This is the accepted version of the article:

Mármol-Sánchez, Emilio; Quintanilla Aguado, Raquel; Jordana i Vidal, Jordi; [et al.]. «An association analysis for 14 candidate genes mapping to meat quality quantitative trait loci in a Duroc pig population reveals that the ATP1A2 genotype is highly associated with muscle electric conductivity». Animal Genetics, Vol. 51, Issue 1 (February 2020), p. 95-100. DOI 10.1111/age.12864

This version is available at https://ddd.uab.cat/record/216804

under the terms of the © IN COPYRIGHT license
An association analysis for 14 candidate genes mapping to meat quality QTL in a Duroc pig population reveals that the \textit{ATP1A2} genotype is highly associated with muscle electric conductivity.

Emilio Mármol-Sánchez1, Raquel Quintanilla2, Jordi Jordana3, Marcel Amills1,3

1Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.

2Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, Spain.

3Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain.

Address for correspondence: Marcel Amills, Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra 08193, Spain. E-mail: marcel.amills@uab.cat. Tel. +34 93 563 6600
Summary

In previous genome-wide association studies carried out in a Duroc commercial line (Lipgen population), we detected on pig chromosomes 3, 4 and 14 several QTL for *gluteus medius* muscle redness (GM a*), electric conductivity in the *longissimus dorsi* muscle (LD CE) and vaccenic acid content in the LD muscle (LD C18:1 n-7), respectively. We have genotyped, in the Lipgen population, 19 single nucleotide polymorphisms (SNP) mapping to 14 genes located within these three QTL. Subsequently, association analyses have been performed. After correction for multiple testing, two SNPs in the TGFBRAP1 (rs321173745) and SELENOI (rs330820437) genes were associated with GM a*, while ACADSB (rs81449951) and GPR26 (rs343087568) genotypes displayed significant associations with LD vaccenic content. Moreover, the polymorphism of the ATP1A2 (rs344748241), ATP8B2 (rs81382410) and CREB3L4 (rs321278469 and rs330133789) genes showed significant associations with LD CE. We made a second round of association analyses including the SNPs mentioned above as well as other SNPs located in the chromosomes to which they map to. After performing a correction for multiple testing, the only association that remained significant at the chromosome-wide level was that between the ATP1A2 genotype and LD CE. From a functional point of view, this association is meaningful because this locus encodes a subunit of the Na+/K+-ATPase responsible of maintaining an electrochemical gradient across the plasma membrane.

Keywords: Pig, single nucleotide polymorphism, meat quality, Na+/K+-ATPase.
Meat quality traits are of paramount importance for the pig industry because they determine, to a great extent, consumer acceptance and financial profit. Once pigs are slaughtered, there is a decline of the pH of the skeletal muscle due to the production of lactic acid through anaerobic glycolysis (Rosenvold & Andersen 2003). The rate of muscle acidification has a strong effect on meat color and water-holding capacity. In this way, a low ultimate pH (5.4-5.3) is associated with pale, soft and exudative (PSE) meat as well as with an increased electrical conductivity (CE) and elevated drip and cooking losses (Lee et al. 2000; Rosenvold & Andersen 2003). In contrast, a high ultimate pH (6.3 or higher) results in dark, firm and dry (DFD) meat with a high water-holding capacity and a lower CE (Lee et al. 2000; Kim et al. 2016). Adverse effects on meat quality are influenced by both genetic and environmental factors. Recessive and dominant genotypes in the porcine ryanodine receptor 1 (RYR1) and the protein kinase AMP-activated non-catalytic subunit γ3 (PRKAG3) genes, respectively, are strong predisposing factors to the occurrence of PSE meats (Fujii et al. 1991; Milan et al. 2000). On the other hand, there are multiple factors related with pig management and transportation (pre-slaughter stress), stunning method at slaughter, carcass chilling and pelvic suspension of carcasses that influence pork quality (Rosenvold & Andersen 2003). Another important parameter that determines meat quality is intramuscular fat (IMF) composition. In this regard, it is well known that fatty acid composition can have important consequences on the oxidative stability of meat during processing and retail display as well as on fat firmness (Wood et al. 2008).

