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Abstract—This paper reports on a new method for 

characterizing inter-modal isolation, power penalty and 
reception zone area of Helical Beam antennas.  As an example, an 
eight element circular patch array is fully characterized and its 
performance is critically assessed. Validation through beam 
measurements is accompanied with precise electromagnetic 
modeling using CFDTD computation on a GPU. 
 

Index Terms—Helical Beams, Near-Field Measurements, 
Antennas, CFDTD.  
 

I. INTRODUCTION 

ELICAL beams (HB) and the associated beam property 
referred to as Orbital Angular Momentum (OAM) [1] 

have generated considerable interest [2] in recent years and in 
consequence a wide diversity of proposals for so-called OAM 
antennas has appeared in the engineering and science 
literature, mostly over the last decade [3-11]. It has been 
mathematically demonstrated that communication range using 
a pair of transmit-receive OAM antennas will be limited, for 
example in [12] where link transmittance was derived as a 
function of distance and helical mode index. A further attempt 
to contribute to this mathematical debate [13] using aperture 
antenna theory predicts the far-field pattern and an expression 
for vorticity losses, known to be associated with beam 
divergence.  These treatments at radio-frequencies (RF) refer 
to the far-field without recourse to a mechanical angular 
momentum calculation, a property of the beam that would 
appear to be incidental at RF. Viewed from an Euler equation 
perspective, the HB is a quadrature combination in time of two 
spatially orthogonal transverse modes that propagate axially as 
a beam and excite the corresponding two modes in the HB 
receive antenna. For modal communication over air to be 
successful requires a sophisticated antenna that is capable of 
discriminating between multiple helical modes, for example 
using the fact that a ݉−cycle azimuth variation excites a  
radial Bessel variation ܬ௠ in a coaxial resonator in [6]. 

Helical beams can enable both frequency and polarization 
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diversity over distances that are best quantified in terms of the 
Rayleigh range, ݖோ =  ଴ is a radius calledݓ where ߣ/଴ଶݓߨ
beam waist. By comparison, the far-field distance is a 
boundary distance that is only 2.55 times the Rayleigh range, 
but the concept of far-field is usually understood as a distance 
much greater than this minimum value. As concluded in this 
paper, HB mode transmission using concentric modes could 
be extended to ten times the Rayleigh range for the first HB 
mode, at the sacrifice of efficiency.  

In terms of antennas, a popular OAM antenna typology is 
the uniform circular array (UCA), first suggested in [3]. One 
of the earliest examples having a small circular aperture array 
was the 8-element linearly polarized patch array [4] that emits 
a single ݉ = ±1 OAM mode.  Ring-resonators can also be 
used to create the angular mode, for example the circularly 
polarized OAM antenna in [5] can simultaneously emit both m = ±3 modes, but this relies on a reflector antenna to 
provide directivity. A multimode circularly polarized helical 
beam antenna design based on coaxial resonators was recently 
proposed in [6]. Collimated beam solutions based on radial 
line slots arrays (RLSA) [7] have been proposed for Bessel 
beam generation [8] and related OAM modes. Another beam 
technology borrowed from optics, the circularly corrugated 
flat plate structure, has recently been shown to support OAM 
modes [9] with the so called bull’s eye antenna. Many other 
approaches are currently being reported, such as Rotman 
lenses [10] and horn antennas [11]. 

This paper however deals with HB characterization, which 
is presented from the perspective of Fourier Optics [15] using 
a method with roots in antenna measurement theory [16]. 
Rigorous testing is performed with accurate S-parameter beam 
measurements referenced to detailed numerical simulation of 
the HB antenna. Beam purity is quantified in terms of inter-
modal and intra-modal isolation as a function of frequency, 
communication range and reception zone area. 

The antenna under test (AUT) is a set of matching antennas 
based on the eight element UCA of patches [4] that were 
supplied as fabricated units and serve here as a technological 
reference for what is presently available in the microwave 
bands. Since the AUT is only capable of emitting a single 
helical mode, three such antennas, two having mode ݉ = −1 
(M1) and one with mode ݉ = +1 (P1) are used to perform the 
equivalent measurements.  

Full electromagnetic simulation in three-dimensions 
(modeling)  is carried out to compare expected behavior with 
measurement in order to confirm that errors have been 
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correctly controlled. In particular the CFDTD method running 
on a GPU provides fast and accurate modeling of the input 
impedance and radiated helical beams, and permits a precise 
determination of dielectric constant and loss tangent of the 
substrate found in the AUT (FR-4), based on wideband 
comparison with measured S-parameters. Slot excitation is 
subsequently calculated accurately on the patch edges in order 
to explain performance.  

