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Abstract 
The contribution of MRS(I) to the in vivo evaluation of cancer‐metabolism‐derived metrics, mostly 
since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly 
glycolytic, is now being sampled by 13C magnetic resonance spec- troscopic imaging (MRSI) 
following the injection of hyperpolarized [1‐13C] pyruvate (Pyr). Hot‐spots of, mostly, increased 
lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer 
progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. 
Therapy response is usu- ally signalled by decreased Lac/Pyr 13C‐labelled ratio with respect to 
untreated or non‐ responding tumour. For therapeutic agents inducing tumour hypoxia, the 13C‐

labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31P MRSI may sample 
intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, 
basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in 
use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites 
(such as 2‐hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such 
as total choline to N‐acetylaspartate (plain ratio or CNI index)) or the whole 1H MRSI(I) pattern 
through pattern recognition analysis. These approaches have been applied to address different 
questions such as tumour subtype definition, following/predicting the response to therapy or 
defining better resection or radiosurgery limits. 
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glycerophosphocholine; HIF, hypoxia‐inducible factor; HR‐MAS, high resolution magic angle 
spinning; IDH, isocitrate dehydrogenase; Lac, lactate; LDH, lactate dehydrogenase; LDHA, lactate 
dehydrogenase isoform A; ML, mobile lipid; MRSI, magnetic resonance spectroscopic imaging; 
mTOR, mammalian target of rapamycin; NAA, N‐acetylaspartate; NADP+/NADPH, nicotinamide 
adenine dinucleotide 2′‐phosphate, oxidized/reduced form; PA, polyamine; PCho, phosphocholine; 
pHe, extracellular pH; pHi, intracellular pH; PKM2, pyruvate kinase isoform M2; Pyr, pyruvate; ROI, 
region of interest; SDH, succinate dehydrogenase; SNR, signal‐to‐noise ratio; Spm, spermine; 
SUCCES, Succinate Estimation by Spectroscopy; SV, single voxel; T2W, T2 weighted; TCA, 
tricarboxylic acid; tCho, total choline; tCr, total creatine; TMZ, temozolomide; VOI, volume of 
interest; wt, wild type 

Temporal and thematic boundaries of the topics covered  
The authors of this review declare at the outset that there is no intention of being exhaustive or 
systematic. The temporal boundaries reviewed will be modest: only relevant literature since 2016, 
chosen according to our bias. Earlier work or reviews will only be referred to in order to put recent 
findings in due perspective. Authors hope that this summary will give readers a picture of how far 
cancer metabolism analysis with MRS(I) has advanced and, perhaps, why it is not advancing 
further. 

For quite a long time MRS, rather than MRI, has been the only approach able to evaluate cancer 
metabolism. Nevertheless, the MRI‐derived information related to cancer metabolism should not 
be forgotten: consider for example the chemical exchange saturation transfer (CEST) effect caused 
by exchangeable protons in water‐derived images of glucose uptake and metabolism in 
tumours.1,2 However, apart from these CEST‐ related studies, we should acknowledge that most 
information about cancer metabolism using MR still refers to MRS(I) acquisitions, which are the 
ones dealt with in our text. 

Supplementary Figure 1 shows a PUBMED search illustrating the different proportions of articles 
investigating several cancer types through MRS(I) approaches. The retrieved information can help 
understand the questions that users expect to be answered by MR. It seems clear that users of the 
MR methodology perceive, or expect, that in vivo MRS(I) will deliver useful information about spatial 
heterogeneity in prostate and brain cancer, but not in breast cancer. On the other hand, single voxel 
(SV) MRS still seems to play a role in brain and breast cancer, but not so much for prostate cancer. 
Ex vivo HRMAS studies in the period investigated in this review seem to be mostly used in breast 
and prostate cancer, and there is a recent review on the matter that analyses its use in detail.3 
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Cancer produces a series of anatomical and metabolic changes: 
emerging hallmarks 
Cancer development and progression depends on the metabolic reprogramming caused by 
oncogenic mutations.4 Cancer cells are known to be highly proliferative, and the metabolism 
adaptation of cancer cells has the ultimate goals of survival and sustaining proliferation. This 
includes the ability to gather nutrients from a sometimes limited environment for viability 
maintenance and new biomass building. Pavlova and Thompson5 have organized known cancer‐
associated metabolic changes into six hallmarks: (a) deregulated uptake of glucose and amino 
acids, (b) use of opportunistic modes of nutrient acquisition, (c) use of glycolysis/TCA (tricarboxylic 
acid) cycle intermediates for biosynthesis and NADPH (nico- tinamide adenine dinucleotide 2′‐
phosphate, reduced form) production, (d) increased demand for nitrogen, (e) alterations in 
metabolite‐driven gene regulation and (f) metabolic interactions with the microenvironment. The 
specific hallmarks exhibited by an individual tumour may contribute to better classification and 
help in treatment monitoring due to the relationship between malignant transformation, response 
to treatment and changes observable in tissue metabolism. Needless to say, the neoplastic 
process is also accompanied by changes at the level of microenviron- ment, cellular 
microstructure and peripheral vascular networks. The ability to sample all or most of these 
transformations is of crucial importance in a cancer patient's management, not only for early 
diagnosis but also for the non‐invasive evaluation of the tumour response to a given therapy. It is 
worth stressing that many therapies can target cancer metabolism, and the changes triggered in 
endogenous metabolites should be detectable before changes in tumour volume are observed. 
Last but not least, it is important to bear in mind that MR techniques are essentially sampling a 
volume of tissue that is not entirely composed by tumour cells.6-8 Indeed in brain tumours such as 
glioblastoma (GB), the percentage of tumour‐ associated macrophages can be as high as 30% of 
the abnormal mass,9 constituting a cell population with its own metabolic features and differ- 
entially affected by therapy. 

Advantages of sampling the metabolome by MRI/MRS(I) 
Magnetic resonance is a non‐invasive, non‐ionizing, non‐destructive technique, offering a high level 
of anatomic detail (MRI) and information about metabolomics/chemical environment (MRS(I)), 
being in general the method of choice for in vivo tumour diagnosis and follow‐up. As an advantage 
over methods involving ionizing radiation, repeated MR measurements can be made in longitudinal 
experiments without cumulative harm to subjects. However, in vivo MR studies are only sensible if 
in vitro evaluations are not feasible or relevant, because the resolution and sensitivity level 
obtained are not comparable. In fact, most of the time ex vivo studies (i.e. high resolution magic 
angle spinning (HR‐MAS) of biopsies) are performed to confirm or explain changes seen in in vivo 
studies.3,10-19 However, interest in MRS(I) is increasing for clinical applica- tions and research due 
to its ability to provide information about tissue spatial heterogeneity through collection of 
spectroscopic data and spatial distribution of metabolites, as well as their changes. In this respect, 
MRS(I) protocols can provide relevant information on surrogate biomarkers of disease diagnosis 
and prognosis, helping surgery and radiation planning, as well as predicting survival and treatment 
response. 
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Next, we will consider some specific aspects in which cancer metabolism studied by MR is 
contributing to increase our understanding of its progression and helping to control and eventually 
cure it. 

