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Abstract 

 

The characterization of Random Telegraph Noise (RTN) signals in Resistive Random 

Access Memories (RRAM) is a challenge. The inherent stochastic operation of these 

devices, much different to what is seen in other electron devices such as MOSFETs, diodes, 

etc., makes this issue more complicated from the mathematical viewpoint. Nevertheless, 

the accurate modeling of these type of signals is essential for their use in digital and analog 

applications. RTN signals are revealed to be linked to the emission and capture of electrons 

by traps close to the conductive filament (CF) that can influence resistive switching (RS) 

operation in RRAMs. RTN features depend on the number of active traps, on the 

interaction between these traps at different times, on the occurrence of anomalous effects, 

etc. Using a new representation technique, the Locally Weighted Time Lag Plot (LWTLP), 

a highly efficient method in terms of computation, data from current-time (I-t) traces can 

be represented with a pattern that allows the analysis of important RTN signal features. In 

addition, Self-organizing maps (SOM), a neural network devoted to clustering, can be 

employed to perform an automatic classification of the RTN traces that have similar 

LWTLP patterns. This pattern analysis allows a better understanding of RTN signals and 

the physics underlying them. The new technique presented can be performed in a 

reasonable computing time and it is particularly adequate for long (I-t) traces. We introduce 

here this technique and the most important results that can be drawn when applied to long 

RTN traces experimentally obtained in RRAMs. 

 

Keywords: resistive memories, RRAM, RTN, LWTLP, neural network, self organizing 

maps, random telegraph noise 
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1.- INTRODUCTION 

New emerging non-volatile memory technologies are getting wide attention among 

electronics manufacturers and the academic community. These new devices show a set of 

advantages that makes the viability of high-performance and cost-effective applications a 

reasonable possibility [1-4]. The applications are not only linked to non-volatile storage-

class memory modules but also to neuromorphic circuits and hardware security 

implementations [2, 5-7]. The growing prominence of mobile devices and the popularity 

of Internet-of-things (IoT) is pushing the technology towards the use of devices such as 

RRAMs that can be easily scaled and show fast read and writing times, low power 

operation, non-volatility and CMOS compatibility.  

A resistive memory is made of metal or highly doped semiconductor electrodes and a 

dielectric in between the electrodes that can be fabricated by different types of oxides and 

even 2D materials. A wide variety of materials has been employed for dielectric and 

electrodes [1, 2]. These devices have been successfully used at the integrated circuit level 

with a promising degree of scalability [8-10]. However, prior to massive industrial use, key 

issues such as variability and reliability have to be improved. In addition, characterization 

and modeling have to be pushed forward. Although great efforts from the physical 

simulation [3, 11-17] and compact modeling [18-22] have been made, new studies in terms 

of characterization and modeling are needed. With respect to modeling, noise is a 

significant issue to deal with, in particular RTN, a noise source that is important in RRAMs 

[5, 23-27].  

The CF creation and rupture gives rise to resistive switching (RS) operation. The 

presence of single or multiple traps inside or close to the CFs influences charge conduction 

and produces current fluctuations that can lead to RTN [23-25]. These fluctuations can 

reduce noise margin in memory cell arrays [24, 25] or affect the analog behavior of the 

devices necessary to mimic electronic synapses in neuromorphic circuits [28], posing 

important hurdles to the use of these devices in highly-scaled integrated circuits. RTN 

fluctuations can also be beneficial, for instance, when used as entropy sources in random 

number generators [23, 29, 30]. 
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Several methods to characterize RTN can be found in the literature [24, 25, 27, 31- 35]. 

Different facets of RTN signals can be studied making use of them; however, if long (I-t) 

traces are considered some of these procedures are not appropriate due to their heavy 

burden from the computational viewpoint. We have recently presented a methodology 

based on the Locally Weighted Time Lag Plot (LWTLP) [25]. This new method allows a 

quick analysis of (I-t) RTN signals.  

Making use of an experimental (I-t) trace as a starting point, a pattern based on the 

LWTLP is obtained that produces information about the current levels, their frequency, the 

transitions between different current levels, etc [25, 32, 36]. In a long trace, different 

characteristic patterns can be obtained if the trace is divided in regular time intervals, since 

the traps that influence current fluctuations get activated or deactivated as the measurement 

goes on. In this respect, the number of active traps, i.e., the different RTN current levels, 

evolve with time. If a long (I-t) trace with millions of measurements is divided in time 

windows, we would obtain a characteristic pattern for each of these windows. The question 

that reasonably comes up is connected with the possibility of repetition of certain patterns, 

or if any pattern could be characterized by a finite set of patterns. In implementing this 

analysis, we enter in the data mining/machine learning realm and in particular we deal with 

a (unsupervised) clustering problem. We have adopted in this work an Artificial Neural 

Network (ANN) approach using Self-Organizing Maps (SOM), also known as Kohonen 

networks [37, 38]. SOM has been employed instead of k-Means approach [39] due to the 

topology preservation and 2-D visualization (as a map) properties.  

