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Abstract. We characterize the phase portraits in the Poincaré disk of
all planar polynomial Hamiltonian systems of degree 3 with a nilpotent
saddle at the origin and Z2-symmetric with (x, y) 7→ (−x, y).

1. Introduction and statement of the results

In this paper we study the global phase portraits of a class of Z2-symmetric
planar polynomial Hamiltonian systems of degree three with a nilpotent sad-
dle at the origin. We recall that a planar polynomial Hamiltonian system is
a system of the form
(1) x′ = Hy, y′ = −Hx

where H(x, y) is a real polynomial in the variables x and y. Here the prime
denotes derivative with respect to the independent variable t. We say that
system (1) has degree d if the maximum of the degrees of Hy and Hx is d.
In this paper we will focus in the case in which d = 3.

Let p ∈ R2 be a singular point of a polynomial differential system in
R2. Without loss of generality we can assume that p is at the origin of
coordinates. We say that p is a nilpotent saddle if after a linear change of
variables and a rescaling of the time (if necessary) the system can be written
in the form

x′ = y + P (x, y), y′ = Q(x, y)

where P (x, y) and Q(x, y) are real analytic functions without constant and
linear terms, defined in a neighborhood of the origin. In this paper we will
consider the case in which P and Q are polynomials of degree three.

The global phase portraits in the Poincaré disk of all planar polynomial
Hamiltonian vector fields with degree three having a nilpotent center at the
origin have been provided in several studies (see for instance [2, 3]). However,
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no global phase portraits in the Poincaré disk are given for planar polynomial
Hamiltonian vector fields having a nilpotent saddle at the origin. This is
mainly due to the fact that there is a very important additional difficulty
caused by the possible saddle connections which normally are very difficult
to detect.

In this paper we want to fill in this gap and provide the global phase por-
traits in the Poincaré disk of all reversible and equivariant planar polynomial
differential systems of degree three that are symmetric with respect to the
y-axis and with a nilpotent saddle at the origin. Let X : U ⊂ R2 → R2 be
the vector field associated to system (1). We say that system (1) is reversible
with respect to the y-axis if it satisfies

(2)
(
−1 0
0 1

)
X(x, y) = −X(−x, y),

and we say that it is equivariant with respect to the y-axis if it satisfies

(3)
(
−1 0
0 1

)
X(x, y) = X(−x, y).

Other classes of polynomial vector fields in R2 with a Z2-symmetry have
been studied by several authors (see for instance [5, 6, 7, 8]).

The main tool in this paper will be the Poincaré compactification of poly-
nomial vector fields. The Poincaré compactification that we shall use for
describing the global phase portraits of our Hamiltonian systems is stan-
dard. For all the definitions and results on the Poincaré compactification
see Chapter 5 of [4]. We say that two vector fields on the Poincaré disk are
topologically equivalent if there exists a homeomorphism from one into the
other which sends orbits to orbits preserving or reversing the direction of
the flow. Our main result is the following one.

Theorem 1. A Hamiltonian planar polynomial vector field of degree three
with a nilpotent saddle at the origin and reversible with respect to the y-axis,
after a linear change of variables and a rescaling of its independent variable
can be written as one of the following classes:

(I) x′ = y + by3, y′ = x3 with b ∈ R;
(II) x′ = y + sx2y + by3, y′ = x3 − sxy2 with b ∈ R;

(III) x′ = y + y2 + by3, y′ = x3 with b ∈ R;
(IV) x′ = y + y2 + sx2y + by3, y′ = ax3 − sxy2 with a > 0 and b ∈ R;
(V) x′ = y + x2√

2
, y′ = ax3 −

√
2xy with a > −1;

(VI) x′ = y + x2√
2
+ sy3, y′ = ax3 −

√
2xy with a > −1;

(VII) x′ = y + x2√
2
+ sy2 + by3, y′ = ax3 −

√
2xy with a > −1 and b ∈ R;

(VIII) x′ = y+ x2√
2
+ sx2y+ by2+ cy3, y′ = ax3−

√
2xy− sxy2 with a > −1

and b, c ∈ R,
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with s ∈ {−1, 1}, a ̸= 0 in systems (V) and a2 + b2 ̸= 0 in systems (VII).
Moreover, the global phase portraits of these families that have at most one
infinite singular point, are topologically equivalent to the following ones of
Figure 1:

• 1.1–1.3 for systems (I);
• 1.1–1.7 for systems (II);
• 1.1, 1.3, and 1.8–1.12 for systems (III);
• 1.1, 1.3, 1.5, and 1.7–1.33 for systems (IV );
• 1.2 and 1.34 for systems (V );
• 1.1–1.3, 1.13, 1.35, and 1.36 for systems (V I);
• 1.1–1.3, 1.8–1.18, 1.25, and 1.35–1.45 for systems (V II);
• 1.1–1.33, and 1.35–1.148 for systems (VIII).

Note that the conditions a ̸= 0 in system (V) and a2 + b2 ̸= 0 in system
(VII) are due to the fact that we are studying systems with degree three
and otherwise in any of these cases, the corresponding system would be
quadratic.

The proof of Theorem 1 is given in sections 3–19.

2. Preliminary results

A vector field is said to have the finite sectorial decomposition property
at a singular point q if either q is a center, a focus or a node, or it has a
neighborhood consisting of a finite union of parabolic, hyperbolic or ellip-
tic sectors. We note that all the isolated singular points of a polynomial
differential system satisfy the finite vectorial decomposition property.

Theorem 2 (Poincaré Formula). Let q be an isolated singular point having
the finite sectorial decomposition property. Let e, h an p denote the number
of elliptic, hyperbolic and parabolic sectors of q, respectively. Then the index
of q is (e− h)/2 + 1.

The indices of a saddle, a center and a cusp are −1, 1 and 0, respectively.

Theorem 3 (Poincaré–Hopf Theorem). For every vector field on the sphere
S2 with a finite number of singular points, the sum of the indices of these
singular points is 2.

Nilpotent singular points of Hamiltonian planar polynomial vector fields
are either saddles, centers, or cusps (for more details see Chapter Theorem
3.5 of [4] and take into account that Hamiltonian systems cannot have foci).
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nomial vector fields of degree three with a nilpotent saddle
at the origin and reversible with respect to the y-axis.

3. Proof of the normal form in Theorem 1

Without loss of generality we can assume that a cubic planar Hamiltonian
system with a nilpotent point at the origin is given by

(4) x′ = y + b2x
2 + a2x

3 + 2b3xy + 2a3x
2y + 3b4y

2 + 3a4xy
2 + 4a5y

3,
y′ = −3b1x

2 − 4a1x
3 − 2b2xy − 3a2x

2y − b3y
2 − 2a3xy

2 − a4y
3.

which corresponds to equation

x′ =
∂H

∂y
, y′ = −∂H

∂x
,

where

H(x, y) = y2/2 + a1x
4 + a2x

3y + a3x
2y2 + a4xy

3 + a5y
4 + b1x

3 + b2x
2y

+ b3xy
2 + b4y

3.

By hypothesis, systems (4) must have the symmetry (x, y, t) 7→ (−x, y,−t).
Imposing this condition using (3) we get to the contradiction 2y = 0, so only
condition (2) is possible. Imposing it, we must have that a2 = a4 = b1 =
b3 = 0. Hence systems (4) become

(5) x′ = y + b2x
2 + 2a3x

2y + 3b4y
2 + 4a5y

3,
y′ = −4a1x

3 − 2b2xy − 2a3xy
2.

Since systems (5) must have a saddle at the origin, by Theorem 3.5 of [4]
we must have a1 < b22/2. Therefore we obtain (5) with a1 < b22/2. Now we
provide the normal form to system (5) to transform it into other systems
with less parameters.
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Case 1. Assume b2 ̸= 0 and a3 ̸= 0. By the change of coordinates and
reparametrization of time of the form
(6) X → αx, Y → βy, τ → γt,

with γ = b2/
√
|a3|, α = βγ and β = b2

√
2/γ2 and we get system (VIII) with

s = 1 when a3 > 0 and system (VIII) with s = −1 when a3 < 0.

Case 2. Assume b2 ̸= 0, a3 = 0 and b2b4 ̸= 0. By the change of coordinates
and reparametrization of time as in (6) with γ = 21/4

√
|b2/b4|/

√
3, β =

b2
√
2/γ2 and α = βγ we get systems (VII) with s = 1 if b2b4 > 0 and

systems (VII) with s = −1 if b2b4 < 0.

Case 3. Assume b2 ̸= 0, a3 = b4 = 0 and a5 ̸= 0. By the change of
coordinates and reparametrization of time as in (6) with γ = (b2/(2|a5|))1/4,
β = b2

√
2/γ2 and α = βγ we get systems (VI) with s = 1 if a5 > 0 and

systems (VI) with s = −1 if a5 < 0.

Case 4. Assume b2 ̸= 0, a3 = b4 = a5 = 0. By the change of coordinates
and reparametrization of time as in (6) with γ = 1, β = b2

√
2 and α = β we

get systems (V).

Case 5. Assume b2 = 0, b4 ̸= 0 and a3 ̸= 0. The change of coordinates
and reparametrization of time as in (6) with γ =

√
2|a3|/(3b4), β = 3b4 and

α = βγ, we get systems (IV) with s = 1 if a3 > 0 and systems (IV) with
s = −1 if a3 < 0.

Case 6. Assume b2 = 0, b4 ̸= 0 and a3 = 0. The change of coordinates
and reparametrization of time as in (6) with γ = (−4a1/(9b

2
4))

1/4, β = 3b4
and α = βγ, we get systems (III).

Case 7. Assume b2 = 0, b4 = 0 and a3 ̸= 0. The change of coordinates
and reparametrization of time as in (6) with β = |a3|/

√−a1, γ =
√
2|a3|/β

and α = βγ, we get systems (II) with s = 1 if a3 > 0 and systems (II) with
s = −1 if a3 < 0.

Case 8. Finally, if b2 = 0, b4 = 0 and a3 = 0. The change of coordinates
and reparametrization of time as in (6) with γ = ((−4a1)/β

2)1/4, β = 1 and
α = βγ, we get systems (I).

In short, we have proved the first part (or the normal form part) of The-
orem 1.

4. Global phase portrait of system (I)

Consider system (I)
x′ = y + by3, y′ = x3

with b ∈ R.
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In the local chart U1 system (I)

u′ = 1− bu4 − u2v2, v′ = −uv(bu2 + v2).

So, either there are no infinite singular points in the local chart U1 (when
b ≤ 0) or there are two when b > 0, namely, (±b−1/4, 0). Computing the
eigenvalues of the Jacobian matrix at these points we get that (b−1/4, 0) is
an attracting node and (−b−1/4, 0) is a repelling node.

On the local chart U2 system (I) becomes

u′ = b− u4 + v2, v′ = −u3v.

The origin is a singular point if and only if b = 0. If b = 0 it is linearly zero,
and using blow-up techniques we get that it is the union of two elliptic (one
stable and one unstable) and four parabolic (two stable and two unstable)
sectors.

The finite singular points are on x = 0 and 1+ by2 = 0. So, if b ≥ 0 there
are no finite singular points among the origin and if b < 0 there are two
more finite singular points which are (0,±

√
−1
b ). They are both nilpotent.

Using Theorem 3.5 in [4] and that the system is Hamiltonian we conclude
that they are both centers.

Gluing all the information on the finite and infinite singular points we get
that the global phase portraits are topologically equivalent to the following
ones of Figure 1: 1.1 when b > 0, 1.2 when b = 0, and 1.3 when b < 0.

5. Global phase portrait of system (II)

Consider system (II)

x′ = y + sx2y + by3, y′ = x3 − sxy2 = x(x2 − sy2)

with b ∈ R and s ∈ {−1; 1}.
We first study the infinite singular point. In the local chart U1 systems

(II) become

u′ = 1− u2(2s+ bu2 + v2), v′ = −uv(s+ bu2 + v2).

The infinite singular points satisfy v = 0 and 1 − 2su2 − bu4 = 0. If b = 0,
there are two infinite singular points if s = 1 and zero if s = −1. On the
other hand if b ̸= 0, either there are zero infinite singular points (when
b < −1 and s = 1, or b < 0 and s = −1), or two (when b > 0, or when
b = −1 and s = 1), or four (when b ∈ (−1, 0) and s = 1). When s = −1 and
b > 0, or s = 1 and b ≥ 0, the two infinite singular points are nodes (one
stable and one unstable). When s = 1 and b = −1 the two infinite singular
points are linearly zero. Applying the blow up technique we conclude that
they are two elliptic (one stable and one unstable) and four parabolic (two
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stable and two unstable) sectors. Finally, when s = 1 and b ∈ (−1, 0) the
four infinite singular points are nodes (two stable and two unstable).

In the local chart U2 systems (II) become

u′ = b+ 2su2 − u4 + v2, v′ = vu(s− u2).

The origin of the local chart U2 is a singular point if and only if b = 0. In
this case it is linearly zero. Applying blow up techniques (see for instance [1]
for details on this technique) we get that the origin of the local chart U2 is
formed by two elliptic (one stable and one unstable) and four parabolic (two
stable and two unstable) sectors if s = −1 and by two hyperbolic sectors
(one stable and one unstable) if s = 1.

Now we study the finite singular points. When b ≥ 0 there are no finite
singular points among the origin. If b < 0 the finite singular points different
from the origin and with x = 0 are of the form (0,±

√
−1/b) which are

always real because b < 0. In this case computing the eigenvalues of the
Jacobian matrix at these points and using that the system is Hamiltonian
we conclude that they are both saddles if s = 1 and are both centers if
s = −1. The finite singular points with x ̸= 0 are of the form x = ±

√
sy2.

So if s = −1 there are no finite singular points with x ̸= 0 and if s = 1 and
b < −1 there are four singular points which are of the form

(
± 1√

−1− b
,

1√
−1− b

)
,
(
± 1√

−1− b
,− 1√

−1− b

)
.

