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ABSTRACT 26 

Aims 27 

Shrub encroachment has been reported over a large proportion of the subalpine grasslands across Europe and 28 

is expected to have an important impact on the biogeochemical cycle of these ecosystems. We investigated 29 

the stoichiometric changes in the plant-soil system along the succession (e.g. increase in encroachment from 30 

unencroached grassland to mature shrubland) at two contrasting sites in the Pyrenees. 31 

Methods 32 

We analyzed the chemical composition (C, N,
15

N, P, K, Ca, Mg and Fe) in the soil and in the aboveground 33 

plant compartments (leaves, leaf-litter and stems) of the main herbaceous species and shrubs at three 34 

contrasting stages of the succession: unencroached grassland, young shrubland and mature shrubland. 35 

Results 36 

The plant-soil stoichiometry spectrum differed between the successional stages. Shrub encroachment 37 

generally increased the concentration of C and Ca and the C:N ratio and often reduced to concentrations of N, 38 

P and K in the leaves and leaf-litter, while several soil nutrient concentrations (N, P, K Ca and Mg) decreased. 39 

The stocks of C, N, P, Ca, and Mg in the total aboveground biomass increased with encroachment. 40 

Conclusions 41 

Shrub encroachment favored the dominance of long-lived species with low concentrations of N and P in the 42 

plant-soil compartments, high C:nutrient ratios in the aboveground biomass and increase the uptake of N 43 

through ericoid or ectomycorrhizal fungi. We highlight the role of shrubs in the sequestration of C and 44 

nutrients through the allocation to the aboveground biomass. The changes in plant-soil elemental composition 45 

and stocks suggest a slowdown of the biogeochemical cycles in the subalpine mountain areas where shrub 46 

encroachment occurred. 47 

 48 
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INTRODUCTION 49 

The encroachment of shrub species into grasslands causes important changes in many grass-dominated 50 

ecosystems at landscape and regional scales from low to high latitudes (Van Auken 2009, Myers-Smith et al. 51 

2011, Naito and Cairns 2011, Komac et al. 2013, Formica et al. 2014). The expansion of shrubs is mostly 52 

caused by changes in climatic conditions and land use (Eldridge et al. 2011). For example, the ongoing 53 

increase in mean annual temperature and the thinning of permafrost at high latitudes are promoting the 54 

expansion of shrubs across the Arctic and subarctic tundra (Tape et al. 2006; Hallinger et al. 2010; Myers-55 

Smith et al. 2011). Shrub expansion has also been observed in most mountain ranges and massifs across 56 

Europe at lower latitudes, where humans have used the subalpine and alpine grasslands for traditional 57 

activities such as extensive livestock herding (Roura-Pascual et al. 2005; Anthelme et al. 2007; Hallinger et 58 

al. 2010; Targetti et al. 2010; Ferré et al. 2013) for many centuries or even millennia (Gassiot and Jiménez 59 

2006; Pèlachs et al. 2007; Gassiot et al. 2016). The progressive abandonment of these practices in recent 60 

decades has favored the encroachment of shrubs into subalpine and alpine grasslands (MacDonald et al. 2000; 61 

Dullinger et al. 2003; Komac et al. 2013; Ameztegui et al. 2016). Climatic warming is also expected to 62 

promote the expansion of woody species in subalpine and alpine regions in the Pyrenees (Grau et al. 2013; 63 

Peñuelas et al. 2016; Angulo et al. 2019) and across Europe in the coming decades (Sanz-Elorza et al. 2003; 64 

Körner and Paulsen 2004; Wookey et al. 2009; IPCC 2013). The abandonment of subalpine and alpine 65 

grasslands is very apparent in the Pyrenees (northeastern Iberian Peninsula), where traditional extensive 66 

livestock grazing and the frequency of intentional fires to create or maintain pasture have substantially 67 

declined in the last century, mainly due to socio-economic changes in this area (Lasanta et al. 2000; 68 

MacDonald et al. 2000; Serrano et al. 2000; Roura-Pascual et al. 2005; Jiménez and Pujol 2010; Barrio et al. 69 

2013).  70 

Shrub expansion is expected to cause several changes in ecosystem functioning, but few studies have 71 

focused on the impacts of expansion on the functioning of subalpine or alpine grasslands in the Pyrenees 72 

(Vitousek 1984; Montané et al. 2007, 2010; Barrio et al. 2013; Catalan et al. 2017; Grau et al. 2019) and 73 

across Europe  (MacDonald et al. 2000; Wookey et al. 2009). Some studies have reported that shrub 74 

encroachment has increased the carbon (C) and nitrogen (N) concentrations in the soil and reduced soil pH 75 

(Knapp et al. 2008; Eldridge et al. 2011), but such changes may strongly depend on shrub traits and 76 
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ecosystem features. Shrub and grass species have contrasting growth forms and differ in many functional 77 

traits of their adaptive and reproductive capacities and their strategies of resource acquisition and allocation 78 

(Chapin and Körner 1994). Different co-occurring shrub species may also have contrasting traits and 79 

strategies (Illa et al. 2017), so the identity of shrubs is also crucial to our understanding of changes in 80 

ecosystem functioning when encroachment occurs (Grau et al. 2019). Succession from grassland to shrubland 81 

is thus expected to cause important changes in the distribution, cycling and stoichiometry of chemical 82 

elements in the plant-soil system. Furthermore, the increase in woody biomass during the succession adds 83 

complexity to the persistence and cycling of C and nutrients in the ecosystem. Wood is highly persistent and 84 

stores C and nutrients such as N, phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) (Chave 85 

et al. 2009; Sardans and Peñuelas 2015). The nutrient stocks stored in wood, however, depend mainly on 86 

wood density and may vary greatly among species (Sardans and Peñuelas 2013; 2015).  87 

Most of the research on the impacts of shrub encroachment into grasslands has focused on soil C and 88 

N balances (Hibbard et al. 2001; Jackson et al. 2002; Hood et al. 2003; Throop and Archer 2008; Van-Auken 89 

2009), including studies conducted in the Pyrenees (Garcia-Pausas et al. 2007; Montané et al. 2007; Garcia-90 

Pausas 2010). However, changes in the chemical composition of both plants and soils, including key elements 91 

such as P, K, Ca, Mg and iron (Fe), along the succession from grassland to shrubland, have not yet been 92 

investigated in detail. We studied two common and contrasting landscapes where shrub encroachment 93 

typically occurs in the Pyrenees, one facing north (hereafter North face) and one facing south (hereafter South 94 

face). Each study site represents an independent case study because the grassland and shrubland species differ 95 

between the two sites. In each of the two sites, we established a replicated sampling design in three 96 

contrasting stages along the succession: a) the unencroached grassland (initial stage of succession, where 97 

shrubs are not yet present), b) the mixed, young shrubland (intermediate stage of succession, where grassland 98 

has small patches of shrubs) and c) the mature shrubland (advanced stage of succession, where the dominant 99 

shrub species form large, monospecific patches). The main aim was to analyze the changes in the chemical 100 

composition (concentrations and stocks) of the aboveground-biomass compartments (leaves and leaf-litter in 101 

herbaceous species; leaves, leaf-litter and stems in shrubs) and the soil along the succession from grassland to 102 

shrubland in the Central Pyrenees.  103 
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A previous study conducted in the same study sites in the Pyrenees highlighted that the 104 

concentrations of some soil nutrients (e.g. N, P or K) generally declined along the succession from grassland 105 

to shrubland (Grau et al. 2019), although there were differences between sites and shrub species. It was 106 