In previous genome-wide association studies, we identified several genomic regions containing quantitative trait loci (QTL) for meat Minolta a* value (redness), CE (González-Prendes et al. 2017) and IMF composition (González-Prendes et al. 2019) traits measured in the longissimus dorsi (LD) and gluteus medius (GM) muscle samples of 350 Duroc
barrows (Lipgen population). Details about the rearing of the pigs can be found in Gallardo et al. (2009), while a thorough description of QTL mapping methods is reported in González-Prendes et al. (2017). The measurement of CE was done 24 hours after slaughter by using a Pork Quality Meter (Intek GmbH), while Minolta a* value was determined with a Minolta Chroma-Meter CR-200 (Konica Minolta) equipment at the same time point. Muscle fatty acid composition was measured as previously described by Quintanilla et al. (2011). In the current work, we have selected 14 candidate genes located within QTL regions for GM a* on SSC3, LD CE on SSC4, and LD vaccenic content on SSC14 (Table 1). These genes were: phosphorylase kinase catalytic subunit γ 1 (PHKG1), transforming growth factor β receptor associated protein 1 (TGFBRAP1), selenoprotein I (SELENOI), hydroxyacil-CoA dehydrogenase trifunctional multienzyme (HADHA), coatamer protein complex subunit α (COPA), proliferation and apoptosis adaptor protein 15 (PEA15), calsequestrin 1 (CASQ1), ATPase Na+/K+ transporting α2 subunit (ATP1A2), ATPase phospholipid transporting 8B2 (ATP8B2), cAMP responsive element binding protein 3 like 4 (CREB3L4), CREB regulated transcription coactivator 2 (CRTC2), acyl-CoA dehydrogenase short/branched chain (ACADSB), G protein-coupled receptor 26 (GPR26) and C-terminal binding protein 2 (CTBP2).

Genes were selected based on bibliographic information about their biological functions which suggested that they could be involved in the determinism of any of the three traits under study (GM a*, LD CE and LD C18:1 n-7). Based on available RNA-Seq (Cardoso et al. 2017) and whole-genome data (our unpublished results), we called 19 SNPs mapping to these 14 genes by using the GATK Best Practices workflow for SNP calling (https://software.broadinstitute.org/gatk/best-practices/workflow?id=11145) in accordance with protocols reported by Mármol-Sánchez et al. (2019). Nineteen SNPs were finally
selected because the SnpEff software predicted that they might have functional effects (Cingolani et al. 2012), as reported in Supplementary Table 1. The 19 selected SNPs (Table 1) were genotyped at the Servei Veterinari de Genètica Molecular of the Universitat Autònoma de Barcelona (http://sct.uab.cat/svjm/en) by using a QuantStudio 12K Flex Real-Time PCR System (ThermoFisher Scientific). Association analyses between SNPs and phenotypes were performed with the Genome-wide Efficient Mixed-Model Association (GEMMA) software (Zhou & Stephens 2012). The following statistical model was used:

\[
y = W\alpha + x\delta + u + \varepsilon
\]