 

MRS(I)‐ detectable metabolic hallmarks of cancer: applications to 
grading and/or therapy response  

Carbon consumption 
Cancers are highly glycolytic; they can be highly glutaminolytic too, and this usually requires high 
lactate dehydrogenase (LDH) content and activity.20-22 Accordingly, one would expect a tumour to 
demonstrate increased LDH‐catalysed substrate flow through the enzyme, from pyruvate (Pyr) to 
lactate (Lac), with concomitant NAD+ (nicotinamide adenine dinucleotide, oxidized form) 
regeneration, when compared with normal tissue or when progressing to higher grade. This metric 
is a usually accepted surrogate biomarker of increased LDH activity and has been described in 
Reference 23 in a preclinical model of genetically engineered mice (GEMs) that spontaneously 
develop pancreatic cancer, undergoing several intermediary stages (Figure 1). Hyperpolarized 13C 
MRS(I) has been also used to monitor the increase in the Lac/Pyr ratio with progression to 
tumour,24 which can be transformed onto magnetic resonance spectroscopic imaging (MRSI)‐
derived images, for example in pancreatic cancer (Supplementary Figure 2). 

Conceptually similar observations have been described for the TRAMP preclinical model of 
prostate cancer25 with significantly increased Pyr to Lac flux (a parameter known as kPL) in high‐
grade compared with low‐grade tumours monitored by hyperpolarized 13C MRSI after the injection 
of hyperpolarized [1‐13C]Pyr. This correlated with a more than twofold proliferation increase 
(percentage of Ki67+ cells) and close to twofold lactate dehydrogenase isoform A (LDHA) 
expression increase in high‐grade versus low‐grade tumours, ex vivo. 

In a first‐in‐human study performed with 31 prostate cancer patients receiving an escalation dose 
design with injected hyperpolarized [1‐13C] Pyr,26 a high Lac/Pyr ratio identified cancer in one of 
the bilaterally hyperpolarized 13C MRSI‐detected regions that were inconspicuous by classical MR 
approaches (T2‐weighted (T2W) or diffusion‐weighted imaging) or 1H‐based MRSI (Supplementary 
Figure 3). 

Accordingly, a tumour responding to a particular therapy should show decreased LDH activity when 
injecting hyperpolarized Pyr. This effect has been shown27 in a case report of a patient with 
prostate‐specific antigen of 25.2 ng/mL and Gleason 4 + 5 prostate adenocarcinoma on biopsy, 
who showed response to androgen deprivation therapy after 6 weeks of treatment, when only 
modest changes of abnormal prostate volume tissue and apparent diffusion coefficient (ADC) 
could be seen (Figure 2). 

These results are in agreement with previous findings on preclinical GB models,28 for which the 
Lac/Pyr ratio after injection of hyperpolarized Pyr was seen to significantly decrease after combined 
dual PI3K/mTOR (mammalian target of rapamycin) inhibitor and temozo- lomide (TMZ) treatment, 
and before changes in tumour size or total choline (tCho) in the 1H MRS pattern could be detected. 
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Decreased flow through the glycolytic pathway due to treatment with TMZ in a preclinical GB model 
had also been detected,29 but in this instance the reduced Lac/Pyr ratio after injection of 
hyperpolarized Pyr was caused not by LDHA expression changes but by downregulation of the M2 
isoform of the pyruvate kinase enzyme (PKM2). Furthermore, mTOR inhibition alone in a preclinical 
xenograft model of sarcoma also resulted in a reduced Lac/Pyr ratio after injection of 
hyperpolarized Pyr, 24 h after the mTOR inhibitor administration (rapamycin) and prior to any 
anatomic detectable changes.30 

Still, there seem to be exceptions to high Lac/Pyr ratio in hyperpolarized 13C MRSI in tumours. For 
example, mutant isocitrate dehydrogenase 1 (IDH1) glioma models in mice31 do not produce 
detectable Lac after injection of hyperpolarized Pyr, due to hypermethylation of the LDHA gene 
promoter.32 

Four recent reports have investigated the Lac/Pyr ratio (or kPL). Ravoori et al and Tee et al found that 
this ratio increases,33,34 whereas Park et al and Iversen et al found it to remain stable,35,36 when 
a variety of preclinical tumours (glioma, mammary carcinoma, ovarian, lung carcinoma) respond to 
therapy. In References 33, 35 and 36, the therapeutic agent used displayed anti‐angiogenic or 
vascular disrupting activity, while in Reference 34 the drug used was an activator of PKM2. The 
rationale to explain this initially conflicting evidence is essentially put forward in References 33 and 
36: anti‐angiogenic agents will produce hypoxic regions in the tumour, causing increased glycolytic 
flow to maintain required ATP (adenosine triphosphate) production by the tumour cell, overriding 
the decreased demand of carbon precursors for cell duplication by the growth‐arrested tumour 
cells. Thus, in the case of therapeutic drugs working through this anti‐angiogenic pathway, Lac/Pyr 
or kPL would not be an adequate biomarker of therapeutic success and other strategies may be 
required to asses it. In this respect, both Park et al and Iversen et al35,36 point to a different ratio, 
hyperpolarized Lac/bicarbonate, as a better sensor of response to antiangiogenic agents 
(Supplementary Figure 4). 

Take home messages. The Lac/Pyr ratio reflects the glycolytic state of tumours and could have 
potential for assessing tumour progression and also response to therapy, correlating with 
proliferation. The ratio should not be used during therapy with antiangiogenic agents as they 
produce hypoxic regions within tumours, and in this case the Lac/bicarbonate ratio would be more 
suitable. 

pH changes 
The fact that actively proliferating tumours display a reversed pH gradient, i.e. acidic extracellular 
pH (pHe) and slightly basic intracellular pH (pHi), has been known for some time.37 This is caused 
by active glycolysis (producing lactic acid) and oxidative metabolism (producing carbonic acid) in 
well perfused tumours on one hand, and active extrusion of protons and carbon 
dioxide/bicarbonate away from tumour cells,38 on the other. Only recently has 31P MRSI of GB 
patients been able to provide non‐invasive images of this slightly basic pHi in proliferating GB and 
its changes upon transient response to therapy or in relapse. Wenger et al39 used 31P MRSI at 3 T 
to prove that good quality spectra can be obtained with this technique (Supplementary Figure 5) 
and pHi maps produced (Figure 3). In these MRSI grids, it can be shown that untreated GB has a 
more basic pHi than contralateral brain (mean 7.110 for tumour and mean 7.017 for contralateral 
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brain), but also that upon transiently successful antiangiogenic therapy (bevacizumab) pHi 
decreases (about 7.090 at best response time), and at relapse it slightly increases again. Moreover, 
the region where a new tumour mass eventually appeared on relapse had mean pHi = 7.065 before 
therapy and before MRI signs of tumour presence, already significantly higher than contralateral 
(7.017); then pHi decreased, pHi = 7.044, at the time of best main mass response, and pHi 
increased, pHi = 7.085, at MRI detectable progression time. The higher pHi (7.065 versus 7.017) in 
the region where tumour relapsed later on could suggest that tumour cells were already 
proliferating there, but without major MRI detectable changes. In this respect pHi could predict the 
site of future progression in recurrent GB. 