The paper scheme is the following, section II describes the device fabrication and 

measurement procedures and section III is devoted to a summary of some of the techniques 

to analyze RTN signals. In section IV, the new technique is explained and in section V the 

main results are discussed. Finally, the conclusions are drawn in Sec. VI. 

 

2.- DEVICE FABRICATION AND MEASUREMENT 

The fabricated devices were based on the Ni/HfO2/Si stack, with n-type silicon with 

a resistivity of (7-13) mΩ·cm. A 20nm-thick HfO2 layer was deposited by ALD at 498K 
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using TDMAH and H2O as precursors. The structures are 5x5μm2 square cells. The cross-

sectional view of the device is shown in the inset of Figure 1. More detailed information 

about the fabrication process flow is given in Refs. [40, 41]. 

The current was recorded in the time domain by means of a HP-4155B 

semiconductor parameter analyzer. The voltage was applied to the top Ni electrode, while 

the Si substrate was grounded. Both, the I-V curves for the forming process and RS cycles 

were measured making use of ramped voltage signals (some set/reset curves are shown in 

Figure 1). Two clearly differentiated resistive states were detected (see Figure 1). The low 

resistance state (LRS) shows up when the CF is fully formed and the two electrodes are 

shorted; if the CF is ruptured in a reset process, the device conductance drops off resulting 

in the high resistance state (HRS).  
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Figure 1. Current versus applied voltage for different set and reset cycles (#55, #46 and #47) within a long 

RS series of more than a thousand curves, ICC=100µA. Inset: device schematic cross section. The device 

operation region where RTN signals are measured is highlighted. 

 

RTN data were measured in the HRS at a constant bias of VRRAM=-0.5V for time 

intervals of several seconds (thousands of data were measured). The RTN signals were 

recorded by an automatic algorithm that considers the previous measured data making use 

of a smart procedure (a Matlab® software tool was employed to control the 
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instrumentation) [41, 36]. Figure 2 shows a long register of approximately 1.2 million 

samples obtained for 10500 seconds and the details of two time intervals of 10 seconds 

(where typical RTN signals can be recognized).  
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Figure 2: Current versus time for the HRS of Ni/HfO2/Si devices at VRRAM=-0.5V (more than 1.2 million data were 

measured in 10500 seconds). Zoomed in plots of RTN in two time windows are also shown. 

 

 

 

3.- REVISION OF RTN ANALYSIS TECHNIQUES 

 

The basic RTN signal representation consist of a current versus time plot. The trace 

consist of a series of points (𝐼𝑖 , 𝑡𝑖), where 𝑖 ∈ [1,𝑁], being 𝑁 the number of sampled data. 

In a basic plot it is easy to identify the number of current levels involved; in addition, a 

rough estimation of the more likely current states in a certain time window can be 

performed visually, see for instance Figure 3a (the description of the symbols employed in 

the Figure is presented in Table I) where a two-level RTN signal is shown in trace#640 

(the original (I-t) trace was divided in 1203 intervals, from trace#1 to trace#1203). The 

current levels were labeled as states 0 and 1 (55nA and 72nA respectively), the 0 state 

being more stable than the 1 state. If the number of sampled data is high or the signal is 
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very complex, including many current levels, irreversible states, background noise, etc., 

this type of plots is not adequate since much of the statistical information is not described.  
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Figure 3. Different analysis methods for RTN signals. a) Current at VRRAM=-0.5V versus time, trace #640 

(1000 samples), b) Time lag plot (TLP) [31], c) Radius time lag plot (RTLP) [34], the most likely state is 

𝑃𝑟(0) presented by points in black, state 1 with a relative probability 𝑃𝑟(1) close to 0.2 is shown in yellow, 
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d) WTLP (M=200 points, α=0.1) [32,33], e) LWTLP (M=200 points,  M5x5, 𝜎𝑓 = 1.5) [25], f) dLWTLP 

(M=200 points, M5x5, 𝜎𝑓 = 1.5)  [35]. 

 

A step ahead from the direct current trace plot is the Time Lag Plot (TLP), a 

representation method to easily visualize some RTN features. In this type of plot, the 𝐼𝑖 1 

current level versus the previous value, 𝐼𝑖, is plotted [31], see Figure 3b. The stable current 

levels appear as points clusters along the diagonal of the TPL graph (𝐼𝑖 1 = 𝐼𝑖), while 

transitions between the current levels show up outside this diagonal. Figure 3b shows the 

TLP of trace#640, where two clusters represent states 0 and 1 shown in Figure 3a. Few 

points outside the diagonal correspond to the transitions from state 0 to state 1, 𝑡0−1, and 

the transitions from state 1 to 0, 𝑡1−0. State 0 is described by a cluster with a greater number 

of points and also with greater dispersion than the cluster that describes state 1 (𝛿0 > 𝛿1). 