where \(y\) is the vector of phenotypic observations for every individual; \(\alpha\) corresponds to a vector including the intercept plus the fixed effects, \(i.e.\) batch effect with 4 categories (all traits), and farm origin effect with 3 categories (all traits). The \(\alpha\) vector also contains the regression coefficients of the following covariates: (1) Carcass weight at slaughterhouse for meat quality traits, and (2) IMF content in the LD muscle for LD fatty acid composition; \(W\) is the incidence matrix relating phenotypes with the corresponding effects; \(x\) is the vector of the genotypes corresponding to the set of selected polymorphisms; \(\delta\) is the allele substitution effect for each polymorphism; \(u\) is a vector of random individual effects with a \(n\)-dimensional multivariate normal distribution \(\text{MVN}_n(0, \lambda \tau^{-1} K)\), where \(\tau^{-1}\) is the variance of the residual errors, \(\lambda\) is the ratio between the two variance components and \(K\) is a known relatedness matrix derived from the SNPs; and \(\varepsilon\) is the vector of residual errors. Results were corrected for multiple testing by using the false discovery rate (FDR) method reported by Benjamini & Hochberg (1995). The correction for multiple testing took into account the number of candidate SNPs (2nd column of Table 1) mapping to each one of the
Performance of association analyses with the methodology described above revealed the existence of several associations that remained significant even after correction for multiple testing. We have found, for instance, an association between GM Minolta a* value and missense mutations in the *TGFBRAP1* and *SELENOI* genes, which map to two different GM a* QTL on SSC3 (Table 1). The inactivation of the *TGFBRAP1* gene results in the suppression of aerobic glycolysis and increased levels of mitochondrial respiration and fatty acid oxidation (Yoshida *et al.* 2013), while *SELENOI* encodes a selenoprotein fundamental for the synthesis of phosphatidylethanolamine, a molecule with important effects on the oxidation of lipid membranes, oxidative phosphorylation and mitochondrial morphology (Tasseva *et al.* 2013; Poyton *et al.* 2016). We have also detected significant associations between LD CE and SNPs in the *ATPIA2*, *ATP8B2* and *CREB3L4* genes, which map to SSC4 LD CE QTL covering two regions spanning from 85.6 to 91 Mb and from 95.2 to 97.8 Mb. These findings are very suggestive because the *ATPIA2* gene, the one showing the most significant association, is preferentially expressed in the skeletal and heart muscle and brain and it encodes the a2 subunit of the ion pump Na+/K+ ATPase (Clausen *et al.* 2017). Noteworthy, Na+/K+-ATPases provide the energy necessary for the maintenance of Na+ and K+ electrochemical gradients across the plasma membrane by hydrolyzing ATP (Clausen *et al.* 2017; Sampedro *et al.* 2018). These gradients are essential for the preservation of the resting membrane potential as well as for the generation of electrical impulses in the skeletal muscle and nervous system (Clausen *et al.* 2017; Sampedro *et al.* 2018). The ATP8B2 protein is also an ATPase with flippase activity.
towards phosphatidyl choline, a key component of phospholipid membranes with important
effects on the functioning of the sarcoendoplasmic reticulum Ca\(^{2+}\) ATPase pumps (Shin &
Takatsu 2018; Fajardo et al. 2018), while CREB3L4 is a transmembrane bZip transcription
factor involved in the modulation of endoplasmic reticulum stress (Kim et al. 2014). Our
association analysis has also revealed the existence of significant associations between the
phenotypic variation of LD vaccenic (C18:1 n-7) content and SSC14 SNPs located in the
ACADSB gene, which catalyzes the oxidation of branched-chain fatty acids (Porta et al.
2019) and the GPR26 gene, whose inactivation leads to hyperphagia, glucose intolerance,
hyperinsulinemia, dyslipidemia and obesity in mice (Chen et al. 2012).

We have made a second round of association analyses in which the SNPs that
previously showed evidence of statistical significance were compared against the whole
sets of the Porcine SNP60 BeadChip SNPs co-localizing to the same chromosome
(chromosome-wide analysis) i.e. 3,123 SNPs on SSC3, 3,899 SNPs on SSC4 and 4,203
SNPs on SSC14. These 11,225 SNPs were obtained from previously published porcine
SNP60 BeadChip data reported by González-Prendes et al. (2017). In this case, the
correction for multiple testing took into account the number of SNPs mentioned above for
each one of the three chromosomes under analysis, i.e. 3,128, 3,910 and 4,206 independent
tests were taken into consideration when performing association analyses for pig
chromosomes SSC3, SSC4 and SSC14. Interestingly, the rs344748241 SNP in the ATP1A2
gene was the only one that surpassed the chromosome-wide threshold of significance (q-
value < 0.05) (Table 1, Figure 1). Noteworthy, this SNP was not significant when we
made an association analysis at the genome-wide level (data not shown). Additionally, we
used the LD function of gaston R package (v1.5.5; Perdry & Dandine-Roulland 2019) to
evaluate the presence of linkage disequilibrium among the SNP markers that showed
significant associations with LD CE after correction for multiple testing at the chromosome-wide level (Supplementary Figure 1). The amount of linkage disequilibrium was expressed as r^2 in accordance with the definition of Hill & Robertson (1968). As shown in Supplementary Figure 1, we observed a high degree of linkage disequilibrium between the rs344748241 (ATP1A2 gene) and the rs80782100 (IGSF8 gene) markers. Noteworthy, the rs80782100 SNP, which maps to an intronic position within the immunoglobulin superfamily member 8 gene, displays the highest association with the LD CE phenotype, as described in González-Prendes et al. (2017).