Computing the eigenvalues of the Jacobian matrix at these points and taking
into account that the system is Hamiltonian we conclude that they are all
centers.

The saddles (0,±
√
−1/b) (which exist when b < 0 and s = 1) are not

connected with the saddle at the origin because the Hamiltonian evaluated
on the saddles is never zero. On the other hand, they are connected among
them due to the symmetry.

In short gluing all the information on the finite and infinite singular points
we get that the unique possible global phase portraits for system (II) are
topologically equivalent to the following ones of Figure 1: 1.1 when b > 0
(either s = 1 or s = −1); 1.2 when b = 0 and s = −1; 1.3 when b < 0 and
s = −1; 1.4 when b = 0 and s = 1; 1.5 when b ∈ (−1, 0) and s = 1; 1.6 when
b = −1 and s = 1; and, finally, 1.7 when b < −1 and s = 1.

6. Global phase portrait of system (III)

Consider system (III)

x′ = y + y2 + by3, y′ = x3

with b ∈ R.
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We first study the infinite singular points. In the local chart U1 system
(III) is

u′ = 1− bu4 − u2v(u+ v), v′ = −uv(bu2 + v(u+ v)).

The infinite singular points in the local chart U1 must satisfy v = 0 and
1 − bu4 = 0. So, either there are no infinite singular points in the local
chart U1 (when b ≤ 0) or there are two when b > 0, namely, (±b−1/4, 0).
Computing the eigenvalues of the Jacobian matrix at these points we get
that (b−1/4, 0) is an attracting node and (−b−1/4, 0) is a repelling node.

On the local chart U2 system (III) becomes

u′ = b− u4 + v + v2, v′ = −u3v.

The origin is a singular point if and only if b = 0. If b = 0 it is nilpotent.
Using Theorem 3.5 in [4] together with blow-up techniques we get that it is
the union of one hyperbolic and one elliptic sectors.

Now we study the finite singular points. The finite singular points are on
x = 0 and y(1 + y + by2) = 0. If b = 0 among the origin, there is a unique
finite singular point (0,−1). Computing the eigenvalues of the Jacobian
matrix at this point we get that it is nilpotent. Using Theorem 3.5 in [4]
and that the system is Hamiltonian we conclude that it is a center.

If b ̸= 0, the finite singular points, whenever they exist are (0, y±) =(
0, −1±

√
1−4b

2b

)
.

If b > 0, they exist whenever b ∈ (0, 1/4]. If b = 1/4, both points coalesce
in the finite singular point (0,−2) which is linearly zero. Using blow up
techniques we get that it is the union of two hyperbolic sectors (cusp). If
b ∈ (0, 1/4) both singular points (0, y±) are nilpotent. Using Theorem 3.5
in [4] and that the system is Hamiltonian we get that (0, y+) is a center and
(0, y−) is a saddle. We note that the possible saddle connection between the
saddle (0, y−) and the origin is when b = 2/9.

Finally, if b < 0 the two finite singular points (0, y±) exist and are again
nilpotent. Using Theorem 3.5 in [4] and that the system is Hamiltonian we
get that they are both centers.

In short we have the following: If b > 1/4 the unique global phase portrait
is topologically equivalent to 1.1 of Figure 1. If b = 1/4 the unique global
phase portrait is topologically equivalent to 1.8 of Figure 1. If b ∈ (0, 1/4) we
get three possible different global phase portraits: 1.9 attained for example
when b = 11/90, 1.10 which is the saddle connection attained when b = 2/9,
and 1.11 attained for example when b = 23/100. If b = 0 the unique global
phase portrait is topologically equivalent to 1.12 of Figure 1 and if b < 0 the
unique global phase portrait is topologically equivalent to 1.3 of Figure 1.
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7. Global phase portrait of system (IV)

Consider system (IV)
x′ = y + y2 + sx2y + by3, y′ = ax3 − sxy2 = x(ax2 − y2),

with a > 0, b ∈ R and s ∈ {−1; 1}.
We first study the infinite singular points. In the local chart U1 system

(IV) becomes
u′ = a− u2(2s+ bu2 + v(u+ v)), v′ = −uv(s+ bu2 + v(u+ v)).

When v = 0 the infinite singular points on the local chart U1 satisfy a−2su2−
bu4 = 0. If b = 0, there are two infinite singular points if s = 1 and zero if s =
−1. In this case the infinite singular points are (±√

a/2, 0). Computing the
eigenvalues of the Jacobian matrix at these points we get that (

√
a/2, 0) is

an attracting node and (−√
a/2, 0) is a repelling node. On the other hand if

b ̸= 0, either there are zero (when b < 0 and s = −1, or b < −1/a and s = 1),
or two (when b > 0, or b = −1/a and s = 1), or four (when b ∈ (−1/a, 0) and
s = 1). In the case b > 0, the infinite singular points are (±

√
−s+

√
ab+1

b , 0)

and are a stable node and an unstable node, respectively. If b = −1/a and
s = 1, the infinite singular points are (±√

a, 0) and they are nilpotent. Using
Theorem 3.5 in [4] and blow up techniques we see that they are both formed
by one hyperbolic and one elliptic sector. In case b ∈ (−1/a, 0) and s = 1

there are four infinite singular points (u
(1)
± , 0) = (±

√
(−1 +

√
1 + ab)/b, 0)

and (u
(2)
± , 0) = (±

√
(−1−

√
1 + ab)/b, 0). Computing the eigenvalues of

the Jacobian matrix at these points we get that (u
(1)
+ , 0) and (u

(2)
− , 0) are

attracting nodes and (u
(1)
− , 0) and (u

(2)
+ , 0) are repelling nodes.

On the local chart U2 we get
u′ = b− au4 + 2su2 + v + v2, v′ = uv(s− au2).

The origin (0, 0) is an infinite singular point if and only if b = 0. It is
nilpotent. Taking into account Theorem 3.5 in [4] and applying blow-ups
we get that the origin of U2 is formed by one elliptic (stable), one hyperbolic
(unstable) and two parabolic (one stable and one unstable) sectors.

Now we study the finite singular points.
We consider separately the cases s = 1 and s = −1.

Subcase s = 1. We first study the finite singular points at x = 0. If
b = 0 the unique singular point is (0,−1). Computing the eigenvalues of
the Jacobian matrix at this point we get that it is a saddle. If b = 1/4
then the singular point is (0,−2). It is nilpotent and using Theorem 3.5 in
[4] we get that it is a cusp. If b > 1/4 there are no finite singular points
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on x = 0. Finally, if b ∈ (−∞, 0) ∪ (0, 1/4) there are two finite singular
points (0, y±) = (0, −1±

√
1−4b

2b ). Computing the eigenvalues of the Jacobian
matrix at these points we get that (0, y+) is a saddle and (0, y−) is a center
if b ∈ (0, 1/4) and a saddle if b < 0. The saddle (0, y+) cannot be connected
with the origin. When b < 0, the saddle (0, y−) cannot be connected with
the origin and both saddles (0, y+) and (0, y−) are also not connected.

If x ̸= 0 the singular points are (±ȳ/
√
a, ȳ) with ȳ satisfying 1 + ȳ +

1+ab
a ȳ2 = 0. Hence, if b = −1/a the two finite singular points (∓1/

√
a,−1)

are centers. If b = a−4
4a the two singular points (± 2√

a
,−2) are both nilpotent.

Using Theorem 3.5 in [4] we get that they are both cusps. If b > a−4
4a there

are no finite singular points with x ̸= 0 and if b < a−4
4a there are the four

finite singular points (±ȳ±/
√
a, ȳ±) with

ȳ± =
−a±

√
a2(1− 4b)− 4a

2(1 + ab)
.

Computing the eigenvalues of the Jacobian matrix at these points we get:
(±ȳ+/

√
a, ȳ+) are centers and (±ȳ−/

√
a, ȳ−) are centers for b < −1/a and

saddles for b > −1/a.
The saddles (± ȳ−√

a
, ȳ−) can be connected with the origin if and only if

b = 2a−9
9a and they are connected one with each other by symmetry. The

saddles (± ȳ−√
a
, ȳ−) are never connected with the saddle (0, y−) (whenever

it exists) and may be connected with the saddle (0, y+) along the curve
b = b(a) which is a real root of the polynomial

4 + 12a− 3a2 − 36b− 102ab+ 78a2b− 9a3b+ 81b2 + 180ab2 − 534a2b2

+ 162a3b2 − 9a4b2 + 162ab3 + 1080a2b3 − 864a3b3 + 108a4b3 + 81a2b4

+ 1440a3b4 − 432a4b4 + 576a4b5.

(7)

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into
different regions, we have the following possible global phase portraits of
Figure 1 (whenever there is more than one possible phase portrait, in paren-
thesis we give values of the parameters where they are realized): 1.1 if a > 0
and b > 1/4; 1.8 if a > 0 and b = 1/4; 1.13 if a ∈ (0, 4) and b ∈ (0, 1/4) or
a ≥ 4 and a−4

4a < b < 1
4 ; and 1.5 if a ∈ (0, 4) and a−4

4a < b < 0.

If a > 4 and 0 < b < a−4
4a they are 1.14 (a = 6, b = 1/25); 1.15 (a = 6,

b = 1/18. Here there is a saddle connection); 1.16 (a = 6, b = 3/50);
1.17 (a = 6, b ≈ 0.06681525. Here b = b(a) is a real solution of (7) and
corresponds to a saddle connection); and 1.18 (a = 6, b = 7/100).



16 M. CORBERA AND C. VALLS

If a ∈ (0, 4) and b ∈ (− 1
a ,

a−4
4a ), they are 1.19 (a = 3, b = −1/10);

1.20 (a = 3, b ≈ −0.10277429. Here b = b(a) is a real solution of (7) and
corresponds to a saddle connection); 1.21 (a = 3, b = −27/250); 1.22 (a = 3,
b = −1/9. Here there is a saddle connection); and 1.23 (a = 3, b = −1/5).
If a ≥ 4 and b ∈ (− 1

a , 0), they are 1.23.

If a > 0 and b < − 1
a , they are 1.7. If a ∈ (0, 4) and b = a−4

4a , they are
1.24. If a > 4 and b = a−4

4a , they are 1.25. If a > 0 and b = − 1
a , they are

1.26. If a = 4 and b = 0 they are 1.27. If a ∈ (0, 4) and b = 0 they are 1.28.

If a > 4 and b = 0, they are 1.29 (a = 21/5); 1.30 (a = 2(3+2
√
3)

3 . Here a
is a real solution of (7) with b = 0 and corresponds to a saddle connection);
1.31 (a = 22/5); 1.32 (a = 9/2. Here there is a saddle connection); and 1.33
(a = 5).

Subcase s = −1. The unique finite singular points among the origin are
located on x = 0. If b = 0 there is the singular point (0,−1) which is a
center. If b = 1/4 then the singular point is (0, 2) which is nilpotent. Using
Theorem 3.5 in [4] we get that it is a cusp. If b > 1/4 there are no finite
singular points on x = 0. If b < 1/4 then there are two finite singular points
(0, y±) = (0, −1±

√
1−4b

2b ). Computing the eigenvalues of the Jacobian matrix
at these points we have that (0, y+) is a center and (0, y−) is a saddle if b > 0
and a center if b < 0. The saddle (0, y−) can be connected with the origin if
and only if b = 2/9.

In short, again writing in parenthesis values of parameters where more
than one possible phase portrait is realized in a region, we have the following
global phase portraits of Figure 1: 1.3 if b < 0; 1.12 if b = 0; 1.1 if b > 1/4;
1.8 if b = 1/4; and if b ∈ (0, 1/4) they are: 1.9 (a = 1, b = 15/72), 1.10
(a = 1, b = 2/9. Here we have the saddle connection), and 1.11 (a = 1,
b = 23/100).

8. Global phase portrait of system (V)

Consider system (V)

x′ = y +
x2√
2
, y′ = ax3 −

√
2xy = x(ax2 −

√
2y)

with a > −1 and a ̸= 0.
In the local chart U1 system (V) becomes

u′ = a− 1

2
uv(3

√
2 + 2uv), v′ = −1

2
v2(

√
2 + 2uv).

Since a ̸= 0 there are no infinite singular points.
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In U2 system (V) becomes

u′ = −au4 +
3u2v√

2
+ v2, v′ = v(−au3 +

√
2uv).

The origin is a singular point which is linearly zero. Using blow-up tech-
niques we get that: it is the union of two elliptic (one stable and one unsta-
ble) and four parabolic (two stable and two unstable) sectors if a > 0; and
it is the union of three elliptic (two stable and one unstable), one hyperbolic
(unstable) and two parabolic (one stable and one unstable) sectors, if a < 0.

The unique finite singular point is the origin. Taking into account the
information on the infinite singular points we get that the global phase
portraits of system (V) are topologically equivalent to 1.2 of Figure 1 if
a > 0 and to 1.34 of Figure 1 if a < 0.

9. Global phase portrait of system (VI)

Consider system (VI)

x′ = y +
x2√
2
+ sy3, y′ = ax3 −

√
2xy = x(ax2 −

√
2y),

with a > −1 and s ∈ {−1; 1}.
In the local chart U1 system (VI) is

u′ = a− 1

2
u(2su3 + v(3

√
2 + 2uv)), v′ = −v

2
(2su3 + v(

√
2 + 2uv)).

The infinite singular points in the local chart U1 must satisfy v = 0 and
a−su4 = 0. So, either there are no infinite singular points in the local chart
U1 (when as < 0), or there is one (when a = 0), or there are two when as > 0,
namely, (±(a/s)−1/4, 0). In the case a = 0, the unique singular point is the
origin which is linearly zero. Using blow-up techniques we get that it is the
union of two elliptic (one stable and one unstable) and four parabolic (two
stable and two unstable) sectors. When as > 0, computing the eigenvalues
of the Jacobian matrix at (±(a/s)−1/4, 0) we get that ((a/s)−1/4, 0) is an
attracting node if s = 1 and a repelling node if s = 1, and (−(a/s)−1/4, 0)
is a repelling node if s = 1 and an attracting node if s = −1.