hypothesized that shrubs may store nutrients in the biomass to take control of nutrients of the ecosystem to 107 

avoid nutrient limitation and promote their further expansion along the succession, as hypothesized for 108 

forested ecosystems with nutrient limitation in the soil (Grau et al. 2017). In this current study, we explore if 109 

this hypothesis can be supported and investigate whether the decline in the concentrations of soil nutrients 110 

along the succession was coupled with changes in concentrations and/or stocks of nutrients in the 111 

aboveground biomass. Moreover, shrub expansion into grassland is expected to shape the plant-soil 112 

stoichiometry spectrum and the biogeochemical cycle through changes in the abiotic and biotic conditions 113 

along the succession from grassland to shrubland. We thus hypothesized that each successional stage would 114 

show a contrasting plant-soil stoichiometric spectrum, resulting from changes in vegetation structure and 115 

allocation strategies in each stage, and that C:nutrient ratios in the aboveground biomass and soil would 116 

increase over the succession due to the lignification of plant compartments. 117 

MATERIAL AND METHODS 118 

Study area, species and sampling design 119 

The two study sites were located in the Central Pyrenees (NE Iberian peninsula), one site on the North face 120 

(Bargadèra, Val d‟Aran, 42°39′53.9″N, 00°50′07.8″E, with Cambro-Ordovician schists, sandstones and 121 

quartzites) and one on the South face (Fogueruix, Pallars Sobirà, 42°35′32.9″N, 01°04′28.8″E, with a 122 

Devonian slaty limestone), both on the periphery of the „Aigüestortes i Estany de Sant Maurici‟ National Park 123 

(Figure SF1). The two sites are separated by only 22 km but are characterized by contrasting macro- and 124 

microclimates; the site in Val d‟Aran has a strong Atlantic influence, whereas the site in Pallars Sobirà is 125 

more continental. The mean annual number of days with precipitation or fog and the relative air humidity are 126 

therefore higher at North face than South face (Catalan Meteorological Service, 127 

http://meteo.cat/wpweb/climatologia, accessed on March 2018). The North face is a smooth north-facing 128 

slope at an altitude of 1800-1900 m a.s.l. Since 2015, annual precipitation at the nearest meteorological 129 

station to North face (Bagergue, 1400 m a.s.l.) has ranged from 800 to 900 mm, mean annual temperature has 130 

http://meteo.cat/wpweb/climatologia
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ranged from 8 to 9 °C and minimum and maximum absolute temperatures were -14 and 30 °C, respectively. 131 

The South face site is a steep south-facing slope at an altitude of 2000-2100 m a.s.l. Since 2015, annual 132 

precipitation at the nearest meteorological station to South face (Planes de Son, 1540 m a.s.l.) has ranged from 133 

600 to 800 mm, mean annual temperature has ranged from 8 to 10 °C and minimum and maximum absolute 134 

temperatures were -15 and 30 °C, respectively. Both meteorological stations are at altitudes (ca. 400 m) lower 135 

than the study sites, so precipitation is expected to be higher and temperatures are expected to be lower 136 

(average and range) than the reported values at both sites. Both sites are in areas that have been intensively 137 

used for livestock grazing for many centuries, but socio-economic changes in the Pyrenees since the 1950s 138 

reduced the density of livestock, and some summer pastures have been abandoned (MacDonald et al. 2000; 139 

Jiménez and Pujol 2010), which have favored the expansion of shrubs into these former grasslands. The two 140 

sites differ greatly in their abiotic conditions (macro and microclimate, bedrock lithology, topography) and in 141 

the functional characteristics of their vegetation (biotic conditions); the dominant shrubs are: 142 

Calluna vulgaris (L.) Hull, Rhododendron ferrugineum L. and Vaccinium myrtillus L. at North face and 143 

Arctostaphylos uva-ursi (L.) Spreng, Juniperus communis L. and Juniperus sabina L. at South face.  144 

The grassland at North face is classified as a mesophilic, dense subalpine grassland „Nardion‟ (Galvánek and 145 

Janák 2008), dominated mostly by grasses (Festuca eskia Ramond ex DC. and Festuca nigrescens Lam.) with 146 

scarcer forbs (Trifolium alpinum L., and Cerastium arvense L.). The succession is mostly driven by the dwarf 147 

shrubs Calluna vulgaris, Rhododendron ferrugineum and Vaccinium myrtillus. The grassland at South face is 148 

classified as a xerophilic, open montane grassland „Xerobromion‟ (Carreras et al. 1983; EAE 2019), 149 

dominated by grasses (Festuca ovina L. and Festuca gautieri (Hack.) K.Richt) that co-occur with small forbs 150 

(such as Hieracium pilosella L., Achillea millefolium L. and Potentilla neumanniana Rchb.). The succession 151 

from grassland to shrubland is mostly driven by the dwarf shrubs Arctostaphylos uva-ursi, 152 

Juniperus communis and Juniperus sabina L. and to a much lesser extent by 153 

Helianthemum nummularium (L.) Mill. or Thymus pulegioides L.  154 

Soils at the North face site are built from Cambro-Ordovician schists, sandstone and quartzite, and, given the 155 

moderate slope of the area, they are moderately deep, rich in organic matter, and acidic, corresponding in 156 

general to Humudepts. Those at the South face site result mainly from Silurian pelite and also from Devonian 157 

lime-rich slate. Being this site steeper, soils are shallower and irregular, moderately acidic and humic, broadly 158 
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corresponding to lithic Humudepts (Boixadera et al. 2014). Moreover, soils at the South face experience 159 

summer drought episodes resulting into apparent drying off of the shallow soil level, which does not occur at 160 

the North face. The soil pH in the North face tend be more acidic (pH around 4.7-5) than in South face (pH 161 

5.7-6.3) (Grau et al. 2019). The percentage of soil organic matter measured in the same study sites were 162 

higher at North face (herbaceous species: 21.2%, Calluna vulgaris: 37.8%, Rhododendron ferrugineum: 163 

40.12% and Vaccinium myrtillus 40.6%) than South face (herbaceous species: 16.5%, Arctostaphylos uva-164 

ursi: 16.2%, Juniperus communis:13.2% and Juniperus sabina: 13.4%) (Grau et al. 2019). 165 

We selected three stages at each site along the succession from grassland to shrubland: a) unencroached 166 

grassland, which is still regularly grazed by domestic animals (Oriol Grau, pers. observation), is dominated by 167 

herbaceous species and has no shrubs, b) young shrubland, composed of a mosaic of herbaceous species and 168 

shrub patches of ca. 1-2 m
2
 and c) mature shrubland, where the dominant shrub species form large 169 

monospecific patches (at least 10 × 10 m). The mixed shrub patches in the young shrubland covered 25-30 % 170 

of the ground, whereas the shrubs in the in the mature shrubland covered 90-100% of the ground.  171 

We selected the most common shrubs at each site (C. vulgaris, R. ferrugineum and V. myrtillus at North face 172 

and A. uva-ursi, J. communis and J. sabina at South face; see suplementary Table ST1a, b for an ecological 173 

and functional characterization of the shrub species studied). The herbaceous species and each of the shrubs 174 

occurring along the succession in each site will hereafter be referred to as „vegetation types‟.  175 

The replication of the successional stages was done in each site separately; the two sites were not treated as 176 

replicates in the analyses but as two independent study cases. Sampling plots were established to reproduce 177 

the extant structure of the vegetation in each successional stage. We established four replicate 2 × 2 m plots 178 