As previously discussed, we consider that the ATP1A2 gene is a strong positional and functional candidate to explain the CE QTL found on SSC4 because Na$^+$, K$^+$ ATPases are fundamental to induce an electrochemical gradient across the plasma membrane of cells (Suhail 2010), and their kinetics are modulated by the extracellular pH (Salonikidis et al. 2000), a parameter which also displays strong effects on muscle electrical conductivity. In pigs, the ATP1A2 gene has been sequenced (Henriksen et al. 2013) and its polymorphisms have been associated with fat cut percentage (Fontanesi et al. 2012). A next step would be to re-sequence the whole gene in Lipgen pigs with alternative genotypes (QQ vs qq) for the LD CE QTL on SSC4, to build a complete catalogue of SNPs with potential effects on protein activity and expression and to investigate their association with CE in the Lipgen population. Subsequently, functional tests should be applied to ascertain whether any of the mutations in the pig ATP1A2 gene with highly significant q-values also have causal effects on muscle conductivity.

Acknowledgments
The authors are indebted to Selecció Batallé S.A. for providing the animal material used in this study. We gratefully acknowledge J. Reixach and J. Soler (IRTA) for their collaboration in the experimental protocols. This research was partially funded with grants AGL2013-48742-C2-1-R and AGL2013-48742-C2-2-R awarded by the Spanish Ministry of Economy and Competitiveness and grant 2014 SGR 1528 from the Agency for Management of University and Research Grants of the Generalitat de Catalunya. Emilio Márpol-Sánchez was funded with a FPU Ph.D. grant from the Spanish Ministry of Education (FPU15/01733). We also acknowledge the support of the Spanish Ministry of Economy and Competitiveness for the Center of Excellence Severo Ochoa 2016-2019 (SEV-2015-0533) grant awarded to the Center for Research in Agricultural Genomics. Thanks also to the CERCA Programme of the Generalitat de Catalunya.

Data availability

These 11,225 SNPs included in this study were obtained from published Porcine SNP60 BeadChip data reported by González-Prendes et al. (2017), which can be accessed at the Figshare public repository (https://figshare.com/s/2e636697009360986794).

Conflict of interest

The authors declare that they have no conflict of interest.
References

association analysis of several hundred single nucleotide polymorphisms within
candidate genes for back fat thickness in Italian Large White pigs using a selective
genotyping approach. Journal of Animal Science 90, 2450-64.

Gallardo D., Quintanilla R., Varona L., Díaz I., Ramírez O., Pena R.N., & Amills M.
(2009) Polymorphism of the pig acetyl-coenzyme A carboxylase α gene is
associated with fatty acid composition in a Duroc commercial line. Animal Genetics
40, 410-419.

González-Prendes R., Quintanilla R., Cánovas A., Manunza A., Figueiredo Cardoso T.,
Jordana J., Noguera J.L., Pena R.N. & Amills M. (2017) Joint QTL mapping and
gene expression analysis identify positional candidate genes influencing pork
quality traits. Scientific Reports 7, 39830.

González-Prendes R., Quintanilla R., Mármol-Sánchez E., Pena R.N., Ballester M.,
Cardoso T.F., Manunza A., Casellas J., Cánovas A., Diaz I., Noguera J.L., Castelló
A., Mercade A. & Amills M. (2019) Comparing the mRNA expression profile and
the genetic determinism of intramuscular fat traits in the porcine gluteus medius and
longissimus dorsi muscles. BMC Genomics 20, 170.

Henriksen C., Kjaer-Sorensen K., Einholm A.P., Madsen L.B., Momeni J., Bendixen C.,
Oxvig C., Vilsen B. & Larsen K. (2013) Molecular cloning and characterization of
porcine Na+/K+-ATPase isoforms α1, α2, α3 and the ATP1A3 promoter. PLoS One 8,
e79127.

Table 1. An association analysis between 19 SNPs mapping to 14 candidate genes and meat quality traits recorded in a Duroc pig population (significant associations are shown in bold).1

