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Abstract. Using the averaging theory we prove the existence of periodic
orbits with small velocities with respect to the speed of light in the forced
harmonic oscillator with relativistic effects in dimension one.

1. Introduction and statement of the main results

For the forced harmonic oscillator with relativistic effects in dimension
one with equation of motion

(1)




mx′√
1− x′2

c2




′

+ kx = F0 cos(ωt),

we prove the existence of periodic orbits with small velocities with respect
to the speed of light. Here c > 0 is the speed of light in the vacuum, m > 0
is the mass at rest, k > 0 is the spring stiffness coefficient, and ω and F0

are the frequency and amplitude of the external force, see for more details
on this equation [14].

These last years some results have been published on the periodic solu-
tions of different oscillators with relativistic effects, as the relativistic forced
pendulum, see for instance the works of Brezis and Mawhin [4], Bereanu and
Torres [2], and Maró [13]. These authors have obtained their results using
variational and topological methods. The stability of the equilibrium x = 0
of the relativistic pendulum with variable length has been proved by Chu,
Lei and Zhang in [8].

Kim and Lee in [10] have studied numerically the existence of chaotic
motion in the relativistic harmonic oscillator. Moreover, the existence of
chaotic motion of relativistic particles has been studied in different contexts
by several authors, see for instance [3, 6, 7, 11].
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Nuñez and Rivera in [14], following ideas of this previous work, and as-
suming that

(i)
k

m
<
ω2

16
,

(ii) F0 <
1

4
mcω, and

(iii)
(mcω)19((mcω)2 − 16F 2

0 )

120πF 2
0 ((mcω)2 + 4F 2

0 )19/2
sin

(
6π(ωk)1/2mc3/2

((mcω)2 + 4F 2
0 )3/4

)
> 1,

proved the existence of a periodic orbit for the relativistic driven harmonic
oscillator (1) via lower and upper solutions.

Our result shows the existence of periodic orbits in the relativistic driven
harmonic oscillator with relativistic effects (1), under the assumptions that:

(i) the velocity of the periodic orbit is small with respect to the speed
of light c, and

(ii) the quotient
ω√
k

m

=
q

p
6= 1, with p and q coprime positive integers.

Theorem 1. Under assumptions (i) and (ii) and for ε > 0 sufficiently
small the relativistic driven harmonic oscillator (1) has a periodic solution

x(t, ε) such that
x′(t, ε)
c

= O(
√
ε) with period 2pπ

√
m

k
. Moreover x(0, ε) =

F0

mω2 − 1
+O(ε) =

F0p
2

k (q2 − p2) +O(ε) and x′(0, ε) = O(ε) (see Figure 1).

Theorem 1 is proved in section 3.

Note that the error in the initial conditions of the periodic solution of
Theorem 1 is of order ε. Numerically it can be observed that for values of
the velocity of the periodic solution less than 10 the approximation provided
in Theorem 1 is useful.

The idea of the proof of Theorem 1 is the following. First we shall write
the second–order differential equation (1) as a differential system of first
order. Taking

y =
mx′√
1− x′2

c2

,
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Figure 1. The periodic solution Theorem 1 for m = 2, c =
300000, F0 = 1, k = 1, p = 1 and q = 2.

the differential equation of second order (1) can be written as the differential
system of first order

(2)

x′ =
y√

m2 +
y2

c2

,

y′ = −kx− F0 cos(ωt).

Therefore to find a periodic solution of the differential equation (1) is equiv-
alent to find a periodic solution of the differential system (2).

Under our assumptions (i), i.e. the ratio of velocities y/c is small, we
consider the differential system (2) as a small perturbation of the differential
system

(3)
x′ =

y

m
,

y′ = −kx− F0 cos(ωt).
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The solution (x(t;x0, y0), y(t;x0, y0)) of this system such that ((x(0;x0, y0),
y(0;x0, y0)) = (x0, y0) is

(4)

(x(t;x0, y0) =
1√

km(k −mω2)

(√
km(F0 + x0(k −mω2)) cos

√
kt

m

−F0

√
km cos(ωt) + y0(k −mω2) sin

√
kt

m

)
,

y(t;x0, y0) =
1

k −mω2

(
y0(k −mω2) cos

√
kt

m
+mωF0 sin(ωt))

+(−
√
km(F0 + kx0 −mx0ω2) sin

√
kt

m

)
.

This periodic orbit has the period 2πp

√
m

k
, recall that by assumption (ii)

we have ω =

√
k

m

q

p
.

In summary, all the solutions (4) of the differential system (3) are periodic

with the same period 2πp

√
m

k
. Since the relativistic driven harmonic oscilla-

tor (2), when y/c is small, can be considered a perturbation of the differential
system (3), we shall study how many periodic solutions (4) of system (3)
persist in system (2) when y/c is sufficiently small. The tool for doing this
study is the averaging theory, see section 2 for a summary of the results on
the averaging theory that we shall need. Using the averaging theory we shall
see that only one of the periodic orbits of system (3) persists for system (2).