Beam measurements with a two-dimensional scanner are 
carried out to confirm calculated behavior and to determine 
mode purity coefficients or the so-called topological charge as 
a function of frequency. Correspondence between these modal 
purity coefficients and the inter-modal isolation obtained from 
laboratory S-parameter measurements is presented and in turn 
is compared with a new method based on convolution for 
completely characterizing inter-modal isolation, power penalty 
and reception zone area.  

II. HELICAL BEAM CHARACTERISTICS 

In the following we briefly outline three methods in which 
HB characteristics may be quantified in some sense. The first 
is commonly used in optics and involves the concept of 
topological charge (TC) [14]. It is useful for determining the 
helical mode content of a beam and the frequency dependence 
of each mode. The second method is a graphical 
representation based on beam profile plotted in polar 
coordinates and is commonly found in publications on OAM 
antennas. In addition to this graphical representation, the field 
amplitude variation ݂(߶) with azimuth angle ߶ can be 
quantified in a way similar to VSWR as | ௠݂௔௫|/| ௠݂௜௡| and the 
peak phase deviation can be calculated with respect to the 
modal variation ݁௝௠థ. Neither of the aforementioned methods 
directly quantifies the modal coupling and isolation in terms of 
received signal; they are essentially indirect indicators of 
beam performance. Additionally, modal coupling and isolation 
are not represented as a function of position in the transverse 
plane, although this could be calculated by changing the 
topological axis definition. Inspired by the measurement 
results presented in section V, a third method based on the 
convolution of the helical beam mode is proposed here to 
show how the position of greatest modal isolation drifts in the 
transverse plane as a function of frequency. Essentially, the 
optimum reception location is dependent on frequency when 
the antenna is behaving poorly in terms of beam purity. 

As inter-modal isolation requires two modes of the same 
order, and as the antenna under test supports only a single 
mode, a substitution method is used with two antennas of 
opposite mode number. Furthermore, since the beam quality 
of the AUT in this case is not ideal, the characterization of the 
2-D beam patterns demonstrate how inter-modal isolation and 
reception zone area change with frequency. 

A. Mode Purity of topological charge 

The mode purity coefficient ܿ௠(߱) at harmonic frequency ߱ for mode number ݉ is defined [14] for a single directional 
component ܧ௧(߱) of the vector electric field in the transverse 
plane cutting through the helical beam as 

 ܿ௟(߱) = ଶగ׬ ቚ భమഏ׬ ா೟(ఘ,థ)௘ೕ೘ഝௗథమഏబ ቚమఘௗఘಮబ ∯|ா೟|మௗ஺   (1) 

Inherent in this definition is an alignment of the topological 
z-axis through some point (ݔ଴,  in terms of ߩ ଴) that definesݕ
the transverse coordinates (ݔ,   .(ݕ
B. Beam Polar Profile 

The amplitude and phase of the helical beam profile is 
plotted in polar coordinates. The measurement is taken with a 
standard probe at a range that is sufficiently large to avoid 
antenna interactions, but sufficiently small to avoid truncation 
effects and is usually several antenna diameters distant. The 
amplitude and phase are plotted as a function of azimuth 
angle, where a polar radius is chosen that usually corresponds 
to maximum beam amplitude. The electrical beam center must 
previously have been calculated based on linear profiles in the 
horizontal and vertical axes. 

C. Mode Convolution Functions 

Planar near-field antenna measurement techniques [17] 
already establish the mathematical foundations for the signal 
received by a standard probe, in terms of an element by 
element product in K-space between plane-wave spectra of the 
probe and the AUT, which is a convolution in measurement 
space. In this particular application the signal field is received 
with a HB probe antenna having the corresponding helical 
mode, and the cross coupling measurement between modes 
requires the transmission of a particular helical mode and the 
reception of a distinct helical mode probe. The convolution in 
space is a field overlap integration that can be efficiently and 
accurately evaluated numerically by the fast Fourier transform 
(FFT). Measurement of modal isolation over the entire 
reception zone area is therefore easily calculated and its 
verification over the frequency band is a further measure of 
beam quality. 