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Type</th>
<th>Trait</th>
<th>P-value</th>
<th>q-value</th>
<th>P-value*</th>
<th>q-value*</th>
<th>δ ± SE</th>
<th>A1</th>
<th>MAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHKG1</td>
<td>rs697732005 (3:16.830 Mb)</td>
<td>Splice region variant (G/A)</td>
<td></td>
<td>0.88661</td>
<td>0.88661</td>
<td>0.68325</td>
<td>0.96577</td>
<td>-0.02 (0.142)</td>
<td>A</td>
<td>0.3443</td>
</tr>
<tr>
<td>TGFBRAP1</td>
<td>rs321173745 (3:49.516 Mb)</td>
<td>Missense variant (A/G)</td>
<td></td>
<td>0.00361</td>
<td>0.00902</td>
<td>0.03108</td>
<td>0.67220</td>
<td>0.549 (0.186)</td>
<td>G</td>
<td>0.1875</td>
</tr>
<tr>
<td>SELENOI</td>
<td>rs330820437 (3:112.635 Mb)</td>
<td>Missense variant (A/G)</td>
<td></td>
<td>0.00039</td>
<td>0.00196</td>
<td>0.01307</td>
<td>0.51778</td>
<td>0.643 (0.181)</td>
<td>G</td>
<td>0.1757</td>
</tr>
<tr>
<td></td>
<td>rs344578723 (3:112.796 Mb)</td>
<td>Missense variant (G/A)</td>
<td></td>
<td>0.53466</td>
<td>0.67491</td>
<td>0.67980</td>
<td>0.96577</td>
<td>-0.104 (0.169)</td>
<td>A</td>
<td>0.2866</td>
</tr>
<tr>
<td>HADHA</td>
<td>rs81215086 (3:112.794 Mb)</td>
<td>Missense variant (G/A)</td>
<td></td>
<td>0.53993</td>
<td>0.67491</td>
<td>0.62966</td>
<td>0.96577</td>
<td>-0.102 (0.169)</td>
<td>A</td>
<td>0.2899</td>
</tr>
<tr>
<td></td>
<td>rs344578723 (3:112.796 Mb)</td>
<td>Missense variant (G/A)</td>
<td></td>
<td>0.53466</td>
<td>0.67491</td>
<td>0.67980</td>
<td>0.96577</td>
<td>-0.104 (0.169)</td>
<td>A</td>
<td>0.2866</td>
</tr>
<tr>
<td>COPA</td>
<td>rs340853721 (4:90.163 Mb)</td>
<td>Splice region variant (T/C)</td>
<td></td>
<td>0.90735</td>
<td>0.95684</td>
<td>0.79005</td>
<td>0.99942</td>
<td>0.004 (0.092)</td>
<td>T</td>
<td>0.4351</td>
</tr>
<tr>
<td></td>
<td>rs333099339 (4:90.183 Mb)</td>
<td>Splice region variant (T/C)</td>
<td></td>
<td>0.87813</td>
<td>0.95684</td>
<td>0.88586</td>
<td>0.99942</td>
<td>0.017 (0.090)</td>
<td>T</td>
<td>0.4381</td>
</tr>
<tr>
<td></td>
<td>rs80949931 (4:90.186 Mb)</td>
<td>Missense variant (A/G)</td>
<td></td>
<td>0.95684</td>
<td>0.95684</td>
<td>0.68990</td>
<td>0.99942</td>
<td>-0.002 (0.092)</td>
<td>A</td>
<td>0.4335</td>
</tr>
<tr>
<td>PEA15</td>
<td>rs329681990 (4:90.266 Mb)</td>
<td>Splice region variant (G/A)</td>
<td></td>
<td>0.85666</td>
<td>0.95684</td>
<td>0.58021</td>
<td>0.99942</td>
<td>-0.014 (0.091)</td>
<td>G</td>
<td>0.433</td>
</tr>
<tr>
<td>CASQ1</td>
<td>rs334946278 (4:90.280 Mb)</td>
<td>Splice region variant (G/A)</td>
<td></td>
<td>0.95267</td>
<td>0.95684</td>
<td>0.92240</td>
<td>0.99942</td>
<td>0.005 (0.104)</td>
<td>A</td>
<td>0.1304</td>
</tr>
<tr>
<td>ATP1A2</td>
<td>rs3444748241 (4:90.356 Mb)</td>
<td>Splice region variant (G/A)</td>
<td></td>
<td>6.515E-06</td>
<td>7.167E-05</td>
<td>0.00006</td>
<td>0.02518</td>
<td>-0.325 (0.066)</td>
<td>G</td>
<td>0.497</td>
</tr>
<tr>
<td>ATP8B2</td>
<td>rs81382410</td>
<td>Splice region</td>
<td></td>
<td>0.00285</td>
<td>0.01565</td>
<td>0.00256</td>
<td>0.21113</td>
