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Abstract. In this paper we define when a polynomial differential system is or-
bitally universal and we show the relevance of this notion in the classical center
problem, i.e. in the problem of distinguishing between a focus and a center.

1. Introduction and statement of the main results

In this work we consider differential systems in R2 of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

with P and Q polynomials having at the origin an isolated singular point. As
usual the dot denotes derivative with respect to the time t. Along this paper we
also consider the associated vector field X = P (x, y)∂/∂x + Q(x, y)∂/∂y to the
differential system (1).

One of the main open problem in the qualitative theory of dynamical systems is
to characterize when a singular point of system (1) has a center. This problem is
known as the center problem and it consists in distinguishing between a center and a
focus. A center is a singular point for which there exists a punctured neighborhood
filled of periodic orbits, and a focus has a punctured neighborhood filled of spiraling
orbits. We note that the center problem goes back to Poincaré [31] and Dulac [16].

There exist different algorithms to determine the necessary conditions to have a
center when the linear part has purely imaginary eigenvalues, or it has zero eigen-
values but the linear part is not identically zero, see [4, 8, 18, 28, 31]. The charac-
terization when the linear part is identically zero is a hard problem still open, see
[20, 21, 22, 26, 29] for some partial results.

Another problem is to provide sufficient conditions in order that a singular point
of the differential system (1) be center. Several mechanism are known, and some
conjectures are established, see [27]. In this work we define one mechanism that pro-
vides the sufficiency of the center problem. This mechanism joint with the condition
of the existence of a local analytic first integral contain all the known mechanisms for
detecting centers up to now. Before define it we need to introduce some definitions
and results.

For a monodromic singular point (i.e. for a focus or a center) the most important
mechanism to have a center is to have a smooth first integral defined in a neigh-
borhood of the singular point, see [30]. However to check the existence of this first
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integral in general is a difficult problem. The main theory to find explicit expres-
sions of first integrals of system (1) is the Liouville theory of integrability based on
the existence of invariant algebraic curves and exponential factors.

An invariant algebraic curve of system (1) is a curve f = 0 with f ∈ C[x, y]

invariant by the flow of (1), i.e. the orbital derivative ḟ = X f = P∂f/∂x+Q∂f/∂y
vanishes on f = 0. As system (1) is polynomial, this condition implies that there
exists a polynomial K(x, y) ∈ C[x, y] of degree less than or equal to m−1 such that
X f = P∂f/∂x + Q∂f/∂y = Kf . This polynomial K is called the cofactor of the
invariant algebraic curve f(x, y) = 0.

A function of the form ef/g with f and g polynomials is called an exponential
factor if there is a polynomial L of degree at most m − 1 such that X (ef/g) =
P ∂ef/g/∂x + Q∂ef/g/∂y = Lef/g. The polynomial L is called the cofactor of the
exponential factor ef/g.

A non-locally constant function H : U ⊂ R2 → R is a first integral of system (1)
in the open set U if this function is constant in each solution (x(t), y(t)) of system
(1) contained in U . In fact if H ∈ C1(U) is a first integral of system (1) on U if
and only if XH = P∂H/∂x + Q∂H/∂y ≡ 0 on U . A non-locally constant function
M : U ⊂ R2 → R is an integrating factor in U if

P
∂M

∂x
+Q

∂M

∂y
= −

(
∂P

∂x
+
∂Q

∂y

)
M = −div(X )M.

This integrating factor M is associated to the first integral H when MP = −∂H/∂y
and MQ = ∂H/∂x. Of course V = 1/M is an inverse integrating factor in U \{M =
0}.

A polynomial differential system (1) has a Liouville first integral H if its associated
inverse integrating factor is of the form

(2) V = exp

(
D

E

)∏

i

Cαi
i ,

where D, E and the Ci’s are polynomials in C[x, y] and αi ∈ C, see [13, 23, 32, 33].
The curves Ci = 0 are invariant algebraic curves of the differential system (1), and
the exponential exp(D/E) is a product of some exponential factors associated to the
multiple invariant algebraic curves of system (1), or to the invariant straight line
at infinity, see for instance [12, 14, 15] or Chapter 8 of [17]. However the Liouville
integrability does not give the sufficiency. In order to have a center we must add the
condition that the Liouville first integral will be well-defined in a neighborhood of
the origin, see [11], because for instance a linear focus has a Liouville first integral.
Generalizations of the Liouville integrability (as the Weierstrass integrability) allow
to use analytic invariant curves and analytic exponential factors but we must also
add the same condition to have a center, see [24]. Consequently these integrability
theories are not mechanisms to give the sufficiency of the center problem in stricto
sensum.