In this new beam assessment method the mode beam pattern ୑݂ଵሬሬሬሬሬሬԦ for antenna M1 is measured in the transverse plane with 
an ideal probe at a distance 2/ݖ and this is convolved 

separately with the  ୑݂ଵശሬሬሬሬሬሬ and  ୔݂ଵശሬሬሬሬሬ probe patterns orientated in 
the negative z direction, as indicated by the arrows. By 
examination of Fig.1 (a) and (b),  the P1 probe pattern viewed 

in the negative z direction ୔݂ଵശሬሬሬሬሬ is identical to the M1 pattern 

viewed in the positive z direction ୑݂ଵሬሬሬሬሬሬԦ, then to calculate the 
received field pattern ெ݂ଵ௉ଵ at ݖ by probe antenna P1 we have, 
as shown in Fig.1 (d) and (f) 

 ெ݂ଵ௉ଵ(ݔ, ,ݕ (ݖ = ெ݂ଵሬሬሬሬሬሬԦ(ݔ, ,ݕ ⨂(2/ݖ ெ݂ଵሬሬሬሬሬሬԦ(ݔ, ,ݕ  (2) (2/ݖ

The M1 probe pattern viewed in the negative z direction  ୑݂ଵശሬሬሬሬሬሬ is a rotated version of ୑݂ଵሬሬሬሬሬሬԦ about the y-axis 

  ୑݂ଵശሬሬሬሬሬሬ(ݔ, ,ݕ (ݖ = ୑݂ଵሬሬሬሬሬሬԦ(ݔ, ,ݕ−  (3) (ݖ

The received field pattern with probe M1, as shown in Fig.1 
(c) and (e) is hence 

 ୑݂ଵ୑ଵ(ݔ, ,ݕ (ݖ = ୑݂ଵሬሬሬሬሬሬԦ(ݔ, ,ݕ ⨂(2/ݖ ୑݂ଵሬሬሬሬሬሬԦ(ݔ, ,ݕ−  (4) (2/ݖ
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As phase is accumulative in the convolution process then 
the ெ݂ଵ pattern is measured at 2/ݖ in order to calculate ெ݂ଵெଵ 
and ெ݂ଵ௉ଵ patterns at distance z. The convolution is performed 
with the FFT as follows where ृ is the Fourier transform  

 f⨂g = ृିଵ൫ृ(f)ृ(g)൯ (5) 

In practice antennas M1 and P1 may have slight differences 
due to fabrication and additionally when a waveguide probe is 
used the patterns should strictly be probe compensated using 
the measured waveguide probe pattern. However, since we are 
primarily interested in the paraxial performance for on-axis 
reception then we can omit this detail to good approximation. 

An ideal mode convolution function (MCF) corresponding 
to the measurement of ୑݂ଵ୑ଵ(ݔ, ,ݕ  can be calculated for a (ݖ
theoretical beam as follows. The beam scalar aperture field ܣ௠ for mode m  is described as 

 
Fig. 1.  Ideal beam patterns shown on a linear scale: (a) M1 and (b) P1 viewed 
in +z direction at half the distance z. (c) Real part of the MCF for M1-M1. (d) 
Real part of MCF for M1-P1. (e) Amplitude of MCF M1-M1. (f) Amplitude 
of MCF M1-P1 showing zero sign in central zone. 

,௠(ρܣ  z = 0) = exp(−ܽߩଶ) exp(݆݉߶) (6) 

This beam can be propagated a distance 2/ݖ in an 
approximate fashion using the propagation filter [15] ܪ(݇) in 
conjunction with the Fourier Transform, where 

,൫݇௫ܪ  ݇௬൯ = exp ቆ−݆ ௭ଶට݇଴ଶ − ݇௫ଶ − ݇௬ଶቇ (7) 

The field ௠݂(2/ݖ) at distance 2/ݖ is given by 

,ݔ)݂  ,ݕ (2/ݖ = ृିଵ ቀृ(ܣ௠)ܪ൫݇௫, ݇௬൯ቁ (8) 

where the size of the FFT determines the precision of the 
integration carried out in equation (8). An ideal MCF is then 
calculated with equation (2) or (4) and can be used for 

comparison in section V on beam measurements, where it is 
shown to agree well with antenna measurements at distances 
of 150 mm and 300 mm. Intermodal isolation is defined as ܫெ௉ଵ = 20 logଵ଴ ெ݂ଵ௉ଵ/ ெ݂ଵெଵ. Reception zone is defined here 
as the area over which intermodal isolation ܫெ௉ଵ is better than 
10 dB. Power penalty is defined here as the ratio of maximum 
power received over the beam extent to the power received in 
the reception zone. It is experimentally demonstrated in 
section V.D that MCF gives a good approximation of 
intermodal isolation, modal power penalty and reception zone 
area.  

III. THE HELICAL BEAM ANTENNA DESIGN 

A review of the design of the AUT is presented in the 
following in order to appreciate some design difficulties that 
will explain the non-ideal characteristics appearing later in 
measurements.  

A schematic of the M1 (݉ = −1) UCA antenna, which was 
reported in [4], is shown in Fig. 2a with corresponding 
parameters in Table I. The design approach was inspired by 
feeding the array of patches with a cyclic phase excitation ݁௝௠థ. However, in this design there is no possibility of 
independently exciting the opposite mode P1 (݉ = +1). 