13C MRSI using hyperpolarized substances (bicarbonate) has also been used for pH imaging40 
although this approach does not seem to be in use yet in the field of cancer global MR. 
Concomitantly, other hyperpolarized probes, such as 13C‐labelled zymonic acid, have been shown 
to be able to produce fast and robust pHe imaging in preclinical cancer models in vivo.41,42 

Take home messages. Local pH changes, essentially measured with 31P spectroscopy, can reflect 
cellular environment and could be useful for predicting the site of future progression in recurrent 
GB. In vivo measurement of pH is also possible by 13C MRS, but it has not reached the clinic. 

Oncometabolites 
2‐hydroxyglutarate (2HG) is produced due to a neomorphic mutation,43,44 either in the 
moonlighting* IDH1 gene (NADP+ (nicotinamide adenine dinucleotide 2′‐phosphate, oxidized form) 
dependent, cytoplasmic) or in IDH2 (NADP+ dependent, mitochondrial).45 2HG is defined as an 
oncometabolite44: in IDH1 mutants, 2HG has been reported to be mostly derived from glutamine 
(80%),13 and to trigger metabolic reprogramming.46,47 2HG inhibits histone demethylation48 
through inhibition of α‐KG‐dependent dioxygenases, promotes nuclear dedifferentia- tion into a 
stem‐cell‐like state49 and downregulates choline kinase and ethanolamine kinase,50,51 among 
other effects. 2HG has been the subject of many studies52 by the MRS community, since IDH1 or 
IDH2 mutant gliomas accumulate 2HG in the millimolar range of concentration. In 2012, several 
publications showed that the metabolite is detectable by MRS in vivo with 3 T clinical scanners,53 
and optimally when acquisition parameters are adjusted54 spectroscopic imaging can be 
performed55,56 to detect 2HG hot‐spots and to monitor disease progression.57 

Most spectral analyses are still focused on quantification of the 2HG resonances, in particular 
those aimed to check whether the patient is a mutant for IDH or not in a non‐invasive way58,59 or 
to find an optimal combination of acquisition and quantification,60 and only recently are meta- 
bolomics approaches starting to be used. In Reference 61, a cohort of 47 patients was analysed 
with a conventional PRESS TE 35 ms SV sequence at 3 T followed by LCModel quantification and 
metabolomics analysis, finding that the combination of 2HG and Glx (glutamate and glutamine) 
values could provide better discrimination between wild‐type (wt) and IDH1 mutant patients than 
either of them alone. In Reference 62 a small cohort of 14 glioma patients was studied by a SEMI‐
LASER acquisition at 7 T coupled to a non‐targeted metabolomics approach, again with the goal to 
distinguish wt from mutant patients. Despite the pervading observations that the IDH mutation not 
only causes an increase in 2HG but also a change in several other metabolites, either at the initial 
diagnosis63,64 (Figure 4) or during assessment of response to treatment (Figure 5), the change in 
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the metabolomic pattern seems not to be regarded with much interest in the literature. This seems 
surprising because 2HG is a non‐invasive diagnosis and prognosis biomarker for IDH mutation,66 
and it is druggable.58,65 Perhaps small cohort sizes collected by each individual study and the 
difficulty of integrating these data with other studies using different acquisition and processing 
parameters may provide an explanation for this low uptake by clinical centres. In this respect, it has 
been shown in ex vivo 31P HR‐MAS67 of patient biopsies (five mutant IDH1 and six wt gliomas of 
different malignancy grades) that the phospholipid pattern differs (Supplementary Figure 6A). 
Recently, a larger study (n = 38) performed by Wenger et al,68 using in vivo 31P and 1H MRSI at 3 T 
on glioma patients of different grades, found no differences in any of the metabolites or ratios 
analysed by peak integration of individual resonances and univariant analysis, despite the observed 
trends (Supplementary Figure 6B). Wenger et al point to tumour heterogeneity and low sample size 
for proper stratification into grades, and to poor resolution and instrumental problems, to explain 
these discrepancies. In this respect, the sensitivity of 2HG detection has been shown to be 
dependent on voxel size (good for tumours >8 mL and bad for tumours <3.4 mL)58 on the one hand, 
and on the other phosphocholine (PCho) and phosphoethanolamine have been shown to be 
downregulated in a 2HG‐dependent way.50 

Mutations in the gene for succinate dehydrogenase (SDH; another moonlighting protein) cause 
accumulation of succinate due to impairment of its oxidation to fumarate. Succinate is nowadays 
regarded as an oncometabolite: its accumulation inhibits prolyl‐hydroxylases in the cytosol,69 
stabilizing and activating hypoxia‐inducible factor (HIF)‐1 alpha, and induces inflammation through 
this HIF‐1 alpha signalling, among other roles in the cancer immune‐cycle cross‐talk70 (Figure 6). 
Succinate can be detected with MRS, and recently the SUCCES (Succinate Estimation by 
spectroscopy) sequence (SV, PRESS, 144 ms, 3 T) has been applied to identify carriers (about 40%) 
of the SDHx gene mutation among patients affected by the rare tumours pheochromocytoma or 
paraganglioma. Interestingly, high choline (Cho) was also reported to be associated with the 
succinate peak detection in patients with such a mutation (Figure 7).71 

Although not yet at clinical level, mutations in fumarate hydratase are also a hallmark of some renal 
tumours, causing accumulation of fumarate. In addition to its role as an oncometabolite, it has also 
been shown that fumarate is an epigenetic modifier able to trigger the epithelial‐to‐mesenchymal 
transition.72 It had previously been shown73 that hyperpolarized fumarate can be used to monitor 
treatment response in murine EL‐4 lymphomas through the assessment of malate production. 
Recently, co‐polarized Pyr and fumarate have been used to monitor Lac export and necrosis in 
tumours.74 Fumarate has also been found to be one of the discriminant metabolites when using an 
untargeted metabolomics approach to assess tamoxifen treatment resistance in breast cancer cell 
lines.75 

Take‐home message. Not only oncometabolite accumulation but also the reprogrammed 
metabolome can be measured with MRS(I), extending the traditional single‐metabolite biomarker 
concept. 