For stating ours next results we need to recall some preliminary definitions. As
usual we define the set of natural numbers N = {1, 2, . . .}. A polynomial f is quasi-
homogeneous of type t = (t1, t2) ∈ N2 and of degree k if f(εt1x, εt2y) = εkf(x, y). The
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vector space of quasi-homogeneous polynomials of type t and degree k is denoted by
Pt
k. A polynomial vector field F = (P,Q)T is quasi-homogeneous of type t and degree

k if P ∈ Pt
k+t1

and Q ∈ Pt
k+t2

. The vector space of quasi-homogeneous polynomial
vector fields of type t and degree k is denoted by Qt

k. Given an analytic vector field
F, we write it as a quasi-homogeneous expansion corresponding to a fixed type t:

F(x) = Fr(x) + Fr+1(x) + · · · =
∑

j≥r
Fj,

where x ∈ R2, r ∈ N and Fj ∈ Qt
j, i.e. each term Fj is a quasi-homogeneous vector

field of type t and degree j. Any Fj ∈ Qt
j can be uniquely written as

(3) Fj = Xhj + µjD0,

where µj =
1

r + |t| div (Fj) ∈ Pt
j, hj =

1

r + |t|D0 ∧ Fj ∈ Pt
j+|t|, D0 = (t1x, t2y)T ,

and Xhj = (−∂hj/∂y, ∂hj/∂x)T is the Hamiltonian vector field with Hamiltonian
function hj, see [1, Prop.2.7] for more details of this decomposition.

Our work will focus with the generic case, that is, we will consider the center
problem for the differential systems of the form:

(4) ẋ = Fr(x) +
∑

j>r

Fj(x),

where Fj ∈ Qt
j, Fr = Xh + µD0, r ∈ N ∪ {0}, D0 = (t1x, t2y)T , µr ∈ Pt

r, h ∈ Pt
r+|t|

and h(x, y) 6= 0 for all (x, y) ∈ U \ {(0, 0)} where U ⊂ R2 is a neighborhood of the
origin.

The following results about the system (4) are proved in [2].

Theorem 1. [2, Theorem 2] The origin of system (4) is monodromic.

Remark 2. Theorem 1 provides us with a characterization of systems of type (4), i.e.
they are systems whose origin is monodromic and its Newton diagram consists of a
single compact edge. Otherwise if Fr = (Pr, Qr)

T then Pr(0, y) = 0 or Qr(x, 0) = 0,
i.e. x = 0 or y = 0 are invariant lines of Fr and then x or y are irreducible factors
of h(x, y), which contradicts the fact that h(x, y) 6= 0 in a neighborhood of the origin.

For systems of type (4) we can ensure that they can be transformed into a gener-
alized Abel equation. These systems contain as a particular case the perturbations
of linear-type, nilpotent monodromic systems and some generalized nilpotent mon-
odromic systems namely systems (4) where Fr = (−y2m−1, x2n−1)T .

Theorem 3. [2, Theorem 5] If the origin of ẋ = Fr(x) is a focus, then the origin
of system (4) is also a focus with the same stability.

By Theorem 3 a necessary condition in order that the origin of system (4) be a
center is that the origin of ẋ = Fr(x) be a center. In [6, Theorem 3.3] necessary
and sufficient conditions are given in order that a quasi-homogeneous system has a
center at the origin.

We start from this condition, that is, we assume that system ẋ = Fr(x) has a
center at the origin. Under this condition we enunciate the following proposition.
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Proposition 4. Let (Cs(θ), Sn(θ)) be the solution of the initial value problem (ẋ, ẏ)T =
Fr(x, y), with x(0) = 1, and y(0) = 0, then (Cs(θ), Sn(θ)) are T–periodic functions
and if we apply the change of variable x = ρt1Cs(θ), y = ρt2Sn(θ) and the rescaling
of time dt = dτ/ρr, system (4) is transformed into

ρ′ =
∑

i≥1

αi(θ)ρ
i+1, θ′ = 1 +

∑

i≥1

βi(θ)ρ
i,(5)

where ′ = d/dτ ,

αi(θ) =
1

(r + |t|)h(θ)
[Pr+i(θ)Qr(θ)−Qr+i(θ)Pr(θ)] ,

βi(θ) =
r + i+ |t|

(r + |t|)h(θ)
hr+i+|t|(θ),

(Pr+i, Qr+i) := Fr+i, hr+i+|t|(x, y) = 1
r+i+|t| [t1xQr+i(x, y)− t2yPr+i(x, y)] and αi(θ),

βi(θ) are bounded rational functions in [0, T ].