 
Fig. 2a.  The eight element UCA of patch antennas (left) and first quadrant of 
connected patches (right). 
 

The feed network can be understood by dividing the array  
into 4 quadrants, where quadrant patch-pairs are fed with four 
identical power dividers orientated in the horizontal direction. 
The vertical location of the power divider provides a +45º 
phase difference at the respective patch inputs, when viewed 
in the anticlockwise sense for the antenna as shown. Since two 
corners are present in both paths, the required offset difference 
can be calculated to very good approximation for modes ݉ = ±1 as 

 L୫ = େଶ − ୈି୆ଶ − m ஛ౝଵ଺	 (3) 

where ߣ௚ is the microstrip wavelength at design frequency. 
 The first and third quadrants have a further +90 phase by 

virtue of the looped line segment on one branch of the 
transformer outputs. Quadrants three and four have an 
additional 180º as their corresponding patches are fed from the 
top edge. The patch phases are hence sequenced by +45º. The 

Reቀ P݂1ሬሬሬሬሬԦ(ݔ, ,ݕ ቁReቀ(2/ݖ M݂1ሬሬሬሬሬሬԦ(ݔ, ,ݕ ቁ(2/ݖ

+1

-1

+1

-1

+1

0

Re൫ M݂1M1(ݔ, ,ݕ ൯ Re൫(ݖ M݂1P1(ݔ, ,ݕ ൯(ݖ

| M݂1P1(ݔ, ,ݕ | |(ݖ M݂1M1(ݔ, ,ݕ  |(ݖ
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opposite helical mode ݉ = +1 with offset ܮାଵ has the looped 
lines swapped to the opposite quadrants; effectively a rotation 
of the structure by 180º with respect to the vertical axis. The 
vertical distance between horizontally orientated transformers 

as indicated in Fig. 2a should be exactly 
஛ౝ଼ = 2.134 mm at 

design frequency but was 2.24 mm in the design provided, 
corresponding to an difference of about 100 μm. The array 
radius is approximately 18 mm for each patch, where some 
adjustments appear to have been made in the design process 
[4]. The line ܮଵ characteristic impedance is approximately 100 
Ω and the corresponding transformer ܮଶ impedance is 70.7 Ω. 
The patch parameters (height, width and slot length) appear to 
have been designed for 200 Ω patch input impedance by 
mistake, resulting in a 25 Ω impedance at the input port.  

 

 
Fig. 2b.  The 3D model used in CFDTD calculations. 
 

Table I  
ANTENNA PARAMETERS AND DIMENSIONS (mm) ࣕ࢘ tanࡸࢃ ࢛ࢉࢀ ࢙ࢀ ࢾ૚ ࡸࢃ૛ ࢍࣅ૚૟ 

4.25 0.0175 1.55 0.035 0.707 1.652 1.074 
A B C D ܹ ܪ L 

3.3 3.34 9.04 5 6.5 7 4.764 

 

ANTENNA MODELING WITH CFDTD AND FEKO 

Helical beam antennas (HBA) are inherently electrically 
large structures and their modeling times are often 
inconveniently long on desktop computers. Here these times 
are further exacerbated when transmit and receive antennas 
are modeled as a transmit/receive pair. The advantage of 
CFDTD is that it is highly efficient when combined with a 
GPU [18] and is particularly suitable for modeling printed 
circuit board (PCB) antennas that are orientated along a grid 
plane, where dual PCB antennas are parallel and not separated 
by more than several antenna diameters.  The principal 
advantage of FEKO [19] is that it permits arbitrary orientation 
of the geometry. Accurate modeling with CFDTD on a Titan-
XP GPU have been reduced to under 3 minutes. CFDTD also 
covers an octave frequency range that is advantageous for 
electrical parameter estimation. For example, the economic 
FR-4 substrate is not well suited for 10 GHz operation because 
of its relatively high losses, and hence sufficiently accurate 
parameter values for dielectric constant and loss-tangent are 
not available at this design frequency. The antenna input 
impedance is sensitive to both these parameters as well as the 
mesh size used in the numerical modeling. Thus two distinct 

numerical simulators were employed in order to have 
confidence in both the level of numerical modeling errors and 
in the estimated electrical parameters.   

A. Modeling Input port S-parameters 

Fig.3 shows the level of accuracy attained in the modeling 
of the antenna input port S-parameter S11 using CFDTD and 
FEKO. In order to get such good agreement with 
measurement, it was found necessary to model the PCB tracks 
with the feed pin and coaxial connector as an integral part of 
the antenna model as shown in Fig. 2b. The feed pin of the 
SMA connector has a 1.3 mm internal diameter and the 
external length passing through the substrate is 0.7 mm 
diameter for connection to the 0.7 mm 100Ω lines ܮଵ of width ௅ܹଵ.  