Cho metabolism and proliferation 
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Abnormal Cho metabolism has been identified in different cancer types. Choline‐containing 
compounds are involved in the biosynthesis and degra- dation of phospholipids from cell 
membranes. Glunde et al proposed possible causes for this abnormal metabolism,76 including 
changes in kinases (choline kinase‐α, ethanolamine kinase‐α), phospholipases 
(phosphatidylcholine‐specific phospholipases C and D) and glycerophosphocholine (GPC) 
phosphodiesterases, as well as in Cho transporters. As a result of these metabolic changes, we 
usually expect to detect high content of PCho and tCho in actively growing tumours. In some 
cancer types, a low GPC content can also be observed, although it is also known that the actual 
tumour microenvironment can influence Cho metabolism.77 

A high tCho is considered the most useful MRS(I) parameter indicating high cellular proliferation. 
This tCho peak consists of water‐soluble choline‐containing compounds, such as PCho, GPC and 
free Cho. In addition to this, phosphatidylcholine in cellular membranes may contribute to the tCho 
peak in HR‐MAS ex vivo spectra at physiological recording temperature78,79 or have minor 
contributions to in vivo spectra in the case of small intracellular freely tumbling vesicles.80 The 
most relevant applications in which the tCho signal can be of help in diagnosis, prognosis or 
therapy response are in prostate, breast and brain cancer, and some of these applications are 
highlighted in the following subsections. 

Prostate tumours 
MRS allows the analysis of levels of choline‐containing compounds, but also polyamines (PAs: 
spermine—Spm—and spermidine), total creatine (tCr) and citrate (Cit).81 Cit is secreted in the 
luminal space by normal prostate epithelial cells and accumulates at high concentrations. Levels 
of Cit are reduced in prostate cancer and thus may act as an in vivo biomarker to discriminate 
cancer from normal uninvolved prostate tissue. Regarding PAs, about 50–90% in the prostate is 
Spm, and they are also secreted in the luminal space by ductal cells, as is Cit. Some or all of these 
have been jointly used for prognosis evaluation, showing good correlation with Gleason score.82,83 
Moreover, good correspondence between MRSI features and clinical outcome has been 
suggested,84,85 also supported by ex vivo HRMAS studies.18,86 Due to the multifocal nature of 
prostate cancer and its intragland heterogeneity (Supplementary Figures 3 and 7), most recent 
cohort studies to detect, grade or even assess response to therapy use MRSI rather than SV 
MRS.11,81,82,84,87-89 

The information contained in the spectral pattern may vary quantitative and qualitatively according 
to the optimized pulse sequence and echo time used for acquisition (Figure 8). 

Still, there is general consensus on the fact that metrics based on the changes in the MR‐visible 
content of certain metabolites allow discrimination between normal tissue and prostate cancer. 
Thus, Cit and PAs (e.g. Spm) are high in normal tissue and choline‐containing compounds (tCho) 
are high in cancer, while tCr does not change much. Then, different content‐like ratios have been 
used in the past to visualize the proposed tissue type being sampled by MRSI in each volume 
element (Cho/Cit; [Cho + Cr (creatine)]/Cit; Cho/(Cit + PA)), although perhaps the most robust ratio, 
due to sometimes overlapping resonances of Cho, PA and Cr, may be (Cho + PA + Cr)/Cit.82 These 
content/area/peak height ratios have been transformed using diverse thresholds in predicted tissue 
abnormality maps or hot‐spots for prostate cancer detection (Figure 9). 
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With respect to the clinical interest of such metrics, a retrospective study by Zakian et al84 on 262 
patients at their institution concluded that prostate MRSI could help to predict outcome in radical 
prostatectomy patients. Additionally, Hansen et al11 found that the Cit/Cre ratio was significantly 
different between erythroblast transformation‐specific transcriptional factor‐related gene (ERG)‐
high and ERG‐low prostate cancer patients, which could bear in vivo biomarker interest for patient 
progression risk stratification. Moreover, a systematic literature review of the con- tribution of MR‐
based methodologies to the non‐invasive detection of prostate cancer concluded that MRSI 
provides added value on sensitivity and/or specificity values when combined with classical T2W 
MRI explorations.87 Still, the complexity of acquiring, post‐processing and interpreting MRSI maps 
of patients is causing slow uptake of the use of such maps by clinical MR‐based multi‐parametric 
prostate cancer detec- tion systems (see Reference 91 for further comments on this). Using higher 
recording fields (7 T)89 or facilitating post‐processing and display of multi‐parametric datasets92 
may provide a handle to improve this uptake, competing for this with the hyperpolarized 13C MRSI 
approach using 13C‐labelled Pyr discussed above. 

Breast tumours 
Breast tumours present with high incidence (about 15% of all new cancer cases, according to NIH 
data), and early diagnosis and proper therapy response follow‐up can improve patient outcome and 
prognosis. Breast cancer diagnosis is mostly performed using either mammography, ultrasound or 
MRI. However, other approaches can also provide insight into cellular processes, and their role in 
breast imaging is being currently evaluated. Regarding breast MRS, the spectrum of healthy breast 
is predominantly formed by signals from lipid protons with little contribution from water. In 
addition, resonances that correspond to choline‐containing compounds (GPC, PCho and Cho, 
forming a joint peak of tCho at 3.2 ppm) are also seen.93 The Cho signal is found to be elevated in 
malignant breast tumours, probably due to increased tumour proliferation, and can help in 
distinguishing malignant from benign lesions.94 A meta‐analysis performed by Baltzer and Dietzel 
95 found high specificity and lower, variable sensitivity (88% and 73% respectively) of breast MRS 
for distinguishing lesions from uninvolved tissue. See Figure 10 for examples of breast MRSI and 
MRS applications. 

Breast spectroscopic information can also be helpful for tumour grading, therapy monitoring and 
predicting response to treatment. Cho levels have been related to histologic grade and biological 
aggressiveness.94,96 In treated breast cancer tumours, an early decrease of Cho levels is con- 
sistent with tumour response and is even more sensitive than anatomic or other functional 
criteria.94 A recent review on in vivo and HRMAS of breast tissue metabolism by MRS provides 
further information on the subject.16 

Brain tumours 
A metabolite‐ratio‐derived strategy for gaining information from brain tumours by MRS(I) has been 
pioneered and used for some time already by Sarah Nelson's group at UCSF. These researchers 
used images of metabolic ‘abnormality’ at and around MRI‐detected abnormal brain masses by  
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calculating the tCho‐to‐N‐acetylaspartate (NAA) ratio index, normalized to the same ratio in the 
normal contralateral brain of the same patient. This is known as CNI, where CNI values above a 
certain threshold would indicate presence of high‐grade glioma (e.g. a z‐score above 2; see 
References 97 and 98 for details of CNI and z‐score). Other authors have used similar CNI‐like 
indexes to simply mean direct tCho‐to‐NAA area ratios (Figure 11).97,98 

These ‘metabolic abnormality regions’ have been shown to extend beyond structural MRI‐defined 
abnormality boundaries.99-101 This is helping to better define resection margins,98 radiosurgery 
limits102 and malignant transformation in recurrent glioma,14 as well as to associate CNI metrics 
to survival after various therapeutic protocols,103,104 and to identify tumour regions at risk for 
progression.105 

Take‐home message. The Cho peak is useful to detect proliferative alterations in various tumour 
tissues (prostate, breast, brain), and has potential for decision making (response assessment 
and/or treatment planning). 

