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ABSTRACT

Sheep milk is mainly transformed into cheese; thus, 
the dairy industry seeks more rapid and cost-effective 
methods of analysis to determine milk coagulation and 
acidity traits. This study aimed to assess the feasibil-
ity of Fourier-transform mid-infrared spectroscopy to 
determine milk coagulation and acidity traits of sheep 
bulk milk and to classify milk samples according to 
their renneting capacity. A total of 465 bulk milk sam-
ples collected in 140 single-breed flocks of Comisana 
(84 samples, 24 flocks) and Sarda (381 samples, 116 
flocks) breeds located in Central Italy were analyzed 
for coagulation properties (rennet coagulation time, 
curd firming time, and curd firmness) and acidity traits 
(pH and titratable acidity) using standard laboratory 
procedures. Fourier-transform mid-infrared spectros-
copy prediction models for these traits were built us-
ing partial least squares regression analysis and were 
externally validated by randomly dividing the full data 
set into a calibration set (75%) and a validation set 
(25%). The discriminant capacity of the rennet co-
agulation time prediction model was determined using 
partial least squares discriminant analysis. Prediction 
models were more accurate for acidity traits than for 
milk coagulation properties, and the ratio of predic-
tion to deviation ranged from 1.01 (curd firmness) to 
2.14 (pH). Moreover, the discriminant analysis led to 
an overall accuracy of 74 and 66% for the calibration 
and validation sets, respectively, with greater sensitiv-
ity for samples that coagulated between 10 and 20 min 
and greater specificity to detect early-coagulating (<10 
min) and late-coagulating (20–30 min) samples. Results 
suggest that Fourier-transform mid-infrared spectros-
copy has the potential to help the dairy sheep industry 
identify milk with better coagulation ability for cheese 
production and thus improve milk transformation ef-

ficiency. However, further research is needed before this 
information can be exploited at the industry level.
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Short Communication

In the European Union, sheep milk is the second 
most produced after bovine milk (3.00 × 106 and 
215.69 × 106 t in 2016, respectively). Italy is the fourth 
most productive country, with a share of 14.14% in 
2016 (FAOSTAT, 2018). Almost all sheep milk in the 
European Union is transformed into cheese due to the 
wide tradition in cheese manufacturing and the intrin-
sic milk composition (i.e., greater contents of protein, 
casein, fat, Ca, Mg, and P compared with cow and goat 
milk; Balthazar et al., 2017). In 2014, Italy contributed 
16.85% (57.60 × 103 t) of the European cheese produc-
tion from sheep milk (FAOSTAT, 2018). 

Milk technological traits such as milk coagulation 
properties (MCP) and acidity are difficult to mea-
sure during routine milk recording activities, mainly 
because their analysis is time consuming and expensive 
(De Marchi et al., 2014). Thus, the dairy industry is in-
terested in the development of Fourier-transform mid-
infrared (FT-MIR) spectroscopy prediction models 
to quickly assess the ability of milk to be transformed 
into cheese. Moreover, the FT-MIR prediction models 
developed on individual cow milk have shown their 
potential for use in studies at the population level to 
describe breed differences (Penasa et al., 2014; Visentin 
et al., 2017a) and genetic evaluation for MCP (Tiezzi 
et al., 2013; Visentin et al., 2017b). Traditional MCP 
and acidity traits (McMahon and Brown, 1982) are 
rennet coagulation time (RCT; min), curd-firming 
time (k20; min), curd firmness 30 min after rennet ad-
dition to milk (a30; mm), pH, and titratable acidity 
(TA; Soxhlet-Henkel degrees/100 mL). Most studies on 
milk composition and technological characteristics of 
sheep milk have been carried out on individual samples 
to identify factors affecting these features (Sevi et al., 
2000, 2004; Casamassima et al., 2001; Albenzio et al., 
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2004; Abdelgawad et al., 2016), and results showed that 
breed, parity, stage of lactation, udder health, SCC, 
feeding strategies, and lambing season were important 
sources of variation. Other studies performed at the in-
dividual level (Manca et al., 2016; Puledda et al., 2017) 
estimated low to moderate correlations (0.21–0.41 in 
absolute value) of RCT, k20, a30, and pH with cheese 
yield, all being positive except for a30.