We now show that the origin of the local chart U2 is not a singular point.
Indeed, on the local chart U2 system (VI) becomes

u′ = s+ v2 − au4 +
3√
2
u2v, v′ = uv(

√
2v − au2),

and the origin is not a singular point.

Now we compute the finite singular points. If x = 0 the unique singular
point is the origin if s = 1. On the other hand, if s = −1 then besides
the origin on x = 0 we have the singular points (0, 1) and (0,−1) which
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are a saddle and a center, respectively. Moreover, the saddle (0, 1) is never
connected with the saddle at origin.

If a = 0 or as > 0 there are no finite singular points with x ̸= 0. If as < 0
we get the singular points

(
± 21/4

(1 + a

a3

)1/4
,

√
1 + a

a

)
if a > 0,

and (
± 21/4

(
− 1 + a

a3

)1/4
,−
√
−1 + a

a

)
if a ∈ (−1, 0),

which are two centers.
In short, gluing all the information on the finite and infinite singular

points we get the following global phase portraits of Figure 1: 1.2 if a = 0,
s = 1; 1.1 if a > 0, s = 1; 1.3 if a ∈ (−1, 0), s = 1; 1.35 if a = 0, s = −1;
1.36 if a > 0, s = −1; and 1.13 if a ∈ (−1, 0), s = −1.

10. Global phase portrait of system (VII)

Consider system (VII)

x′ = y +
x2√
2
+ sy2 + by3, y′ = ax3 −

√
2xy = x(ax2 −

√
2y),

with a > −1, b ∈ R, s ∈ {−1; 1} and a2 + b2 ̸= 0.
We first study the infinite singular points. In the local chart U1 if (a, b) ̸=

(0, 0), system (VII) becomes

u′ = a−1

2
u(2bu3+v(3

√
2+2u(su+v))), v′ = −1

2
v(2bu3+v(

√
2+2u(su+v))).

The infinite singular points in the local chart U1 must satisfy v = 0 and
a − bu4 = 0. So, either there are no infinite singular points in the local
chart U1 (when either b = 0 and a ̸= 0, or ab < 0), or there is one (when
a = 0 and b ̸= 0) which is the origin, or there are two when ab > 0,
namely, (±(a/b)−1/4, 0). When a = 0 and b ̸= 0, the origin is linearly zero.
Applying blow up techniques we obtain that it is the union of two elliptic
(one stable and one unstable) and four parabolic sectors (two stable and two
unstable). When ab > 0, computing the eigenvalues of the Jacobian matrix
at the points (±(a/b)−1/4, 0) we get that ((a/b)−1/4, 0) is an attracting node
if b > 0 and a repelling node if b < 0, and (−(a/b)−1/4, 0) is a repelling node
if b > 0 and an attracting node if b < 0.

In the local chart U2 for (a, b) ̸= (0, 0) we get

u′ = b− au4 + sv +
3u2v√

2
+ v2, v′ = v(−au3 +

√
2uv)
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The origin (0, 0) is not an infinite singular point if b ̸= 0. If b = 0 it is
nilpotent and by Theorem 3.5 in [4] together with blow-up techniques we
get that it is the union of one hyperbolic, one elliptic and two parabolic
sectors.

Now we study the finite singular points. We consider two different sub-
cases.

Subcase s = 1. If b = 0 the singular point is (0,−1). Computing the
eigenvalues of the Jacobian matrix at this point we get that it is a center. If
b = 1/4 the singular point is (0,−2). It is nilpotent and using Theorem 3.5
in [4] we get that it is a cusp. If b > 1/4 there are no finite singular points
on x = 0. Finally, if b < 1/4 then there are the two finite singular points
(0, y±) = (0, −1±

√
1−4b

2b ). Computing the eigenvalues of the Jacobian matrix
at these points we get that (0, y+) is a center and (0, y−) is a saddle. The
saddle (0, y−) and the origin can be connected if and only if b = 2/9.

Now we study the singular points with x ̸= 0. If a = 0 there are no finite
singular points on x ̸= 0. If a ̸= 0 the singular points on x ̸= 0, whenever
they exist, are of the form

(±x̄±, ȳ±), x̄± =

√√
2y±
a

, ȳ± =
−a±

√
a2 − 4ab(a+ 1)

2ab
.

Studying when these finite singular points are defined and in these cases
computing the eigenvalues of the Jacobian matrix at these points we get: if
a ∈ (−1, 0) and b > 0 we have the two centers (±x̄+, ȳ+) and when a > 0
and b < 0 we have the two centers (±x̄−, ȳ−). For any other value of the
parameters (a, b) ∈ (−1,∞)×R with a2+b2 ̸= 0, there are no finite singular
points on x ̸= 0.

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into dif-
ferent regions, we have the following possible global phase portraits of Figure
1 (whenever there is more than one possible phase portrait, in parenthesis
we give values of the parameters where they are realized): 1.3 if b > 1/4
and a ∈ (−1, 0); 1.2 if b > 1/4 and a = 0; 1.1 if b > 1/4 and a > 0; 1.37 if
b = 1/4 and a ∈ (−1, 0); 1.38 if b = 1/4 and a = 0; and 1.8 if b = 1/4 and
a > 0.

If b ∈ (0, 1/4) and a ∈ (−1, 0) they are 1.39 (a = −1/2, b = 1/10) and
1.40 (a = −1/2, b = 2/9. Here we have a saddle connection). If b ∈ (0, 1/4)
and a = 0 they are 1.41 (b = 1/10); 1.42 (b = 2/9. Here we have a saddle
connection); and 1.43 (b = 23/100). If b ∈ (0, 1/4) and a > 0 they are
1.9 (a = 1/2, b = 1/10); 1.10 (a = 1/2, b = 2/9. Here we have a saddle
connection); and 1.11 (a = 1/2, b = 23/100).
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If b = 0 and a ∈ (−1, 0) they are 1.44. If b = 0 and a > 0 they are 1.12.
If b < 0 and a ∈ (−1, 0) they are 1.13. If b < 0 and a = 0 they are 1.35 and
if b < 0 and a > 0 they are 1.36.

Subcase s = −1. First we study the finite singular points at x = 0. If
b = 0 the singular point is (0, 1). Computing the eigenvalues of the Jacobian
matrix at this point we get that it is a saddle. If b = 1/4 then the singular
point is (0, 2) which is nilpotent. Using Theorem 3.5 in [4] we get that it
is a cusp. If b > 1/4 there are no finite singular points on x = 0. Finally,
if b < 1/4 and b ̸= 0 then there are the two finite singular points (0, y±) =
(0, 1±

√
1−4b
2b ). Computing the eigenvalues of the Jacobian matrix at these

points we get that (0, y+) is a center and (0, y−) is a saddle.
Now we study the singular points with x ̸= 0. If a = 0 there are no finite

singular points on x ̸= 0. If a ̸= 0 and b = 0, there are the two singular
points

(
±
√
2
√
1 + a

a
, 1 +

1

a

)
,

where are centers. If a ̸= 0 and b ̸= 0 the singular points on x ̸= 0, whenever
they exist, are of the form

(±x̄±, ȳ±), x̄± =

√√
2y±
a

, ȳ± =
a±

√
a2 − 4ab(a+ 1)

2ab
.

Studying when these finite singular points are defined and in these cases
computing the eigenvalues of the Jacobian matrix at these points (using
Theorem 3.5 in [4] whenever needed), we get: if a ∈ (−1, 0), b ∈ (a/(4(1 +
a)), 0) we have that (±x̄+, ȳ+) are centers and (±x̄−, ȳ−) are saddles; if
a ∈ (−1, 0) and b > 0 we have the two centers (±x̄+, ȳ+); if a > 0 and b < 0
we have the two centers (±x̄−, ȳ−); if if a > 0 and b ∈ (0, a/(4(1 + a)) we
have the two saddles (±x̄+, ȳ+) and the two centers (±x̄−, ȳ−); if a > 0 and
b = a/(4(1 + a)) we have the two cusps (±x̄+, ȳ+); and for any other value
of the parameters (a, b) ∈ (−1,∞)× R with a2 + b2 ̸= 0, there are no finite
singular points on x ̸= 0.

Now we study the possible saddle connections. The saddle (0, y−) and the
saddle at the origin are never connected. The saddles (±x̄+, ȳ+) (whenever
they exist) are connected one with each other by symmetry and the saddles
(±x̄−, ȳ−) (whenever they exist) are also connected one with each other by
symmetry. Moreover, the possible saddle connection between the saddles
(±x̄+, ȳ+) and the origin, or between the saddles (±x̄−, ȳ−) and the origin
is given on the curve b = 2a/(9(1 + a)). On the other hand, the possible
saddle connection with the saddles (±x̄+, ȳ+) and the saddle (0, y−), or with
the saddles (±x̄−, ȳ−) and the saddle (0, y−) is given on the curve b = b(a)
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which is a real root of the polynomial

− 12(3a2 + 3a+ 1)a4 − 2(864a4 + 1728a3 + 1212a2 + 348a+ 25)a2b2

+ 36(2a+ 1)3(8a2 + 8a− 1)ab3 + 6(2a+ 1)(36a2 + 36a+ 11)a3b

+ 81(2a+ 1)4b4.

(8)

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into dif-
ferent regions, we have the following possible global phase portraits of Figure
1 (whenever there is more than one possible phase portrait, in parenthesis
we give values of the parameters where they are realized): 1.3 if b > 1/4
and a ∈ (−1, 0); 1.2 if b > 1/4 and a = 0; 1.1 if b > 1/4 and a > 0; 1.36
if b ∈ (0, 1/4) and a ∈ (−1, 0), or b < 0 and a > 0; 1.35 if b ∈ (0, 1/4) and
a = 0, or b < 0 and a = 0; 1.13 if b ∈ (a/(4(1 + a)), 1/4) and a > 0, or
b < a/(4(1 + a)) and a ∈ (−1, 0); 1.25 if b = a/(4(1 + a)) and a ̸= 0; and
1.45 if b = 0 and a ̸= 0.

If b ∈ (0, a/(4(1 + a))) and a > 0, or b ∈ (a/(4(1 + a)), 0) and a ∈ (−1, 0)
they are 1.14 (a = 2, b = 7/50); 1.15 (a = 2, b = 2a/(9(1 + a)) = 4/27.
Here there is a saddle connection); 1.16 (a = 2, b = 3/20); 1.17 (a = 2,
b ≈ 0.15045562. Here b = b(a) is a real solution of equation (8) and so there
is a saddle connection); and 1.18 (a = 2, b = 4/25).

Finally, if b = 1/4 and a ∈ (−1, 0) they are 1.37; if b = 1/4 and a = 0
they are 1.38; and if b = 1/4 and a > 0 they are 1.8.

11. Global phase portrait of system (VIII): infinite singular
points

Consider system (VIII)

x′ = y +
x2√
2
+ sx2y + by2 + cy3, y′ = ax3 −

√
2xy − sxy2

with a > −1, b, c ∈ R and s ∈ {−1; 1}.
We study in this section the infinite singular points.

Lemma 4. On the local chart U1 we have:

(a) no singular points if cs > 0 and as < 0, or c = 0 and as < 0, or
ac < −1 and as > 0;

(b) one singular point (the origin) if a = 0 and cs ≥ 0. It is the union of
two elliptic (one stable and one unstable) and four parabolic sectors
(two stable and two unstable);

(c) two singular points which are an attracting node and a repelling node
if c > 0 and a > 0, or c < 0 and a < 0, or c = 0 and as > 0;
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(d) two singular points which are the union of one elliptic and one hy-
perbolic sector if cs < 0, as > 0 with c = −1/a and b ̸= −3s/(

√
2a),

or the union of two elliptic sectors (one stable and one unstable) and
four parabolic sectors (two stable and two unstable) if cs < 0, as > 0
with c = −1/a and b = −3s/(

√
2a);

(e) three singular points which are an attracting node, a repelling node
and the origin which is formed by two elliptic (one stable and one
unstable) and four parabolic (two stable and two unstable) sectors if
cs < 0 and a = 0;

(f) four singular points which are two repelling and two attracting nodes
if ac+ 1 > 0, cs < 0 and as > 0.

The origin of the local chart U2 is an infinite singular point if and only if
c = 0. If b ̸= 0 it is the union of one hyperbolic and one elliptic sectors. If
b = 0 it is the union of two hyperbolic sectors (one stable and one unstable)
when s = 1 and the union of two elliptic (one stable and one unstable) and
four parabolic sectors (two stable and two unstable) when s = −1.

Proof. On the local chart U1 system (VIII) becomes

u′ = a− 1

2
u(2cu3 + 3

√
2v + 2bu2v + 4su+ 2uv2),

v′ = −1

2
v(2cu3 +

√
2v + 2bu2v + 2su+ 2uv2).

When v = 0 the infinite singular points on the local chart U1 satisfy a −
2su2 − cu4 = 0.

If cs > 0 and as < 0, or c = 0 and as < 0, or ac < −1 and as > 0 there
are no infinite singular points in the local chart U1. This proves statement
(a).

If a = 0 and cs ≥ 0 the unique finite singular point is the origin, which
is linearly zero. Applying blow-up techniques we get that it is the union of
two elliptic (one stable and one unstable) and four parabolic sectors (two
stable and two unstable). This proves statement (b).

If c > 0 and a > 0 then there are two infinite singular points on the
local chart U1 which are (u

(2)
± , 0) = (±

√
−s
c +

√
ac+1
c , 0). Computing the

eigenvalues of the Jacobian matrix at these points we get that (u(2)+ , 0) is an
attracting node and (u

(2)
− , 0) is a repelling node.