MRS cancer pattern  
The observation that tumours have a distinctive spectral pattern can nowadays be considered as 
‘old’: as early as 1992 William Negendank reviewed the literature on 31P, 1H, 13C, 23Na and 19F 
MRS in vivo in human cancers,106 and among other conclusions stated the need for improve- ment 
of the diagnostic specificity and statistical analysis of multiple features, as well as trials in large 
populations in well‐defined clinical settings. As can be noticed from previous sections, even today, 
pattern recognition is not much in use for the diagnostic or prognostic evaluation of cancer, with 
most studies focusing on single metabolites (Cho, 2HG) or particular metabolite ratios ((Cho + PA + 
Cr)/Cit,107 Glx/NAA,101,108) or indices (CNI), the paradigm being 2HG, a single‐metabolite MRS‐
visible biomarker that allows clinicians to perform patient stratification and follow‐up of response 
to therapy in carriers of the IDH mutation. However, as elaborated in Section 4.3, even in that 
situation other MRS‐visible changes have been observed, which taken individually are non‐
significant. Perhaps their joint use in pattern recognition strategies could improve discrimination of 
the condition of interest. Furthermore, it remains to be assessed whether acquiring larger, 
multicentre patient cohorts, using compatible acquisition and processing protocols, could help 
achieve higher sensitivity and specificity (in terms of diagnostic tests) values for detection of the 
IDH mutation despite the low sensitivity of the MRS technique (about 1mM for 2HG and voxel sizes 
below 8 mL not optimal). 

Recent pattern recognition studies have been dealing with two aspects: first, diagnosis, performed 
mainly with SV, and second, delimitation of the abnormal area, performed with MRSI. One of the 
main reasons for this thematic restriction is that SV MRS can address a clinically relevant question, 
namely the added value of MRS to MRI for brain tumour type and grade assessment.109-113 
Whatever the aspect addressed, all recent studies use a ‘targeted metabolomics’ approach, i.e. 
quantification of a number of metabolites, which is set a priori, except that already mentioned by 
Emir and colleagues,62 where they use an untargeted approach (although in the restricted specific 
spectral region [1.6, 3.1] ppm). 

With respect to diagnosis, the need for multicentre studies seems well established since the 
INTERPRET experience on preoperative brain tumour typing/grading at 1.5 T.110,114 The fact that 
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the curated INTERPRET dataset has been made accessible to research groups allows them to 
develop classifiers comparing single‐centre cohorts with that dataset, for example to differentiate 
abscesses from tumours at 3 T.115 Diagnosis of paediatric brain tumours has also been the subject 
of two recent works at 1.5 T on a large cohort of 90 patients109 and at 3 T in a multicentre study on 
41 patients,113 to distinguish among the three main paediatric brain tumours (medulloblastoma 
versus pilocytic astrocytoma versus ependymoma). Despite this, single‐centre studies are still 
reported.108 

Recent studies are using pattern recognition of MRS as one of the modalities in the multiparametric 
assessment of tumour regions, again using a targeted metabolomics approach where pre‐
quantified metabolites or ratios are the input features for the classifiers. Two quantified metabolite 
ratios ((NAA + NAAG)/(Cr + PCho), (GPC + PCh)/(Cr + PCho)) were used in Reference 116, as well as 
other image features (Ktrans, Kep etc), to train a classifier to distinguish between enhancing/non 
enhancing tumour/non‐tumour. In Reference 117 the problem addressed was the distinction 
between brain tumour and necrotic areas, and in Reference 118 the focus was to segment the 
prostate into tumour and normal tissue, providing the user with a ‘nosological image’. 
Transformation of the metabolomic pattern information into nosological images of tissue/tumour 
type (Supplementary Figure 8) is an approach that was proposed 18 years ago by the group in 
Grenoble.119 

A limitation of this approach will always be the validation of these metabolic segmentations in 
humans, in particular for the brain. In the case of prostate cancer, the availability of some 
prostatectomy specimens is an advantage and can partially help to assess the validity of the 
models, although a frequent problem is that the matched specimen is not available in all cases, for 
obvious reasons.118,120 In the brain the situation is worst, as the ground truth used for validating 
the metabolic segmentation must be the MRI set of images, pre‐segmented by a 
radiologist,117,121,122 or by soft- ware.116 This means that normally the metabolic information is 
‘trained’ to fit the anatomy, despite the fact that, in gliomas at least, it has been shown that the 
metabolic abnormality extends past the T2 abnormal region by a couple of centimetres.123 In this 
sense, the use of a semi‐supervised approach (telling the system which class each spectrum 
belongs to, but not forcing it to classify it as one or other class) has provided robust results for 
prediction of response to therapy in preclinical models,124 as will be discussed in subsequent 
sections. During the period reviewed, methodological developments have been a primary focus: 
multiparametric fusion,92,121 sometimes scaling MRSI to MRI resolution by linear 
interpolation,116 or studying the efficacy of different implementations of non‐supervised pattern 
recognition techniques.117,118,121,122,124,125 The problem of imbalanced classes has also 
been tackled with the use of AdaBoost.109 Supervised pattern recognition techniques such as 
support vector machines,109,115,116 linear discriminant analysis62,126 or several different 
algorithms,109 and classifier fusion,127 are also used in the latest literature, mainly for diagnostic 
questions. These methodologies are, generally too sophisticated to be put in practice by purely 
clinical groups, and when methodologies are tested the norm is availability of very small datasets, 
although there are exceptions such as Reference 113 or 109. On the other hand, groups from 
clinical centres tend to use simpler approaches on larger series of patients from one clinical 
setting. In Reference 126, Crain et al measured five peak heights with ImageJ directly over the 
image provided by the scanner software, to apply a linear discriminant classifier on SPSS, testing 
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different ratio combinations, to differentiate between post‐radiation effects and recurrence in 
gliomas, however with low success. In Reference 128, principal component analysis, a feature 
extraction method, is used to successfully visually distinguish one genetically different type of 
medulloblastoma of the four already accepted existing subtypes.129 When the multiparametric 
approach is tackled, methods such as logistic regression find a place, for example to predict 
whether the patient has prostate cancer or not,130 then restricting the MRS to the use of a ratio 
value (Cit/(Cho + Cr)) as one of the parameters of the predictive equation. 

Take‐home message. The potential of the whole spectral pattern is still underused, in particular in 
untargeted metabolomics approaches. 