 

a.- An alternative to improve the TLP features, known as the Radius Time Lag Plot (RTLP) 

incorporates a method to visualize the likelihood of occurrence of a point in the TLP 

(Figure 3c). The value associated to a given position (𝐼𝑖 , 𝐼𝑖 1) depends on the number of 

counts in the neighborhood 𝜉(𝑖, 𝑗), within a region described by a given radius, 𝑟, [34]. In 

that manner, the areas with a higher point concentration are highlighted. The method can 

be described by Equations 1 and 2, 

𝐴(𝐼(𝑖), 𝐼(𝑖 + 1)) = ∑ 𝜉(𝑖, 𝑗)

𝑁−1

𝑗=1

 (1) 

𝜉(𝑖, 𝑗) = {
1 𝑖𝑓 𝑑{(𝐼(𝑗), 𝐼(𝑗 + 1)), (𝐼(𝑖), 𝐼(𝑖 + 1))} ≤ 𝑟

0 𝑖𝑓 𝑑{(𝐼(𝑗), 𝐼(𝑗 + 1)), (𝐼(𝑖), 𝐼(𝑖 + 1)}) > 𝑟
 (2) 

 

where 𝑁 is the number of samples (measured points in a (I-t) trace), 𝑑 is the Euclidean 

distance function. The plot shows the same points as in the TLP (Figure 3b) but a colour 

map is employed to represent the number of points in the determined neighborhood (Pr, 

the relative probability normalized to unity is used).  
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Table I. Description of the symbols employed in Figure 3.  

Mark Description 

1/0 stable states corresponding to the high/low current levels  
𝑰𝟏 (𝑰𝟎) Mean current values corresponding to the high/low current levels  
𝚫𝑰 Difference between the high and low current levels 

𝒕𝟎−𝟏 (𝒕𝟏−𝟎) Transition of low-high (high-low) current states 
𝜹𝟏 (𝜹𝟎) Variability of the high (low) current states 

𝝉𝒆 (𝝉𝒄) Emission (capture) times 

𝒑𝟎 
Current switch between stable current levels. It is obtained for stable levels, 
0 or 1 

𝒑𝟏 
Beginning of the current transition from state 0 to state 1. The i-derivative 
is close to cero, while the following (i+1-derivative) is positive. 

𝒑  
End of transition revealed by p1 (from 0 to 1). The i-derivative is positive, the 
i+1 one is close to cero. 

𝒑𝟑 
Beginning of the current transition from state 1 to state 0. The i-derivative 
is close to cero, while the following (i+1-derivative) is negative. 

𝒑𝟒 
End of the transition revealed by p3 (from 1 to 0 states). The i-derivative is 
negative, the i+1-derivative one is close to cero. 

𝒑𝟓 
Spike between states 0-1-0. It reveals a duration in the 1 state shorter than 
two sampling time steps.  

 

 

b.- The Weighted Time Lag Plot (WTLP) calculates the occurrence probability in a given 

position of the TLP space considering the occurrences in the rest of positions in the graph 

by means of the bidimensional Gaussian distribution (BGD) [32, 33, 42]. It reduces the 

data space (𝐼𝑖 , 𝐼𝑖 1) of a trace to a 𝑀×𝑀 matrix (𝑀 <  𝑁); that is, for each position (𝑥, 𝑦), 

the probability is calculated as a weighted sum of all the sampled data (𝐼𝑖 , 𝐼𝑖 1). The 

weights are given by the distance to each occurrence and the corresponding value of the 

BGD. The mathematical methodology can be described by Equation 3 [32], 

𝜓(𝑥, 𝑦) =
𝑘

2𝜋𝛼2
∑exp (

 [(𝐼𝑖  𝑥)
2 + (𝐼𝑖 1  𝑦)

2]

2𝛼2
)

𝑁−1

𝑖=1

 (3) 
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The values of 𝑥 and 𝑦 depend on the range of values to represent and the numbers of 

points in the matrix accordingly to Equation 4. 

(𝑥, 𝑦) = (
�̂�

𝑀  1
(𝐼𝑚𝑎𝑥  𝐼𝑚𝑖𝑛) + 𝐼𝑚𝑖𝑛 ,

�̂�

𝑀  1
(𝐼𝑚𝑎𝑥  𝐼𝑚𝑖𝑛) + 𝐼𝑚𝑖𝑛) (4) 

where �̂� e �̂� are the indices of the matrix of values to be displayed (�̂� = 0, 1,…𝑀  

1  ;  �̂� = 0, 1, …𝑀  1), and 𝐼𝑚𝑎𝑥 e 𝐼𝑚𝑖𝑛 are the maximum and minimum current values 

used in the plot. Figure 3d shows the WTLP of the trace #640 in logarithmic scale with a 

value of M=200. The state with the higher probability of occurrence can be easily 

visualized in the main diagonal making use of a color map. Both methods (RTLP and 

WTLP) are computationally expensive.  