If c < 0 and a < 0 then there exits two infinite singular points in the
local chart U1 which are (u

(1)
± , 0) = (±

√
−s
c −

√
ac+1
c , 0). Computing the

eigenvalues of the Jacobian matrix at these points we get that (u
(1)
+ , 0) is a

repelling node and (u
(1)
− , 0) is an attracting node.
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If c = 0 and as > 0 there are two infinite singular points on the local
chart U1 that are (±u(0), 0) =

(
±
√

a
2s , 0

)
. Computing the eigenvalues of

the Jacobian matrix at these points we get that (u(0), 0) is an attracting node
and (−u(0), 0) is a repelling node when s = 1, while (u(0), 0) is a repelling
node and (−u(0), 0) is an attracting node when s = −1. Statement (c) is
proved.

If cs < 0, as > 0 with c = −1/a then there are two infinite singular
points in the local chart U1, which are (±√

as, 0). They are nilpotent if
b ̸= −3s/(

√
2a) and are linearly zero if b = −3s/(

√
2a). In the first case,

applying Theorem 3.5 in [4] together with blow-up techniques we obtain
that both are the union of one elliptic and one hyperbolic sector. In the
second case, applying again blow-up techniques we conclude that they are
the union of two elliptic sectors (one stable and one unstable) and four
parabolic sectors (two stable and two unstable). This proves statement (d).

If cs < 0 and a = 0 then there are three infinite singular points which are
the origin (0, 0) and the points (±u(1), 0) if s = 1, or (±u(2), 0) if s = −1. The
origin of the local chart U1 it is linearly zero. Computing the eigenvalues of
the Jacobian matrix at this point we get that it is formed by two elliptic (one
stable and one unstable) and four parabolic (two stable and two unstable)
sectors. On the other hand, computing the eigenvalues of the Jacobian
matrix at the points (±u(1), 0) we get that: (u(1), 0) is a repelling node and
(−u(1), 0) is an attracting node when s = 1, while (u(1), 0) is an attracting
node and (−u(1), 0) is a repelling node when s = −1. Statement (e) is
proved.

Finally, when ac + 1 > 0, cs < 0 and as > 0 there are the four singular
points (u

(1)
± , 0) and (u

(2)
± , 0). Computing the eigenvalues of the Jacobian

matrix at these points we get that (u(1)− , 0) and (u
(2)
+ , 0) are attracting nodes

while (u
(1)
+ , 0) and (u

(2)
− , 0) are repelling nodes. This concludes the proof of

the lemma concerning the local chart U1.
On the local chart U2 system (VIII) becomes

u′ = c+ bv + 2su2 + v2 +
3√
2
u2v − au4, v′ = −uv(−s−

√
2v + au2).

The origin (0, 0) is an infinite singular point if and only if c = 0. If b ̸= 0
it is nilpotent and by Theorem 3.5 in [4] together with blow-up techniques
we get that it is the union of one hyperbolic and one elliptic sectors. If
b = 0 it is linearly zero, using blow-up techniques we get that it is the union
of two hyperbolic sectors (one stable and one unstable) when s = 1 and
the union of two elliptic (one stable and one unstable) and four parabolic
sectors (two stable and two unstable) when s = −1. The proof of the lemma
is complete. �
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12. Global phase portraits of system (VIII) when a = 0

We compute the finite singular points. On x = 0 the finite singular points
are (0,−1/b) if c = 0 (with b ̸= 0), and if c ̸= 0 they are

p± = (0, y±) =

(
0,

−b±
√
b2 − 4c

2c

)

which exist for c < c2 = c2(b) := b2/4. On the other hand, if x ̸= 0 the finite
singular points are

q± =

(
± x̄,−

√
2

s

)
=

(
±
√
2

√
s(
√
2b− s)− 2c

s
,−

√
2

s

)

which exist for c < c1 = c1(b) := (s(
√
2b− s))/2. For c = c1(b) the singular

points q± become p±. The type of these finite singular points will be studied
later.

Now we investigate the possible saddle connections. The possible saddle
connections between the saddles p± (whenever they exist) and the origin
occurs when

(9) c = c(b) = 2b2/9.

Due to the symmetry of the problem the saddles q± are always connected.
We study the possible saddle connections between the saddles q± and the
origin. Doing so, we get the curve

(10) c = c(b) =
(2
√
2b− 3s)s

3
.

Furthermore, the possible saddle connection between the saddles p± and the
saddles q± (whenever they exist) is along the curve c = c(b) which is a real
solution of the cubic

(11) 36c3 − 12s
√
2bc2 + 36c2 − 10b2c+ 18s

√
2bc+ 9c− 4s

√
2b3 − 2b2 = 0.

Moreover, when c = 0 the point (0,−1/b) (whenever it is a saddle) cannot be
connected with the saddle at the origin and can be connected with the points
q± (whenever they are saddles) if and only if s = −1 and b = 1/(2

√
2), but

this will not happen. Finally, we observe that when p+ and p− are saddles,
then y+ > 0 and y− < 0 and so they are never connected.

We consider the cases s = 1 and s = −1.

Subcase s = 1. In view of the infinite singular points, we consider the cases
c = 0, c < 0 and c > 0 separately.
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Subcase c = 0. If b = 0 there are no finite singular points among the origin.
Now we study the finite singular points different from the origin. If b ̸= 0
there are three finite singular points (0,−1/b), q± if b > 1/

√
2 and one finite

singular point (0,−1/b) if b ≤ 1/
√
2. Computing the eigenvalues of the

Jacobian matrix at the singular point (0,−1/b) and using Theorem 3.15 in
[4] we get that it is a center if b > 1/

√
2, a nilpotent saddle if b = 1/

√
2 and

a saddle if b < 1/
√
2. Moreover, when b > 1/

√
2, computing the eigenvalues

of the Jacobian matrix at the singular points q± we get that they are both
saddles.

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into dif-
ferent regions, we have the following possible global phase portraits of Figure
1 (whenever there is more than one possible phase portrait, in parenthesis
we give values of the parameters where they are realized): 1.46 if b = 0. For
b > 1/

√
2 they are: 1.47 (b = 4/(3

√
2)); 1.48 (b = 3/(2

√
2) and corresponds

to the saddle connection in (10)); and 1.49 (b = (3 + 2
√
2)/(2

√
2)). Finally,

when b ≤ 1/
√
2 with b ̸= 0 they are 1.50.

Subcase c < 0. We define the two regions with (b, c) ∈ R× R−:

S1 = {b < 1/
√
2, c ∈ [c1, 0)},

S2 = {b < 1/
√
2, c < c1} ∪ {b ≥ 1/

√
2, c < 0}.

We study the finite singular points different from the origin. In the region
S1, there exist two finite singular points p±. Computing the eigenvalues of
the Jacobian matrix at these points and using Theorem 3.5 in [4] (in the
case c = c1) we get that they are both saddles. In the region S2 we have
the four finite singular points p+ (which is a center) and p−, q± which are
saddles.

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into
different regions, we have the following possible global phase portraits of
Figure 1 (whenever there is more than one possible phase portrait, in paren-
thesis we give values of the parameters where they are realized): 1.51 in
region S1. In region S2 they are: 1.52 (b = −4, c = −4); 1.53 (b = 1/2,
c = (2

√
2b − 3)/3 and is the saddle connection in (10)); and 1.54 (b = 2,

c = −2).
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Subcase c > 0. We define the regions with (b, c) ∈ R× R+:

R1 = {0 < b ≤ 1/
√
2, c ∈ (0, c2)} ∪ {1/

√
2 < b <

√
2, c ∈ (c1, c2)}

R2 = {b >
√
2, c ∈ (c1, c2)} ∪ {b < 0, c ∈ (0, c2)},

R3 = {b > 1/
√
2, c ∈ (0, c1)}, R4 = {c > c2}

L1 = {1/
√
2 < b <

√
2, c = c1}, L2 = {b >

√
2, c = c1},

L3 = {b > 0, b ̸=
√
2, c = c2} ∪ {b < 0, c = c2}, P = (

√
2, c2) = (

√
2, 1/2).

We study the finite singular points different from the origin. In the region
R1, there exist two finite singular points p±. Computing the eigenvalues of
the Jacobian matrix at these points we get that p+ is a saddle and p− is
a center. In the region R2, there exist again the two finite singular points
p±. Computing the eigenvalues of the Jacobian matrix at these points we
get that p+ is a center and p− is a saddle. In the region R3 we have four
finite singular points: p± which are centers, and q± which are saddles. In
the region R4 there are no finite singular points. In the region L1 we have
two finite singular points: p+ which is a nilpotent saddle and p− which is
a center. In the region L2 we have two finite singular points: p+ which is
a center and p− which is a nilpotent saddle. Finally, in the region L3 we
have a unique finite singular point p− = p+ which is a cusp. Finally, in the
region P we get that the unique finite singular point (0,−

√
2) is linearly

zero. Applying blow-up techniques we conclude that it is the union of two
hyperbolic sectors (one stable and one unstable).

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into dif-
ferent regions, we have the following possible global phase portraits of Figure
1 (whenever there is more than one possible phase portrait, in parenthesis
we give values of the parameters where they are realized): 1.35 in region
R1. In region R2 they are: 1.41 (b = 3, c = 19/10); 1.42 (b = 3, c = 2. Here
there is the saddle connection given in (9)); 1.43 (b = 3, c = 43/20); and
1.35 (b = −3, c = 1/2). In region R3 they are: 1.55 (b = 1, c = 1/10); 1.56
(b = 3/2, c = −1 +

√
2. Here there is the saddle connection given in (10));

and 1.57 (b = 3/2, c = 1/10). In regions R4, L1, and L2 they are 1.2, 1.35,
and 1.43, respectively. Finally in the regions L3, or P they are 1.38.

Subcase s = −1. Again, in view of the infinite singular points, we consider
the cases c = 0, c < 0 and c > 0 separately.

Subcase c = 0. We study the finite singular points different from the origin.
If b > 0, or b ∈ (−1/

√
2, 0), then there are three finite singular points:

(0,−1/b) and q±. Computing the eigenvalues of the Jacobian matrix at the
singular point (0,−1/b) and using Theorem 3.15 in [4] we get that it is a
center and q± are two saddles. If b ≤ −1/

√
2 then there is a unique finite
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singular point (0,−1/b) which is a saddle. Finally, if b = 0 the unique finite
singular points are q± which are saddles.

Taking into account the possible saddle connections we get that the unique
global phase portraits are topologically equivalent to the following ones of
Figure 1: 1.58 for b > 0; 1.59 for b = 0; 1.60 for b ∈ (−1/

√
2, 0); and 1.50

for b ≤ −1/
√
2.

Subcase c < 0. We define the following regions with (b, c) ∈ R× R−

S1 = {b ≤ −1/
√
2} ∪ {b > −1/

√
2, c ≤ c1},

S2 = {b > −1/
√
2, c ∈ (c1, 0)}.

We study the finite singular points different from the origin. In the region
S1, there exist the two finite singular points p±. Computing the eigenvalues
of the Jacobian matrix at these points we get that p+ is a center and p−

is a saddle (this saddle is a nilpotent saddle when c = c1). In the region
S2 there are the four finite singular points: p± which are centers and q±

which are saddles. Taking into account the information in the finite and
infinite singular points together with the possible saddle connections studied
above, we conclude that the unique global phase portraits are topologically
equivalent to the following ones of Figure 1: 1.35 in the region S1 and 1.61
in the region S2.

Subcase c > 0. If c > 0 we define the regions. We note that (b, c) ∈ R×R+:

R1 = {c = c2, b ̸= 0, b ̸= −
√
2}, R2 = {c > c2},

P = (−
√
2, c1) = (−

√
2, 1/2), R3 = {b < −1/

√
2, c ∈ (0, c1]} \ P

R4 = {b ∈ (−
√
2,−1/

√
2), c ∈ (c1, c2)} ∪ {b ∈ [−1/

√
2, 0), c ∈ (0, c2)},

R5 = {b > 0, c ∈ (0, c2)} ∪ {b < −
√
2, c ∈ (c1, c2)}.

We study the finite singular points different from the origin. In the region
R1 there are the three finite singular points p− = p+ and q±. Computing the
eigenvalues of the Jacobian matrix at this point and using Theorem 3.5 in
[4] we conclude that p− is a cusp and q± are saddles. In the region R2 there
are the two saddles q±. In the region R3 we have the two saddles p± (they
are nilpotent when c = c1). In the region R4 we have the four finite singular
points p− which is a center, p+ and q± which are all saddles. In the region
R5 we have the singular point p+ which is a center and the singular points
p− and q± which are all saddles. Note that the point P is the linearly zero
point (0,

√
2) which is formed by six hyperbolic sectors (three stable and

three unstable).
Taking into account the information on the finite and infinite singular

points together with the possible saddle connections and separating into
different regions, we have the following possible global phase portraits of
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Figure 1 (whenever there is more than one possible phase portrait, in paren-
thesis we give values of the parameters where they are realized): 1.62 in
region R2; 1.63 in region P ; and 1.51 in region R3. In the region R1 they
are: 1.64 (b = −3, c = 9/4), 1.65 (b = −6/5, c = 9/25), and 1.66 (b = 1,
c = 1/4). We recall the phase portraits in region R1 correspond to the cases
in which the center and the saddle (0, y±) coalesce.

In the region R4 there are three possible global phase portraits: 1.67
(b = −6/5, c = 71/200); 1.68 (b = −6/5, c ≈ 0.35793523. Here c = c(b) is
a real solution of the cubic equation given in (11) and so there is a saddle
connection); and 1.69 (b = −6/5, c = 359/1000). Finally, in the region R5

there are six possible global phase portraits: 1.70 (b = 1, c = 1/10); 1.71
(b = 1, c = 2/9. This corresponds to the saddle connection given in (9));
1.72 (b = 1 and c = 6/25); 1.52 (b = −3, c = 17/10); 1.73 (b = −3,
c ≈ 1.85771681. Here c = c(b) is a real solution of the cubic equation given
in (11) and so there is a saddle connection); and 1.74 (b = −3, c = 21/10).