(separated by a minimum of 10 m) in the unencroached grassland, and in each of three mature shrublands at 179 

each site (Fig. 1 and Grau et al. 2019 for further details). In the young shrubland, though, the plots for each 180 

vegetation type (grass, shrub 1, shrub 2, shrub 3) were grouped because all vegetation types co-occurred; in 181 

this intermediate stage, we established four groups of four plots. In total we sampled 32 plots per site along 182 

the succession from unencroached grassland to mature shrubland (see Fig. 1). The distance between the 183 

successional stages or among the mature shrublands of each shrub species was >100 m and the distance 184 

between the four replicates inside each successional stage was 10 m. The plots in the unencroached grassland 185 



8 
 

were placed in areas that represented the mixture of grass species that co-occurred in this successional stage, 186 

whereas the plots in the mature shrubland were placed in large patches dominated by each of the shrub 187 

species. 188 

We collected plant and soil samples towards the end of the growing season (September 2015) for the analysis 189 

of their elemental compositions. The litter layer was removed prior to the soil sampling; root samples could 190 

not be collected so this belowground compartment could not be accounted for this study. We collected a total 191 

of 144 shrub samples: 2 sites × 2 successional stages where shrubs were present (young shrubland and mature 192 

shrubland) × 3 shrub species × 4 replicates × 3 plant compartments (leaves, leaf-litter -dead leaves still 193 

attached to the plant- and stems). We collected a total of 32 samples of a mixture of herbaceous species in the 194 

unencroached grassland and the young shrubland: 2 sites × 2 successional stages where herbaceous species 195 

were present (unencroached grassland and young shrubland) × 4 replicates × 2 plant compartments (leaves 196 

and leaf-litter). We also collected soil samples to a depth of 10 cm next to each plant sample with a 5-cm 197 

diameter soil corer, 48 samples for shrubs (2 sites × 2 successional stages where shrubs were present × 3 198 

shrubs species × 4 replicates) and 16 samples for herbaceous species (2 sites × 2 successional stages where 199 

herbaceous species were present × 4 replicates), making a total of 64 soil samples. The concentrations of C, 200 

N, P, K, Mg, Ca and Fe (see details of the chemical analyses in the next section) and 
15

N were measured in 201 

leaves, leaf-litter, lignified stems and soils. The samples were transported to the laboratory in paper 202 

envelopes, the soil samples were sieved (2 mm) and all samples were oven-dried at 60 °C for 48 h. They were 203 

then ground with a ball mill (Retsch, model MM400. RestchGmbH. Haan, Germany), weighed with an 204 

AB204 Mettler Toledo (Mettler Toledo, Barcelona, Spain) and analyzed in the chemistry laboratories at 205 

Servei d‟Anàlisi Química, Autonomous University of Barcelona (Barcelona, Spain), where the percentages of 206 

P, K, Mg, Ca and Fe in dry weight were determined, and at the University of California Davis Isotope Facility 207 

(Davis, USA), where the isotopic compositions (δ
15

N) and percentages of C and N in dry weight were 208 

determined.  209 

We revisited the same sampling areas in September 2016 and collected more samples to characterize the 210 

mean biomass of each plant compartment and the bulk density of the soil, which we used to estimate the 211 

stocks of C and nutrients in the aboveground compartments (g m
-2

) of the vegetation types and the soil. We 212 

assumed that the aboveground biomass of the herbaceous species was similar between the two years, because 213 
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their aboveground structures are entirely or nearly newly produced each year and the climatic conditions 214 

(mean annual temperature and precipitation) did not vary much (Catalan Meteorological Service, 215 

http://meteo.cat/wpweb/climatologia, accessed on March 2018). The changes in biomass of  shrubs  are very 216 

limited in this ecosystem (Ninot et al. 2010a), so we do not expect large significant variations between two 217 

consecutive years with similar climatic conditions. We collected the aboveground vegetation within 25 × 25 218 

cm quadrats in the young shrubland and 50 × 50 cm quadrats in the unencroached grassland and mature 219 

shrubland. The biomass was then transported in plastic bags to the laboratory and sorted manually into leaves 220 

and woody stems (only for shrubs). We collected a total of 48 foliar samples and 48 stem samples from 221 

shrubs (2 sites × 2 successional stages where shrubs were present × 3 shrub species × 4 replicates) and 16 222 

foliar samples from herbaceous species (2 sites × 2 successional stages where herbaceous species were 223 

present × 4 replicates). The plant material was sorted and oven-dried at 60 °C to a constant weight, and the 224 

dry weight was measured. We collected soil samples with a bulk-density corer (9 cm diameter to a depth of 225 

10 cm) to estimate the bulk density for each vegetation type. The quantity of soil (g cm
-2

) was calculated as 226 

the product of the bulk density multiplied by the core depth. We also calculated the annual leaf-litter 227 

production based on estimates of foliar persistence conducted in nearby locations (Ninot et al. unpublished 228 

data). Leaf-litter productivity was used to estimate the annual input of nutrients from the leaf-litter for each 229 

vegetation type. 230 

Chemical analyses  231 

For leaves, leaf-litter and stems, 4.5 mg of dry sample were weighed and encapsulated in tin capsules. For 232 

soils, 8.6 mg of each sample were used.  The samples were then analyzed for C and N with an Elementar 233 

Cube system (Elementar Analyzen system GmbH, Hanau, Germany). 
15

N isotope was analyzed by an 234 

Elementar Vario EL Cube or Micro Cube elemental analyzer connected to a PDZ Europa 20-20 isotope-ratio 235 

mass spectrometer (Sercon Ltd., Cheshire, UK). The plant samples were combusted at 1000°C in a reactor 236 

packed with chromium oxide and silvered copper oxide and soils were combusted at 1080 °C in a reactor 237 

packed with copper oxide and tungsten (VI) oxide. The oxides were then removed in a reduction reactor 238 

(reduced copper at 650 °C). The samples were interspersed during the analysis with several replicates of at 239 

least two laboratory standards. These standards, which were selected for their compositional similarity to the 240 

samples, had been previously calibrated against National Institute of Standards and Technology (NIST) 241 

http://meteo.cat/wpweb/climatologia
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Standard Reference Materials (IAEA-N1, IAEA-N2, IAEA-N3, USGS-40 and USGS-41). Preliminary 242 

isotopic ratios were measured relative to the reference gases analyzed for each sample. These preliminary 243 

ratios were refined by correcting for the entire batch based on the known ratios of the laboratory standards. 244 

The long-term standard deviation was 0.3‰ for 
15

N.  245 

The concentrations of P, Mg, K, Ca and Fe in the leaves, leaf-litter, stems and soil were determined by 246 

inductively coupled plasma mass spectrometry (ICP-MS) after digestion. For leaves, leaf-litter and stems, 247 

0.25g of dry material were diluted in 5 ml of concentrated HNO3 and digested in a MARSXpress microwave 248 

system (CEM GmbH, Kamp-Lintfort, Germany). The solution generated was analyzed by ICP-MS to 249 

determine the elemental concentrations. The accuracy of the biomass digestions and analytical procedures 250 

was assessed using certified biomass NIST 1573a (tomato leaf, NIST, Gaitherburg, USA) standards and 251 

regularly analyzing blank solutions with no sample (5 mL of HNO3 and 2 mL of H2O2 with no sample). Dry 252 

soil subsamples of 0.1 g were dissolved in an acidic mixture of HNO3, HCl and HF and digested as described 253 

for the plant samples. The solutions were diluted with 1% HNO3 (v/v) before injection into the spectrometer. 254 

