex value

Fig. 5 Bitcoin signature format.

Both r and s are 32 byte integers. However, when

the first bit of any of the values is set (that is, the first

byte is > 0x7f), an additional byte (0x00) is added in

front of the value, thus making it 33 byte long. The

reason is that DER rules interpret this first bit as a

sign, and therefore not adding 0x00 would cause the

value to be interpreted as negative. Therefore, Bitcoin

signatures range from 71 to 73 bytes. For the sake of

simplicity, let us assume that we are dealing with 71-

byte signatures, that is, signatures where both r and s

are 32 byte long (Figure 6a).

Taking into account the format of signatures in Bit-

coin, the script of a FR-P2PK output is defined as fol-

lows:

ScriptPubKey:

OP DUP <pubKey> OP CHECKSIGVERIFY

OP SIZE <0x47> OP EQUALVERIFY

<sigmask> OP AND <r> OP EQUAL

ScriptSig:

<sig>

where

Double-Spending Prevention for Bitcoin Zero-Confirmation Transactions 9

– <pubKey> is the public key that will be used to val-

idate the signature,

– <sigmask> is a 71-byte array that has ones in the

positions where r and ht are specified and zeros in

the rest of positions, and

– <r> is the 71-byte array that represents the integer

r in DER format in the positions where it is found

in a signature, 0x01 in the ht field, and zeros in the

rest of positions.

Figures 6b-c show the construction of <sigmask>

and <r>, respectively. Regarding the construction of the

byte array <r>, on the one hand the integer r is derived

uniquely from the randomly chosen k value (recall Step

3 of the ECDSA signature generation algorithm in Sec-

tion 3.2). Note that any value of k may be used by

the protocol, what matters is that it is fixed before-

hand (that is, before the signature is made). On the

other hand, the hash flag tag ht is set to 0x01, which

corresponds to SIGHASH ALL. This flag signals that the

signed content corresponds to the entire transaction

(except the signature scripts themselves). By enforcing

that signatures cover the entire transaction, we ensure

that a double spending attempt will include a signa-

ture different from the one found in the fast-payment

transaction, and thus that observing both transactions

indeed allows deriving the private key.

02 ht20 r 02 s30

1 1 1 1 32 1 1 1 byte length

hex value

ff00

1 1 1 1 1 1 1

00

32 32

32

ff 00 0· · ·0f · · ·f

a) <sig>

b) <sigmask>

c) <r>
00

1 1 1 1 1 1 1

00

32 32

00 0· · ·002 r

20

20 01

44

byte length

hex value

byte length

hex value

ff00

00

Fig. 6 Values used in the proposed script.

In order to redeem a FR-P2PK output, the input’s

scriptSig only needs to include a single signature. The

signature must be correct when validated with the spec-

ified public key and must be performed with a specific

r value. Otherwise, the validation will fail.

Let’s analyse how does the script perform these val-

idations. First, the script duplicates the signature (with

OP DUP). This is needed in order to be able to per-

form different validations over the same signature value.

Then, the signature is validated against the specified

public key using the check signature operand (<pubKey>

OP CHECKSIGVERIFY). After that, the length of the sig-

nature is checked (OP SIZE <0x47> OP EQUALVERIFY).

Finally, a bitwise AND operation between the signature

and <sigmask> is computed (with <sigmask> OP AND),

and the result is compared with <r> (<r> OP EQUAL). If

both values are equal (that is, the signature was made

using the specified r and with a hash flag of 0x01),

the script terminates successfully; otherwise, the script

terminates with a False value on the stack, making it

fail.

Note that the only way to ensure that the script

succeeds is by providing a valid signature that matches

the specified <r>. Therefore, two different transactions

spending the same FR-P2PK output would include two

different signatures made with the same private key and

the same k, and thus by obtaining the two transactions,

one is able to infer the private key that was used to

create the signatures.

We have created a funding transaction in the Bit-

coin testnet that exemplifies the proposed prevention

mechanism. Following the transaction naming used in

Figures 2, 3, and 4, the funding transaction6 contains

the output with a FR-P2PK script. The output of the

funding transaction is currently unspendable due to the

fact that it uses an OP AND opcode that is disabled in

the standard Bitcoin software.