Tumours are heterogeneous tissues 
MRS detects signal proportionally to the concentration of nuclei of the investigated type/molecule 
present (weighted by relaxation time and multiplicity effects on possible phase modulation of the 
signal). Simplifying a lot, we could state that MRS(I) signal intensity detected is directly proportional 
to the amount of the substance investigated contained in the sampled volume. In solid tumours in 
vivo, cancer cells constitute only a fraction of the tissue volume sampled by MR. Accordingly, 
between 30 and 50% of the tumour tissue (in tumours such as gliomas) can be non‐ cancer cells6 
(mostly endothelial cells, fibroblasts and infiltrating immune cells131). Furthermore, extracellular 
volume and, broadly speaking, ‘inter- stitium’132 may also account for a relevant large amount of 
tumour tissue volume (e.g., more than 40% of tumour tissue in preclinical GL261 GB transiently 
responding to the TMZ therapy has been reported to be ‘acellular’133). In addition to this, dynamic 
changes in the 13C‐labelled metabolite pattern of tumours with time (see Section 4.1 on carbon 
consumption by tumours) or in a steady state metabolomic pattern (see later in this section) may 
originate or have relevant contributions from non‐cancerous cells. In this respect Guglielmetti et 
al134 have described an increased Lac/Pyr ratio after injection of hyperpolarized Pyr in a mouse 
model of multiple sclerosis with respect to control brain. The relevant point here is that 
Guglielmetti et al demonstrated that this increase in the Lac/Pyr ratio was due to the infiltration of 
the investigated brain region by the M1 subtype of proinflammatory macrophages, which are highly 
glycolytic cells.135 In this instance, those macrophages were shown to upregulate PDK1 (pyruvate 
dehydrogenase kinase 1), resulting in inhibited PDH and reduced entrance of Pyr into the TCA cycle, 
possibly facili- tating Pyr flow through LDH, which did not seem to be upregulated in their 
investigated tissue. Infiltration of tumours by innate and adaptive immune system cells is a well‐
known fact.9,136-138 Accordingly, the possible contribution of the metabolomic pattern of immune 
system cells and their changes with time/therapy to the MRS(I)‐based investigation of tumours may 
need to be considered (see Section 4.4). 

On top of the contribution of non‐tumour cells to the MR‐detected pattern, one additional factor to 
take into account is the widely recognized clonal heterogeneity of tumours,139-142 for example, in 
brain143 (Supplementary Figure 9), prostate141 (Supplementary Figure 7) and breast144 tumours. 
This will increase the variability of their metabolic pattern if large regions of interest (ROIs) are 
evaluated, as in SV MRS, while more relevant information with respect to this heterogeneity may be 
potentially sampled by multivolume MRSI approaches. 
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Tumour spectral pattern is also heterogeneous 
Radiological and clinical guidelines are the current standards to evaluate therapy response in brain 
tumours, particularly through acquiring MRI and dynamic contrast‐enhanced MRI data and the 
application of the RANO criteria. This uses 2D single slice data. However, MRSI might be a useful 
supplementary tool for this purpose allowing to monitor and follow‐up brain tumour molecular 
properties and heterogeneity14,103,104,107,133,145,146 for the whole tissue (3D). Most of the 
time, authors focus their analysis on a few metabolites or metabolite ratios (the CNI in brain 
tumours, the (Cho + PA + Cr)/Cit ratio in prostate cancers), neglecting the rest of the spectral 
pattern, as has been discussed in Section 4.2. This has been evolving, and recently classic ‘single 
ratio’ groups have been considering additional metabolite‐derived metrics: edited Lac, Cho/NAA 
and lipid/NAA indexes.103 

According to the molecular/cellular heterogeneity described for tumours in the previous section, 
the spectral pattern can also be heteroge- neous through the tumour volume, reflecting differences 
in molecular signatures. Recent studies in human GB tend to focus on metabolite ratios in the 
peritumoral area.101 This is indeed true not only for a snapshot of a tumour at a given time point, 
but also informative in longitudinal studies, for example, to follow treatment response. This has 
been extensively studied in a preclinical model of GB, using pattern recognition approaches with 
histopathological validation.124,133,145 

The spectroscopic differences between treated and untreated GL261 GB tumours were used to 
train a mathematical classifier that was fur- ther tested in new animals (treated and untreated), and 
results were validated against histopathology. Transient response producing significant survival 
improvement induced by TMZ was found to correlate with decreased proliferation measured by 
Ki67 immunostaining in histopathological slides. Prototypical spectra (source) signals were used 
with a semi‐supervised methodology within the training set, which represented the three tissue 
types studied: normal brain parenchyma, GL261 tumours treated with TMZ mostly showing 
response or stable disease, and untreated (con- trol) GL261 tumours (i.e. actively proliferating). The 
changes observed in the spectral pattern of treated tumours were mainly related to mobile lipid 
(ML; 0.9 and 1.3 ppm) and polyunsaturated fatty acid in ML (2.8 ppm) resonances. Still, other 
contributions (e.g. Lac (1.3 and 4.1 ppm), glu- tamine, glutamate, alanine (3.8 ppm) and myo‐
inositol/glycine (3.5 ppm)) could be helping discrimination between tumour sources, although it is 
worth noting that the isolated analysis of chosen metabolites or their ratios did not prove useful for 
discriminating response, the analysis of the whole spectral pattern being the most informative and 
robust method of discrimination.124 

The correlations between the sources and the MR spectrum of each voxel in the MRSI grids were 
used for calculating nosologic images. Sup- plementary Figure 10 illustrates the three groups of 
nosologic patterns to be recognized after training by the source methodology in the training set for 
the region recognized as tumour: tumours with a clear control proliferating pattern, tumours clearly 
responding to treatment and treated or control tumours with a partial or heterogeneous pattern of 
response. After the histopathological validation, the methodology was also applied to mice studied 
in longitudinal studies until endpoint, showing a good correlation between the nosological imaging 
and tumour behaviour, even predicting the outcome before evident changes were seen in their 
volumes.124 Furthermore, a 3D‐like multislice MRSI acquisition was acquired in a new cohort of 
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animals133 in order to assess heterogeneity along the whole tumour volume instead of a single 2D 
slice, and the same classifier was applied. The presence of a responding pattern was confirmed to 
correlate with histopathological features such as decrease of the Ki67+ deter- mined proliferation 
rate, while lymphocyte‐like cells were also observed in the responding tumours. This led Arias‐
Ramos et al133 to propose a relationship between the oscillating pattern of response percentage 
measured in nosological images seen in GL261 GB tumours treated with TMZ and longitudinally 
followed until endpoint (Figure 12) and the ‘immune cycle’ (Supplementary Figure 11). Immune 
cycle‐associated changes being detected by MRSI has been given additional support by other work 
on the GL261 GB tumour model under other therapeutic strategies (cyclophosphamide, 
metronomic therapy administration,147,148 and also by the duration of the immune cycle in 
mouse brain described in Reference 149 ‐6d‐ which is in agreement with the oscillation period 
recorded for the response pattern by Arias‐Ramos et al.133 

Take‐home message. Tumours are intrinsically heterogeneous, their response is heterogeneous 
too, and this heterogeneity can be sampled by whole spectral pattern analysis of MRS(I). There is a 
non‐negligible contribution from non‐tumoral cells such as tumour‐ associated macrophages. 