More precisely, the equality x(0, ε) =
F0

mω2 − 1
+O(ε) =

F0p
2

k (q2 − p2) +O(ε)

which appears in the statement of Theorem 1, implies that the initial con-
dition x0 = x(0, 0) of the periodic solution of the linear differential system
(3) which can be continued to the relativistic driven harmonic oscillator (2)
satisfies the condition F0 + (k −mω2)x0 = 0.

2. Preliminary results: Averaging theory

We want to study the T–periodic solutions of the periodic differential
systems of the form

(5) x′ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε > 0 sufficiently small, where F0, F1 : R × Ω → Rn and F2 : R × Ω ×
(−ε0, ε0) → Rn are C2 functions, T–periodic in the variable t, and Ω is an
open subset of Rn. We denote by x(t, z, ε) the solution of the differential
system (5) such that x(0, z, ε) = z. We assume that the unperturbed system

(6) x′ = F0(t,x),
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has an open set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ), x(t, z, 0)
is T–periodic.

We consider the variational equation

(7) y′ = DxF0(t,x(t, z, 0))y,

of the unperturbed system on the periodic solution x(t, z, 0), where y is an
n×n matrix. Let Mz(t) be the fundamental matrix of the linear differential
system (7) such that Mz(0) is the n× n identity matrix.

Theorem 2. Consider the function F : Cl(V )→ Rn

(8) F(z) =

∫ T

0
M−1z (t)F1(t,x(t, z, 0))dt.

If there exists α ∈ V with F(α) = 0 and

(9) det ((dF/dz) (α)) 6= 0,

then there exists a T–periodic solution x(t, ε) of system (5) such that x(0, ε) =
α+O(ε).

The existence of the periodic solution of Theorem 2 is due to Malkin [12]
and Roseau [15], for a shorter and easier proof see [5]. In Corollary 1 of
[5], which corresponds to Theorem 2 instead of x(0, ε) = α + O(ε) appears
x(0, ε) → α when ε → 0, but if you look at the proof of Theorem 3.1 one
can verify that actually we have x(0, ε) = α+O(ε). We note that Corollary
1 follows directly from Theorem 3.1.

3. Proof of Theorem 1

The differential system (2) is a Hamiltonian system with H =
kx2

2
+

c2
√
m2 + y2/c2 + F0 cos(ωt)x. We assume that

| y |
c

= O(
√
ε), or equiva-

lently c =
C√
ε

with ε > 0 small and C a constant. That is, we assume

roughly speaking that the velocity of the relativistic driven harmonic oscil-
lator is very small with respect to the speed of the light. Then system (2)
becomes

(10)

x′ =
y√

m2 +
y2

c2

=
y

m
− ε y3

2C2m3
+O(ε2),

y′ = −kx− F0 cos(ωt).
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This differential system is into the normal form (5) for applying the averaging
theory to it, because using the notation of section 2 we have

x = (x, y),

F0 =
( y
m
,−kx− F0 cos(ωt)

)
,

F1 =

( −y3
2C2m3

, 0

)
.

The variational differential system y′ = DxF0(t,x(t, z, 0))y, of the differ-
ential system x′ = F0(t,x), i.e. of system (3), on every periodic orbit (4)
is

(11) x′ =
y

m
, y′ = −kx.

The fundamental matrix M(t) of this linear system (11) such that M(0) is
the identity matrix is

M(t) =




cos(

√
k

m
t)

1√
km

sin(

√
k

m
t)

−
√
km sin(

√
k

m
t) cos(

√
k

m
t)


 .

The averaged function F(x0, y0) = (F1(x0, y0),F2(x0, y0)) defined by

F(z) =

∫ T

0
M−1z (t)F1(t,x(t, z, 0))dt,

where z = (x0, y0) and x(t, z, 0) = (x(t;x0, y0), y(t;x0, y0)) is the periodic
solution given in (4), is

(12)

F1 = − 3y0
16C2km3(p2 − q2)2

(
F 2
0mp

2(p2 + 2q2)+

2F0kmp
2(p2 − q2)x0 + k(p2 − q2)2(kmx20 + y20)

)
,

F2 =
3(F0p

2 + k(p2 − q2)x0)
16C2km23(p2 − q2)3

(
F 2
0mp

2(p2 + 2q2)

+2F0kmp
2(p2 − q2)x0 + k(p2 − q2)2(kmx20 + y20)

)
.

The system

(13) F1(x0, y0) = 0, F2(x0, y0) = 0,

has the unique solution (x0, y0) =

(
− F0p

2

k(p2 − q2) , 0
)

, the other solutions

either are complex, or their Jacobian (9) is zero. The Jacobian matrix of the
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function (F1(x0, y0),F2(x0, y0)) at the solution (x0, y0) =

(
− F0p

2

k(p2 − q2) , 0
)

is

A =




0 − 3F 2
0 p

2q2

8C2km2(p2 − q2)2
3F 2

0 p
2q2

8C2m(p2 − q2)2 0


 .

The determinant of this matrix is det(A) =
9F 4

0 p
4q4

64C4km3(p2 − q2)4 , note that

p 6= q from the assumptions. By Theorem 2 we conclude that there is a
periodic solution of system (10) (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε))→(
− F0p

2

k(p2 − q2) , 0
)

when ε 7→ 0. So Theorem 1 is proved.
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