13. Global phase portraits of system (VIII) when c = 0, a ̸= 0

We compute the finite singular points different from the origin. If b = 0
there are no finite singular points with x = 0 different from the origin. If
b ̸= 0 there is a unique finite singular point different with x = 0 which is
(0,−1/b). Computing the eigenvalues of the Jacobian matrix at this point
we get that if b < s/

√
2 it is a saddle, if b > s/

√
2 it is a center and if

b = s/
√
2 it is nilpotent. Using Theorem 3.5 in [4] we get that if a > 1 it is

a center, if a < 1 it is a saddle, and if a = 1 it is a saddle when s = 1 and a
center when s = −1.

Now we study the finite singular points with x ̸= 0. These are (whenever
they exist) (x̄±, ȳ±) and (−x̄±, ȳ±) where

x̄± =

√
ȳ±(

√
2 + sȳ±)
a

, ȳ± =
−2ab− 3

√
2s±

√
(2ab+ 3

√
2s)2 − 16(1 + a)

4
.

The total number of solutions (±x̄±, ȳ±) can change when (2ab+ 3
√
2s)2 −

16(1 + a) = 0 (in which case the solutions ȳ± coincide), or when ȳ± = 0, or
when ȳ± = −

√
2s (in the last two cases x̄± = 0). The first condition leads

to the values of b equal to b± where

b± = b±(a) =
−3

√
2as± 4

√
a2(1 + a)

2a2
.

The second condition is never possible while the third one is possible if and
only if b = 1/

√
2s. Moreover x̄± evaluated at y = ȳ± with b = b+ is not

defined for a ∈ (−1, 0) ∪ (0,+∞) when s = −1 and for a ∈ (−1, 0) ∪ (0, 1)
when s = 1, while x̄± evaluated at y = ȳ± with b = b− is not defined for
a > 1 when s = 1. So in these cases the number of real solutions (±x̄±, ȳ±)
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does not change on the curves b = b±. The type of the singular points
(±x̄±, ȳ±) will be studied later.

The saddle (0,−1/b) (whenever it exists) and the origin are never con-
nected while the saddles (x̄+, ȳ+) (respectively (x̄−, ȳ−)) and the saddles
(−x̄+, ȳ+) (respectively (−x̄−, ȳ−)), whenever they exist, are connected by
symmetry. The connection between the saddles (±x̄−, ȳ−) and the saddle
at the origin occurs on the curve

(12) b = b(a) =
−3s+ 3

√
1 + a√

2a
,

while the connection between the saddles (±x̄+, ȳ+) and the saddle at the
origin occurs on the curve

(13) b = b(a) =
−3s− 3

√
1 + a√

2a
.

We will see that the points (±x̄+, ȳ+) and (±x̄−, ȳ−) are never simulta-
neously four saddles and so we do not need to study the possible sad-
dle connections among them. Finally, the connection between the saddles
(±x̄±, ȳ±) and the saddle (0,−1/b) occurs on the curve which is a real root
with b = b1(a) > 0 of the polynomial
(14)
−8as−16

√
2ab−3s(−1−4a+8a2)b2+2

√
2(3+10a+12a2)b3+2as(1+3a+3a2)b4.

We study the cases s = 1 and s = −1 separately.

Subcase s = 1. Taking into account the information on the finite and
infinite singular points we distinguish between b = 0; a > 0 and b ̸= 0; and
a < 0 and b ̸= 0.

Subcase b = 0. If a > 0 there are no finite singular points among the
origin. If a ∈ (−1, 0), besides the origin, there are the two finite singular
points (±x̄+, ȳ+) which are two centers. The unique possible global phase
portraits are topologically equivalent to 1.4 in Figure 1 when a > 0 and 1.75
in Figure 1 when a ∈ (−1, 0).

Subcase a > 0 and b ̸= 0. We consider the following regions for (a, b) ∈
R+ × (R \ {0}):
S1 = {a > 1, b ≥ 1/

√
2} ∪ {a ∈ (0, 1], b > 1/

√
2},

S2 = {a > 1, b+ < b < 1/
√
2}, S3 = {a > 1, b = b+} ∪ {b = b−},

S4 = {a > 1, b− < b < b+} ∪ {a ∈ (0, 1], b− < b ≤ 1/
√
2}, S5 = {b < b−}.

If (a, b) ∈ S1 then there are two unique finite singular points with x ̸= 0
which are (±x̄−, ȳ−) that are both saddles. If (a, b) ∈ S2 the four finite
singular points with x ̸= 0 exist, being (±x̄+, ȳ+) two centers and (±x̄−, ȳ−)
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two saddles. If (a, b) ∈ S3 we have ȳ− = ȳ+, and the two finite singular points
(with x ̸= 0) (±x̄−, ȳ−) = (±x̄+, ȳ+) become nilpotent. Using Theorem 3.5
in [4] we obtain that they are both cusps. If (a, b) ∈ S4 there are no finite
singular points with x ̸= 0. If (a, b) ∈ S5 the four finite singular points with
x ̸= 0 exist, being (±x̄+, ȳ+) two saddles and (±x̄−, ȳ−) two centers.

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into
different regions, we have the following possible global phase portraits of
Figure 1 (whenever there is more than one possible phase portrait, in paren-
thesis we give values of the parameters where they are realized): 1.27 in the
region S3 and 1.28 in the region S4.

In the region S1 they are: 1.76 (a = 2, b = 1); 1.77 (a = 2, b = 3(−1 +√
3)/(2

√
2). Here b = b(a) is as in (12) and so there is a saddle connection);

and 1.78 (a = 2, b = 3/4).
In the region S2 they are: 1.33 (a = 4, b = 69/100); 1.32 (a = 4, b =

3(
√
5 − 1)/(4

√
2). Here b = b(a) is as in (12) and so there is a saddle

connection); 1.31 (a = 4, b = 63/100); 1.30 (a = 4, b ≈ 0.59902710. Here
b = b1(a) is a real root with b > 0 of the polynomial in (14) and so it
corresponds to a saddle connection); and 1.29 (a = 4, b = 59/100).

In the region S5 they are: 1.29 (a = 2, b = −71/25); 1.30 (a = 2,
b ≈ −2.89367324. Here b = b1(a) is a real root with b < 0 of the polynomial
in (14) and so it corresponds to a saddle connection); 1.31 (a = 2, b =
−579/200); 1.32 (a = 2, b = −3(1 +

√
3)/(2

√
2). Here b = b(a) is as in (13)

and so there is a saddle connection); and 1.33 (a = 2, b = −3).

Subcase a ∈ (−1, 0) and b ̸= 0. We have the following regions for (a, b) ∈
(−1, 0)× (R \ {0}):

R1 = {1/
√
2 < b < b−}, L1 = {b = b−},

R2 = {b > b−}, R3 = {0 < b ≤ 1/
√
2} ∪ {b < 0}.

If (a, b) ∈ R1 the four finite singular points with x ̸= 0 exist, being (±x̄+, ȳ+)
two centers and (±x̄−, ȳ−) two saddles. If (a, b) ∈ L1 we have ȳ+ = ȳ−, and
the two finite singular points (with x ̸= 0) (±x̄−, ȳ−) = (±x̄+, ȳ+) become
nilpotent. Using Theorem 3.5 in [4] we obtain that they are both cusps. If
(a, b) ∈ R2 there are no finite singular points with x ̸= 0. If (a, b) ∈ R3 there
are two unique finite singular points with x ̸= 0 which are (±x̄+, ȳ+) and
are both centers.

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into
different regions, we have the following possible global phase portraits of
Figure 1 (whenever there is more than one possible phase portrait, in paren-
thesis we give values of the parameters where they are realized): 1.44 in R2



HAMILTONIAN SYSTEMS WITH A NILPOTENT SADDLE AT THE ORIGIN 31

and 1.45 in R3. In the region R1 they are: 1.79 (a = −2/5, b = 9/10); 1.80
(a = −2/5, b = −3(

√
15−5)/(2

√
2). Here b = b(a) is as in (12) and so there

is a saddle connection); and 1.81 (a = −2/5, b = 13/10). In the region L1

the cusps correspond to the case in which the saddles and the centers in the
region R1 coalesce. So, the unique global phase portraits are topologically
equivalent to 1.82.

Subcase s = −1. Again, we distinguish between the cases b = 0; a > 0 and
b ̸= 0; and a < 0 and b ̸= 0.

Subcase b = 0. If a ∈ (−1, 0) there are two finite singular points besides
the origin which are two saddles. If a ∈ (0, 1/8) then there are four singular
points: (±x̄+, ȳ+) which are saddles and (±x̄−, ȳ−) which are centers. If
a = 1/8 there are two finite singular points besides the origin which are two
cusps (it corresponds to the fact that the saddles and the centers when a ∈
(0, 1/8) coalesce). Finally, if a > 1/8 there are no more finite singular points
among the origin. Taking all this into account together with the possible
saddle connections we conclude that the possible global phase portraits are:
1.83 when a ∈ (0, 1/8); 1.84 when a = 1/8; 1.2 when a > 1/8; and 1.85
when a ∈ (−1, 0).

Subcase a > 0 and b ̸= 0. We have the following regions for (a, b) ∈
R+ × (R \ {0}):

S1 = {b < −1/
√
2} ∪ {a ∈ (0, 1), b = −1/

√
2},

N1 = {a ∈ (0, 1), b = b−}, S2 = {a ∈ (0, 1),−1/
√
2 < b < b−},

S3 = {a ∈ (0, 1), b > b−} ∪ {a ≥ 1, b ≥ −1/
√
2}.

If (a, b) ∈ S1 there are two unique finite singular points (centers) with x ̸= 0
which are (±x̄−, ȳ−). If (a, b) ∈ N1 there are two finite singular points
(cusps) with x ̸= 0 which are (±x̄−, ȳ−) = (±x̄+, ȳ+). If (a, b) ∈ S2 the
four finite singular points with x ̸= 0 exist being (±x̄+, ȳ+) two saddles and
(±x̄−, ȳ−) two centers. If (a, b) ∈ S3 there are no finite singular points with
x ̸= 0.

Taking into account the information on the finite and infinite singular
points together with the information of the possible saddle connections we
have the following possible global phase portraits of Figure 1 (whenever there
is more than one possible phase portrait, in parenthesis we give values of the
parameters when they are realized): 1.45 in the region S1; 1.86 (a = 1/2,
b = −67/100) and 1.87 (a = 1/10, b = 1/10) in the region S2; 1.88 (a = 1/2,
b = b−) and 1.89 (a = 1/10, b = b−) in the region N1 (they correspond to
the cases in which the saddles and the centers in the region S2 coalesce);
and 1.12 in the region S3.
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Subcase a ∈ (−1, 0) and b ̸= 0. We consider the following regions for
(a, b) ∈ (−1, 0)× (R \ {0}):

R1 = {b < b−}, R2 = {b = b−},
R3 = {b− < b ≤ −1/

√
2}, R4 = {−1/

√
2 < b < 0} ∪ {b > 0}.

If (a, b) ∈ R1 the four finite singular points with x ̸= 0 exist, being (±x̄+, ȳ+)
two centers and (±x̄−, ȳ−) two saddles. If (a, b) ∈ R2 we have ȳ− = ȳ+, and
the two finite singular points (with x ̸= 0) (±x̄−, ȳ−) = (±x̄+, ȳ+) become
nilpotent. Using Theorem 3.5 in [4] we obtain that they are both cusps. If
(a, b) ∈ R3 there are no finite singular points with x ̸= 0. If (a, b) ∈ R4 there
are two unique finite singular points with x ̸= 0 which are (±x̄+, ȳ+) that
are both saddles.

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into
different regions, we have the following possible global phase portraits of
Figure 1 (whenever there is more than one possible phase portrait, in paren-
thesis we give values of the parameters where they are realized): 1.27 in R2

and 1.28 in R3. In the region R4 they are: 1.90 (a = −1/2, b = −1/2) and
1.91 of Figure 1 (a = −1/2, b = 1).

In the region R1 they are: 1.29 (a = −9/10, b = −307/100); 1.30 (a =
−9/10, b = −(10 +

√
10)/(3

√
2). Here b = b(a) is as in (12) and thus

corresponds to a saddle connection); 1.31 (a = −9/10, b = −16/5); 1.32
(a = −9/10, b ≈ −3.31071911. Here b = b1(a) is a real root with b < 0 of of
the polynomial in (14) and thus corresponds to a saddle connection); and
1.33 (a = −9/10, b = −4).

14. Global phase portraits of system (VIII) when ac = −1,
as > 0, cs < 0

The finite singular points (whenever they exist) are p± = (0, y±) and
(±x̄, ȳ) where

y± =
ab

2
± 1

2

√
a(4 + ab2), ȳ =

−2(1 + a)s

3
√
2 + 2abs

and

x̄ = 2

√
−(1 + a)(

√
2ab+ s(2− a))

a(3
√
2 + 2abs)2

.

The total number of solutions p± can change when a(4 + ab2) = 0 that is
b = ± 2√−a

with a ∈ (−1, 0) and s = −1. The total number of solutions
(±x, y) can change when either 3

√
2+ 2abs = 0, that is, b = −3/(

√
2as) (in

which case x and y disappear), or 3
√
2+ 2abs ̸= 0 and

√
2ab+ s(2− a) = 0,

that is, b = (a−2)s/(
√
2a) (in which case x = 0). Note that (a−2)s/(

√
2a) =

−3/(
√
2as) if and only if a = −1, and so it is never possible.
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The saddles p− and p+ whenever they exist cannot be connected one with
each other. The saddles p± and the origin can be connected if and only if
s = −1 and along the curve b = b2(a) = ±3/(

√
−2a). On the other hand

the points (±x̄, ȳ) are never saddles.
We distinguish between the cases: s = 1 and s = −1.