Proof. We should note that the point (1, 0) belongs to the periodic ring, since Fr

is a quasi-homogeneous global center. Therefore Cs(θ) and Sn(θ) are T–periodic

functions. Differentiating with respect to the time we obtain ẋ = 1
ρ
D0ρ̇+ 1

ρr
Fr(x)θ̇.

Therefore, ẋ ∧ Fr(x) = 1
ρ
D0 ∧ Fr(x)ρ̇ and D0 ∧ ẋ = 1

ρr
D0 ∧ Fr(x)θ̇, where

D0 ∧ Fr(x) = D0 ∧ (Xh(x) + µD0) = D0 ∧Xh = ∇h ·D0 = (r + |t|)h(x)

= (r + |t|)ρr+|t|h(θ).

In addition, using (3) conservative-dissipative decomposition of each quasi-homogeneous
terms and denoting (Pj, Qj) := Fj, with Pj ∈ Pt

j+t1
and Qj ∈ Pt

j+t2
we obtain

ẋ ∧ Fr(x) =
∑

j≥r
Fj(x) ∧ Fr(x) =

∑

j>r

Pj(x, y)Qr(x, y)−Qj(x, y)Pr(x, y)

=
∑

j>r

ρr+j+|t| [Pj(θ)Qr(θ)−Qj(θ)Pr(θ)] ,

D0 ∧ ẋ =
∑

j≥r
D0 ∧ Fj(x) =

∑

j≥r
D0 ∧

[
Xhj+|t|(x) + µj(x)D0

]

=
∑

j≥r
D0 ∧Xhj+|t|(x) =

∑

j≥r
∇hj+|t|(x) ·D0

=
∑

j≥r
(j + |t|)hj+|t|(x) =

∑

j≥r
(j + |t|)ρj+|t|hj+|t|(θ).

Denoting h := hr+|t| we obtain, after applying the reparametrization of the time
dt = dτ/ρr, that system (4) is transformed into the system of the statement.

Notice that αi(θ) and βi(θ) are bounded rational functions since h(θ) 6= 0 for all
θ ∈ [0, T ], otherwise there exists θ∗ such that h(θ∗) = 0 and if we take x∗ = ρt1Cs(θ∗),
y∗ = ρt2Sn(θ∗) we get h(x∗, y∗) = ρr+|th(θ∗) = 0, which contradicts the hypothesis
h(x, y) 6= 0 for all (x, y) in a neighborhood of the origin. �
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Taking θ as the new independent variable, and developing in a neighborhood of
the origin the right hand side of the differential equation (5) in powers series of the
variable ρ we get the differential equation

(6)
dρ

dθ
=
∞∑

i=1

ai(θ)ρ
i+1,

on the cylinder (ρ, θ) ∈ R × [0, T ] in a neighborhood of ρ = 0 and where ai(θ) are
bounded rational functions in [0, T ] in the variables Cs(θ) and Sn(θ). Using the
uniqueness theorem on the solutions of a differential equation, there is a unique
solution of equation (6) with the initial value ρ(0) = ρ0 for |ρ0| small enough.
Equation (6) determines a center if for any sufficiently small initial value ρ(0) the
solution of (6) satisfies ρ(0) = ρ(T ). The center problem for the differential equation
(6) is to find conditions on the functions ai(θ) under which the equation has a center
at ρ = 0.

Below we show a generalization of [7, Theorem 3.1] which gives us a sufficient
center condition for the system (4) called the composition conjecture.

Theorem 5. Suppose that there are a differentiable function σ with σ(0) = σ(T ) and
continuous functions fi defined on I = σ([0, T ]) such that in equation (6) ai(θ) =
fi(σ(θ))σ′(θ) for all i ≥ 1. Then the origin of equation (6) is a center.