Blank solutions (5 mL of HNO3 and 2 mL of H2O2 with no sample) were regularly analyzed. Total stocks of 255 

the elements (g m
-2

) for each plant compartment and the soil were calculated as the biomass (leaves, leaf-litter 256 

or stems) and soil weights multiplied by the concentration of each element analyzed. The C:N, C:P and N:P 257 

ratios were calculated on a mass basis. 258 

Statistical analyses 259 

We conducted principal component analyses (PCAs) of the elements to visualize the overall differences in the 260 

chemical composition of the plant and soil samples collected for each vegetation type (shrub and herbaceous 261 

species) and successional stage for each of the two sites. This allowed us to reduce the number of variables of 262 

leaf, leaf-litter and soil chemistry and integrate the information in a more comprehensive way on a two-263 

dimensional plot. We standardized the variables and performed a PCA for the elements of all compartments 264 

(leaves, leaf-litter and soil) for each site separately to assess the differences in the chemical compositions 265 

among the successional stages and vegetation types within each site. If two variables were highly positively 266 

correlated (Pearson‟s product moment correlation coefficient > 0.6), we excluded one of the two in the PCA 267 

to avoid the overfitting of variables. We also conducted PCAs of each plant compartment (leaves, leaf-litter, 268 
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and stems) and soil using data from both study sites to identify differences between vegetation types and sites. 269 

To identify links between the functional traits of the shrubs and the foliar elements concentrations (C, N, P, K, 270 

Mg, Ca and Fe), we conducted PCAs of the foliar elemental concentrations and some key functional 271 

measurements, as seed weight, specific leaf area (SLA), wood density, biomass per unit area, height and 272 

annual leaf-litter production. All PCAs were conducted with the „ggbiplot‟ (Wickham 2009) and 273 

„FactoMineR‟ (Le et al. 2008) packages in R. The significance of the differences between vegetation types 274 

and successional stages in each PCA were tested by permutational multivariate analyses of variance 275 

(PERMANOVAs) with the R „vegan‟ package (Oksanen et al. 2017). β dispersion homogeneity tests were 276 

conducted prior to PERMANOVA analyses.  277 

We analysed the differences in elemental concentrations (dry weight (dw) of nutrient/dw of sample × 100) 278 

and stocks (g m
-2

) in the plant and soil and between vegetation types (herbaceous species and shrub 1, shrub 279 

2, and shrub 3) and successional stages at each site. Although in our sampling design we maximised the 280 

independence of samples as much as possible, the extant structure of vegetation along the succession made it 281 

not possible to find a completely independent, random distribution of combinations of successional stage × 282 

vegetation type in the field sites. We therefore firstly checked if there were any underlying patterns of spatial 283 

aggregation in the elemental concentration and stocks data with autocorrelation semivariograms „nlme‟ 284 

package (Pinheiro et al. 2017) that are used for measuring the degree of spatial dependence between 285 

observations as a function of distance. As in Grau et al. (2019) the initial visual interpretation of the 286 

semivariograms indicated that in most cases the data were not autocorrelated despite the plots were not 287 

completely randomized. Yet, we preferred to statistically check if autocorrelation should be accounted for in 288 

the models. To do so we built two types of models: 1) Generalised least square (GLS) models that did not 289 

account for spatial autocorrelation, 2) GLS models that included the „corSpatial‟ R function to account for 290 

potential spatial autocorrelation. For this second type of GLS models, the coordinates (longitude and latitude) 291 

of each plot were specified and we fitted five different models using a different autocorrelation structure each 292 

time (e.g. exponential, linear, gaussian, rational quadratic or spherical). After running all the models (one 293 

without and five with autocorrelation structure) for the element concentrations and stocks in each soil or plant 294 

compartment, we compared and selected the best model using scores of the Akaike Information Criterion 295 

(AIC). We used maximised log-likelihood in all cases and checked the normal distribution of the data before 296 
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run the models. The unencroached grassland was the initial stage of the succession from grassland to 297 

shrubland, and we considered it as the reference level in all models. The two study sites were analyzed as two 298 

independent study cases, so „site‟ was not included in the models as a factor. All analyses were performed 299 

with R 3.2.4 (RCoreTeam 2017). 300 

RESULTS 301 

Significant differences in the elemental concentrations and ratios in the plant compartments (leaves and leaf-302 

litter and stems (only for shrubs) and soil for all the vegetation types along the encroachment succession in 303 

both study sites are summarized in Table 1 and 2, the means  sd values in Table ST2. Significant differences 304 

for element stocks are summarized in ST3, ST4, ST5 and ST6. 305 

Patterns of plant-soil stoichiometry along the succession at North face 306 

The plant-soil stoichiometry spectrum at North face varied along the two axes of the PCA (Fig. 2a). The first 307 

PC axis explained 32.6% of the variance mostly integrated the changes along the succession, whereas the 308 

second axis explained 23% and mostly showed the variability within each successional stage, particularly for 309 

shrublands. Such variation between successional stages and also vegetation types (PERMANOVA tests 310 

p<0.001 in both cases). Because the β-dispersion homogeneity test showed significant differences between 311 

groups (successional stages or vegetation types), the significance of these PERMANOVA tests may thus 312 

result from differences in the position of the centroids as well as from differences in the dispersion of the data 313 

around the centroids.  314 

Leaves and leaf-litter in patches of herbaceous species in the young shrubland had a higher C:N ratio and 315 

lower [N], [K] and [Fe] than the herbaceous species in the unencroached grassland; the soil [P] was lower in 316 

patches with herbaceous species in the young shrubland than in the unencroached grassland  (Table 1a). 317 

Generally, shrub leaves in the young and mature shrubland had higher [C], C:N ratio and lower [N], [K],  [Fe] 318 

and N:P than herbaceous species in the unencroached grassland (Table 1a,b); leaf-litter [C] was higher in 319 

shrubs than in the unencroached grassland. Foliar [Ca] and [Mg] in the mature shrubland were higher than in 320 

the unencroached grassland. Regarding the soil, all vegetation types in young shrubland had higher soil C:N 321 

ratio and lower [P] and [Mg] than in unencroached grassland. (Tables 1a). Soil N was also lower in the young 322 
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shrubland of R. ferrugineum and V. myrtillus and soil K, Ca and Fe were lower in the mature shrubland of C. 323 

vulgaris compared to the unencroached grassland (Table 1b). Foliar 
15

N and [N] were lower for all the 324 

vegetation types in the young and the mature shrubland than herbaceous species in unencroached grassland 325 

(Fig. 3). 326 

We found stoichiometric differences within shrub species between the young and mature shrublands (Table 327 

2). In the mature shrubland, C. vulgaris had higher [K] and C:N ratio and lower [Mg] in the leaf-litter, higher 328 

C:N ratio and lower [N] and [K] in the stems. R. ferrugineum had higher foliar N:P, higher [N], [K] and lower 329 

C:N ratio in leaf-litter, higher stem [N] and N:P and lower C:N and higher soil [Mg], N:P and C:P ratio in the 330 

mature than the young shrubland. V. myrtillus had higher foliar [C] and [Fe], lower leaf-litter N:P and C:P 331 

ratios and higher soil [Mg] in the mature than the young shrubland (Table 2).  332 