 

c.- The LWTLP reduces the space (𝐼𝑖 , 𝐼𝑖 1) to 𝑀 ×𝑀 points (𝑥, 𝑦) [25], like the method 

WTLP (Equation 4 to discretize the space (𝐼𝑖 , 𝐼𝑖 1) can be also used here). For the WTLP 

case, instead of calculating for each point (𝑥, 𝑦) the contribution of all the points (𝐼𝑖 , 𝐼𝑖 1) 

weighted by BGD, the coordinates (�̂�, �̂�) are determined for each of the 𝑁  1 pairs of 

points (𝐼𝑖,𝐼𝑖 1) by the following equation: 

(�̂�, �̂�) = (𝑖𝑛𝑡 (𝑀
𝐼𝑖  𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥  𝐼𝑚𝑖𝑛

) , 𝑖𝑛𝑡 (𝑀
𝐼𝑖 1  𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥  𝐼𝑚𝑖𝑛

)) (5) 

where 𝑖𝑛𝑡(𝑥) is the function that returns the integer closest to 𝑥. For the occurrence 

probability calculation, different submatrices were used (for example 3×3 or 5×5) [25]; a 

5x5 matrix example is shown in Figure 4 with the corresponding weights. 

 

 

Figure 4: An example of LWTLP 5x5 matrix is shown, equal weights are plotted with the same color [25]. 

0.16 0.33 0.41 0.33 0.16

0.33 0.64 0.80 0.64 0.33

0.41 0.80 1 0.80 0.41

0.33 0.64 0.80 0.64 0.33

0.16 0.33 0.41 0.33 0.16

+1 +2-1-2

+2

-1
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Figure 3e shows the LWTLP of trace #640 calculated for M=200 points and a 5x5 sub-

matrix. The main virtue of this method is its computational efficiency, approximately 750 

times faster than WTLP or RTLP [25]. 

 

d.- The Differential Locally Weighted Time Lag Plot (DLWTLP) is a new method of RTN 

representation [35] based on the numerical derivative (Equation 8) of the current with 

respect to time, instead of the current itself. This plot does not represent directly the RTN 

signal stable levels but offers information about the temporal variation of current values, 

such as the probability of occurrence of changes between current states (𝑝1, 𝑝2, 𝑝3 and 𝑝4) 

and the presence of spikes (𝑝5), as described in the Table I [35]. 

 

𝑑𝐼𝑖
𝑑𝑡
≈
𝐼𝑖 1  𝐼𝑖
𝑡𝑖 1  𝑡𝑖

  , 𝑖 = 1. . 𝑁  1. (8) 

 

Figure 3f shows the DLWTLP of trace #640, the occurrence of 𝑝5 indicates the presence 

of spikes in the RTN signal. The marks 𝑝1 and 𝑝2 indicate the transition from state 0 to 

state 1, and the presence of marks 𝑝3 and 𝑝4 indicates the transition from state 1 to state 0.  

 

 

4.- NEW TECHNIQUE BASED ON NEURAL NETWORK 

ANALYSIS 

4.1.-Study of characteristic patterns in the LWTLP domain for different RTN signals 

Among the methods described in the previous section, the LWTLP allows to characterize 

the RTN signal in a determined (I-t) trace with a low computational cost. This computation 

efficiency becomes evident when we need to analyze long RTN traces in comparison with 

other methodologies. Figure 5 shows the LWTLP (M5x5 and M=50 points) for different 

types of RTN signals found in the long trace in Figure 2.  Figure 5a shows trace #21 

(multilevel fluctuation with three current levels) and Figure 5b the corresponding LWLTP; 

Figure 5c shows trace #148 (representing background noise), Figure 5d shows the related 
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LWTLP. Figure 5e represents trace #268 (a stable two current level fluctuation), Figure 5f 

plots the LWTLP for trace #268. Figure 5g shows trace #1074 (a multilevel (6 levels) non 

correlated transition fluctuation) and Figure 5h the corresponding LWTLP. It is revealed 

that different types of RTN signals show characteristic representations in terms of LWTLP 

patterns. The LWTLP patterns can be seen as a representation of RTN in a different domain 

that highlights important signal features with respect to the temporal domain, just as 

Fourier domain allows for the frequency analysis of a certain temporal signal. 
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Figure 5: Examples of different types of RTN signals found in the long trace represented in Figure 2. 

Comparison of (I-t) trace time intervals and the corresponding LWTLPs (with M5x5 and M=50 points [25]). 

a) Trace #21 (multilevel fluctuation with 3 current levels), b) LWTLP of trace #21; c) Trace #148, 

(background noise), d) LWTLP of trace #148; e) Trace #268 (stable two current level fluctuation), f) LWTLP 

of trace #268; g) Trace #1074 (multilevel (6 levels) non correlated transitions fluctuation), h) LWTLP of 

trace #1074.   