 
Fig. 3.  The AUT |S11| parameters, showing comparison between VNA 
measurement, CFDTD and FEKO calculations. 

 

 
Fig. 4.  The AUT input impedance, showing comparison between VNA 
measurement and CFDTD calculation. 
 
 

 
(a) Planar near-field measurement system 

 
(b) WG Probe  

 
(c) M1 probe  

 
(d) P1 Probe 

Fig. 5.  Comparison of beams received at 9.6 GHz from a M1 antenna using 
the scanning system in (a) with probes: (b) Open ended waveguide, (c) 
Identical M1 antenna, (d) Mirror image P1 antenna. Intensity is shown on a 
22.5 dB range. Scan window is 500 mm. Scan distance is 300 mm.  
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(a) Waveguide probe. 

 
(b) M1 probe. 

 
(c) P1 probe. 

 
Fig. 6.  Reception of helical mode M1 with three probe types as indicated, for 
a scan distance of 300 mm, over 9 to 10.8 GHz. Scan window is 500 mm and 
grey-scale range is 22.5 dB (1.5 dB per grey level). Red indicates -3 dB. 
 

Fig. 4 shows the corresponding input impedance of the 
antenna referenced to the input plane of the SMA connector, 
confirming that the real part of the impedance is close to 25 Ω 
between 9 GHz and 10 GHz, which indicates a patch antenna 
input impedance of about 200 Ω. Subsequently performed 
beam measurements confirm that the best helical beam 
frequency is 9.6 GHz. 

IV. BEAM MEASUREMENTS 

The system shown in Fig. 5 consists of a Galil  controlled 
precision Newmark double axis planar scanner and an Agilent 
PNA-X network analyzer measuring S21 from 9 GHz to 11 
GHz in 100 MHz steps over a 500×500 mm scan window, 
with a scan time of approximately 50 minutes. Measurements 
were performed at 150 mm and 300 mm from the antenna 
(corresponding to 2.29 and 4.58 times the Rayleigh range for 
an equivalent beam waist radius of 25 mm). As shown in Fig. 
5, three types of probe antenna were used in sequential sets of 
measurements; a rectangular open-ended waveguide probe, a 
M1 antenna probe and a P1 antenna probe. The colored inset 
beam profiles at 300 mm shown in Fig. 5 correspond to the 
frequency 9.6 GHz of best performance in terms of beam 
uniformity. As indicated qualitatively by the color-tables in 
Fig. 5 and later in detail in both Fig. 12 and Fig. 13, at 300 

mm distance the M1 received signal drops by approximately 7 
dB at the center but the P1 received signal is about 15 dB 
below this over an area corresponding to the size of the 
antenna. This means that the intermodal isolation between 
modes ݉ = ±1 is approximately 15 dB between 9.6 and 9.8 
GHz, although there is a penalty of about 7 dB with respect to 
maximum received signal which is practically identical for 
probes M1 and P1. A linear dipole would therefore not be able 
to distinguish between either the M1 or P1 modes even though 
it would receive a strong signal at a radius of 60 mm as 
indicated in Fig. 7. Included in Fig. 7 are the cross-polar levels 
for the M1 antenna, which are more than 15 dB down with 
respect to co-polar levels. 

The frequency variation of the mode patterns is shown in 
Fig. 6 for illustration purposes over a frequency range (9 GHz 
to 10.8 GHz) much larger than the expected impedance 
bandwidth of the patch array. It illustrates the fact that the 
central null in M1-P1 begins to split into two components 
from about 200 MHz either side of 9.7 GHz. This means that 
the position for optimum inter-modal isolation, and best 
reception zone area, is frequency dependent with a positional 
drift in the order of several antenna diameters. Some reflection 
effects from the table are apparent in the beam measurements, 
particularly below 9.5 GHz in the case of probes M1 and P1, 
where their off-axis radiation patterns are substantially worse 
at these frequencies. The expected circularly symmetric 
doughnut shape of the M1 beam is substantially distorted by 
the relatively poor VSWR of the patch array excitation. 

A. Patch excitation determined by CFDTD 

The CFDTD predicted patch excitation viewed at a small 
distance from the patch slots that are opposite their respective 
feeding lines is useful for antenna tuning. Fig. 8 shows the 
variation in patch excitation field for the 10 GHz design 
frequency is a high VSWR of 2.86 with a corresponding phase 
error range of -18/+24 degrees. At 9.6 GHz the situation is 
25% better with a VSWR of 2.2 but the phase error range of -
30/+18 degrees is worse. Because of the small array radius of 
18 mm, the feed network is excessively close to the patches 
and in particular line C strongly couples to its adjacent patch. 
The line corners also contribute strongly to the high VSVR on 
the feed lines, which as a result causes the non uniform and 
frequency sensitive patch excitation seen in Fig. 8. This 
explains the degraded elliptical shape of the helical beam that 
was seen in Figure 5(a).  The optimum frequency is 4% below 
design frequency, because of the inaccurate value of dielectric 
constant used in the design.   