What are the limitations of MRS(I)? 
Some of the main disadvantages or limitations of MRS (mainly MRSI) are longer acquisition times 
needed for data collection, compared with classic structural MRI, lack of adequate signal‐to‐noise 
ratio (SNR), sometimes improper water/lipid signal suppression and limitations in spatial coverage. 
Moreover, it is worth noting that an MRS(I) exploration is equivalent to a snapshot of a given system, 
and most of the in vivo processes, mainly the metabolic ones, are dynamic. This means that some 
processes can be either missed or improperly sampled, because in long explorations the final 
output will be an average of the processes taking place during the overall acquisition time. 

The range of metabolites that can be studied in tumours is limited 
MRS (in either its single or multi‐voxel modality, respectively SV‐MRS or MRSI) has the ability to 
detect changes in the relative content of metabolites, even allowing the calculation of absolute 
concentrations. Still, only small and/or mobile molecules, in the millimolar concentration range, 
are directly observed in an in vivo MR spectrum. This is extremely low as compared with tissue 
water (about 55 M). Therefore, proper water suppression (and also lipid suppression in the case of 
tumour surrounded by adipose tissue, e.g. subcutaneous fat, scalp lipids) is required for confident 
metabolite observation and quantitation. The biological significance of the major compounds 
found in tissues, for example in brain spectra and tumours, is reviewed in References10,17 
and.150-152 Other minority substances are hardly detected due to either extremely small or 
overlapping signals, although spectral editing may allow their observation and quantification.153 

The resolution achieved is usually lower than MRI resolution 
As the concentrations of the MRS‐detected metabolites are much lower than that of water, larger 
voxel sizes are needed to detect enough signal for MRS(I) with respect to MRI. This prevents MRSI 
from providing comparable resolution to MRI (although further post‐processing, i.e. interpo- lation, 
can partially address this limitation). The lower spatial resolution of MRSI compared with 
anatomical imaging makes consideration of the contribution of the spatial point spread function 
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(signal bleeding into the surrounding voxels, producing a blurring effect154), proportionally more 
relevant than for MRI. 

3.3.3 |  There is important sensitivity to magnetic field variation 
Another important point is the MRSI sensitivity to magnetic field inhomogeneity across the volume 
of interest (VOI), which may require avoiding anatomical regions prone to present strong magnetic 
field inhomogeneity such as tissue‐bone or tissue‐air interfaces in order to avoid line broadening 
and spectral artifacts. This is one of the reasons why MRSI has been most successful in brain 
tumour acquisitions: more favourable field homogeneity conditions and sensitive signal detection 
due to the use of surface coil arrays close to the volume being sampled. Accordingly, MRSI has 
been extensively applied for diagnosis and treatment follow‐up of brain tumours. Regarding 
prostate tumours, MRSI acquisition is usu- ally performed with an endorectal coil for signal 
reception, to achieve good SNRs. However, it also implies longer time needed for preparation, as 
well as patient discomfort. Tayari et al91 describe MRSI acquisition approaches without an 
endorectal coil obtaining good quality MRSI data, which would probably contribute to increasing its 
incorporation in clinical pipelines for prostate cancer diagnosis and follow‐up in the future. Finally, 
regarding the breast, the relevant magnetic field inhomogeneities observed, as well as the small 
water peak in adipose tissue, make shimming quite challenging in these anatomical locations. 

Conclusions 
Regarding cancer metabolomics analysis, MRSI should be the standard choice for in vivo (pre) 
clinical MRSI due to its ability to provide spatially resolved information, and consequently details of 
relevance with respect to tumour tissue heterogeneity, which are not provided by SV MRS. However, 
this is restricted to applications in which limited volume coverage and spatial resolution with 
respect to MRI/MRS are acceptable, and also where the achievable homogeneity of the magnetic 
field is not an issue. SV MRS will remain an important tool for evaluating metabolite content in 
regions where magnetic field inhomogeneity degrades spectral quality in MRSI or when single 
biomarker detection may be of interest (2HG detection in LGG brain tumours). Although most 
clinical studies focus into 1H‐MRS(I), there are different studies using 13C and 31P, which could be 
also of help either in grading or therapy response assessment by monitoring carbon consumption 
and local pH changes. The study of single metabolite biomarkers (e.g. Cho, 2HG) has also shown its 
potential in the diagnostic and prognostic assessment of tumours. However, the study of single 
metabolites or metabolite ratios offers a restricted picture of the metabolic reprogramming that 
occurs in tumours, which is being acknowledged in recent literature and could be better tackled by 
a pattern recognition approach. Recent pattern recognition studies are primarily focused on 
methodological developments rather than multicentre validation of preclinical or clinical study 
findings based on small one‐centre cohorts. Additional steps toward simplification and 
standardization of processing files from different vendors would probably be needed in this sense, 
as well as familiarization of clinicians and researchers with pattern recognition tools. Novel 
dynamic metabolic approaches such as using hyperpolarized substrates will probably have 
considerable impact on future applications of MRSI and technology development, pro- vided that 
large animal/patient cohorts are explored at more than one site with comparable data acquisition 
protocols. 
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FIGURE 1. Hyperpolarized 13C MRSI spectra acquired at different stages of progression in GEMs 
prone to develop pancreatic cancer. The predominant lesion histology pattern is shown on the left. 
The 13C hyperpolarized spectra on the right were selected from an MRSI grid following the injection 
of hyperpolarized [1‐13C] Pyr. Both lac/Pyr and lac/alanine ratios increase with progression. PDA, 
pancreatic ductal adenocarcinoma; mPanin, murine pancreatic intraepithelial neoplasia. Modified 
from reference 23 (https://creativecommons.org/licenses/by/4.0/) 
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FIGURE 2. Representative axial T2W anatomic image, corresponding water ADC image and T2W 
image with an overlaid Pyr‐to‐lac metabolic flux (kPL) image and corresponding hyperpolarized 13C 
MRSI spectral array (SA) for a 52‐year‐old prostate cancer patient with extensive high‐ grade 
prostate cancer before therapy A, and 6 weeks after initiation of androgen ablation and 
chemotherapy B, before treatment, the region of prostate cancer can be clearly seen (red arrows) 
as a reduction in signal on the T2W and ADC images, and increased hyperpolarized lac and 
associated kPL flux on hyperpolarized 13C MRSI. After initiation of androgen deprivation therapy 
there was a significant reduction in hyperpolarized lac and kPL fell to normal levels, with only a 
modest treatment effect on prostate volume and ADC. Taken from reference 27 
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FIGURE 3. Brain and tumour pHi maps were calculated using the inorganic phosphate signal 
chemical shift of multivoxel 31P MRS data and were colour coded (bottom row). The area of interest 
for voxel selection defined on standard MRI sequences is demonstrated with arrows (parieto‐
occipital selection, red, marks subsequent tumour position; frontal selection, green, marks 
control). A small number of spectra outside the ROI, close to the skull/brain interface, suffered from 
artefacts and were removed. Taken from reference 39 
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FIGURE 4. Pattern variations in gliomas (A, C, GB; B, D, grade II‐III glioma). A, B, representative SV 
1H‐MRS of mutant and wt. C, quantified metabolites in wt and mutant IDH GB. D, quantified 
metabolites in wt and mutant IDH grade II‐III gliomas. Figure adapted from references 63 
(https://creativecommons.org/licenses/by/4.0/) and 64 