 

The long-duration signal in Figure 2 (around 1.2 million sampled data) is divided into 1203 

pieces (m=1203), for each of these pieces the LWTLP (M5x5 M= 50 points) is obtained. 

These LWTLP plots are the input set to train an artificial self-associative neural network. 

In SOM, each neuron plays the role of a cluster head and is connected to all the input 

variables. During training, neurons adapt the weights that connect them to inputs. 

Specifically, a similarity measure-based algorithm is used to determine the most similar 

neuron or cluster head. This neuron and their neighboring nodes slightly modify their own 

weights in order to increase the similarity with that particular input in the training process. 

The strength of the adaptation process decreases both with distance (the effect is higher on 

closer neurons) and time (the last training examples have less influence on the map than 

the first examples). After training, the patterns are clustered by mapping them to the most 

similar neuron. One advantage of using SOM with respect to well-known methods, such 

as k-means [39], and which motivated our choice, is the preservation of the topology. In 

our application, it is interesting to know that patterns corresponding to a certain neuron will 

be similar to patterns corresponding to the neighboring nodes and visualize this information 

in the 2D map. See the Appendix for further details. 

Several network sizes have been tested for this purpose and we found that a 5x4 neurons 

network is an acceptable compromise between the number of clusters or classes obtained 

and the elements classified in each of the classes. In the training process 1203 input vectors 



 14 

(2500 dimension) were used for their training employing 4000 epochs (iterations for 

learning performed by the network, updating the weight 𝑊𝑖), using 31 minutes in this 

process (for an Intel ® Core™ i7-7700HQ CPU @2.8GHz and 24GB RAM). The graphic 

representation of the neural network is presented in Figure 6. The degree of connection of 

each neuron with its neighbors is represented by a color scale (dark black furthest, clear-

yellow closer). 

 
 

Figure 6. Representation of the SOM 5x4 neural network employed for our analysis. The circles represent 

the neurons, the number within the circles stand for the number of LWTLP patterns associated to each 

clusterhead (neurons). The neighborhood connection strength of the neurons in the self-associative network 

is represented in colour (a dark colour connection between the neurons corresponds to a large Euclidean 

distance between them, i.e., Euclidean distance of the corresponding neurons weights d(Wi,Wj). On the other 

hand, a light colour between the neurons connection means that neurons are close to each other in terms of 

Euclidean distance). A two-dimensional mapping is employed for the implemented ANN, we have chosen 

this particular topology although others can be employed.  

 

 

 

The neural network provides a total of 20 clusters (C#1 to C#20) to classify each of the 

1203 input vectors (RTN traces), notice that the sum of the number of patterns associated 

to the 20 different clusters represents the 1203 traces. Figure 6 represents the number of 
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input vectors that have been classified in each cluster, we have clusters with many 

associated vectors (C#10 =106) and others sparsely populated (C#16 =7).  

 

 

5.- RESULTS AND DISCUSSION 

The main result of the new procedure introduced here can be found at the output of the 

ANN training process. A set of clusters that allow the classification of the RTN signals 

experimentally measured is obtained. The pattern characteristics associated to each cluster 

represent a particular configuration of the RTN signal in terms of number of current levels, 

their corresponding likelihood of occurrence, current levels transitions, background noise, 

etc. In order to shed light on this issue, we present three examples of the patterns associated 

to the cluster C#1, C#11 and C#16, obtained after the ANN training process. They are 

shown in Figure 7, C#1: a) trace #188, b) trace #101, c) trace #868; Figure 8,  C#11: a) 

trace #1061, b) trace #1069, c) trace #1086; and Figure 9 C#16: a) trace # 148, b) trace # 

427, c) trace # 553). In these figures we can observed the (I-t) traces and the corresponding 

LWTLPs (calculated with M5x5 and M=50 points). 
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Figure 7. I-t trace plots and corresponding LWTLPs (calculated with M5x5 and M=50 points) classified in 

the same cluster C#1: a) trace #188, b) trace # 101, c) trace # 868.  

 

 

In Figure 7 we deal with signals that show three current levels. Notice that the traces 

considered are just different parts of a long RTN trace (Figure 2), these traces 

corresponding to different time windows. The three corresponding dark clusters of points 

in the LWTLPs plots are clearly detected. In all cases we see this behavior, although we 

can distinguish certain differences in the probability of occurrence of each of these current 

levels.  
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Figure 8. I-t trace plots and corresponding LWTLPs (calculated with M5x5 and M=50 points) classified in 

the same cluster C#11: a) trace #1061, b) trace # 1069, c) trace # 1086. 

 

In Figure 8 the signals associated to cluster C#11 show four current levels, the LWTLP 

patterns clearly indicate this fact, although variance in the probability of occurrence is 

observed. The traps linked to the current levels seem to be independent and additive since 

the patterns in the LWTLP domain are stable and independent.  
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Figure 9. I-t trace plots and corresponding LWTLPs (calculated with M5x5 and M=50 points) classified in 

the same cluster C#16: a) trace #148, b) trace #427, c) trace # 553. 