Although FT-MIR prediction models for MCP have 
been investigated in individual cows (De Marchi et 
al., 2009; Toffanin et al., 2015; Calamari et al., 2016), 
buffalo (Manuelian et al., 2017), and Sarda milk ewes 
(Ferragina et al., 2017), to our knowledge no studies 
have assessed the feasibility of using FT-MIR spectros-
copy to predict technological characteristics, including 
acidity traits, of sheep bulk milk. Therefore, the aim 
of the present study was to determine whether FT-
MIR spectroscopy can be used to predict sheep bulk 
milk coagulation and acidity traits and to classify milk 
samples on the basis of their renneting capacity.

Comisana and Sarda are among the most important 
sheep breeds in the Mediterranean area, especially in 
Italy, where they represent about 50.83% of the na-
tional sheep population (Ministero della Salute, 2018); 
they have an average lactation length of 182 and 168 
d and a milk yield of 0.83 and 1.36 kg/d, respectively 
(Ferro et al., 2017). A total of 465 bulk milk samples 
were collected during a routine milk quality payment 
program in 140 single-breed flocks of Comisana (84 
samples, 24 flocks) and Sarda (381 samples, 116 flocks) 
breeds located in Central Italy. The average number 
of samples per flock was 3.32 (SD = 1.36), ranging 
from 1 to 9. Samples were collected between January 
and April 2014 after morning milking (representative 
of evening and morning milking), refrigerated (4°C), 
and transported to the Experimental Zooprophylactic 
Institute of Lazio and Tuscany “Mariano Aleandri” 
(Rome, Italy) for milk chemical composition, SCC, milk 
acidity, and MCP determination. Briefly, a MilkoScan 
FT6000 (Foss Electric, Hillerød, Denmark) calibrated 
with appropriate sheep standards was used to deter-
mine fat, protein, casein, and lactose percentages, and 
a Fossomatic FC (Foss Electric) was used to determine 
SCC. The pH was measured by a potentiometric pH 
meter (Mettler Delta 345; Mettler Toledo SpA, Novate 
Milanese, Italy), and TA was recorded in Soxhlet-Hen-
kel degrees using a Crison Compact D meter (Crison 
Instruments SA, Alella, Spain) by tritating milk with 
a 0.25 N NaOH solution until a pH of 8.30. A forma-
graph (Foss Electric) was used to measure MCP: milk 
samples (10 mL) were heated to 35°C, and 200 µL of 
calf rennet (25% chymosin and 75% bovine pepsin; 175 
international milk clotting units/mL; Caglificio Clerici 
Spa-Sacco Srl, Cadorago, Italy) diluted to 0.8% (wt/

wt) in distilled water was added to milk. The analysis 
lasted 30 min after the addition of the enzyme. Values 
that deviated more than 3 standard deviations from the 
respective mean of each trait and breed were treated as 
missing values; this resulted in 1 missing value for a30, 2 
for lactose and TA, and 3 for pH in the Comisana breed 
and 1 missing value for protein, 2 for k20, 3 for pH, 5 for 
fat, lactose, and TA, and 15 for a30 in the Sarda breed.

The spectral information of milk samples (1,060 data 
points; region from 5,000 to 900 cm−1) from a MilkoScan 
FT6000 (Foss Electric) was matched with the reference 
values of RCT, k20, a30, pH, and TA. Low signal-to-noise 
ratio spectral regions (3,690 to 2,990 cm−1 and 1,680 to 
1,580 cm−1) were discarded before building the calibra-
tion models. Prediction models were developed through 
partial least squares regression analysis using the pls 
package (Mevik et al., 2016) in R version 3.4.4 (R Core 
Team, 2018). The data set was randomly divided into 
a calibration set (75% of the observations) and a vali-
dation set (25% of the observations). The equality of 
means and variances of both sets was tested for each 
trait using a t-test and F-test, respectively. Means and 
variation of the validation data set were very similar to 
those of the calibration data set. In the calibration set, 
leave-one-out cross-validation was performed. The op-
timal number of models factors was determined as the 
minimum number of factors to achieve the lowest root 
mean squared error of prediction. The goodness-of-fit 
statistics considered were the coefficient of determina-
tion of cross-validation and external validation (R2