The center problem and an explicit expression for the first return map of the
differential equation (6) for perturbation of linear centers have been studied by
Brudnyi in [9, 10]. It is possible to extend these concepts for the case of system (4).
The expression of the first return map is given in terms of the following iterated
integrals of order k

(7) Ii1...ik(a) :=

∫
· · ·
∫

0≤s1≤···≤sk≤T
aik(sk) · · · ai1(s1) dsk · · · ds1,

where, by convention we assume that Iø = 1. Let ρ(θ; ρ0; a) with θ ∈ [0, T ] be the
solution of equation (6) with a = (a1(θ), a2(θ), . . .) such that ρ(0; ρ0; a) = ρ0. Then
P(a)(ρ0) := ρ(T ; ρ0; a) is the first return map of the differential equation (6). The
following is proved in [9, 10].

Theorem 6. For sufficiently small initial values ρ0 the first return map P (a) is an

absolutely convergent power series P(a)(ρ0) = ρ0 +
∞∑

n=1

cn(a)ρn+1
0 , where

cn(a) =
∑

i1+···+ik=n

ci1...ikIi1...ik(a), and

ci1...ik = (n− i1 + 1) · (n− i1 − i2 + 1) · (n− i1 − i2 − i3 + 1) · · · 1.

By Theorem 6 the center set C of the differential equations (4) is determined
by the system of equations cn(a) = 0, for n = 1, 2, . . .. The coefficient cn(a) is a
polynomial whose variables are the coefficients of the functions ai(θ) which appear
in the differential equation (6) for i = 1, 2, . . . , n.
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The following definition is given in [10]. Differential equation (6) has a universal
center if for all positive integers i1, . . . , ik with k ≥ 1 the iterated integral Ii1...ik(a) =
0.

Definition 1. We say that the origin of system (4) is a universal center if there
exist coordinates (ρ, θ) ∈ R× [0, T ] such that system (4) in these coordinates can be
expressed as (6) with ai(θ) rational smooth functions in [0, T ], and for all positive
integers i1, . . . , ik with k ≥ 1 the iterated integral Ii1...ik(a) = 0.

In [25] it is proved that the property of being universal center is not invariant
under changes of variables also it is shown the following result that relates the
universal centers with those who verify the composition conjecture.

Theorem 7. The origin of system (4) is a universal center if and only if there exist
coordinates (ρ, θ) such that the generalized Abel equation (6) satisfies the composition
conjecture, that is, verifies the hypothesis of Theorem 5.

Definition 2. The polynomial differential system (4) is orbitally universal if af-
ter an analytic change of coordinates and a reparametrization of time equation (6)
associated to it, satisfies the conditions to have a universal center at the origin.

The relevance of the notion of orbitally universal with respect to the classical
center problem is given in the following remark.

Remark 8. Assume that the polynomial differential system (4) has a focus or a
center at the origin. If this system has an analytic first integral defined in a neigh-
borhood of the origin, or it is orbitally universal, then it has a center at the origin.

The claim of this remark follows easily, because if the system has a local analytic
first integral at the singular point localized at the origin, being this a focus or a
center, the proof that it is a center is straightforward because this condition is
incompatible with the existence of a focus. On the other hand, if the system is
orbitally universal from its definition it has a center at the origin.

We recall that a system is orbitally reversible if after an analytic change of co-
ordinates and a reparametrization of time the corresponding system is symmetric
respect to a straight line passing through the origin (also called time–reversible).
Doing a rotation the axis of symmetry always can be the x-axis and then we say
in this case that it is Rx-reversible. Now we see that Definition 2 contains all the
orbitally reversible systems.

Theorem 9. All orbitally reversible systems (4) are orbitally universal systems.

Theorem 9 is proved in section 2.

Remark 10. From the proof of Theorem 9 if the origin of system (4) is a center
Rx-reversible, then is a universal center.

Theorem 11. Consider ẋ = Fr(x), with Fr ∈ Qt
r, and with a center at the ori-

gin. Let (Cs(θ), Sn(θ)) be the periodic solution of period T of the initial value prob-
lem (ẋ, ẏ)T = Fr(x, y), with x(0) = 1, and y(0) = 0. Then the origin of the
system ẋ = Fr(x) + µk(x)D0, with µk ∈ Pt

k, k > r, is a center if and only if∫ T
0
µk(Cs(θ), Sn(θ))dθ = 0. Moreover this center is universal.
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Theorem 11 is proved in section 2.

According with all the known results on centers we make the following conjec-
ture which would characterize all the centers of the polynomial and also analytic
differential systems of the form (4).