 

In Figure 9 the representations indicate that we are facing background noise. No clear 

current levels can be appreciated. As expected, a single cluster of points at the LWTLP 

domain center is obtained in all cases. 

According to the obtained results, for the neuron set selected, the most representative 

LWTLP patterns (and consequently the RTN signals) are classified after the training 
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process. In order to highlight this point, one LWTLP pattern (footprint) for each of the 20 

clusters produced (C#1 to C#20) is shown in Figure 10. A general view of this figure allows 

to summarize the main features of the RTN signal plotted in Figure 2.  

 
Figure 10: LWTLP pattern types for each of the 20 clusters obtained (C1 to C20) after SOM training process. 

The classification of the obtained RTN signal reference patterns is described in Table II. 

 

 

These results are comprehensively classified in Table II, the classification of the LWTLP 

patterns is done by considering six different RTN signal reference types (T1 to T6). The 

corresponding probability for these reference types is also given for comparison purposes.  
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Table II. LWTLP pattern classification based on RTN fluctuation types. 

Type of RTN fluctuation Clusters # RTN Type % 
Two-Levels Stable-Current 14,15,17,18,19,20 T1 32,67 

Background noise 16 T2 0,58 

Multilevel 
 

Non 
correlated 
transitions 

3-levels 1,2,3,5,8,9,10,13 T3 44,97 

4-levels 4,7 T4 9,23 

5-levels 6,12 T5 8,81 

Interactive defects 11 T6 3,74 

 

 

Finally, the evolution of the reference fluctuation types (shown in Table II) along the RTN 

trace under consideration is represented in Figure 11. It can be observed that the most 

probable LWTLP pattern corresponds to the reference type T3 (44.97%) followed by 

reference type T1 (32.67%). Reference type T3 corresponds to a RTN signal with three 

current levels. This pattern may be explained by the activation of two defects, one generates 

two different current levels and the other produces other two levels, one of them merges 

with one of the levels of the companion defect. Reference type T1 corresponds to a two 

level stable current fluctuation produced by a single active defect. These are the two most 

probable situations. In relation to reference type T6, it is important to highlight that 

interactive defects refer to defects whose fluctuation may involve changes in the 

occupation probability of other traps, resulting in a large distribution of switching times 

and RTN amplitudes [36]. In our calculations, T6 is unlikely although it can occur. T4 and 

T5 can be attributed to two or three active defects. 
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Figure 11. Evolution of the reference fluctuations types (T1-T6) employed to classify the RTN signals 

corresponding to the LWTLP patterns shown in Figure 10.  
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An interesting issue is related to the ability of the method to track the probability 

that a transition type is reached from another type. The evolution of the RTN signal 

reference types (T1-T6) shown in Figure 11 allows the determination of the state transition 

matrix that represents the count of observed transitions from state 𝑖 to state 𝑗 (𝑖 and 𝑗 ϵ [T1, 

T6]) and can be represented graphically as a Discrete-Time Markov Chain, see Figure 12. 

This latter mathematical tool has been previously employed in the analysis of RTN signals 

[43]. 

 
Figure 12: Discrete-Time Markov Chains extracted from evolution of the fluctuations 

reference types of Figure 11. Notice that we have used a non-normalized transition matrix, 

the transition probabilities are multiplied by 100 to ease the interpretation with percentages.  

 

Several conclusions can be drawn from the interpretation of Discrete-Time Markov 

Chains. Being in state T1, it is most likely to remain in T1 (44.75%) and the most probable 

transition from T1 is to T3 with a probability of 41.73% (this would correspond to the 

activation of an additional defect in addition to one currently active). Most likely, T1 will 

be preceded by T3 (32.77%) or T4 (24.32%) and these two latter transitions could 

correspond to the deactivation of a defect. The transition from T2 (14.28%) may be due to 
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the activation of a defect in the case none were active and the transition from T5 (11.32%), 

corresponds to the deactivation of two defects, which has less likelihood as expected. The 

probability of reaching T2 is low and the most probable case would be preceded by T4 

(1.8%). From T2 we will most likely end up in T3 (85.71%) as well as it is not likely to 

remain in T2. Other transitions can be easily described by using Figure 12. The knowledge 

of the state transitions and the occupancy probability of RTN reference types can be 

employed to deepen physically speaking on the nature of RTN signals. This is linked to the 

number and type of active defects in each time window. In addition, this method correlates 

the nature of electrically active defects with the trap response at the device level. This 

correlation allows to define optimal design rules to keep a defect control and optimize the 

device performance.  The Markov chain transition matrix can also help on facets such as 

the use of RRAMs as entropy sources for random number generators and physical 

unclonable functions, used in applications such as stochastic computing or hardware 

security [44]. 