6 Proposal analysis

In this section, we provide an analysis of the possible

outcomes of performing a payment with the proposed

mechanism. The analysis measures the benefits of each

party taking part in the system to show how it discour-

ages double-spending attacks. Table 1 summarizes the

notation used in this section.

Table 1 Notation summary

Symbol Meaning
τf Fast-payment transaction
τd Double-spending transaction
τpj

Penalty transaction j
Pr[τx ∈ B] Probability that transaction τx is

included in the blockchain
σ Payment amount
λ · σ Funding transaction output amount
γ Value of goods

Our analysis makes the follow assumptions. First

of all, we assume that Alice always generates the fast

payment transaction since it is the triggering action for

the payment. Once the fast payment has been gener-

ated, we assume that Bob sees the payment and, at

that time and acting honestly, he delivers the goods to

Alice. Furthermore, to focus the analysis in the pro-

posed mechanism, we assume that at least one of the

transactions of the system τf , τd, or τpj will be con-

firmed. Although transactions do include fees, fees are

6 https://www.blocktrail.com/tBTC/tx/8e27cae62d1d

f357b65b634a8482672d85f71804a5c7fc392050517a5bfeb04f

10 Cristina Pérez-Solà B et al.

intentionally excluded from the computation of the pay-

offs, since they do not directly affect the result of our

evaluation. The usage of the replace-by-fee mechanism,

that will allow the propagation of multiple instances of

the transaction, forces double-spending transactions to

include a higher fee than the original transaction. How-

ever, it could be argued that a higher fee will incentive

miners to mine a double-spending transaction instead

of a fast-payment transaction, affecting not only the

payoff but also the odds of either succeed or fail in the

attack. Nonetheless, if a miner sees two instances of

the transaction (fast-payment and double-spending) he

would maximize his payoff as an observer by generating

a third transaction (penalty) that pays all the amount

to himself (instead of choosing to include any of the

previous ones depending on the fees). Moreover, notice

that our analysis can be seen as an upper-bound on the

attacker’s gains since including fees in the computation

only lowers the attacker’s payoff, but never increases it.

Of course, due to the double-spending protection of

Bitcoin for on-chain transactions, at most one of these

transactions gets into the blockchain, that is, the events

τf ∈ B, τd ∈ B, and τpj
∈ B are mutually exclusive. Fi-

nally, notice that Pr[τf ∈ B]+Pr[τd ∈ B]+∑
j Pr[τpj ∈

B] = 1, since such probabilities depend on the distri-

bution hash rate devoted to the interests of every set

of users (Alice, Bob and the rest of the network, acting

as observers) and we can assume that such sets will be

disjunct.

Taking into account these assumptions, in Figure 7

we have represented how the possible final three states

of the protocol we propose may be reached. If the fast

payment transaction τf gets confirmed, then Bob re-

ceives the payment for the goods, Alice receives the

change (the amount deposited to the funding transac-

tion minus the payment) and the goods, and the ob-

server does not intervene. If the double spending trans-

action τd is confirmed, then Alice gets everything (the

full amount deposited in the funding transaction and

the goods) and therefore both Bob and the observers

do not obtain anything. Finally, if one of the penalty

transactions τpj
is confirmed, then Alice obtains the

goods but loses the full deposited amount that goes to

the observer. Figure 7 also describes the possible paths

that end up in each of the states.

We define the payoff P of any party participating in

the protocol as the gains (or losses) obtained by deviat-

ing from the correct operation of the protocol. That is,

the payoff of all parties (Alice, Bob, and the observers)

will be 0 when no double spending is attempted (left-

most box in Figure 7).7 In that case, there will be an

7 Here we assume that the price of the goods is equal to the
value of the goods. If the price paid is higher than the cost,

equilibrium, since Alice pays the specified price for some

goods and obtains the goods in exchange; Bob delivers

the goods and gets paid for them, and the observers

do not intervene. On the contrary, if Alice tries to dou-

ble spend the payment, the equilibrium may be altered

and the payoff will reflect the gains or losses each party

assumes.