Subcase s = 1. In this case, taking into account that a > 0 we have the
following regions for (a, b) ∈ R+ × R:

S1 = {b < −3/(
√
2a)} ∪ {−3/(

√
2a) < b < (a− 2)/(

√
2a)},

L1 = {b = −3/(
√
2a)}, S2 = {b ≥ (a− 2)/(

√
2a)}.

We study the finite singular points different from the origin. If (a, b) ∈ S1

then there exist the four finite singular points p± which are two saddles and
(±x̄, ȳ) which are two centers. If (a, b) ∈ L1, then there exist the two finite
singular points p± which are two saddles. In the region S2 there are the two
finite singular points p− (which is a center) and p+ (which is a saddle).

Taking into account the information on the finite and infinite singular
points and the fact that there are no saddle connections in this case we
conclude that the global phase portraits are topologically equivalent to the
following ones of Figure 1: 1.26 in the region S1; 1.6 in the region L1; and
1.92 in the region S2.

Subcase s = −1. In this case a < 0, i.e. a ∈ (−1, 0). We consider the
following regions for (a, b) ∈ (−1, 0)× R:

R1 = {b > 2/
√
−a} ∪ {(2− a)/(

√
2a) < b < −2/

√
−a}

M1 = {b = 2/
√
−a} ∪ {b = −2/

√
−a}

R2 = {−2/
√
−a < b < 2/

√
−a}, M2 = {b = 3/(

√
2a)},

R3 = {b < (2− a)/(
√
2a), b ̸= 3/(

√
2a)}.

We study the finite singular points different from the origin. If (a, b) ∈ R1

then there exist the two singular points p+, which is a center and p−, which
is a saddle. If (a, b) ∈ M1, there exist the unique finite singular p− = p+

which is a cusp. In the region R2 there are no finite singular points. In the
region M2 there exist the two singular points p± which are two saddles and
in the region R3 there are the four singular points p± which are saddles and
(±x̄, ȳ) which are centers.

Taking into account the information on the finite and infinite singular
points together with the possible saddle connections and separating into
different regions, we have the following possible global phase portraits of
Figure 1 (whenever there is more than one possible phase portrait, in paren-
thesis we give values of the parameters where they are realized): 1.93 in
R2, 1.6 in M2, and 1.26 in R3. In the region R1 they are: 1.94 (a = −1/2,
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b = 29/10); 1.95 (a = −1/2, b = 3. Here we have a saddle connection); 1.96
(a = −1/2, b = 4); and 1.92 (a = −1/2, b = −3). In the region M1 they are
1.97 when b = 2/

√−a) and 1.98 when b = −2/
√−a. Note that these global

phase portraits correspond to the ones in the region R1 which the saddle
and the center coalesce.

15. Global phase portraits of system (VIII) when ac ̸= 0 and
ac ̸= −1: finite singular points on x = 0

We study the case ac ̸= 0 with either ac < −1 and as > 0 or cs > 0 and
as < 0. In this section we focus on the finite singular points on x = 0.

If b2 − 4c < 0 there are no finite singular points on x = 0.
If b2 = 4c there is a unique finite singular point on x = 0 which is

(0,−2/b). Computing the eigenvalues of the Jacobian matrix at this point
we get that if b ̸=

√
2s it is nilpotent and if b =

√
2s it is linearly zero.

In the first case using Theorem 3.5 in [4] we get that it is a cusp and if
b =

√
2s then using blow-up techniques we conclude that it is the union

of two hyperbolic sectors (one stable and one unstable) if s = 1 and is the
union of six hyperbolic sectors (3 stable and 3 unstable) if s = −1.

If b2 > 4c we get that there are two finite singular points with x = 0

which are p± = (0, y±) =
(
0, −b±

√
b2−4c

2c

)
. We introduce the notation

c1 = c1(b) =
1

2
(−1 +

√
2bs), c2 = c2(b) =

b2

4

We distinguish between the cases s = 1 and s = 1.

Subcase s = 1. In this case computing the eigenvalues of the Jacobian
matrix at the points p± we get the following regions
R1 = {(b, c) ∈ R2 : c1 < c < c2, b >

√
2} ∪ {(b, c) ∈ R2 : 0 < c < c2, b < 0},

∪ {(b, c) ∈ R2 : c < c1, b < 1/
√
2} ∪ {(b, c) ∈ R2c < 0, b ≥ 1/

√
2},

R2 = {(b, c) ∈ R2 : 0 < c < c1, b > 1/
√
2},

R3 = {(b, c) ∈ R2 : 0 < c < c2, 0 < b ≤ 1/
√
2}

∪ {(b, c) ∈ R2 : c1 < c < c2, 1/
√
2 < b <

√
2},

R4 = {(b, c) ∈ R2 : c1 < c < 0, b < 1/
√
2},

L1 = {c = c1, b <
√
2}, L2 = {c = c1, b >

√
2}.

If (b, c) ∈ R1 then p+ is a center and p− is a saddle. If (b, c) ∈ R2, both p±

are centers. If (b, c) ∈ R3 then p+ is a saddle and p− is a center, if (b, c) ∈ R4

both p± are saddles. If (b, c) ∈ L2 then p+ is a center and p− is nilpotent.
Using Theorem 3.15 in [4] we get that it is a saddle if

√
2 < b ≤ 3/

√
2
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or b > 3/
√
2 and a > 1/(2 −

√
2b), and it is a center if b > 3/

√
2 and

a ≤ 1/(2 −
√
2b). On the other hand, if (b, c) ∈ L1 then p− is a center if

1/
√
2 < b <

√
2 and a saddle if b < 1/

√
2 (note that b = 1/

√
2 corresponds

to c = 0). Moreover p+ is nilpotent. Using Theorem 3.5 in [4] we get that
it is a saddle if a ≤ 1/(2−

√
2b) and a center if a > 1/(2−

√
2b).

Subcase s = −1. In this case computing the eigenvalues of the Jacobian
matrix at the points p± we get the following regions
R1 = {(b, c) ∈ R2 : c1 < c < c2, b < −

√
2} ∪ {(b, c) ∈ R2 : c < 0, b ≤ −1/

√
2},

∪ {(b, c) ∈ R2 : c < c1, b > −1/
√
2} ∪ {(b, c) ∈ R2 : 0 < c < c2, b > 0},

R2 = {(b, c) ∈ R2 : 0 < c < c1, b < −1/
√
2},

R3 = {(b, c) ∈ R2 : c1 < c < c2,−
√
2 < b ≤ −1/

√
2}

∪ {(b, c) ∈ R2 : 0 < c < c2,−1/
√
2 < b < 0},

R4 = {(b, c) ∈ R2 : c1 < c < 0, b > −1/
√
2},

L1 = {c = c1, b < −
√
2}, L2 = {c = c1,−

√
2 < b < −

√
2},

L3 = {c = c1, b > −1/
√
2}.

If (b, c) ∈ R1 then p− is a saddle and p+ is a center. If (b, c) ∈ R2, both
p± are both saddles. If (b, c) ∈ R3 then p− is a center and p+ is a saddle,
if (b, c) ∈ R4 both p± are both centers. If (b, c) ∈ L1 then p− is a saddle
and p+ is nilpotent. Using Theorem 3.15 in [4] we get that it is a saddle
if −3/

√
2 ≤ b < −

√
2 or b < −3/

√
2 and a ≥ 1/(2 +

√
2b), and it is a

center if b < −3/
√
2 and a < 1/(2 +

√
2b). On the other hand, if (b, c) ∈ L2

then p+ is is a saddle and p− is nilpotent. Using Theorem 3.5 in [4] we
get that it is a saddle if a < 1/(2 +

√
2b) and a center if a ≥ 1/(2 +

√
2b).

Finally, if (a, b) ∈ L3 then p+ is a center and p− is nilpotent. Using again
Theorem 3.5 in [4] we get that it is a saddle if a < 1/(2+

√
2b) and a center

if a ≥ 1/(2 +
√
2b).

16. Global phase portraits of system (VIII) when ac ̸= 0 and
ac ̸= −1: preliminaries on finite singular points with x ̸= 0

We continue determining the finite singular points of systems (VIII) with
x ̸= 0. We first introduce four auxiliary lemmas.

Auxiliary lemmas.

Lemma 5. There exist at most four finite singular points for system (VIII)
with x ̸= 0 which are, whenever they exist,

(15)
(
±

√
ȳ+(

√
2 + sȳ+)

a
, ȳ+

)
and

(
±

√
ȳ−(

√
2 + sȳ−)
a

, ȳ−

)
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with

(16) ȳ± = −
2ab+ 3

√
2s±

√
(2ab+ 3

√
2s)2 − 16(1 + a)(ac+ 1)

4(1 + ac)
.

Proof. We compute the Gröebner basis for the polynomials in system (VIII)
and we obtain six polynomials {p1, . . . , p6} where

p2 =
1

2
xy
(
2(1+a)+(3

√
2+2ab)y+2(1+ac)y2

)
, p6 = −x

(
ax2−

√
2y−sy2

)
.

From p6 = 0 we get

(17) x2 =
y(
√
2 + sy)

a
.

Recall that a ̸= 0. Moreover since x ̸= 0 we must have, in particular, y ̸= 0.
Now solving p2 = 0 with respect to y we get y = ȳ± as in (16). Substituting
these values of y and the corresponding x given in (17) into the Gröebner
basis we get pi = 0 for i = 1, . . . , 6 and so we have at most two solutions in
y and two solutions in x for each solution in y. In short, there are at most
four solutions of system (VIII) with x ̸= 0 and they are, whenever they
exist, the ones in the statement of the lemma. This concludes the proof of
the lemma. �

Lemma 6. The finite singular points with x ̸= 0 are either elementary or
nilpotent. They are nilpotent if and only if

c = c0 :=
2a2b2 + 6

√
2abs+ 1− 8a

8a(1 + a)

and in this case, if they exist, they are two cusps.

Proof. We compute the Gröebner basis for the polynomials ẋ, ẏ and the
determinant of the linear part of system (VIII) and we get a set of 22 poly-
nomials. Recall that xy ̸= 0 (because if y = 0 it follows easily from system
(VIII) that x = 0). One of the polynomials in the Gröebner basis can be
written as −16a(1 + a)2xy(c − c0)(c − c1). Hence we must study the cases
c = c1 and c = c0. If c = c1, substituting it into the Gröebner basis we get
a solution of the form y = −s

√
2 = −

√
2/s. This is not possible because

then x = 0 (see (17)). On the other hand, if c = c0, substituting it into the
Gröebner basis we get the following cases:

(i) b = −s(1− 2a)/(
√
2a);

(ii) b = −s(5 + 2a)/(
√
2a);

(iii) b = −3s/(
√
2a);

(iv) y = −4s(1 + a)/(3
√
2 + 2asb) with b ̸= −3s/(

√
2a).

We consider each case (i)–(iv) separately. Note that in statement (iv) we
have that y = ȳ+ = ȳ− given in (16) (because c = c0).
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Substituting the value of b in case (i) into the Gröebner basis we get the
solution y = −s

√
2 which is not possible because then x = 0 (see Lemma 5).

On the other hand, substituting the value of b in case (ii) into the Gröebner
basis we get the solutions y = s

√
2 and x = ±2/

√
as. Both solutions are

included in case (iv) (whenever b is as in (ii)) so we will study them later
when we study the general case (iv). Substituting the value of b in (iii) into
the Gröebner basis we get the solution x = y = 0 which is not possible.
Finally, introducing the value of y in (iv) into the Gröebner basis we get a
polynomial quadratic in x. Solving it we obtain x = ±x with

(18) x =

√
s
8(1 + a)(−1 + 2a−

√
2abs)

a(3
√
2 + 2sab)2

.

Note that x is precisely the value of the component x in the solutions given
in (15) with ȳ+ = ȳ− because c = c0 and so the four solutions become two
(whenever x exists).

Substituting these two values of x into the Gröebner basis we get that
it is identically zero. Now taking c = c0, and computing the eigenvalues of
the Jacobian matrix at the points (±x, y) with y as in (iv) and x as in (18)
we get that it is not the 2 × 2-zero matrix. Hence both points (±x, y) are
nilpotent. Applying Theorem 3.5 in [4] we conclude that both of them are
cusps. To conclude the proof of the lemma we just note that taking c = c0
and solving the polynomials ẋ = ẏ = 0 we get exactly two solutions with
x ̸= 0 (which are (±x, y) and two solutions with x = 0. This concludes the
proof of the lemma. �
Lemma 7. In the case ac + 1 > 0, cs < 0 and as > 0 there cannot be two
centers with x = 0.

Proof. Note that when s = 1 the regions in which we can have two centers
with x = 0 are: 0 < c < c1, b > 1/

√
2, or c = c1, b > 3/

√
2, a ≤ 1/(2−

√
2b),

or c = c1, 1/
√
2 < b <

√
2 and a > 1/(2−

√
2b). In the three cases we have

that c > 0 which is not possible because then cs > 0.
When s = −1, the regions in which we can have two centers with x = 0

are: c1 < c < 0, b > −1/
√
2, or c = c1, b > −1/

√
2 and a ≥ 1/(2 +

√
2b).

In both cases we have that c < 0 which is again not possible because then
cs > 0. This concludes the proof of the lemma. �

Now we investigate the possible saddle connections.