It is also interesting to comment on the issue linked to the time intervals employed 

to perform this study since these time intervals can be chosen at will for a determined long 

experimental (I-t) set of data. The length of the time intervals could affect the results 

obtained by the methodology presented here that is why we analyze it. The number of 

traces (denoted by 𝑚 in previous sections) would change depending on the number of 

sampling points (NSP) for the time windows selected (N, as we denoted it Section 2). This 

choice would influence the LWTLPs obtained; therefore, there could be changes in the 

types of clusters obtained (Figure 10) and in the time linked to the RTN signal reference 

types (last column of Table II). We have tried to perform a study to clarify the impact of 

the NSP on the obtained results. In Fig. 13, experimental current values for a determined 

time interval corresponding to N=1500 (Figure 13a) are shown. It can be observed that 

depending on N in this particular case (i.e., the length of the time window), the associated 

LWTLPs are different since certain current levels can be included (or not) and this is 

reflected upon the LWTLP.  
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Figure 13. (a) Current versus time for the studied time intervals of measured data indicated by (b), (c), (d), 

(e) and (f).  LWTLPs for time intervals with different N, b) 500 sampling points, c) 750 sampling points, d) 

1000 sampling points, e) 1250 sampling points and f) 1500 sampling points. 

 

 

The whole study for intervals with different N has been performed, where no significant 

differences were observed regarding the clusters shown in Figure 10. With respect to the 
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time associated to the different RTN fluctuation types, the results have been presented in 

Table III. 

 
Table III. Time expressed in percentage associated to the RTN fluctuation types obtained in the SOM 

training process for intervals with different number of sampling points. 

 

 N = 500 N = 750 N = 1000 N = 1250 

T1 (%) 44.20 39.72 32.67 30.61 

T2 (%) 6.48 1.01 0.58 - 

T3 (%) 41.71 43.82 44.97 47.67 

T4 (%) 4.53 7.82 9.23 8.69 

T5 (%) 1.45 4.29 8.81 9.31 

T6 (%) 1.62 3.34 3.74 3.72 

 

 

Although some differences can be appreciated for the shorter time intervals, there is a 

saturation effect for N > 750. In this case no significant changes are obtained in the results, 

as can be seen in Table III. We selected N=1000 both to have a higher number of traces 

(𝑚) than for N>1000, and consequently increase the number of input vectors for the ANN 

training process, and because of the results obtained in Table III show no significant 

differences to the case N=1250. In these considerations it is the optimum N value. 

 

 

5.- CONCLUSIONS 

A new technique based on ANN has been implemented to analyze RTN signals. The 

procedure takes advantage of the analysis of SOMs based on the data obtained by means 

of the LWTLP technique for sets of experimental RTN data taken from a long (I-t) trace. 

In particular, we can graphically characterize by the LWTLP sequence of RTN data (for 

instance, 1000 sampled current versus time data) with a high processing speed by means 

of a pattern (50x50 points) set. With these pattern set, making use of its vector form, we 

train a SOM neural network (in our case a network made of 5x4 neurons) that allows us to 

classify each of the 1203 input sequences (RTN signals for a determined time window) in 

each of the 20 patterns that have been generated by the neural network training process. 

An individualized analysis of each of the 20 patterns allows the classification of the 
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different types of current fluctuations present in a long sequence of RTN data, more than 

1.2 million sampled data for our particular measurement. Once these results have been 

achieved, the graphical representation of the type of fluctuations that can be found at each 

time window in the complete long RTN signal can be determined. Finally, we concluded 

that six types of patterns were present in the RTN signal trace we analyzed, including stable 

2-level current fluctuations, multilevel transitions and the presence of background noise. 
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7.- APPENDIX 

 

Self-organizing maps (SOM), also namely as Kohonen networks [37, 38], are accounted 

among the artificial neural networks (ANN). They are bio-inspired software models based 

on neuron organization into the human brain [Ch. 4, 45].  In this work, SOMs are used for 

the task of clustering patterns as a visual alternative to other well-known approaches such 

as k-means [39]. Note that in the context of deep learning [46], other unsupervised 

approaches such as the Restricted Boltzmann Machine (RBM) [47], Variational 

Autoencoders (VAEs) [48] or generative adversarial networks [49] among others go 

beyond the clustering task and try to learn a probabilistic model of the dataset.  

 

The training process linked to SOMs makes use of an unsupervised learning algorithm, it 

allows to analyze and visualize high-dimensional data into a low-dimensional discretized 

space (they are mostly employed in a two-dimensional domain, the designated map) that 

represents the input space of the training samples. Two main SOM features make them 

different from other widely used ANNs in supervised or semi-supervised tasks, such as the 

multi-layer perceptron, convolutional neural networks or recurrent neural networks [46]. 

On the one hand, they are competitive neural networks that implement the winner-take-all 

function; on the other hand, they have a neural network plasticity that modifies the local 

synaptic weight as a function of the neighborhood related data. 