<td>-0.233</td>
<td>T</td>
<td>0.3345</td>
</tr>
<tr>
<td>Gene</td>
<td>Chromosome Location</td>
<td>Variant Type (T/C)</td>
<td>p-Value</td>
<td>q-Value</td>
<td>LD (C18:1 n-7)</td>
<td>MAF</td>
<td>GM a* Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
<td>-----</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREB3L4</td>
<td>rs329686514 (4:95.717 Mb)</td>
<td>Missense variant (C/T)</td>
<td>0.08043</td>
<td>0.17695</td>
<td>0.22592</td>
<td>0.97957</td>
<td>-0.155 (0.088)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs321278469 (4:95.717 Mb)</td>
<td>Missense variant (C/A)</td>
<td>0.00639</td>
<td>0.01757</td>
<td>0.00554</td>
<td>0.30475</td>
<td>-0.228 (0.083)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs330133789 (4:95.721 Mb)</td>
<td>Missense variant (G/A)</td>
<td>0.00493</td>
<td>0.01757</td>
<td>0.01769</td>
<td>0.57188</td>
<td>0.254 (0.075)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRT2</td>
<td>rs330198768 (4:95.740 Mb)</td>
<td>Intron variant (C/T)</td>
<td>0.32931</td>
<td>0.60373</td>
<td>0.56310</td>
<td>0.99942</td>
<td>-0.083 (0.085)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACADSB</td>
<td>rs81449951 (14:132.588 Mb)</td>
<td>Missense variant (C/A)</td>
<td>0.04036</td>
<td>0.08073</td>
<td>0.0424837</td>
<td>0.8322423</td>
<td>0.093 (0.045)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPR26</td>
<td>rs343087568 (14:133.182 Mb)</td>
<td>Splice region variant (A/G)</td>
<td>0.00333</td>
<td>0.01334</td>
<td>0.1269422</td>
<td>0.9956111</td>
<td>-0.096 (0.032)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTBP2</td>
<td>rs339956077 (14:134.334 Mb)</td>
<td>Splice region variant (G/A)</td>
<td>0.88166</td>
<td>0.88166</td>
<td>0.1269422</td>
<td>0.9956111</td>
<td>0.007 (0.046)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The p-value and the q-value terms define the statistical significance of the association analysis before and after correcting for multiple testing with a false discovery rate approach, respectively. The correction for multiple testing took into account the number of candidate SNPs (2nd column of Table 1) mapping to each one of the SSC3 GM a* (5 SNPs), SSC4 CE (11 SNPs) and SSC14 LD (C18:1 n-7) (3 SNPs) QTL. The p-value* and the q-value* terms define the statistical significance of the chromosome-wide association analysis before and after correcting for multiple testing with a false discovery rate approach, respectively. In this case, the correction for multiple testing took into account the number of markers in the Porcine SNP60 BeadChip mapping to pig chromosomes SSC3 (3,123 SNPs), SSC4 (3,899 SNPs) and SSC14 (4,203 SNPs). Other terms that need to be defined are: δ, estimated allele substitution effect and its standard error (SE); A1, minor allele; MAF, minor allele frequency; GM a*, Minolta a* value (redness) in the
gluteus medius muscle; LD CE, electric conductivity in the *longissimus dorsi* muscle; and LD (C18:1) n-7, vaccenic acid content in the *longissimus dorsi* muscle.
LEGENDS TO FIGURES