Conjecture 1. The origin of system (4) is a center if the system has a local analytic
first integral, or it is orbitally universal.

A strong support to this conjecture is provided by the next result.

Theorem 12. Any center with purely imaginary eigenvalues, or any nilpotent center
satisfies Conjecture 1.

Theorem 12 is proved in section 2.

Finally in Section 3 we provide examples of centers satisfying the results of our
theorems.

2. Proof of the theorems

Proof of Theorem 9. For singular points with purely imaginary eigenvalues we can
use the result established in [25, Theorem 3], which shows that any time-reversible
system with a singular point with purely imaginary eigenvalues is universal. The
proof for a general monodromic singular point is as follows.

If system (1) is orbitally reversible then there exists a type t = (t1, t2), a change
of variables and a rescaling of time such that system (1) is transformed into a
system of the form (ẋ, ẏ)T =

∑
j≥r Gj, Gj ∈ Qt

j, which is Rx-reversible. Hence

Gj = (Pj(x, y), Qj(x, y))T , with Pj ∈ Pt
j+t1

even in x, Qj ∈ Pt
j+t2

odd in x. Now we
apply the change of variables x = ut1 cos θ, y = ut2 sin θ, and the rescaling of time
dt = (t1 cos2 θ + t2 sin2 θ)dT/ur, and the system becomes

u′ = u
∑

i≥0

uiαi(cos θ, sin θ), θ′ =
∑

i≥0

uiβi(cos θ, sin θ),

where

αi(cos θ, sin θ) = cos θ Pr+i(cos θ, sin θ) + sin θ Qr+i(cos θ, sin θ),
βi(cos θ, sin θ) = t1 cos θQr+i(cos θ, sin θ)− t2 sin θPr+i(cos θ, sin θ).

Consequently αi is an odd function in cos θ, and βi is an even function in cos θ.
Moreover β0(cos(θ), sin(θ)) 6= 0, ∀θ ∈ [0, 2π], otherwise there exists θ∗ ∈ [0, 2π] such
that

0 = ur+|t|β0(cos θ∗, sin θ∗)

= t1u
t1 cos(θ∗)ur+t2Qr(cos θ∗, sin θ∗)− t2ut2 sin θ∗ur+t1Pr(cos θ∗, sin θ∗)

= t1x
∗Qr(x

∗, y∗)− t2y∗Pr(x∗, y∗) = hr+|t|(x
∗, y∗),

where x∗ = ut1 cos θ∗ and y∗ = ut2 sin θ∗. This is a contradiction with the hypothesis
h(x, y) 6= 0 in a neighborhood of the origin. Consequently, taking into account that
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β0(cos(θ), sin(θ)) 6= 0, we can write the differential equation

du

dθ
=

u
∑

i≥0 u
iαi(θ)

β0(θ)

1 +
∑

i>0 u
i
βi(θ)

β0(θ)

=
∑

i≥0

ui+1Ai(θ),

where for shortness we have defined g(cos θ, sin θ) := g(θ) and Ai(θ) is an odd
function of cos θ for all i ≥ 0.

If now we apply the change ρ = u exp
(
−
∫ θ

0
A0(s)ds

)
we get

dρ

dθ
=

∑

i≥1

ρi+1ai(θ), where ai(θ) = Ai(θ) exp

(
i

∫ θ

0

A0(s)ds

)
.

As the functions Ai(θ) are odd in the variable cos(θ) for i ≥ 0 ,there exist
functions gi such that Ai(θ) = gi(σ(θ))σ′(θ) where σ(θ) = sin(θ). If we define

G(s) =
∫ s

0
g0(t)dt then

∫ θ
0
A0(s)ds =

∫ θ
0
g0(σ(s))σ′(s)ds = G(σ(θ), and consequently

for i ≥ 1 ai(θ) = fi(σ(θ))σ′(θ) where fi(s) = gi(s) exp(iG(s)).

In short the previous equation can be written as

dρ

dθ
=

∑

i≥1

ρi+1fi(σ(θ))σ′(θ), with σ(θ) = sin θ.

Therefore by Theorem 5 this differential equation satisfies the composition condition,
and by Theorem 7 it is a universal center. Consequently any orbitally reversible
system is orbitally universal. This completes the proof of the theorem. �

Proof of Theorem 11. The associated Abel equation (6) to the system ẋ = Fr(x) +
µk(x)D0, using the generalized polar coordinates given in Proposition 4, is

dρ

dθ
=
∑

i≥1

ρi+1ai(θ) = µk(Cs(θ), Sn(θ))ρk+1−r.