Saddle connections. The saddles p+ and p− (whenever they exist) cannot
be connected. The saddles p± (whenever they exist) and the origin can be
connected along the surface c = c(a, b) in the parameter space with

(19) c =
2b2

9
.
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The saddles that are not on x = 0, that is, the saddles (±x̄±, ȳ±) with
x̄± ̸= 0 (whenever they exist) are connected by symmetry and they are
connected with the saddle at the origin along the surface c = c(a, b) in the
parameter space with

(20) c =
2ab2 + 6

√
2bs− 9

9(1 + a)
.

The saddles (±x̄+, ȳ+) and the saddles (±x̄−, ȳ−) can be connected (when-
ever they exist ) if and only if c = c0 (in which case they become two cusps).

Finally, the saddles (±x̄±, ȳ±) with x̄± ̸= 0 and the saddles p± (whenever
they exist) can be connected on a surface c = c(a, b) in the parameter space
which is any real solution (whenever it exists) of the equation
(21) (2b−

√
2s(1 + 2c))

(
C1(a, b, c) + 2

√
2bsC2(a, b, c)

)
= 0,

where C1 = C1(a, b, c) is
C1 = −64a2b4 + 24ab6 + 96a2b6 − 192a3b6 + 16a2b8 + 48a3b8 + 48a4b8 + 576a2b2c

− 252ab4c− 1328a2b4c+ 1632a3b4c+ 120ab6c+ 264a2b6c+ 144a3b6c− 1248a4b6c

+ 48a3b8c+ 144a4b8c+ 144a5b8c− 1296a2c2 + 792ab2c2 + 5760a2b2c2 − 2880a3b2c2

− 1152ab4c2 − 3684a2b4c2 − 6816a3b4c2 + 8544a4b4c2 + 456a2b6c2 + 936a3b6c2

+ 144a4b6c2 − 2592a5b6c2 + 48a4b8c2 + 144a5b8c2 + 144a6b8c2 − 648ac3

− 7776a2c3 − 2592a3c3 + 18b2c3 + 3456ab2c3 + 13608a2b2c3 + 26208a3b2c3

− 17280a4b2c3 − 516ab4c3 − 4772a2b4c3 − 10272a3b4c3 − 2448a4b4c3

+ 13824a5b4c3 − 264a3b6c3 − 1392a4b6c3 − 2592a5b6c3 − 1728a6b6c3 − 81c4

− 3240ac4 − 17496a2c4 − 12960a3c4 − 1296a4c4 + 90b2c4 + 3672ab2c4

+ 16560a2b2c4 + 27360a3b2c4 − 4320a4b2c4 − 23040a5b2c4 + 200a2b4c4

+ 2784a3b4c4 + 9696a4b4c4 + 13824a5b4c4 + 6912a6b4c4 − 324c5 − 5184ac5

− 18144a2c5 − 20736a3c5 − 5184a4c5 + 144ab2c5 − 288a2b2c5 − 6336a3b2c5

− 19584a4b2c5 − 23040a5b2c5 − 9216a6b2c5 − 324c6 − 2592ac6 − 7776a2c6

− 10368a3c6 − 5184a4c6

and
C2 = −64a2b4 + 24ab6 + 80a2b6 + 96a3b6 + 576a2b2c− 252ab4c− 840a2b4c

− 1392a3b4c+ 88a2b6c+ 288a3b6c+ 336a4b6c− 1296a2c2 + 792ab2c2

+ 2448a2b2c2 + 6624a3b2c2 + 72ab4c2 − 708a2b4c2 − 2808a3b4c2 − 4416a4b4c2

+ 120a3b6c2 + 384a4b6c2 + 432a5b6c2 − 648ac3 − 1296a2c3 − 10368a3c3

+ 18b2c3 − 312ab2c3 + 1944a2b2c3 + 10512a3b2c3 + 16608a4b2c3 − 296a2b4c3

− 2100a3b4c3 − 4800a4b4c3 − 3888a5b4c3 − 81c4 − 108ac4 − 2592a2c4

− 16848a3c4 − 15984a4c4 + 24ab2c4 + 1944a2b2c4 + 9504a3b2c4 + 17376a4b2c4

+ 10368a5b2c4 + 54c5 + 216ac5 − 1728a2c5 − 9504a3c5 − 14688a4c5 − 6912a5c5.
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17. Global phase portraits of system (VIII) when ac < −1 and
as > 0, or cs > 0 and as < 0

By Theorems 2 and 3, since there are no singular points at infinity and
the saddle at the origin have total index −2 on the Poincaré sphere, the
remaining finite singular points on the Poincaré sphere have to have total
index 4. Moreover, studying the finite singular points with x = 0, we have
the following possibilities: (i) there are no singular points in x = 0, (ii) a
center and a saddle, (iii) two centers, (iv) two saddles, (v) a cusp. In all
this chapter whenever there is more than one possible phase portrait, in
parenthesis we give values of the parameters where they are realized.

In case (i) the total index of the singular points with x = 0 in the Poincaré
sphere is −2. Hence, the remaining singular points with x ̸= 0 have to have
total index 2. Hence, in view of Lemmas 5 and 6 and taking into account the
symmetry of the system, they can only be two centers. The global phase
portraits of the systems in case (i) are topologically equivalent to 1.3 in
Figure 1 and are realized whenever b2 < 4c.

In case (ii) the total index of the singular points with x = 0 in the
Poincaré sphere is −2. Hence, the remaining singular points with x ̸= 0
have to have total index 4. Hence, in view of Lemma 6 and taking into
account the symmetry of the system, they can only be two centers. Taking
into account the possible saddle connections we have that the possible global
phase portraits are topologically equivalent to the following ones of Figure
1: 1.39 (s = 1, a = −4/5, b = 3, c = 17/10); 1.40 (s = 1, a = −4/5, b = 3,
c = 2. Here c is as in (19) and so there is a saddle connection); and 1.36
(s = 1, a = −4/5, b = 1/2, c = 1/20).

In case (iii) the total index of the singular points with x = 0 in the
Poincaré sphere is 2. Hence, the remaining singular points with x ̸= 0 have
to have total index 0. Hence, in view of Lemmas 5 and 6 and taking into
account the symmetry of the system, they can only be: (iii.1) no points,
(iii.2) two cusps (that in view of Lemma 6 it only happens when c = c0),
(iii.3) two centers and two saddles. Taking into account the possible saddle
connections we conclude that the global phase portraits are topologically
equivalent to the following ones of Figure 1: for case (iii.1) to 1.99 (s = 1,
a = −4/5, b = 3, c = 3/2) and 1.3 (s = −1, a = 1, b = 3, c = −1/2); for
case (iii.2) to 1.100 (s = 1, a = −2/5, b = 2, c = c0) and to 1.101 (s = −1,
a = 1/2, b = −1/2, c = c0); for case (iii.3) to 1.102 (s = 1, a = −2/5, b = 2,
c = 9/10), 1.103 (s = 1, a = −2/5, b = 2, c = (60

√
2− 61)/27. Here c is as

in (20) and so we have a saddle connection), 1.104 (s = 1, a = −2/5, b = 2,
c = 4/5), and 1.105 (s = −1, a = 1/4, b = 18/25, c = −1).

In case (iv) the total index of the singular points with x = 0 in the
Poincaré sphere is 6. Hence, the remaining singular points with x ̸= 0 have
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to have total index 8. Hence, in view of Lemmas 5 and 6 and taking into
account the symmetry of the system, they can only be four centers. Taking
into account that there are no saddle connections, we conclude that the
global phase portraits are topologically equivalent to 1.7 in Figure 1 which
is realized for example when s = 1, a = 1, b = −3 and c = −2.

In case (v) the total index of the singular points with x = 0 in the Poincaré
sphere is −2. Hence the remaining singular points with x ̸= 0 have to have
total index 4. Hence, in view of Lemmas 5 and 6 and taking into account
the symmetry of the system, they can only be two centers. The global phase
portraits of the systems in case (v) are topologically equivalent to 1.37 in
Figure 1 and it is realized whenever b2 = 4c.

18. Global phase portraits of system (VIII) when ac > 0

By Theorem 2, the two nodes at infinity and the saddle at the origin have
total index 1 on the Poincaré sphere. Then by Theorem 3 the remaining
finite singular points on the Poincaré sphere have to have total index 0.
Moreover, studying the finite singular points with x = 0 in the case ac >
0, we have the following possibilities: (i) there are no points, (ii) a cusp
(whenever c = b2/4 and b ̸= −

√
2 when s = −1), (iii) a center and a saddle

p, (iv) two saddles p1 and p2, (v) two centers; and (vi) a point which is the
union of six hyperbolic sectors (whenever b = −

√
2, c = b2/4 and s = −1).

In all the chapter whenever there is more than one possible phase portrait,
we give in parenthesis values of the parameters where they are realized.

In case (i) the total index of the infinite singular points and the finite
singular points with x = 0 in the Poincaré sphere is 1. Hence, the remaining
finite singular points with x ̸= 0 have to have total index 0. Hence, in view
of Lemma 6 and taking into account the symmetry of the system, they can
only be: (i.1) do not exist, (i.2) two cusps, (i.3) two centers and two saddles
p3, p4. Taking into account the fact that there are no saddle connections
in this region, we conclude that the global phase portraits are topologically
equivalent to the following ones of Figure 1: 1.1 in case (i.1) (s = 1, a = 1/10,
b = 1/2, c = 4), to 1.106 in case (i.2) (s = −1, a = 1/10, b = 0, c = c0), and
to 1.107 in case (i.3) (s = −1, a = 1/10, b = −1, c = 1).

In case (ii) the total index of the infinite singular points and the finite
singular points with x = 0 in the Poincaré sphere is 1. Hence, the remaining
finite singular points with x ̸= 0 have to have total index 0. So, in view of
Lemma 6 and taking into account the symmetry of the system, they can only
be: (ii.1) do not exist, (ii.2) two cusps, (ii.3) two centers and two saddles
p3, p4. We recall that here c = b2/4 and that we exclude the case b = −

√
2

with s = −1. Taking into account that there are no saddle connections, the
global phase portraits are topologically equivalent to the following ones of
Figure 1: for case (ii.1) to 1.8 (s = 1, a = 1/2, b = 1); for case (ii.2) (we must
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have s = −1 and a = 1/(8 + 6
√
2b+ 2b2)) to 1.108 (b = 1), 1.109 (b = −3),

and 1.110 (b = −1/2); and for case (ii.3) to 1.111 (s = −1, a = 1/2, b = −2),
1.112 (s = −1, a = 1/2, b = −1), and 1.113 (s = −1, a = 3/100, b = 1).

In case (iii) the total index of the infinite singular points and the finite
singular points with x = 0 in the Poincaré sphere is 1. Hence, the remaining
finite singular points with x ̸= 0 have to have total index 0. Hence, in view
of Lemma 6 and taking into account the symmetry of the system, they can
only be: (iii.1) do not exist, (iii.2) two cusps, (iii.3) two centers and two
saddles p3 and p4.

In case (iii.1) we need to investigate the possible saddle connection be-
tween the saddle p and the origin. Doing so, we get that they can be
connected along the surface (19). Taking all the above into account and
recalling that we know the region in the parameters space where condition
(iii.1) holds (because we know the region in the parameter space where con-
dition (iii) holds and we also know that none of the solutions with x ̸= 0
exist), we conclude that the global phase portraits are topologically equiv-
alent to the following ones of Figure 1: 1.9 (s = 1, a = 1, b = 3, c = 17/10);
1.10 (s = 1, a = 1, b = 3, c = 2. Here c is the value in (19)); 1.11 (s = 1,
a = 1, b = 3, c = 21/10); and 1.13 (s = 1, a = 1/4, b = 1/2, c = 1/20).

In the case (iii.2) we need to investigate the possible saddle connections
between the saddle p and the saddle at the origin, between the cusps and
the origin, and between the cusps and the saddle p. The possible saddle
connection between the saddle p and the saddle at the origin is along the
surface in (19) and between the cusps p1, p2 and the saddle p is, whenever it
exist, along the surface which is a solution of the equation in (21). Finally,
the possible saddle connection between the cusps and the origin is along
the surface in (20). Taking into account that we know the region in the
parameters space where condition (iii.2) holds (because we know the region
in the parameter space where condition (iii) holds and we also know that c =
c0), we conclude that the global phase portraits are topologically equivalent
to the following ones of Figure 1: 1.25 (s = 1, a = 1, b = −6, c = c0);
1.114 (s = −1, a = 1/10, b = 449/2000, c = c0); 1.115 (s = −1, a = 1/10,
b =

√
2(−135+66

√
5)/79, c = c0. Here b is the solution of (19)); 1.116 (s =

−1, a = 1/10, b = 23/100, c = c0); 1.117 (s = −1, a = 1/2, b = −87/100,
c = c0); 1.118 (s = −1, a = 1/2, b = −3

√
2/5, c = c0. Here b is the

solution of (19)); 1.119 (s = −1, a = 5/2, b = −1.2733525026, c = c0. Here
b is the real solution of the surface in (21)); and 1.120 (s = −1, a = 5/2,
b = −319/250, c = c0).

In case (iii.3) we need to investigate the possible saddle connections. The
connections between the saddles p3, p4 and the saddle at the origin is given
along the surface c = c(a, b) given in (20) and the connection between the
saddle p and the origin is along the surface c = c(a, b) given in (19). Finally,
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the possible connection between the saddle p and the saddles p3, p4 is along
the surface c = c(a, b) which is any real solution (whenever it exists) of the
equation (21).