CV 
and R2

ExV, respectively) and the root mean squared 
error of prediction of cross-validation and external 
validation. In the validation set, the ratio of predic-
tion to deviation (RPD) was calculated as the ratio 
of the standard deviation of the trait to the root mean 
squared error of prediction of external validation (Wil-
liams, 2007), and bias was calculated as the average 
difference between the reference value and the respec-
tive predicted value for each observation. Moreover, in 
the validation set, reference values of each model were 
linearly regressed on the respective predicted value to 
obtain the linear regression coefficient (slope). A t-test 
was used to determine whether the bias and slope were 
statistically different from zero and 1, respectively. 
To evaluate the capacity of FT-MIR spectroscopy to 
classify bulk milk according to its coagulation ability, 
milk samples were stratified into 3 classes based on 
their RCT, following the approach of Manuelian et 
al. (2017) for buffalo milk samples: early coagulating 
(RCT ≤10 min), mid coagulating (10 min < RCT ≤20 
min), and late coagulating (20 min < RCT ≤30 min). 
Partial least squares discriminant analysis (PLS-DA) 
was then performed on the calibration set and tested on 
the validation set using the DiscriMiner package of R 
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(Sanchez, 2013), and the performance of the model was 
assessed by calculating sensitivity, specificity, accuracy, 
balanced accuracy, and balanced error rate.

Descriptive statistics showed that all bulk milk sam-
ples coagulated within 30 min from rennet addition, 
which differed from the scenario of other studies on 
individual buffalo (Manuelian et al., 2017), cow (Dal 
Zotto et al., 2008; Visentin et al., 2015), and Sarda 
sheep (Puledda et al., 2017) milks, which reported be-
tween 4.8 and 16.8% of noncoagulating samples. Fat 
and lactose percentages for Comisana and Sarda breeds 
(Table 1) were in agreement with milk composition 
of the same breeds reported in the meta-analysis of 
Ferro et al. (2017), although those authors reported a 
lower protein content (5.77 and 5.22% for Comisana 
and Sarda, respectively). Milk of Comisana ewes had 
greater fat, protein, and casein percentages, SCS, RCT, 
a30, and TA and lower lactose percentage, k20, and pH 
than milk of Sarda ewes (Table 1). However, due to 
the lower number of samples available for Comisana 
compared with Sarda and the fact that it is difficult 
to quantify environmental factors using data from 
routine milk recording, a statistical comparison was 
not feasible to confirm breed differences. Indeed, the 
meta-analysis of Ferro et al. (2017) and the study of 
Claps et al. (2016) in bulk milk between Comisana and 
Sarda ewes reared in the same flock reported a similar 
milk composition for the 2 breeds. On the other hand, 
Duranti et al. (2003) observed a greater RCT and k20 
in Comisana than in Sarda bulk milk and a similar 
a30. Using individual milk samples of the Sarda breed, 
Pazzola et al. (2014), Manca et al. (2016), and Fer-
ragina et al. (2017) reported shorter RCT (from 8.62 to 
13.39 min) and k20 (from 1.75 to 1.95 min) and greater 
a30 (from 50.00 to 54.99 mm) compared with values 

in the present study. On the other hand, Puledda et 
al. (2017) reported a longer RCT (15.18 min), shorter 
k20 (1.75 min), and greater a30 (52.63 mm). In sheep 
bulk milk, Duranti et al. (2003) reported a shorter RCT 
(4.78 and 4.21 min, respectively), longer k20 (3.40 and 
2.47 min, respectively), and lower a30 (35.67 and 35.84 
mm, respectively) compared with values in the present 
study. Possible explanations for the differences between 
our results and those of Pazzola et al. (2014), Manca 
et al. (2016), Ferragina et al. (2017), and Puledda et 
al. (2017) are the greater chymosin proportion (80%) 
in the rennet used for MCP analysis in the mentioned 
studies and the different dilution (1.2%; wt/wt) in the 
case of Pazzola et al. (2014) and Ferragina et al. (2017). 
On the other hand, Duranti et al. (2003) used freeze-
dried samples that were reconstituted for the MCP 
determination instead of analyzing fresh milk.