The stocks of nutrients were generally much larger (generally 100-fold in all successional stages) in the soil 333 

than in the biomass. The stocks of N (9.4 g m
-2

), P (0.71 g m
-2

), K (8.5 g m
-2

) and Fe (0.06 g m
-2

) in leaves of 334 

herbaceous species in the unencroached grassland were significantly larger than in the leaves of all vegetation 335 

types in the young and mature shrublands (Fig. 4 and Table ST3 for significant differences). Nevertheless, 336 

shrub stems generally stored larger amounts of C and nutrients compared to leaves, so that the stocks of C and 337 

nutrients in the aboveground biomass in the young and mature shrubland were generally much larger than in 338 

the grassland (except for K). C. vulgaris and R. ferrugineum in the mature shrubland had higher stocks of soil 339 

C (8953.5 g m
-2

, 7388.7 g m
-2

, respectively) and soil N (507.5 g m
-2

, only C. vulgaris) than the unencroached 340 

grassland (C: 3645.7g m
-2

, N: 294.7g m
-2

). The stocks of soil P and K stocks in C. vulgaris in the mature 341 

shrubland tend to increase but not significantly. Herbaceous species in unencroached grassland showed the 342 

highest annual leaf-litter production (509.4 g m
-2 

year
-1

) (Fig. SF2, see Table ST3 for significant differences); 343 

also, the annual leaf-litter production in V. myrtillus was higher in the mature (99.8 g m
-2 

year
-1

) than the 344 

young shrubland (53.8 g m
-2 

year
-1

) (Fig. SF2, see Table ST4 for significant differences), implying higher 345 

inputs of C (49.5 g m
-2 

year
-1

), N (1.1 g m
-2  

year
-1

), P (0.12 g m
-2

year
-1

), K (0.68 g m
-2 

year
-1

), Mg (0.2 g m
-2 346 

year
-1

), Ca (0.7 g m
-2 

year
-1

) and Fe (0.007g m
-2 

year
-1

) in the mature shrubland (Tables ST2 and ST4 for 347 

significant differences). Leaf-litter production did not differ significantly for the other vegetation types.  348 

Patterns of plant-soil stoichiometry along the succession at South face 349 
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The plant-soil stoichiometry spectrum at South face varied greatly along the two axes of the PCA based on 350 

the chemical composition of leaves, leaf-litter and soil (Fig. 2b).  The first PC axis explained 30.7% of the 351 

variance and mostly integrated the differences along the succession, whereas the second PC axis explained 352 

20.1%, which highlights the variability within the successional stages and vegetation types. We found 353 

significant differences between successional stages (PERMANOVA p<0.001) and vegetation types 354 

(PERMANOVA p<0.004) (Fig. 2b). In general, herbaceous species in the young shrubland had lower [N] and 355 

[K] in leaves, higher [C], [Fe], N:P and C:N ratio and lower [N] and [P] in the leaf-litter and higher [Fe] and 356 

lower [N], [Ca] and [Mg] in soil than the unencroached grassland (Tables 1a). Shrub leaves in the young 357 

shrubland generally had higher [C] and C:N ratios and lower [N], [K] and N:P ratio than herbaceous species 358 

in unencroached grassland, and shrub leaf-litter generally had higher [C] and lower [N] than herbaceous 359 

species in unencroached grassland. The soil in young shrubland had lower [N], [Ca], [Mg] and N:P ratio than 360 

soil under herbaceous species in unencroached grassland. Leaves in the mature shrubland often had higher 361 

[Ca] and [Mg] and lower [N], [K] and N:P ratio, and leaf-litter with higher [C] and lower [Fe] than the 362 

unencroached grassland. Soil [N], [Ca], [Mg] were always lower in the young shrubland than the 363 

unencroached grassland (Tables 1); soil [P] was also lower in the mature shrubland of A. uva-ursi and J. 364 

sabina. Foliar 
15

N and [N] were also lower for all vegetation types in the young and the mature shrubland 365 

than herbaceous species in unencroached grassland (Fig. 3), as observed at North face. 366 

We also found some stoichiometric differences within shrub species between the young and mature stages 367 

(Table 2). A. uva-ursi had lower foliar [P] and higher C:P ratio and higher leaf-litter N:P ratio in the mature 368 

than the young shrubland, J. communis had lower [Ca] and C:N ratio in the leaf-litter and lower [Ca] in the 369 

stems in the mature than the young shrubland and J. sabina had higher foliar [C], leaf-litter [C], [N] and [P] 370 

and lower [Ca], C:N and C:P ratios and higher stem [Mg] and lower C:N ratio in the mature than the young 371 

shrubland (Table 2). Soil stoichiometry did not differ significantly between the young and mature shrublands. 372 

The stocks of nutrients were generally much larger in the soil (100-fold in unencroached grassland and young 373 

shrubland and 10-fold for mature shrubland) than in the biomass. The stocks of C, N, P, Mg and Ca in the 374 

leaves of J. communis and J. sabina  in the young and mature shrubland were higher than in the leaves of the 375 

herbaceous species in the unencroached grassland (C: 191.1 g m
-2

, N: 8.2 g m
-2

, P: 0.56 g m
-2

, K: 6.7 g m
-2

, 376 

Mg: 0.45g m
-2

, Ca: 1.7g m
-2

), and the leaves of A. uva-ursi had lower K stocks (Fig. 5 and Table ST5 for 377 
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significant differences). As observed at North face, shrub stems generally stored larger amounts of C and 378 

nutrients compared to leaves, so that the overall stocks of C and nutrients in the aboveground biomass were 379 

generally much larger than in the grassland. The soil for most shrubs had smaller stocks of Mg and Ca in the 380 

young and mature shrublands than in the unencroached grassland (Mg 77.1 g m
-2

 and Ca: 431.1 g m
-2

). The 381 

soil for A. uva-ursi (348.19 g m
-2

) and J. communis (315.76 g m
-2

) in the mature shrubland had lower N stocks 382 

than in young shrubland. Soil P stocks tended to decrease along the succession, but not significantly (Fig. 5 383 

and Table ST6 for significant differences). Annual leaf-litter production by J. sabina was higher in the mature 384 

(938.9 g m
-2

 yr
-1

) than the young shrubland (566.2 g m
-2

 year
-1

) (Fig. SF2 and Table ST6 for significant 385 

differences). Leaf-litter production did not differ significantly for the other vegetation types. 386 

General patterns in the plant-soil stoichiometry spectrum at North and South face 387 

The PCA of the functional traits and foliar elemental composition of the shrub species from both study sites 388 

(Fig. SF3) showed that the shrub species at North face differed from those at South face (PERMANOVA 389 

p<0.01) along the PC2 (31.2% of variance explained). Moreover, differences between shrub species within 390 

each site were also discriminated (PERMANOVA p<0.01) along the PC1 (39.1% of variance explained).  391 

The PCA based on the foliar stoichiometry including both sites showed significant differences between shrubs 392 

and herbaceous species (PERMANOVA p<0.5), mostly along the first axis (39,4% of variance explained, 393 

SF4a). The chemical composition of leaf-litter showed a similar pattern (PERMANOVA p<0.001) but 394 

varying mostly along the second axis (24% of variance explained, Fig. SF4b). The chemical composition of 395 

the soil, however, differed more between the two sites (PERMANOVA p<0.001) (41.4% of variance 396 

explained along the first axis, SF4c) than between herbaceous species and shrubs. In this case, though, 397 

because the β-dispersion homogeneity test in Fig. SF4c was significant, the significance of the 398 

PERMANOVA test may result not only from differences in the position of the centroids but also from 399 

differences in the dispersion of the data around the centroids. Finally, the chemical composition of the stems 400 

differed mostly between sites (PERMANOVA p<0.001) (39.3% of the variance explained along the first axis, 401 