Then, Bob’s payoff function PB is given by the fol-

lowing expression:

PB = Pr[τf ∈ B] · (σ − γ)−
− Pr[τd ∈ B] · γ−
− Pr[τpj

∈ B] · γ =

= Pr[τf ∈ B] · σ − γ

Note that, for fixed σ and γ, Bob’s payoff only de-

pends on Pr[τf ∈ B]. Recall that our mechanism tries to

disincentivize Alice from double-spending the payment

transaction, but does not directly benefit the merchant

(regardless of the λ value used by the protocol).8

In a similar way, Alice’s payoff PA is given by:

PA = Pr[τf ∈ B] · (γ − σ)+

+ Pr[τd ∈ B] · (γ)+
+ Pr[τpj

∈ B] · (γ − σλ)

Alice’s maximum payoff is, therefore, γ, and is ob-

tained when Alice’s successfully double spends the trans-

action, thus keeping the goods γ without paying any-

thing. However, Alice’s minimum payoff (that is, max-

imum losses) depends on λ, a parameter that can be

adjusted in our protocol. Therefore, by adjusting λ, the

protocol allows to tune Alice’s losses, and so the risks

she assumes by trying to perform a double spending

attack. The bigger the λ is, the higher the risks Alice’s

faces on a double spend attempt.

Finally, an observer’s j payoff is given by the ex-

pression:

POj = Pr[τpj ∈ B] · (σλ)

Figure 8 shows the evolution of the parties payoffs

as a function of Pr[τf ∈ B] and Pr[τd ∈ B]9 for the case

where σ = γ (the value of goods is equal to the price it

is paid for them), for different values of the parameter

λ. The payoff dimension is measured based on the value

B’s payoff is positive and reflects the benefit obtained from
the sale.

8 Note, however, that Bob may also act as an observer him-
self, being able to create a penalty transaction and trying to
gain the observer’s payoff.
9 Since Pr[τf ∈ B] + Pr[τd ∈ B] +

∑
j Pr[τpj

∈ B] = 1,
fixing the first two probabilities uniquely determines the third
operand.

Double-Spending Prevention for Bitcoin Zero-Confirmation Transactions 11

Fig. 7 Diagram showing the protocol’s final states and the paths leading to them.

Fig. 8 Parties payoffs for σ = γ.

σ. That means that a payoff of 3 implies a benefit of 3

times the value of σ while a payoff of −3 implies a lost

of 3 times the value of σ. The payoff results are thus

proportional to σ.

The graphics show that, as expected, when there is

no double spending attempt (Pr[τf ∈ B] = 1) there is

an equilibrium in the parties’ payoffs, and in all graph-

ics we obtain PB = PA = POj
= 0 (green zone). Note

that, as λ increases, Bob’s payoff (first three graphics)

remains exactly the same since his payoff is indepen-

dent of the parameter λ. On the contrary, Alice’s pay-

off (next three graphics) depends on λ. With λ = 1,

Alice’s payoff is always positive or zero: Alice does not

lose anything by trying to double spend and may even

gain something if the attack is successful. That situa-

tion is the basic prevention mechanism described in Sec-

12 Cristina Pérez-Solà B et al.

tion 4.1. However, by increasing λ the scenario changes

radically for Alice: the probabilities range at which Al-

ice gains something from the attack decrease fast and,

at the same time, for some probability values she even

starts to get a negative payoff (that is, she has to as-

sume losses). Finally, notice that the observer’s payoff

(last three graphics) is never negative, and his gains

increase with λ.

Notice that our analysis does not assume any spe-

cific values on the probabilities Pr[τf ∈ B], Pr[τd ∈ B],
and Pr[τpj

∈ B]. However, as we have already indi-

cated, such probabilities depend on the hash distribu-

tion of the Bitcoin network among mining the trans-

actions, τf , τd, and τpj
. For that reason, in case the

hash rate devoted to τd with respect the rest is low,

the graphics show that Alice’s payoff, for values λ > 1,

is moving in the red zone thus being negative (Alice is

losing money). The greater the λ value the bigger the

red zone.