 

The training expression for a neuron 𝑖 with weight vector 𝑊𝑖(𝑒) that we have employed 

here is the following: 

𝑊𝑖(𝑒 + 1) = 𝑊𝑖(𝑒) + Ω(𝑖, 𝑗, 𝑒) · 𝛼(𝑒) · [𝐿𝑊𝑇𝐿𝑃(𝑡)  𝑊𝑖(𝑒)]  {
∀𝑖 = 1…𝑛
𝑗 ∈ {1. . 𝑛}
∀𝑡 = 1. . . 𝑚

   (A.1) 

Ω(𝑖, 𝑗, 𝑒) = {
0 𝑖𝑓 𝑑𝑖,𝑗 > 𝑑

1 𝑖𝑓 𝑑𝑖,𝑗 ≤ 𝑑
 (A.2) 

where 𝑒 is the step training index, 𝑖 is the index of the actual neuron weight vector to update 

𝑊𝑖(𝑒 + 1), 𝐿𝑊𝑇𝐿𝑃(𝑡) is the vector input characteristic of each RTN signal trace,  𝑗 is 

index of the best matching unit (BMU) that represents the neuron whose weight vector 

𝑊𝑗(𝑒) is most similar to the input vector 𝐿𝑊𝑇𝐿𝑃(𝑡), 𝑡 is the index of the input vector 
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𝐿𝑊𝑇𝐿𝑃(𝑡), 𝑚 is the number of input vectors 𝐿𝑊𝑇𝐿𝑃(𝑡). 𝛼(𝑒) is a monotonically 

decreasing learning coefficient (for example, we could use this analytical description 

𝛼(𝑒) =  𝛼0/(1 + 𝑘 · 𝑒), where, 𝛼0 is the initial learning coefficient and 𝑘 is a parameter, 

𝑘 > 0), Ω(𝑖, 𝑗, 𝑒), as a function of variable 𝑒, represents the neighborhood function which 

gives the distance (𝑑𝑖,𝑗) between the neuron 𝑖 (actually updated neuron 𝑊𝑖(𝑒 + 1)) and the 

best matching unit 𝑗. If the neuron 𝑖 is near neuron j (𝑑𝑖,𝑗 ≤ 𝑑)  then the neuron 𝑖 is updated 

(Equation A.2). Variable 𝑛 is the number of neurons in the network (usually 𝑛 =  𝑥 · 𝑦, 

where 𝑥 and 𝑦 are integers; in this respect, although we have employed 10·10, 6·6, 5·5 

topologies, we found that an optimum choice was 5x4, see Figure A1). 

 

The training utilizes a competitive learning method to update the weight of the network 

𝑊𝑖(𝑒 + 1). When an input training vector 𝐿𝑊𝑇𝐿𝑃(𝑡) is fed to the neurons network, 𝑊𝑖 

(∀𝑖 = 1. . . 𝑛), its Euclidean distance to all weight vectors is computed. Neuron 𝑗, whose 

weight vector, 𝑊𝑗(𝑒), is the most similar to the input vector 𝐿𝑊𝑇𝐿𝑃(𝑡) (BMU), is 

determined. The BMU weights and neurons close to it in the SOM grid are recalculated 

taking into consideration the input vector (in our particular case, as explained in section 4, 

we have m=1203 input vectors and 4000 epochs). The magnitude of the changes in 

𝑊𝑖(𝑒 + 1) decreases with each training step (depending on function 𝛼(𝑒)) and with the 

grid-distance too (function of Ω(𝑖, 𝑗, 𝑒)) [50]. 
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Figure A1: Example of SOM neighbors connections on a 5x4 neurons network. The connection of the neurons 

is done in the form of a bee panel (hexagonal arrangement), the number of inputs is an array of m values of 

K dimension (in our application m=1203 and K=2500). Each input pattern is assigned to the most similar 

neuron 𝑊𝑖. In training time the weight of each neuron is updated by equation A.1 (taking into account the 

neighborhood function described in Equation A.2). When the training process is finished, each new input 

pattern produces the activation of only one neuron of the network (for example, input pattern 𝑥𝑚 produced 

the excitation of neuron 𝑊13, the output signal of this is 1) while the rest of the neurons in the network are 

deactivated (producing a null output signal), the index of the active neuron determines the cluster or class 

assigned to the input. 

 

 

The input 𝑥(𝑡) of the SOM is one 𝐾 dimensional vector, the matrix LWTLP  (𝑀×𝑀)  is 

transformed in a 𝐾 dimensional vector (𝐾 = 𝑀 ×𝑀), concatenating each row LWTLP 

matrix to the following one.   

 

These are the ANN we have employed here to perform the analysis presented in this work. 

The results consisted of a set of clusters (where each neuron is a cluster head) obtained by 

using SOM with the goal to classify LWTLP patterns and characterize RTN signals.  
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