Figure 1: Manhattan plot depicting associations between electrical conductivity in the *longissimus dorsi* muscle and the genotypes of markers in the *ATP1A2* (rs344748241), *ATP8B2* (rs81382410) and *CREB3L4* (rs321278469 and rs330133789) loci plus 3,899 additional SNPs mapping to pig chromosome 4 (SSC4). The positions of these three genes are SSC4: 90.292-90.371 Mb (*ATP1A2*), SSC4: 95.426-95.446 Mb (*ATP8B2*) and SSC4: 95.714-95.723 Mb (*CREB3L4*). The green line represents the nominal P-value of significance, while the blue line indicates the P-value of significance after correcting for multiple testing with a false discovery rate approach (q-value). The rs344748241 SNP in the *ATP1A2* gene is located 23 kb away from the peak of the LD CE QTL, i.e. ALGA0026686 (rs80782100; 4:90.378 Mb) SNP, as reported by González-Prendes *et al.* (2017).
SUPPLEMENTARY DATA

Supplementary Table 1: Additional information about selected SNP and their potential impact and deleteriousness (SIFT).

Supplementary Figure 1: Graph depicting the magnitude of linkage disequilibrium among SNPs that showed significant associations with *longissimus dorsi* electric conductivity after correction for multiple testing at the chromosome-wide level. Here, the amount of linkage disequilibrium is expressed as r^2 as defined by Will & Robertson (1968) and such parameter was calculated with the *LD* function of *gaston* R package.
<table>
<thead>
<tr>
<th>SNP_ID</th>
<th>Allele</th>
<th>Consequence</th>
<th>Impact</th>
<th>Symbol</th>
<th>SIFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs697732005</td>
<td>A</td>
<td>splice_region_variant,intron_variant</td>
<td>LOW</td>
<td>PHKG1</td>
<td>-</td>
</tr>
<tr>
<td>rs321173745</td>
<td>G</td>
<td>missense_variant</td>
<td>MODERATE</td>
<td>TGFBRAP1</td>
<td>tolerated(0.22)</td>
</tr>
<tr>
<td>rs330820437</td>
<td>G</td>
<td>missense_variant</td>
<td>MODERATE</td>
<td>SELENO1</td>
<td>tolerated(1)</td>
</tr>
<tr>
<td>rs81215086</td>
<td>A</td>
<td>missense_variant</td>
<td>MODERATE</td>
<td>HADHA</td>
<td>deleterious(0.04)</td>
</tr>
<tr>
<td>rs344578723</td>
<td>A</td>
<td>missense_variant</td>
<td>MODERATE</td>
<td>HADHA</td>
<td>tolerated(0.81)</td>
</tr>
<tr>
<td>rs340853721</td>
<td>C</td>
<td>splice_region_variant,intron_variant</td>
<td>LOW</td>
<td>COPA</td>
<td>-</td>
</tr>
<tr>
<td>rs333099339</td>
<td>C</td>
<td>splice_region_variant,intron_variant</td>
<td>LOW</td>
<td>COPA</td>
<td>-</td>
</tr>
<tr>
<td>rs80949931</td>
<td>G</td>
<td>missense_variant</td>
<td>MODERATE</td>
<td>COPA</td>
<td>tolerated(0.15)</td>
</tr>
<tr>
<td>rs329681990</td>
<td>A</td>
<td>splice_region_variant,synonymous_variant</td>
<td>LOW</td>
<td>PEA15</td>
<td>-</td>
</tr>
<tr>
<td>rs334946278</td>
<td>A</td>
<td>splice_region_variant,synonymous_variant</td>
<td>LOW</td>
<td>CASQ1</td>
<td>-</td>
</tr>
<tr>
<td>rs344748241</td>
<td>A</td>
<td>splice_region_variant,synonymous_variant</td>
<td>LOW</td>
<td>ATP1A2</td>
<td>-</td>
</tr>
<tr>
<td>rs81382410</td>
<td>G</td>
<td>splice_region_variant,intron_variant</td>
<td>LOW</td>
<td>ATP8B2</td>
<td>-</td>
</tr>
<tr>
<td>rs329686514</td>
<td>T</td>
<td>missense_variant</td>
<td>MODERATE</td>
<td>CREB3L4</td>
<td>tolerated_low_confidence(0.05)</td>
</tr>
<tr>
<td>rs321278469</td>
<td>A</td>
<td>missense_variant</td>
<td>MODERATE</td>
<td>CREB3L4</td>
<td>tolerated(0.24)</td>
</tr>
<tr>
<td>rs330133789</td>
<td>A</td>
<td>missense_variant</td>
<td>MODERATE</td>
<td>CREB3L4</td>
<td>tolerated(0.32)</td>
</tr>
<tr>
<td>rs330198768</td>
<td>T</td>
<td>intron_variant</td>
<td>MODIFIER</td>
<td>CRTC2</td>
<td>-</td>
</tr>
<tr>
<td>rs81449951</td>
<td>A</td>
<td>missense_variant</td>
<td>MODERATE</td>
<td>ACADSB</td>
<td>tolerated(0.32)</td>
</tr>
<tr>
<td>rs343087568</td>
<td>G</td>
<td>splice_region_variant,intron_variant</td>
<td>LOW</td>
<td>GPR26</td>
<td>-</td>
</tr>
<tr>
<td>rs339956077</td>
<td>T</td>
<td>splice_region_variant,intron_variant</td>
<td>LOW</td>
<td>CTBP2</td>
<td>-</td>
</tr>
</tbody>
</table>