Fitting statistics of the predicted models for MCP 
and acidity are presented in Table 2. To our knowledge, 
this is the first study to investigate the potential of 
FT-MIR spectroscopy to predict MCP and acidity in 
sheep bulk milk. Taking this issue into account, the 
comparison and discussion of the results regarding the 
same predicted traits is based on other species or in-
dividual milk samples. For all traits, the bias in the 
validation set did not differ from zero, and the slope of 
the linear regression of predicted on measured values 
differed from unity (P < 0.05). The greatest R2

ExV and 
RPD in external validation were reached for milk pH 
(0.77 and 2.14, respectively) and milk TA (0.66 and 
1.72, respectively), and the lowest R2

ExV and RPD were 
reached for a30 (0.02 and 1.01, respectively). Ferragina 
et al. (2017) reported a greater R2

ExV (0.63–0.83) for 
MCP in individual milk samples of Sarda ewes; how-
ever, they did not report the RPD statistics. Compared 

Table 1. Descriptive statistics of bulk milk technological and composition traits

Trait1

Overall

 

Comisana

 

Sarda

No. Mean (SD) Range2 No. Mean (SD) Range No. Mean (SD) Range

Milk coagulation traits            
 RCT, min 465 14.43 (5.72) 23.85  84 14.60 (6.77) 23.85  381 14.39 (5.47) 22.85
 k20, min 463 2.26 (0.55) 4.85  84 2.14 (0.54) 2.15  379 2.29 (0.55) 4.70
 a30, mm 449 49.54 (7.96) 43.10  83 49.90 (9.18) 43.10  366 49.49 (7.66) 40.20
Milk acidity            
 pH 459 6.55 (0.15) 0.85  81 6.51 (0.13) 0.56  378 6.55 (0.15) 0.85
 TA, SH°/100 mL 458 8.34 (1.10) 5.00  82 8.62 (1.11) 4.30  376 8.28 (1.09) 5.00
Milk composition, %            
 Fat 460 6.37 (0.81) 5.18  84 6.93 (0.87) 3.80  376 6.24 (0.75) 4.88
 Protein 464 5.76 (0.37) 2.01  84 6.12 (0.36) 1.46  380 5.68 (0.32) 1.73
 Casein 465 4.57 (0.32) 1.77  84 4.86 (0.32) 1.32  381 4.50 (0.29) 1.52
 Lactose 458 4.77 (0.16) 1.15  82 4.63 (0.18) 0.93  376 4.80 (0.14) 0.91
SCS 465 6.07 (0.35) 2.41  84 6.23 (0.19) 0.92  381 6.03 (0.37) 2.41
1RCT = rennet coagulation time; k20 = curd-firming time; a30 = curd firmness 30 min after rennet addition to milk; TA = titratable acidity; 
SH° = Soxhlet-Henkel degree.
2Range = maximum value − minimum value.
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with our findings, Manuelian et al. (2017) obtained 
slightly greater R2

ExV (0.27–0.35) and RPD (1.17–1.20) 
in external validation for MCP and similar R2

ExV (0.66–
0.76) and slightly lower RPD (1.71–2.08) in external 
validation for the acidity traits in individual buffalo 
milk. In individual cow milk, Dal Zotto et al. (2008) 
reported greater R2

CV and RPD in cross-validation for 
RCT (0.63 and 1.62, respectively) and a30 (0.45 and 
1.34, respectively), whereas De Marchi et al. (2009) 
obtained a comparable R2

CV for TA and pH (0.81 and 
0.77, respectively), and Visentin et al. (2015) calculated 
a slightly greater R2