Providing values for the exact probabilities that pa-

rameterise our analysis is far from trivial because these

probabilities are affected by the personal decisions of

nodes that participate in the network. These personal

decisions may not even attend to economical incentives

only, but also political or even non-rational ones. That

being said, we can, of course, imagine a specific scenario

with rational actors and estimate the probabilities for

that individual case. For instance, we can assume that

all miners are aware of the protocol and try to opti-

mize their immediate profit (that is, they would try to

obtain the reward of a penalty transaction if they are

able to do so). Additionally, we can also assume both

the fast payment and the double-spending transactions

are propagated to all miners of the network. Then, an

attacker that controls the currently largest mining pool

will have Pr[τd ∈ B] = 0.24 (BTC.com has 24.6% of the

hash-rate as of today).10 On the other hand, Pr[τf ∈ B]
will be 0, since no miner would mine the fast-payment

transaction (each miner would mine their own penalty

transaction). For λ = 3, this scenario results in an at-

tacker’s payoff of PA = −1.28σ, while the sum of the

observers payoffs will be
∑

∀j POj = 2.28σ. The second

largest pool will be the best observer, with a payoff of

PO0
= 0.51σ.

7 Conclusions

The speed at which payments in blockchain based cryp-

tocurrencies can be performed is lower bounded by the

block generation interval, which in Bitcoin is fixed to 10

10 https://web.archive.org/web/20180522080137/https:

//blockchain.info/pools

minutes. In order to provide fast payments, one of the

alternatives used in these scenarios is to rely on zero-

confirmation transactions, i.e., transactions that have

been seen on the network but have not yet been in-

cluded in the blockchain. Experimental analysis have

shown that, in Bitcoin, most of the transactions prop-

agated through the network reach 75% of the nodes in

less than 8 seconds [25], which is two orders of mag-

nitude faster than the block production interval. How-

ever, zero-confirmation transactions are not secured by

the standard Bitcoin double-spending protection mech-

anism, since this mechanism is applied to transactions

included in the blockchain and zero-confirmation trans-

actions are not yet in blocks by definition.

In this paper, we have presented a mechanism to

secure fast payments within Bitcoin by reducing the

risk of double-spending attacks in transactions with

zero confirmations. The proposed mechanism discour-

ages double spending attempts by creating a special

type of outputs that enforce private key disclosure in

case of a double-spending attempt. Any Bitcoin net-

work user may act as an observer and obtain a reward

by detecting double-spending attempts. The reward the

observer receives is equal to the price the attacker pays

as punishment for having tried to double spend a trans-

action and may be fixed by the receiver beforehand.

Nevertheless, the attacker may have enough incentive

to double-spend even when that will likely result in a

loss for her, but pursuing Bob’s lost, that could be more

damaging. Such scenario may appear when the wealthy

of the attacker is much higher than the receiver. How-

ever, since our proposal is an optional alternative to

accept fast payments, Bob may opt-out of using our

system in case his possible loss would be more than he

can afford.

Further research will be focused on experimentally

testing the proposed approach in a Bitcoin-like P2P

network, in order to quantify the probabilities of each

transaction entering the blockchain depending on the

exact capabilities of the attacker (both in terms of net-

work connectivity and hash power) and the percentage

of nodes of the network that are aware of the existence

of the prevention mechanism. In turn, this would al-

low us to better evaluate the risks the merchant is fac-

ing with each transaction and to study the overhead of

transactions relayed through the network by the usage

of our protocol.

Double-Spending Prevention for Bitcoin Zero-Confirmation Transactions 13

Compliance with Ethical Standards

Funding: This work is partially supported by the Span-

ish ministry under grant number TIN2014-55243-P and

the Catalan Agència de Gestió d’Ajuts Universitaris i

de Recerca (AGAUR) grant 2014SGR-691.

Conflict of Interest: The authors declare that they

have no conflict of interest.

Ethical approval: This article does not contain any

studies with human participants or animals performed

by any of the authors.