Fig. SF4d). 402 

 403 

DISCUSSION 404 
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The plant-soil stoichiometry spectrum differed greatly along the succession from unencroached 405 

grassland to mature shrubland (Fig. 2), as initially hypothesized. The shift in plant-soil stoichiometry 406 

spectrum was more apparent and consistent between the unencroached grassland and the young shrubland 407 

than between the young and mature shrubland (Tables 1 and 2), suggesting that changes in growth forms 408 

(from herbaceous-dominated to shrub-dominated) play a greater role in shaping the plant-soil stoichiometry 409 

spectrum than differences in successional stage as such. In fact, the plant-soil stoichiometry spectrum is 410 

expected to be primarily shaped by changes in abiotic and/or biotic factors, such as changes in vegetation 411 

along the succession. This is evidenced by the shift between herbaceous species and shrubs, from high foliar 412 

[N] and [K] for herbaceous species to high foliar [C], [Ca], [Mg], C:N and C:P ratios and low [N], [P] or [K] 413 

for shrubs (Table 1, Table ST2); or from low to high [C], C:N and C:P ratios in litter, or from high to low [N], 414 

[P], [Mg] and [Ca] in soil. Such changes in stoichiometry may have major consequences on the functioning of 415 

ecosystems (Eldridge et al. 2011). For example, the high [C] and C:N and C:P ratios in the shrub leaves and 416 

leaf-litter promote the formation of recalcitrant organic matter accumulation with slow decomposition rates in 417 

the top soil of shrubland compared to the grassland (Ninot et al. 2010b; Garcia-Pausas et al. 2017).  418 

The changes in foliar chemical spectrum enabled us to detect shifts in the biogeochemical niche 419 

(Urbina et al. 2017; Peñuelas et al. 2019) (Fig. SF4). We found that shrubs and herbaceous species differed 420 

significantly in their biogeochemical niche, as expected from these two contrasting growth forms. For 421 

example, herbaceous species in the unencroached grassland had higher foliar nutrient concentrations (N, K), 422 

characteristic of  plants with fast growth rates; whereas shrubs had higher C concentration and C:N and C:P 423 

ratios in leaves, characteristic of plants with slow growth rates (Ågren 2004; Sardans et al. 2012; 424 

Zechmeister-Boltenstern et al. 2015).  425 

The changes in stoichiometry in the plant aboveground compartments along the succession were 426 

coupled with a decrease of the soil concentrations of some essential nutrients needed for plant development. 427 

Grau et al. (2019) suggested that this decrease in nutrient concentrations in the soil was possibly due to the 428 

decline in nutrient inputs from excrements of domestic herbivores and to the transfer of nutrients from the soil 429 

to the biomass of the shrubs (Horton et al. 2009). The allocation of nutrients to the biomass of shrubs could be 430 

a mechanism of nutrient accumulation by which shrubs control nutrients in an ecosystem through a positive 431 

feed-back (Chapin et al. 1997) to outcompete herbaceous species and expand into the grassland (Grau et al. 432 
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2019). In our study we found that the concentrations of N, P and K often decreased in the aboveground 433 

biomass along the succession in both study sites (Table 1); at the same time, the concentrations of soil N, P or 434 

K often decreased in the mature shrubland of several shrubs. The stocks of N and P in the aboveground 435 

biomass (leaves and stems), though, increased for several shrubs along the succession, particularly in R. 436 

ferrugineum, J. communis and J. sabina (Figs. 3 and 4). This indicates that the dilution of these nutrients in 437 

the aboveground biomass of shrubs was outweighed by their increase in aboveground biomass. This 438 

evidences that shrubs may act as net reservoirs of essential nutrients in the biomass even if the concentration 439 

in the biomass and soil decrease along the succession. The amount of C and nutrient stocks in aboveground 440 

biomass differed notably amongst shrub species, which implied differences in the final stocks in the mature 441 

shrubland within each site. Shrub identity was therefore crucial to understand the variability in concentrations 442 

and stocks of nutrients in the vegetation and in the soil within each site. However, we also found differences 443 

between the North and South face. Shrubs were generally smaller and less sclerophyllous at North face (Fig. 444 

SF3), where solar radiation and evapotranspiration are lower, the slope is smoother, and the soil is deeper than 445 

at South face (Ninot et al. 2010a). The increases in the C and nutrient stocks (g m
-2

) in the aboveground plant 446 

compartments along the succession from grassland to shrubland were less evident at North face than at South 447 

face. In contrast, shrubs developed more woody tissue, were taller and had higher wood density and more 448 

sclerophyllous leaves at South face. This is probably because shrubs are adapted to harsher conditions, with 449 

more solar radiation, higher evapotranspiration, less precipitation, a steeper slope and shallower soil with 450 

more rocky outcrops than at North face. The differences in shrub traits therefore, seem to  also play a key role 451 

in the C and nutrient cycles with the advance of the encroachment, as previously described by other authors  452 

(Eldridge et al. 2011).  453 

We also found that there was a marginally significant decrease (p-value 0.08) of  P stocks in the 454 

young shrubland at North face, but not at South face, when vegetation and topsoil stocks were summed 455 

together. This specific pattern could be related to differences in the way P is mobilized across the plant-soil 456 

compartment in each site after the abandonment of the grassland, leading to putative losses of P from the 457 

ecosystem. Moreover, A. uva-ursi at the South face site showed lower storage of N, P and K in the plant-soil 458 

compartments in the mature shrubland stage, which also suggests a possible loss of nutrients from the system 459 
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with the advance of the encroachment dominated by this species. These results though should be explored in 460 

more detail to fully understand the underlying mechanism of this loss of nutrients from the ecosystem.  461 

Finally, herbaceous species in young shrubland and shrubs in young and mature shrubland showed 462 

lower foliar δ
15

N and [N] than herbaceous species in unencroached grassland (Fig. 3). This was often coupled 463 

with a decrease in soil [N] in the young and/or mature shrubland for several shrub species (Table 1). Ruiz-464 

Navarro et al. (2016) argued that low soil N and low foliar δ
15

N were good indicators of a decline in soil 465 

fertility in Mediterranean ecosystems, with major implications on the biogeochemical cycling rates and 466 

nutrient availabilities. In the same way, our results indicate that N may become limiting in these subalpine 467 

ecosystems, particularly once the shrub cover is high (Angulo et al. 2019). Moreover, lower δ
15

N generally 468 

indicates more N uptake by ectomycorrhizal or ericoid mycorrhizal fungi compared to arbuscular mycorrhizal 469 

plants such as herbaceous species (Michelsen et al. 1998), with more recycled N leading to lower N losses 470 

from the ecosystem (Garten 1993; Robinson 2001; Craine et al. 2009; Anadon-Rosell et al. 2016). All shrubs 471 

at North face are ericaceous and have ericoid mycorrhizae; in the South face, A. uva-ursi hosts both ericoid 472 

and ectomycorrhizal fungi, whereas J. communis and J. sabina host arbuscular mycorrhizal fungi. The lower 473 