B. Beam polar profile 

The measured beam amplitude and phase polar variation 
over a circle of radius 60 mm is shown in Fig. 9 and 
demonstrates that at a distance of 150 mm the beam amplitude 
has a VSWR of 1.75 at 10 GHz and corresponding phase error 
range of −25/+36 degrees. This agrees well with the CFDTD 
predicted patch excitation at 10 GHz. Interestingly in Fig. 9 
(b) at 9.6 GHz the measured VSWR is reduced by 30% to 1.22 
while the phase errors are now smaller with a range of -22/+28 
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degrees. Given the limitations on space for the UCA feed 
network, it appears to be very difficult to reduce both 
amplitude and phase errors simultaneously. 

 

 

 
Co-Polar 

 

 
Cross-Polar 

Fig. 7.  Beam profile M1 measured at 9.6 GHz with an open-ended WG probe 
at a scan distance of 300 mm. Colored plots (22.5dB range) show real, 
imaginary (left) magnitude and phase (right). 

(a) 10 GHz 

 

(b) 9.6 GHz 

Fig. 8.  CFDTD modeled electric field viewed at the eight radiating patch 
edges opposite their respective feed lines;  

 (a) 10 GHz (b) 9.6 GHz 

Fig. 9.  Measured electric field at a distance of 150 mm using a waveguide 
probe. Polar radius is 60 mm. 
 

C. Mode Purity of Topological Charge (TC) 

The expected TC derived from CFDTD calculations is 
shown in Fig. 10 where a frequency of approximately 9.5 GHz 
appears as optimum in the sense of intermodal isolation. 
Quantitatively, the mode coupling calculated as ܥ -ାଵ has a level of -15 dB that agrees well with Sܥܶ/ଵିܥܶ=
parameter measurements. The TC derived from the measured 
beam patterns is shown in Fig. 11 and follows the same trend 
as CFDTD predictions.  

D. Mode Convolution Functions (MCF) 

The objective here is to demonstrate by comparison with 
measurements that a simple calculation of the MCF using an 
ideal aperture, as described in section II.C, is sufficient to 
obtain the intermodal isolation as well as the power penalty 
and the reception zone width. Comparisons are shown in Fig. 

12 for the 150 mm scan distance and in Fig. 13 for the 300 
mm scan distance. In the calculation of MCF an equivalent 
aperture radius of 25 mm, which is 10% greater than the 
maximum extension of the patch slots, was chosen to fit the 
measured data, with a negative Gaussian amplitude coefficient 
in equation (6) of ܽ = −10ଷ	mିଶ to produce a ring of field. 
Allowing for the fact that the experimental M1 beam is not 
circularly symmetric, the MCF calculations at both distances 
conform very well with measurements. This in turn will allow 
intelligible predictions for the performance of larger arrays at 
higher frequencies. 

 
Fig. 10.  Topological Charge (TC) calculated from Ex field component 
simulated by CFDTD for the M1 beam (left) and corresponding Cross 
Coupling (right). The [ideal] probe is at 60 mm from the M1 aperture. 

 
Fig. 11.  Topological Charge (TC) calculated from measured copolar field 
component for the M1 beam at 150 mm (left) and 300 mm (right).  

 

 
M1-M1 

 

 
M1-P1 

Fig. 12.  Reception with a helical mode probe, measured at a scan distance of 
150 mm (≈  ோ). Transmitting mode M1 at 9.6 GHz and receiving eitherݖ2
mode M1 or mode P1. MCF refers to the Mode Convolution Function for an 
ideal beam. Scan axis (x) is vertical in the color beam patterns. 

V. DISCUSSION 

With the high level of precision obtained in the modeling of 
input S-parameters, there appears to be a correspondingly high 
level of agreement between beam measurements and CFDTD 
calculated field, for both TC and MCF beam classification 
methods outlined in section II.C. It is more difficult to judge 
final performance from the beam polar profile presentation, 
but this is nevertheless very convenient for antenna tuning.  As 
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the AUT used is not ideal, MCF would appear to be a practical 
test method for classifying helical beam characteristics. 
 

 

 
M1-M1 

 

 
M1-P1 

Fig. 13.  Reception with helical mode probes, measured at a scan distance of 
300 mm. Transmitting mode M1 at 9.6 GHz and receiving mode M1 or mode 
P1. MCF refers to the Mode Convolution Function for an ideal beam, 
calculated with a 512×512 point FFT. 
 