 



29 
 

 

FIGURE 5. A, treatment‐induced changes in mutant IDH patients. Boxplot of the fractional changes 
for the mean values averaged over the tumour ROI. The box size represents the first and third 
quartiles, and the horizontal red line indicates the median. Statistically significant changes are 
indicated by asterisks (P < 0.05). B, regional metabolic changes induced by treatment in a 
responding patient with the IDH mutation (patient 3, Pt 3). Adapted from reference 65 
(https://creativecommons.org/licenses/by/4.0/) 
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FIGURE 6. Succinate homeostasis is controlled by multiple factors in the cancer‐ immunity cycle 
cross‐talk. Succinate elevations through upstream SDH mutations in cancer cells can promote 
downstream HIF‐ 1α stabilization, which induces the key pro‐ inflammatory cytokine, IL‐1β. IL‐1β 
can polarize macrophages to the M1 sub‐type, which gives them the capacity to damage tumour 
cells. HIF‐1α driven by elevated succinate can promote glycolysis in cancer cells. Also, glutamine 
contributes to succinate levels through the GABA (gamma aminobutyric acid) shunt pathway, 
although glutamine has opposite roles in cancer cells and macrophages. Taken from reference 70. 
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FIGURE 7. SUCCES in a patient with an SDHB gene mutation. A, 1H‐MRS spectra of the right 
cervical paraganglioma (PGL) of patient 1. A succinate peak was detected in the cervical PGL with 
two different averages (1024 and 512) and two different VOI sizes (4.5 and 1.5 cm3). B, applying the 
PRESS sequence to the abdominal tumour mass of the same patient permits detection of a 
succinate peak. C, in the healthy liver, the absence of a succinate peak demonstrates the 
specificity of the method. D, patient with a pheochromocytoma (PCC) without the SDHx mutation. 
Adapted from reference 71. 
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FIGURE 8. MRSI data of a patient with a Gleason score 3 + 4 prostate cancer in the left transition 
zone. The patient was measured with both the PRESS and GOIA‐sLASER sequences at 3 T. on the 
T2W images with the spectroscopy grid (C, D), the locations of the normal voxel and tumour voxel 
are indicated. Representative spectra from normal appearing tissue acquired with PRESS A, and 
GOIA‐sLaser E, and tumour tissue acquired with PRESS B, and GOIA‐sLaser F, illustrate the 
differences in metabolite signal intensities between healthy and tumour tissue. The PRESS data 
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were measured at TR/TE = 1020/145 ms and the GOIA‐sLASER data was measured at TR/TE = 
1020/88 ms. indicated are the main prostate metabolites: Cit, Cho, Spm and Cr. Healthy spectra A 
and E have the same scaling, and tumour spectra B and F have the same scaling, showing the 
increase in SNR of the GOIA‐sLASER sequence compared with PRESS. Note that, because of their 
different distances from the endorectal coil used, scalings between tumour and healthy voxel were 
different. Taken from reference 81 (https://creativecommons.org/licenses/by‐nc‐nd/4.0/) 

 

 

FIGURE 9. A, T2W image of the prostate of a 57‐year‐old man with biopsy‐proven prostate cancer in 
the left peripheral zone. The MRSI grid is plotted over the prostate, as are the outer volume 
saturation slabs. B, an example of a tumour probability map based on MRSI data that could be 
presented to a clinician. In this case, the probability map is based on the Cho + Cr to Cit ratio 
(colour coded bar on right). Taken from reference 90 
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FIGURE 10. A, MRSI grid for a breast evaluation. B, overlay of MRSI tCho map superimposed on an 
MRI image of a breast with a large tumour. Adapted and modified from reference 93. Voxel 1 inside 
the tumour presented a high Cho level, while voxel 2 (outside the tumour) had no Cho signal 
detectable. C, D, breast MRS from a 67‐year‐old woman with a suspicious right breast lesion (solid 
arrow in C) that shows high vascularization in maximum relative enhancement parametric map and 
maximum intensity projection images derived from DCE‐MR imaging (C) and a marked Cho peak in 
SV MRS (D), both findings consistent with malignant origin. Notice the positioning of the VOI in C 
(middle and right images). Papillary breast carcinoma was confirmed on core biopsy. Taken from 
reference 94.   
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FIGURE 11. Case of a GB patient investigated at 3 T for maximizing resection of the metabolically 
abnormal region. The process of converting and merging 3D 1H‐MRS images (TE = 135 ms) with 
structural images is summarized. A, 3D 1H‐MRS revealed different metabolic margins generated for 
CNIs (defined as total tCho/NAA area ratios as in reference 97) of 0.5, 1.0 and 1.5, which were 
transferred into iPlan 3.0 cranial. The pseudocolour maps were then generated. B, postoperative 
MR image. C, functional MRI and diffusion tensor imaging located the hand motor areas and 
pyramidal tracts (PTs). D, E, the contour line for a CNI of 1.0 was adjacent to the PTs. red, 1.5; 
yellow, 1.0; blue, 0.5. To achieve a maximal safe resection, the extent of resection was carried as 
close as possible to the metabolic margin generated for a CNI of 1.0. F, sagittal view revealing the 
relationship of the PTs and metabolic margins. A safe margin of 0.8 mm was set to avoid further 
neurological deficits, even though this margin was near the PTs. a subtotal resection was achieved 
in this patient. Taken from reference 98 
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FIGURE 12. Graphical representation of the tumour volume evolution and the percentage of 
responding ‘green’ pixels obtained after source analysis of MRSI data acquired in the multislice set 
for case C974 (intermediate response case). The green shaded columns indicate TMZ 
administration periods. For chosen time points, the evolution of the nosological images obtained 
with the semi‐supervised source extraction system is shown in four rows of colour coded grids, 
superimposed on the T2W MRI for each slice. Green brackets indicate TMZ administration periods. 
A cyclical pattern of response was observed, marked by the red arrows in the graphical 
representation. Taken from reference 133 (https:// creativecommons.org/licenses/by/4.0/) 

 