δ
15

N in young and mature shrubland possibly indicates that more N had been taken up by ectomycorrhizal or 474 

ericoid fungi (Angulo et al. 2019). The N uptake by ectomycorrhizal or ericoid mycorrhizal fungi possibly 475 

promotes the uptake of organic N (e.g. from litter) by shrubs (Akhmetzhanova et al. 2012) as inorganic N 476 

becomes more limiting in the soil. The fact that the arbuscular mycorrhizal species occurring in the young or 477 

mature shrubland (herbaceous species at North and South face and J. communis and J. sabina at South face) 478 

also show low δ
15

N values compared to the unencroached grassland possibly indicates that these species may 479 

have taken up part of their N in organic form derived from litter of surrounding ericoid or ectomycorrhizal 480 

shrubs (e.g. from patches of A. uva-ursi), but this should be further investigated. These results suggest that the 481 

advance of the succession possibly changed the mechanisms by which plants uptake N to overcome N 482 

limitation. 483 

CONCLUSIONS 484 

Shrub expansion has a major influence on the plant-soil stoichiometry spectrum along the succession from 485 

grassland to shrubland in the Pyrenees. Grassland ecosystem are dominated by species with faster turnover of 486 
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nutrients between the plant and soil compartments, high concentrations of N, P and K in the plant 487 

aboveground biomass and topsoil, but limited capacity to store biomass. The expansion of shrubs, though, 488 

favored the dominance of long-lived species, with a more conservative strategy, high C: nutrient ratios and 489 

low concentrations of N, P and K in the aboveground biomass and low nutrient concentrations in soils. The 490 

total stocks of C and nutrients in the aboveground biomass of the shrubland were nevertheless high because 491 

the biomass of the mature shrubland was very high compared to the grassland. We thus highlight the role of 492 

shrubs in the sequestration of C and nutrients, through the allocation to the aboveground biomass. Moreover, 493 

shrub encroachment altered the strategy with which N was acquired, possibly through an increased uptake of 494 

N through ectomycorrhizal or ericoid fungi. Our results suggested that shrubs play an important role in the C 495 

and nutrient sequestration in the aboveground biomass (through the allocation into the plant compartments) 496 

along the succession, where the woody tissues play a main role as storage compartment. The changes in plant-497 

soil elemental composition and stocks suggest a slowdown of the biogeochemical cycles in the subalpine 498 

mountain areas where shrub encroachment occurred, but experimental manipulations are still needed to better 499 

understand the mechanisms involved. 500 

 501 
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 519 

Figure captions 520 

Fig. 1 Experimental design. The dotted lines represent the sampling area in each successional stage: (a) 521 

Unencroached grassland, (b) young shrubland and (c) mature shrubland. The squares inside each successional 522 

stage represent the replicate plots (approximately 2 × 2 m). In the young shrubland we established four groups 523 

of four plots; the herbaceous species, shrub 1, shrub 2 and shrub 3 were grouped because all vegetation types 524 

co-occurred. The distance between the successional stages or among the mature shrublands of each shrub 525 

species was >100 m and the distance between the four replicates inside each successional stage was 10 m. 526 

Fig. 2 Principal component analysis (PCA) based on the concentrations of chemical elements in leaves 527 

(lf), leaf-litter (ltt) and soil (0-10 cm) for the successional stages and vegetation types at (a) North face and (b) 528 

South face. Only variables that were poorly correlated with each other (Pearson‟s coefficients <0.6) were 529 

included in the analyses. Different colors indicate the successional stages and different shapes indicate the 530 

vegetation types. The ellipses represent the dispersion around the centroid for each successional stage with a 531 

normal probability of 0.85. 532 

Fig. 3 Polynomial regression between foliar N and 
15

N for herbaceous species and shrubs along the 533 

succession from unencroached grassland to mature shrubland in both study sites. Different shapes show the 534 
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different vegetation types (herbaceous species or shrub) and colors show the successional stage 535 

(unencroached grassland, young shrubland or mature shrubland) in each study site (NF: North face, SF: South 536 

face). 537 

Fig. 4 Stocks of chemical elements (C, N, P, K, Ca, Mg and Fe) in leaves, stems and soil (0-10 cm) (g m
-2

) 538 

for each successional stage and vegetation type at the North face. The left column in each figure 539 

represents the unencroached grassland, the columns in the middle represent the vegetation types in the young 540 

shrubland, and the columns on the right represent the vegetation types in the mature shrubland. Significant 541 

differences are summarized in Table ST3. Leaf-litter data are not included because the data available for leaf-542 

litter could only be used to estimate the productivity (g m
-2

 yr
-1

), not the stocks. See Fig. SF2 and Table ST2 543 

for the leaf-litter productivity values. 544 

Fig. 5 Stocks of chemical elements (C, N, P, K, Ca, Mg and Fe) in leaves, stems and soil (0-10 cm) (g m
-2

) 545 

for each successional stage and vegetation type at the South face. The left column in each figure 546 

represents the unencroached grassland, the columns in the middle represent the vegetation types in the young 547 

shrubland, and the columns on the right represent the vegetation types in the mature shrubland. Significant 548 

differences are summarized in Table ST5. Leaf-litter data are not included because the data available for leaf-549 

litter could only be used to estimate the productivity (g m
-2

 y
-1

), not the stocks. See Fig. SF2 and Table ST2 550 

for the leaf-litter productivity values. 551 

 552 
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Fig. 1 Experimental design. The dotted lines represent the sampling area in each successional stage: (a) Unencroached grassland, (b) young shrubland and (c) 553 

mature shrubland. The squares inside each successional stage represent the replicate plots (approximately 2 × 2 m). In the young shrubland we established four 554 

groups of four plots; the herbaceous species, shrub 1, shrub 2 and shrub 3 were grouped because all vegetation types co-occurred. The distance between the 555 

successional stages or among the mature shrublands of each shrub species was >100 m and the distance between the four replicates inside each successional stage 556 

was 10 m. 557 

  558 

 559 
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Fig. 2 Principal component analysis (PCA) based on the concentrations of chemical elements in leaves (lf), leaf-litter (ltt) and soil (0-10 cm) for the 560 

successional stages and vegetation types at (a) North face and (b) South face. Only variables that were poorly correlated with each other (Pearson‟s coefficients 561 

<0.6) are included in the analyses. Different colors indicate the successional stages and different shapes indicate the vegetation types. The ellipses represent the 562 

dispersion around the centroids for each successional stage with a normal probability of 0.85. 563 

 564 

 565 

 566 
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Fig. 3 Polynomial regression between foliar N (%) and foliar delta 
15

N (
15

N) for herbaceous species and 567 

shrubs along the succession from unencroached grassland to mature shrubland in both study sites. 568 

Different shapes show the different vegetation types (herbaceous species or shrub) and colors show the 569 

successional stage (unencroached grassland, young shrubland or mature shrubland) in each study site (NF: 570 

North face, SF: South face) 571 

   572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 
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Fig. 4 Stocks of chemical elements (C, N, P, K, Ca, Mg and Fe) in leaves, stems and soil (0-10 cm) (g m
-2

) 581 

for each successional stage and vegetation type at the North face. The left column in each figure 582 

represents the unencroached grassland, the columns in the middle represent the vegetation types in the young 583 

shrubland, and the columns on the right represent the vegetation types in the mature shrubland. Significances 584 

are summarized in table ST3. Leaf-litter data are not included because the data available for leaf-litter could 585 

only be used to estimate the productivity (g m
-2

 y
-1

), not the stocks. See Fig. SF2 and Table ST2 for the leaf-586 

litter productivity values. 587 
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Fig. 5 Stocks of chemical elements (C, N, P, K, Ca, Mg and Fe) in leaves, stems and soil (0-10 cm) (g m
-2