Calculations with the MCF indicate that the power penalty 
at a range equal to twice the Rayleigh distance is 
approximately zero dB. At this range the reception width 
(defined for better than 10 dB isolation) is 0.88 times the 
effective aperture diameter. Beyond a radius of this width it is 
impossible to discriminate HB modes. This means that for this 
technology to work well the HB modes should be concentric 
such as in the design in [6]. At less than twice the Rayleigh 
range the power penalty is negative and the antenna system is 
efficient, behaving as a quasi-optical beam system. At four 
times the Rayleigh range the power penalty is approximately 6 
dB and the reception width (vortex width) is 1.18 times the 
effective aperture diameter.  

The vortex of the AUT is elliptical in shape and this rotates 
with frequency because of the errors in both patch dimensions 
and network design.  The values of ߳௥ and tanδ obtained from 
CFDTD have been used in an improved prototype that 
behaves correctly and will be reported in future work. 

In an attempt to extrapolate M1/P1 performance to higher 
frequencies and larger apertures, consider doubling the 
aperture diameter to 100 mm, which at 330 GHz would have a 
Rayleigh range of ݖோ = 8.6 m and at a range of 10ݖோ = 86 m 
the ideal case power penalty would be 16 dB with a reception 
zone width of 150 mm for greater than 15 dB inter-modal 
isolation. 

VI. CONCLUSIONS 

A thorough numerical analysis of the prototype antennas 
using CFDTD to determine PCB board parameters and FEKO 
to verify modeling through independent numerical method has 
in turn enabled the verification of measurements with a planar 
scanner. Insight into some design flaws and their effect on 
beam purity have been gained during the process, in particular 
the limited space for the feed network and its inherent 
asymmetry lead to the formation of standing waves on the 

feed lines and corresponding variation in patch excitation, 
which appears to be difficult to control in practice.  

The measurement of helical beam patterns with two 
opposite mode helical beam probes has inspired a new method 
for assessing the performance of the radio-link, referred to 
here as the Mode Convolution Function. This function can be 
calculated using measured beam patterns with a waveguide 
probe or for an ideal aperture of equivalent radius. As the 
calculation is FFT based, a good estimate of intra-modal 
isolation, power penalty and reception zone area can be 
achieved quickly.  

MCF calculations suggest that a link distance of ten times 
the Rayleigh range may be possible if a power penalty of 16 
dB can be tolerated, provided HB modes are concentric. 
However, for optimum link performance with on-axis peak 
reception the link distance is less than twice the Rayleigh 
range. 

This paper was auto-limited to considering only mode 1 
antennas because of the available test antennas but the 
assessment method could be applied to any mode or 
polarization. 

REFERENCES 
[1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “ 

Orbital angular momentum of light and the transformation of Laguerre-
Gaussian laser modes”, Phys. Rev. A Vol. 45, Iss. 11, pp. 8185-8189, 
June 1992. 

[2] O. Edfors, A.J. Johansson, “Is Orbital Angular Momentum (OAM) 
Based Radio Communication an Unexploited Area?”, IEEE Trans. 
Antennas Propag, Vol. 60, Nº. 2, pp. 1126-1131, Feb 2012. 

[3] B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T.D. Carozzi, Y. 
N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon 
orbital angular momentum in the low-frequency radio domain,” Phys. 
Rev. Lett., vol. 99, no. 8, pp. 087701-1–087701-4, Aug. 2007. 

[4] Q. Bai, A. Tennant, E. Cano, B. Allen, “An experimental phased array 
for OAM generation”, Antennas and Propagation Conference (LAPC), 
2014 Loughborough, Nov. 2014. 

[5] Z. Zhang, S. Xiao, Yan Li, and Bing-Zhong Wang, “A Circularly 
Polarized Multimode Patch Antenna for the Generation of Multiple 
Orbital Angular Momentum Modes”, IEEE Antennas Wireless Propag. 
Lett., Vol. 16, pp. 521-524, 2017. 

[6] G. Junkin, "A Circularly Polarized Single Frequency Multimode Helical 
Beam Antenna", IEEE Transactions on Antennas and Propagation (Early 
Access), Pages 1-1, DOI: 10.1109/TAP.2018.2883652, 28 November 
2018. 

[7] M. Albani, A. Mazzinghi, and A. Freni, “Automatic design of CP-RLSA 
antennas,” IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5538–
5547, Dec. 2012. 

[8] D. Comite, G. Valerio, M. Albani, A. Galli, M. Casaletti, and M. Ettorre, 
“Exciting Vorticity Through Higher Order Bessel Beams With a Radial-
Line Slot-Array Antenna”, IEEE Trans. Antennas Propag., Vol. 65, Nº. 
4, pp. 2123-2128, April 2017. 