Hence we have that ak−r(θ) = µk(Cs(θ, Sn(θ)) and ai(θ) = 0 for i 6= k − r. Con-

sequently we have that if
∫ T

0
µk(Cs(θ, Sn(θ))dθ 6= 0, then the origin is a focus and

if
∫ T

0
µk(Cs(θ), Sn(θ))dθ = 0, then we define σ(θ) :=

∫ θ
0
µk(Cs(α), Sn(α))dα and we

have that σ(0) = σ(T ) = 0, that is, σ(θ) is a periodic function of period T . Now
we take fk−r(σ(θ)) = 1, and fi(θ) = 0 if i 6= k − r, and we have ai(θ) = fi(θ)σ

′(θ)
for all i ≥ 1. Applying Theorem 5 the differential equation satisfies the composition
condition, and by Theorem 7 the center is universal. �

Proof of Theorem 12. The nondegenerate centers by the Poincaré theorem [31] are
orbitally equivalent to (−y, x)T therefore are analytically integrable and orbitally
universal. The nilpotent center by the Berthier-Moussu theorem [8] are orbitally
reversible, therefore by Theorem 9 are orbitally universal. �
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3. Examples

Example 1. Consider the polynomial differential system

(8) ẋ = y + x4, ẏ = −x,
that has neither an invariant algebraic curve, nor an integrating factor of the form
(2), and consequently is not Liouvillian integrable, see [19]. However system (8)
is analytic integrable because it has a nondegenerate center at the origin. In fact
it has a center at the origin because system (8) is invariant under the symmetry
(x, y, t)→ (−x, y,−t). Therefore by the Poincaré theorem (see [31]) the system has
an analytic first integral in a neighborhood of the origin. Moreover this system has
a universal center at the origin because it has a Rx-reversible center.

Example 2. Consider the polynomial differential system

(9) ẋ = y + x2, ẏ = −x3,

that is not analytically integrable, see [20]. In fact it has a C∞ first integral which is
Liouville, see [20]. This first integral can be obtained doing the change of variables
(u, v) → (x2, y) passing to a linear focus which has a Liouville first integral not
well-defined at the origin. System (9) has the inverse integrating factor V = x4 +
2x2y + 2y2, and using the Singer theorem [33] the system is Liouville integrable.
Moreover system (9) is invariant by the symmetry (x, y, t) → (−x, y,−t), hence it
has a center at the origin. Using Theorem 9 it is also an orbitally universal system.

Example 3. Consider the polynomial differential system

(10)
ẋ = y3 + 2ax3y + 2x(b x4 + c xy2),
ẏ = −x5 − 3ax2y2 + 3y(b x4 + c xy2),

with bc 6= 0. System (10) was studied in [3] and it is neither formally orbitally
reversible, nor analytically integrable. Nevertheless, there exist b, c ∈ R \ {0} and
a ∈

(
−1/
√

6, 0
)
∪
(
0, 1/
√

6
)

such that the origin of system (10) becomes a center,
see [3]. Moreover system (10) in the generalized polar coordinates x = u2 cos θ,
y = u3senθ turns into a Bernoulli differential equation (see [3]), and consequently it
has a Liouville first integral in these new coordinates. We can deduce that is Liouville
integrable because it has the inverse integrating factor V = (2x6+12ax3y2+3y4)13/12.

The system (10) is of the form ẋ = F7 + F8 with Fi ∈ Q(2,3)
i , F7 = Xh, h =

−1

4
y4 − ax3y2 − 1

6
x6. From [3] we deduce that the origin of system ẋ = F7(x) is

a center and F8 = µ8D0, with µ8 = b x4 + c xy2 and D0 = (2x, 3y)T . Applying
Theorem 11 this system has a universal center at the origin.
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[16] H. Dulac, Détermination et intégration d’une certaine classe d’équations différentielles
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[19] I.A. Garćıa, J. Giné, Generalized cofactors and nonlinear superposition principles, Appl.
Math. Lett. 16 (2003), no. 7, 1137–1141.
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Pures Appl 4 (1885) 167–244; Oeuvres de Henri Poincaré, vol. I. Paris: Gauthier-Villars;
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laterra, Barcelona, Spain.

Email address: jllibre@mat.uab.cat