) 588 

for each successional stage and vegetation type at the South face. The left column in each figure 589 

represents the unencroached grassland, the columns in the middle represent the vegetation types in the young 590 

shrubland, and the columns on the right represent the vegetation types in the mature shrubland. Significances 591 

are summarized in table ST5. Leaf-litter data are not included because the data available for leaf-litter could 592 

only be used to estimate the productivity (g m
-2

 y
-1

), not the stocks. See Fig. SF2 and Table ST2 for the leaf-593 

litter productivity values.594 
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Table 1. Significant changes in the element concentrations for the different vegetation types in (a) the young shrubland and (b) mature shrubland 595 

compared to the herbaceous species in the unencroached grassland. Changes (increases (  ) or decreases (  )) in the elemental concentrations (C, N, P, K, 596 

Ca, Mg and Fe) (dw/dw) and in the C:N, C:P and N:P ratios were identified by generalized least square models. The n.s. abbreviation indicates that the results 597 

were not 598 

statisticall599 

y 600 

significan601 

t (P > 602 

0.05). 603 

Means  604 

sd are 605 

summariz606 

ed in 607 

Table 608 

ST2 and 609 

significan610 

ce values 611 

are shown 612 

in Tables 613 

(a) 
Increase or decrease in the elemental concentration and ratios between the young shrubland and 

unencroached grassland stage 

  

Chemical changes (dw/dw) 

Leaves Leaf-litter Soil (0-10 cm) 

       

 
 

 

North 
Face 

herbaceous species 
 

C:N 
C, N, K, Fe 

 

C:N 
N, K, Mg, Fe 

Ca 

C:N 
P 

Calluna vulgaris 
C, Ca, Mg 

N:P, C:N, C:P, 
N, P, K C, N, Ca, Mg K, Fe 

Ca 

N:P, C:N, C:P 
P, Mg 

Rhododendron ferrugineum 
C, Ca, Mg 

C:N 
N, K, Fe 

C, Ca, Mg 

C:N, C:P 
N, K, Fe 

Ca, K 

C:N 
N, P, Mg 

Vaccinium myrtillus 
C, Ca, Mg 

 
N, K, Fe C, Ca, K, Mg Fe 

K, Ca 
C:N 

N, P, Mg 

 
 

 

South 
Face 

herbaceous species n.s N, K 
C, Fe 

N:P, C:N 
N, P 

Fe 

 
N, Ca, Mg 

Arctostaphylos uva-ursi 
C 

C:N, C:P 

N, K 

N:P 

C, K, Mg 

C:N 

N, Fe 

N:P 

Fe 

C:N 

N, K, Ca, Mg 

N:P 

Juniperus communis 
C, Ca 

C:N, C:P 

N, K 

N:P 

C, Ca 

C:P 
N, P, Fe n.s 

N, Ca, Mg, Fe 

N:P 

Juniperus sabina 
C, Ca, Mg 

C:N 

N, K 

N:P 
C, K, Ca, Mg n.s Fe 

N, Ca, Mg 

N:P 

 (b) 
Increase or decrease in the elemental concentration and ratios between the mature shrubland and 

unencroached grassland stage 

 

 

North 
Face 

Calluna vulgaris 
C, Ca, Mg 

N:P, C:N, C:P 
N, P, K, Fe C, Ca, Mg n.s 

 
C:N, C:P 

K, Ca, Fe 

Rhododendron ferrugineum 
C, Ca, Mg 

C:N, C:P 
N, K, Fe 

C, Ca, Mg 

C:N, C:P 
N, P, K, Fe 

C, Ca 

N:P, C:N, C:P 
Mg 

Vaccinium myrtillus 
C, Ca, Mg 

C:N 
N, K, Fe 

N:P 
C, P, K, Ca, Mg Fe 

Ca 
C:N 

n.s 

 

 
South 

Face 

Arctostaphylos uva-ursi 
C, Ca, Mg 

 

N, P, K 

N:P, C:N, C:P 

C, Mg 

C:N, C:P 

N, P, Fe 

N:P 

 

C:N 
N, P, K, Ca, Mg 

Juniperus communis 
C, Ca 
C:N 

N, K 
N:P 

C, Ca 
C:N, C:P 

N, P, Fe n.s 
N, Ca, Mg 

N:P 

Juniperus sabina 
C, Ca, Mg 

C:N 

N, K 

N:P 
C, P, K, Mg, Ca 

Fe 

N:P 
n.s N, P, Ca, Mg 
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ST3 and ST5. 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

Table 2. Significant changes in the element concentrations for the vegetation types in the mature shrubland compare to young shrubland. Changes 626 

(increases or decreases) in the elemental concentrations (C, N, P, K, Ca, Mg and Fe) (dw/dw) and in the C:N, C:P and N:P ratios were identified by generalized 627 
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least square models. The n.s. abbreviation indicates that the results were not statistically significant (P > 0.05). Means  sd are summarized in Table ST2 and 628 

significance values are shown in Tables ST4 and ST6. 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 Changes in the elemental composition between the mature and young shrubland stage  

  
Chemical changes  

Leaves Leaf-litter Stems Soil (0-10 cm) 

         

 

 
North 

face 

Calluna vulgaris 
n.s n.s 

K 

C:N 
Mg 

 

C:N 
N, K 

n.s 

 
n.s 

Rhododendron ferrugineum  

N:P 
n.s N, K 

 

C:N 

N 

N:P 
C:N 

Mg 

N:P, C:P 
n.s 

Vaccinium myrtillus C, Fe 
 

n.s n.s 
 

N:P, C:P 
n.s n.s Mg n.s 

 

 
South 

Face 

Arctostaphylos uva-ursi  
C:P 

P 
 

N:P 
n.s n.s n.s n.s n.s 

Juniperus communis  n.s 

 
n.s  

Ca 

C:N 
n.s Ca 

n.s 

 
n.s 

Juniperus sabina C 

 
n.s C, N, P 

Ca 

C:N, C:P 
Mg 

 

C:N 
n.s n.s 
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Supplementary material  819 

Figure SF1. Map of the study sites. Location of (a) the study area in the Central Pyrenees (red square) in southwestern Europe and (b) the two study sites (red 820 

dots). 821 
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 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 



39 
 

Figure SF2. Leaf-litter productivity (g m
2
 y

-1
) for each vegetation type in the two study sites: (a) North face and (b) South face in the unencroached grassland 831 

(left panel in each figure), young shrubland (middle panel in each figure) and mature shrubland (right panel in each figure). Leaf-litter productivity was calculated 832 

using the foliar persistence analysis from Ninot et al. (unpublished data). The upper and lower line of the boxes indicates the second and third quartile, 833 

respectively; the black line inside de box indicates the median; the bars represent the first and fourth quartiles and dots represent the outliers. Note the different 834 

vertical scales for North face and South face. 835 

  836 

 837 

 838 
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Figure SF3. Principal component analysis of the functional traits and foliar elemental composition of 839 

the shrub species in the mature shrubland including both study sites. The ellipses represent the dispersion 840 

around the centroids for each shrub species with a normal probability of 0.85. 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 
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Figure SF4. Principal component analysis (PCA) based on the elemental concentrations for (a) leaves, 849 

(b) leaf-litter, (c) soil and (d) stems for all vegetation types and successional stages. Only variables that 850 

were poorly correlated with each other (Pearson‟s coefficients <0.6) were included in the analyses. Different 851 

colors indicate the successional stages and different shapes indicate the vegetation types. The ellipses in (a) 852 

and (b) represent the dispersion around the centroids for herbaceous species and shrubs, and in (c) and (d) for 853 

the different sites, with a normal probability of 0.85. 854 
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