DOI: [10.1016/j.jde.2019.11.046]

CENTERS OF PLANAR GENERALIZED ABEL EQUATIONS

JAUME LLIBRE¹ AND CLÀUDIA VALLS²

ABSTRACT. We deal with the differential equation

$$\dot{r} = \frac{dr}{d\theta} = a(\theta)r^n + b(\theta)r^m,$$

where (r,θ) are the polar coordinates in the plane \mathbb{R}^2 , m and n are integers such that $m>n\geq 2$, and a,b are C^1 functions. Note that when n=2 and m=3 we have an Abel differential equation. For this class of generalized Abel equations we characterize a new family of centers.

1. Introduction and statement of the results

Consider the generalized Abel equation

(1)
$$\dot{r} = \frac{dr}{d\theta} = a(\theta)r^n + b(\theta)r^m,$$

defined in the plane $(r, \theta) \in [0, +\infty) \times \mathbb{S}^1$ in polar coordinates where $\mathbb{S}^1 = \mathbb{R}/(2\pi\mathbb{Z})$. Here m and n are integers such that $m > n \geq 2$, $\theta \in [-\pi, \pi]$ and a, b are C^1 -functions.

The origin of the plane is a *center* for the differential equation (1) if there is a neighborhood of it where all the solutions are periodic except the equilibrium point at the origin.

When n=2 and m=3 the differential equation (1) is a particular family of Abel equations. In fact the Abel equations are of the form

$$\dot{r} = a(\theta) + b(\theta)r + c(\theta)r^2 + d(\theta)r^3,$$

and they appeared by the first time in the works of Niels Henryk Abel, see [7]. Today there are more than 1400 papers in MathSciNet with the name "Abel equation" in their tittle, see for instance the papers [1, 2, 3, 5, 6, 8] for results on centers in the Abel equations and the references quoted therein.

The main objective of this work is to provide a new family of centers in the generalized Abel equation (1). Thus, our main result is the following.

Theorem 1. If $a(\theta)$ and $b(\theta)$ are C^1 odd functions and $m \ge 2n-1$, then the origin r = 0 of the differential equation (1) is a center.

The proof of Theorem 1 is given in the next section. We note that Theorem 1 in the particular case n=2 and m=3, i.e. when equation (1) is an Abel equation, already was obtained in [4] by Araujo, Lemos and Alves.

2010 Mathematics Subject Classification. 34C25, 34A34. Key words and phrases. Centers, generalized Abel equations.

2. Proof of Theorem 1

In order to prove Theorem 1 we introduce some auxiliary results that will be used in its proof.

Proposition 2. The origin r = 0 of equation (1) is a center if and only if

(2)
$$\int_{-\pi}^{\pi} a(\theta) d\theta = 0 \quad and \quad \int_{-\pi}^{\pi} b(\theta) r(\theta; \rho)^{m-n} d\theta = 0,$$

for $|\rho| < \rho_0$ with ρ_0 sufficiently small where $r(\theta; \rho)$ is the solution of equation (1) such that $r(-\pi; \rho) = \rho$.

Proof. First we prove sufficiency. Note that dividing equation (1) by r^n and integrating it, we obtain

$$-\frac{1}{n-1}r^{1-n}(\theta;\rho) = \int_{-\pi}^{\theta} a(s) \, ds + \int_{-\pi}^{\theta} b(s)r(s;\rho)^{m-n} \, ds - \frac{1}{(n-1)\rho^{n-1}},$$

where ρ is the initial condition. So we have

$$r^{n-1}(\theta;\rho) = \frac{\rho^{n-1}}{1 - (n-1)\rho^{n-1} \left[\int_{-\pi}^{\theta} a(s) \, ds + \int_{-\pi}^{\theta} b(s) r(s;\rho)^{m-n} \, ds \right]},$$

which yields

(3)
$$r(\theta; \rho) = \frac{\rho}{\left(1 - (n-1)\rho^{n-1} \left[\int_{-\pi}^{\theta} a(s) \, ds + \int_{-\pi}^{\theta} b(s) r(s; \rho)^{m-n} \, ds \right] \right)^{\frac{1}{n-1}}}.$$

Taking $\theta = \pi$ in the previous equation we have

$$r(\pi;\rho) = \frac{\rho}{\left(1 - (n-1)\rho^{n-1} \left[\int_{-\pi}^{\pi} a(s) \, ds + \int_{-\pi}^{\pi} b(s) r(s;\rho)^{m-n} \, ds \right] \right)^{\frac{1}{n-1}}}.$$

If (2) holds, then $x(\pi; \rho) = \rho$, and the sufficiency in the theorem follows.