ExV (0.46–0.55) and RPD in exter-
nal validation (1.35–1.49) for MCP. However, FT-MIR 
prediction models for MCP developed by the aforemen-
tioned authors reached an RPD that was less than 2.5, 
which is the minimum value commonly recommended 
to consider a prediction model fair enough for screen-
ing purposes (Williams, 2014). As a secondary method, 
FT-MIR prediction model accuracy is directly affected 
by the analytical error (De Marchi et al., 2014). There-
fore, the low accuracy (i.e., low R2

CV, R2
ExV, and RPD) 

of the proposed FT-MIR prediction models for MCP 
traits could be due to the lower instrumental repeat-
ability and reproducibility of the MCP determination 
in the laboratory compared with milk composition 
traits, as previously suggested by Duranti et al. (2003), 
Penasa et al. (2015), and Ferragina et al. (2017).

Although the RPD in external validation achieved 
for RCT was lower than 2.5, we decided to go ahead 
with the PLS-DA analysis because the thresholds to 
interpret RPD depend on the application of the predic-
tion models, the complexity of the matrix analyzed, 
and the difficulties with the reference analysis (Wil-
liams, 2014). Moreover, Manuelian et al. (2017) showed 
the feasibility of performing a rough screening in buf-
falo milk based on a prediction model for RCT with an 
RPD in external validation of 1.19, which is similar to 
the one obtained in our study. Results of the PLS-DA 
analysis conducted to assess the capability of the pre-
diction model to correctly classify milk samples accord-
ing to their coagulation ability are displayed in Table 3. 
About 62% of the samples in the calibration and valida-
tion sets were originally classified as mid coagulating, 
22% as early coagulating, and 16% as late coagulating. 
The greater number of samples in the mid-coagulating 
class agreed with the average value of RCT (Table 1). 
The distribution of samples across RCT classes was 
similar to that reported by Manuelian et al. (2017) us-
ing individual buffalo milk, where 45% of milks were 
classified as mid coagulating, 26% as early coagulating, 
and 14% as late coagulating. Those authors also had 
a class for the samples that did not coagulate within 
30 min (17% of the samples). The overall accuracy of 
the PLS-DA model to assign samples to the correct T
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original class of milk coagulation ability was slightly 
lower in the validation set (65.81%) than in the calibra-
tion set (74.43%; Table 3). This agreed with Manuelian 
et al. (2017), who also reported a lower accuracy in 
the calibration set than in the validation set in buffalo 
milk. The measures of performance of the model within 
each class showed that the calibration and validation 
sets performed similarly (Table 3). The ability to detect 
true positive (sensitivity) was high for mid-coagulating 
samples, moderate for early-coagulating samples, and 
low for late-coagulating samples. On the other hand, 
the PLS-DA model showed the highest specificity (true 
negative) for early- and late-coagulating samples and a 
moderate specificity for mid-coagulating samples. The 
accuracy of the model was higher for the early- and 
late-coagulating group than for the mid-coagulating 
group. However, the unbalanced number of samples 
in each class could have affected the sensitivity and 
specificity, leading to biased results. Thus, the bal-
anced accuracy was calculated and results revealed 
a slight decrease in accuracy for the early- and late-
coagulating samples and a slight increase in accuracy 
for the mid-coagulating samples. On the basis of the 
balanced accuracy, the prediction model could better 
detect early-coagulating samples than mid- and late-
coagulating samples. These findings were comparable 
with those observed in buffalo milk, where the highest 
number of correctly classified samples was observed for 
early-coagulating and noncoagulating milks and the 
lowest for mid- and late-coagulating milks (Manuelian 
et al., 2017).

In conclusion, in agreement with previous studies 
on prediction equations for MCP and acidity traits of 
buffalo and bovine milk, FT-MIR spectroscopy cannot 
replace the reference laboratory methods due to the 

moderate to low accuracy of prediction. Nevertheless, 
the discriminant analysis revealed that FT-MIR spec-
tra contained interesting information on MCP to make 
FT-MIR spectroscopy a tool for screening purposes to 
discriminate between early-, mid-, and late-coagulating 
milk. Further research is needed before this information 
can be exploited at the industry level to identify bulk 
milk with coagulation characteristics suitable for cheese 
production to improve milk transformation efficiency.
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