Taking all the above into account and recalling that we know the region
in the parameters space where condition (iii.3) holds (because we know the
region in the parameter space where condition (iii) holds and we also know
that all the four solutions with x ̸= 0 exist), we conclude that the global
phase portraits are topologically equivalent to the following ones of Figure
1: 1.14 (s = 1, a = 1, b = −11/2, c = 1/10); 1.15 (s = 1, a = 1, b = −11/2,
c = (103 − 66

√
2)/36. Here c is a value in (20)); 1.16 (s = 1, a = 1,

b = −11/2, c = 269/1000); 1.17 (s = 1, a = 1, b = −11/2, c = 0.27064859.
Here c is the value of the real solution of (21)); 1.18 (s = 1, a = 1, b = −11/2,
c = 3/10); 1.121 (s = −1, a = 1/10, b = 1/10, c = 1/1000); 1.122 (s = −1,
a = 1/10, b = 1/10, c = 2b2/9. Here c is the value in (19)); 1.123 (s = −1,
a = 1/10, b = 1/10, c = 23/10000); 1.124 (s = −1, a = 1/4, b = −6/5,
c = 44/125); 1.125 (s = −1, a = 1/4, b = −6/5, c = 0.35787810. Here c is
the value of the real solution of (21)); 1.126 (s = −1, a = 1/4, b = −6/5,
c = 359/1000); and 1.127 (s = −1, a = 1/4, b = −1, c = 2/9. Here c is the
value of the real solution of (19)).

In case (iv) the total index of the infinite singular points and the finite
singular points with x = 0 in the Poincaré sphere is −1. Hence, the remain-
ing finite singular points with x ̸= 0 have to have total index 2. Taking
into account Lemma 6 and the symmetry of the system they must be two
centers. The saddles p1 and p2 cannot be connected one with each other
and they can be connected with the saddle at the origin along the surface
in (20). Taking all the above into account and recalling that we know the
region in the parameters space where condition (iv) holds, we conclude that
the global phase portraits are topologically equivalent to the following ones
of Figure 1: 1.128 (s = 1, a = −1/2, b = −1, c = −1) and 1.129 (s = −1,
a = 1, b = −3/2, c = 1/2. Here c is the value in (20) and so there is a saddle
connection).

In case (v) the total index of the infinite singular points and the finite
singular points with x = 0 in the Poincaré sphere is 3. Hence, the remaining
finite singular points with x ̸= 0 have to have total index −2. Taking
into account Lemma 6 and the symmetry of the system they must be two
saddles p3 and p4. The saddles p3 and p4 are connected by symmetry. We
recall that the possible saddle connection between the saddles p3, p4 and
the saddle at the origin is along the surface in (20). Taking all the above
into account and recalling that we know the region in the parameters space
where condition (v) holds, we conclude that the global phase portraits are
topologically equivalent to the following ones of Figure 1: 1.130 (s = 1,
a = 1, b = 4/5, c = 1/25); 1.131 (s = 1, a = 1, b = 1, c = (6

√
2 − 7)/18.
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Here c is the value in (20)); 1.132 (s = 1, a = 1, b = 1, c = 1/20); and 1.133
(s = −1, a = −1/2, b = −1/2, c = −1/10)

In case (vi) we have s = −1, b = −
√
2 and c = 1/2. In this case we must

have a > 0 (because c > 0). Among the origin and the finite singular point
(0,

√
2) which is formed by the union of six hyperbolic sectors (3 stable and 3

unstable) we have two finite singular points with x = 0 that are two centers.
The possible global phase portraits are topologically equivalent to 1.134 of
Figure 1.

19. Global phase portraits of system (VIII) when ac+ 1 > 0,
cs < 0 and as > 0

By Theorems 2 and 3 the four nodes at infinity and the saddle at the
origin have total index 6 on the Poincaré sphere, the remaining finite sin-
gular points on the Poincaré sphere have to have total index −4. Moreover,
studying the finite singular points with x = 0 in the case ac+ 1 > 0, cs < 0
and as > 0, and taking into account Lemma 7, we have the following possi-
bilities: (i) there are no singular points in x = 0 (since b2 < 4c we must have
c > 0 and so s = −1), (ii) a cusp (since b2 = 4c we must have c > 0 and so
s = −1 and also b ̸= −

√
2), (iii) a center and a saddle p, (iv) two saddles

p1, p2; and (v) a point which is the union of six hyperbolic sectors (three
stable and three unstable) whenever s = −1, b = −

√
2 and c = b2/4. Again,

in all the chapter whenever there is more than one possible phase portrait,
we give in parenthesis values of the parameters where they are realized.

In case (i) the total index of the infinite singular points and the finite
singular points with x = 0 in the Poincaré sphere is −6. Hence, the re-
maining finite singular points with x ̸= 0 have to have total index −4. In
view of Lemma 6 and taking into account the symmetry of the system, they
can only be two saddles. The two saddles must be connected by symmetry.
We have s = −1 and we see that there are no possible saddle connections
between these saddles and the saddle at the origin. Taking all the above
into account we conclude that the global phase portraits are topologically
equivalent to 1.135 in Figure 1. The phase portrait is realized for example
when a = −1/2, b = −2, c = 3/2 and s = −1.

In case (ii) the total index of the infinite singular points and the finite
singular points with x = 0 in the Poincaré sphere is again 6. By Lemma
6 and taking into account the symmetry of the system the remaining finite
singular points with x ̸= 0 can only be two saddles. The two saddles must
be connected by symmetry. We have s = −1 and we see that there are
no possible saddle connections between these saddles and the saddle at the
origin (neither with the cusp and the saddle at the origin). Taking all the
above into account we conclude that the global phase portraits are topolog-
ically equivalent to the following ones of Figure 1: 1.136 (a = −1/2, b = 2,
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c = 1); 1.137 (a = −1/2, b = −2, c = 1); and 1.138 (a = −1/2, b = −1,
c = 1/4).

In case (iii) the total index of the infinite singular points and the finite
singular points with x = 0 in the Poincaré sphere is again 6. Hence, the
remaining finite singular points with x ̸= 0 have to have total index −4. So,
in view of Lemma 6 taking also into account the symmetry of the system,
they can only be two saddles p3, p4. The two saddles p3, p4 must be connected
by symmetry. The possible saddle connection between these saddles and
the saddle at the origin is along the surface in the parameter space given in
(20), and between the saddle p and the origin is along the surface c = c(a, b)
given in (19). Finally, the possible connections between the saddle p and the
saddles p3, p4 is along the surface c = c(a, b) in the parameter space which
is any real solution (whenever it exists) of the equation (21).

Taking all the above into account and recalling that we know the region
in the parameters space where condition (iii) holds, we conclude that the
global phase portraits are topologically equivalent to the following ones of
Figure (1): 1.139 (s = 1, a = 1/2, b = −3/2, c = −17/10); 1.140 (s = 1,
a = 1/2, b = −1/2, c = −(35 + 12

√
2)/54. Here c is the value in (20));

1.141 (s = 1, a = 1/2, b = −1/2, c = −9/10); 1.142 (s = −1, a = −1/2,
b = 1, c = 1/10); 1.143 (s = −1, a = −1/2, b = 1, c = 2/9. Here c is the
value in (19)); 1.144 (s = −1, a = −1/2, b = 1, c = 6/25); 1.145 (s = −1,
a = −1/2, b = −1/2, c = 3/100); 1.146 (s = −1, a = −1/2, b = −1/2,
c = 0.05793018. Here c is the value in (21)); and 1.147 (s = −1, a = −1/2,
b = −1/2, c = 3/50).

In case (iv) the total index of the infinite singular points and the finite
singular points with x = 0 in the Poincaré sphere is 2. Hence, the remaining
finite singular points with x ̸= 0 have to have total index 0. Hence, in view
of Lemma 6 and taking into account the symmetry of the system, they can
only be: (iv.1) none; (iv.2) two cusps, (iv.3) two saddles (p3, p4) and two
centers.

In case (iv.1) we see that there are no saddle connections between the
saddles p1 (or p2) and the origin. Hence, taking also into account that we
know the region in the parameters space where condition (iv.1) holds (since
we know the region in the parameter space where condition (iv) holds and we
also know that in this case there are no solutions with x ̸= 0), we conclude
that the global phase portraits are topologically equivalent to 1.5 of Figure 1
which can be realized for instance when s = 1, a = 1/4, b = −1 and c = −1.

In case (iv.2) we can prove that there are again no saddle connections
between the saddles p1 (or p2) and the saddle at the origin. Taking also into
account that we know the region in the parameters space where condition
(iv.2) holds (since we know the region in the parameter space where con-
dition (iv) holds and c = c0), we conclude that the global phase portraits
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are topologically equivalent to 1.24 of Figure 1 which can be realized for
example when s = 1, a = 1, b = −1 and c = c0.

In case (iv.3) the possible saddle connection between the saddles p1 (or
p2) and the saddle at the origin is along the surface in (20), between the
saddles p3, p4 and the saddle at the origin is along the surface in (19), and
between the saddles p1, p2 and the saddles p3, p4 is along the surface which
is any real solution of the equation in (21). Taking also into account that
we know the region in the parameters space where condition (iv.3) holds
(because we know the region in the parameter space where condition (iv)
holds and we also know that all the four solutions with x ̸= 0 exist), we
conclude that the global phase portraits are topologically equivalent to the
following ones of Figure 1: 1.23 (s = 1, a = 1, b = −1/5, c = −63/100);
1.22 (s = 1 a = 1, b = −1/5, c = −(223 + 30

√
2)/450. Here c = c(a, b)

is the real solution of the equation (19)); 1.21 (s = 1, a = 1, b = −1/5,
c = −117/200); 1.20 (s = 1, a = 1, b = −1/5, c = −0.54752598. Here
c = c(a, b) is the real solution of the equation (21)); and 1.19 (s = 1, a = 1,
b = −1/5, c = −27/50).

In case (v) we have s = −1, b = −
√
2, c = 1/2. In this case, since a < 0,

the unique finite singular point among the origin is (0,
√
2) which is the

formed by the union of six hyperbolic sectors (3 stable and 3 unstable). So,
the global phase portraits are topologically equivalent to 1.148 of Figure (1)
which is achieved for instance when a = −1/2.

20. Global phase portraits of system (VIII): final remarks

We note that system (VIII) provides all phase portraits in Figure 1 except
1.34, which is not possible because from Lemma 4 the origin of U2 cannot
be the union of one hyperbolic and three elliptic sectors.

In the rest of this section we explain the procedure that we have used in
Sections 17, 18 and 19 to give all possible phase portraits. We do it for the
case (iv.3) with s = 1 in Section 19 to illustrate the procedure and the other
cases have been treated in a similar way.

In case (iv.3) with s = 1 in Section 19 there are four singular points at
infinity so ac + 1 > 0, c < 0 and a > 0 (see Lemma 4), and there are two
singular points with x = 0 (two saddles). So, from the results in Section 15
we get that

(a, b, c) ∈ {c1 < c < 0, b < 1/
√
2, a > −1},

where c1 is defined in Section 15. Let b∗1 = (a − 2)/(
√
2a). Joining the

above two conditions we get that (a, b, c) ∈ S1 with

S1 =
{
a > 0, b ≤ b∗1, c2 < c < 0

}
∪
{
a > 0, b∗1 < b <

1√
2
, c1 < c < 0

}
,
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where again c1, and c2 are defined in Section 15. The four singular points
with x ̸= 0 are defined when (2ab + 3

√
2s)2 − 16(1 + a)(ac + 1) > 0 and

x̄2± evaluated at ȳ± is positive. On the other hand, the determinant of the
Jacobian matrix evaluated at x = x̄± is

d± = −2x̄±
(
2abȳ± + 3acȳ2± + a+ 3

√
2sȳ± + 3ȳ2± + 1

)
.

So (±x̄±, ȳ±) are two saddles and two centers when either d+ > 0 and
d− < 0, or d+ < 0 and d− > 0. Let b∗2 = (2a − 1)/(

√
2a). Computing

the set where (±x̄±, ȳ±) are two saddles and two centers for a > 0 and
b < 1/

√
2 we get that (±x̄+, y+) are saddles and (±x̄−, y−) are centers

when (a, b, c) ∈ S2 with

S2 =

{
a > 0, b < − 3√

2a
, c2 < c < c0

}
,

and (±x̄+, y+) are centers and (±x̄−, y−) are saddles when (a, b, c) ∈ S3 with

S3 =

{
0 < a ≤ 1,

−3√
2a

< b < b∗2, c2 < c < c0

}
∪

{
a > 1,− 3√

2a
< b <

1√
2
, c2 < c < c0

}
.

In short, the conditions of case (iv.3) in Section 19 with s = 1 are satisfied
for

(a, b, c) ∈ S0 = S1 ∩ (S2 ∪ S3).

The projection onto the (a, b)-plane of the region S0 is the set
A = {0 < a ≤ 1, b < b∗2} ∪ {a > 1, b < 1/

√
2}.

The values of c on the region S0 are delimited by one of the surfaces c = c2,
c = c1, c = c0, and c = 0. Moreover the projection on the (a, b)-plane of the
intersection of the surfaces c = c0 with c = 0, and of c = c1 with c = 0 are
the curves

b = b∗3 = −(−3
√
2± 4

√
1 + a)/(2a) and b = 1/

√
3,

respectively. The surface c = c2 does not intersect c = 0. The projection
on the (a, b)-plane of the intersection of the surfaces c = c0 with c = c1
and of c = c2 with c = c1 are the curves b = b∗2 and b = b∗1, respectively.
Finally the projection on the (a, b)-plane of the intersection of the surfaces
c = c0 and c = c3 is the curve b = −3/(

√
2a). In a similar way, we compute

the projection on the (a, b)-plane of the intersections between the surfaces
c = c0, c = c1 and c = c2 with the surfaces providing all possible saddle
connections (given in (19), (20) and (21)); and of the intersections between
these last surfaces.

All the above mentioned intersections give a set of curves that divide A
into several regions. For each one of these regions we pick a point (a, b),
and for this value of (a, b) we find the set c ∈ I for which (a, b, c) ∈ S0.
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Moreover, we also compute the values of c on the surfaces c = 0, c = c0,
c = c1, c = c2 and the ones given in (19), (20) and (21). These last values
divide I in several regions. Finally we pick a value of c in each one of these
regions and draw the phase portrait for the selected triple (a, b, c).
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