[9] Clement J. Vourch, Ben Allen, Timothy D. Drysdale, “Planar 
millimetre-wave antenna simultaneously producing four orbital angular 
momentum modes and associated multi-element receiver array”, IET 
Microw. Antennas Propag, Vol. 10, Iss. 14, pp. 1492–1499, 2016. 

[10] Chen Xu, S. Zheng, W. Zhang, Y. Chen, Hao Chi, X. Jin, and X. Zhang, 
"Free-Space Radio Communication Employing OAM Multiplexing 
Based on Rotman Lens", IEEE Microw. Wireless Compon. Lett., Vol. 
26, Nº. 9, pp. 738-740, Sept. 2016. 

[11] Wenlong Wei, Kourosh Mahdjoubi, Christian Brousseau, Olivier Emile, 
"Horn antennas for generating radio waves bearing orbital angular 
momentum by using spiral phase plate", IET Microw. Antennas Propag., 
Vol. 10, Iss. 13, pp. 1420–1427, 2016. 

[12] C. Craeye, “On the Transmittance Between OAM Antennas”, IEEE 
Trans. Antennas Propag., VOL. 64, Nº. 1, Jan. 2016, pp. 336-339. 

-60

-50

-40

-30

-250 -150 -50 50 150 250

|S
21

| (
dB

)

y (mm)

M1M1 M1P1 MCF-M1 MCF-P1

-60

-50

-40

-30

-250 -150 -50 50 150 250

|S
21

| (
dB

)

x (mm)

M1M1 M1P1 MCF-M1 MCF-P1



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

8

[13] A. F. Morabito, L Di Donato, and T. Isernia, "Orbital Angular 
Momentum Antennas: Understanding Actual Possibilities Through the 
Aperture Antennas Theory ", IEEE Antennas Propag. Mag., Vol. 60, 
Issue 2, pp. 59-67, Apr. 2018. 

[14] Yu Wang, Peng Zhao, et.al. “Integrated photonic emitter with a wide 
switching range of orbital angular momentum modes”, Scientific 
Reports | 6:22512 | DOI: 10.1038/srep22512, pp. 1-9, 2016. 

[15] Goodman, J.W., "Introduction to Fourier Optics", McGraw-Hill, 1st 
Edition, 1968, (Physical and Quantum Electronics Series). ISBN ISBN-
13: 978-0070237766. 

[16] D.T. Paris, W.M. Leach, E.B. Joy, "Basic Theory of Probe-Compensated 
Near-Field Measurements", IEEE Trans. Antennas Propag., Vol. AP-26, 
Nº.3, May 1978, pp. 373-379. 

[17] A.C. Newell, R.D. Ward, E.J. McFarlane, " Gain and Power Parameter 
Measurements Using Planar Near-Field Techniques", IEEE Trans. 
Antennas Propag., Vol. AP-36, Nº.6, June 1988, pp. 792-803. 

[18] G. Junkin, A. Tennant, “Coefficient compression techniques for 
conformal FDTD on CUDA devices”, Numerical Electromagnetic and 
Multiphysics Modeling and Optimization for RF, Microwave, and 
Terahertz Applications (NEMO), 17-19 May 2017. 

[19] FEKO https://altairhyperworks.com/product/FEKO. 
 

Gary Junkin (M’98) was born in Ireland in 
1960. He received the BEng in electronic 
engineering with communications and PhD in 
microwave holographic imaging of sub-
surface cables, both degrees from the 
University of Sheffield, Sheffield UK in 1982 
and 1986 respectively. He is currently with the 

Department of Telecommunications and Systems Engineering 
at the Autonomous University of Barcelona, Catalonia, which 
he joined in 2002 after a 3 year spell in industry.  From 1989 
to 1999 he was a lecturer at the Department of Electronic and 
Electrical Engineering, University of Sheffield, UK. His 
interests include millimeter-wave holography, phase retrieval, 
conformal FDTD, mesh generation, and electromagnetic 3D 
modeling and time-marching field visualization with GPUs. 
 

Josep Parrón was born in Sabadell (Spain) in 
1970. He received the Telecommunication 
Engineer degree and the Doctor Engineer 
degree from the Universitat Politècnica de 
Catalunya (UPC), Spain, in 1994 and 2001, 
respectively. Since 2002, he has been a 
lecturer in the Department of 
Telecommunication and Systems Engineering 

at the Universitat Autònoma de Barcelona (UAB), Spain. His 
research interests include numerical methods for 
electromagnetism, antenna design and phased arrays. He is the 
author or coauthor of more than 80 technical journal articles 
and conference papers. 