References

1. G.O. Karame, E. Androulaki, S. Capkun, in Proceedings
of the 2012 ACM conference on Computer and commu-
nications security (ACM, 2012), pp. 906–917

2. G.O. Karame, E. Androulaki, M. Roeschlin, A. Ger-
vais, S. Čapkun, ACM Trans. Inf. Syst. Secur. 18(1), 2:1
(2015). DOI 10.1145/2732196. URL http://doi.acm.or

g/10.1145/2732196

3. GAP600. Gap600 bitcoin transactions guaranteed. http:
//gap600.com/ (2017)

4. T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, S. Wel-
ten, in Proceedings of the IEEE Internation Conference
on Peer-to-Peer Computing (P2P) (Trento, Italy, 2013.,
2013)

5. A. Biryukov, D. Khovratovich, I. Pustogarov, in Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (ACM, 2014), pp. 15–29

6. A. Biryukov, I. Pustogarov, in Security and Privacy
(SP), 2015 IEEE Symposium on (IEEE, 2015), pp. 122–
134

7. J.A. Kroll, I.C. Davey, E.W. Felten, in The Twelfth
Workshop on the Economics of Information Security
(WEIS 2013) (2013)

8. I. Bentov, R. Kumaresan, in International Cryptology
Conference (Springer, 2014), pp. 421–439

9. J. Poon, T. Dryja, The Bitcoin lightning network: Scal-
able off-chain instant payments. Tech. rep. (2015).
https://lightning.network

10. I. Bentov, R. Kumaresan, A. Miller, in International
Conference on the Theory and Application of Cryptology
and Information Security (Springer, 2017), pp. 410–440

11. B. David, R. Dowsley, M. Larangeira, in Proceedings of
the 2018 International Conference on Financial Cryp-
tography and Data Security (2018)

12. S. Park, A. Kwon, G. Fuchsbauer, P. Gazi, J. Alwen,
K. Pietrzak, in Proceedings of the 2018 International
Conference on Financial Cryptography and Data Secu-
rity (2018)

13. T. Ruffing, A. Kate, D. Schröder, in Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Com-
munications Security (ACM, 2015), CCS ’15, pp. 219–
230

14. A.M. Antonopoulos, in Mastering Bitcoin: unlocking dig-
ital cryptocurrencies (O’Reilly Media, Inc., 2014), chap. 5

15. Certicom Research, Sec 2: Recommended elliptic curve
domain parameters. Tech. rep., Certicom Corp. (2010)

16. A.J. Menezes, P.C. Van Oorschot, S.A. Vanstone, Hand-
book of applied cryptography (CRC press, 1996)

17. C. Paar, J. Pelzl, Understanding cryptography: a text-
book for students and practitioners (Springer Science &
Business Media, 2009)

18. P.Q. Nguyen, I.E. Shparlinski, Journal of Cryptology
15(3), 151 (2002)

19. M. Bellare, S. Goldwasser, D. Micciancio, in Annual In-
ternational Cryptology Conference (Springer, 1997), pp.
277–291

20. N. Schneider. Recovering Bitcoin private keys using weak
signatures from the blockchain (2013)

21. F. Valsorda. Exploiting ECDSA failures in the Bitcoin
blockchain (2014)

22. Bitcoin.org. Android security vulnerability (2013). URL
https://bitcoin.org/en/alert/2013-08-11-android

23. T. Pornin. Deterministic usage of the digital signature
algorithm (DSA) and elliptic curve digital signature algo-
rithm (ECDSA). RFC 6979, Internet Request for Com-
ments, The Internet Society (2013)

24. J. Clark, A. Essex, in Financial Cryptography and Data
Security, Lecture Notes in Computer Science, vol. 7397,
ed. by A.D. Keromytis (Springer Berlin Heidelberg,
2012), pp. 390–398. URL http://dx.doi.org/10.1007/

978-3-642-32946-3_28

25. C. Decker. Data propagation: How fast does information
move in the network? http://bitcoinstats.com/netwo

rk/propagation/ (2017)