Assume now that equation (1) has a center on r=0. We first note that any solution of equation (1), $r(\theta; \rho)$ can be expanded in power series in ρ for $|\rho| < \rho_0$ with ρ_0 sufficiently small and $\theta \in [-\pi, \pi]$ in the form

(4)
$$r(\theta; \rho) = r_0(\theta) + r_1(\theta)\rho + r_2(\theta)\rho^2 + \dots$$

Clearly $r_0(\theta) = 0$ because $r(\theta; 0) = 0$. Substituting (4) into equation (1) we get $\dot{r}_1(\theta) = 0$ because $n \geq 2$, and since $r(\pi; \rho) = \rho$ we must have $r_1(\theta) = 1$. Hence we have

(5)
$$r(\theta; \rho) = \rho + r_2(\theta)\rho^2 + \dots$$

Note that a sufficient and necessary condition for r=0 to be a center of (1) is that

$$r_i(\pi; \rho) = 0$$
 for $i = 2, 3, ...$

Substituting (4) into (1) and computing the coefficients in ρ^j for $j \geq 2$ we get that

$$\dot{r}_i(\theta; \rho) = 0$$
 for $i = 2, \dots, n-1$.

Since $r_i(\pi; \rho) = 0$ we must have $r_i(\theta; \rho) = 0$ for i = 2, ..., n-1. On the other hand

$$\dot{r}_n(\theta; \rho) = a(\theta)$$
 that is $r_n(\theta; \rho) = \int_{-\pi}^{\theta} a(\theta) d\theta$.

Since $r_n(\pi; \rho) = 0$ we obtain that $\int_{-\pi}^{\pi} a(s) ds = 0$. But then, from (3) we readily get that $\int_{-\pi}^{\pi} b(s) r(s; \rho)^{m-n} ds = 0$, which proves the necessity. This concludes the proof of the proposition.

Note that by equation (3) a solution of equation (1) is equivalent to a solution of the integral equation

(6)
$$r(\theta; \rho) = \frac{\rho}{\left(1 - (n-1)\rho^{n-1} \int_{-\pi}^{\theta} (a(s) + b(s)r(s; \rho)^{m-n}) \, ds\right)^{\frac{1}{n-1}}},$$

for $\theta \in [-\pi, \pi]$, where $r(-\pi; \rho) = \rho$. We denote

(7)
$$y(\theta) = r^{n-1}(\theta; \rho) \quad \text{and} \quad \ell = \frac{m-n}{n-1}.$$

Then equation (6) becomes

(8)
$$y(\theta) = \frac{\rho^{n-1}}{(1 - (n-1)\rho^{n-1} \int_{-\pi}^{\theta} (a(s) + b(s)y(s)^{\ell}) ds}.$$

We define the operator $T: B_M \to C([-\pi, \pi])$ by

$$T(y)(\theta) = \frac{\rho^{n-1}}{1 - (n-1)\rho^{n-1} \int_{-\pi}^{\theta} (a(s) + b(s)y(s)^{\ell}) \, ds},$$

for $\theta \in [-\pi, \pi]$, where

$$B_M = \{ y \in E : ||y||_{\infty} \le M \},$$

being E the closed subspace of $C([-\pi, \pi])$ defined by

$$E = \{ y \in C([-\pi, \pi]) : y \text{ is an even function} \}.$$

Note that if the operator T has a unique fixed point, i.e., a unique $y \in B_M$ such that $T(y)(\theta) = y$ then (8) has an even solution. As usual $||r||_{\infty} = \max_{\theta \in [-\pi,\pi]} |r(\theta)|$.

We take the notation

$$J_{\theta}(y) = \frac{\rho^{n-1}}{1 - (n-1)\rho^{n-1} \int_{-\pi}^{\theta} (a(s) + b(s)y(s)^{\ell}) ds}.$$

We define

$$A = \max_{\theta \in [-\pi, \pi]} |a(\theta)|, \quad B = \max_{\theta \in [-\pi, \pi]} |b(\theta)|.$$

Proposition 3. For

(9)
$$0 \le \rho < \min \left\{ \frac{1}{\left(4\pi(n-1)(A+BM^{\ell})\right)^{1/(n-1)}}, \left(\frac{M}{2}\right)^{1/(n-1)} \right\},$$

the operator $T: B_M \to C([-\pi, \pi])$ is continuous and compact. Moreover $T(B_M) \subset B_M$.

Proof. For each $y_1, y_2 \in C([-\pi, \pi])$, we have

$$|T(y_1)(\theta) - T(y_2)(\theta)| = \left| (n-1)J_{\theta}(y_1)J_{\theta}(y_2) \right| \left| \int_{-\pi}^{\theta} b(s)(y_1(s)^{\ell} - y_2(s)^{\ell}) \, ds \right|,$$

for $\theta \in [-\pi, \pi]$. Note that since

$$0 \le \rho \le \frac{1}{\left(4\pi(n-1)(A+BM^{\ell})\right)^{1/(n-1)}},$$

we have

$$|(n-1)\rho^{n-1}\int_{-\pi}^{\theta} (a(s)+b(s)y(s)^{\ell}) ds| \le 2\pi(n-1)\rho^{n-1}(A+BM^{\ell}) < \frac{1}{2}.$$

Therefore

(10)
$$1 - (n-1)\rho^{n-1} \int_{-\pi}^{\theta} (a(s) + b(s)y(s)^{\ell}) ds > 1/2,$$

which yields $J_{\theta}(y) \leq 2\rho^{n-1}$. Moreover, since $m \geq 2n-1$ we have that $\ell \geq 1$ and by the Mean Value theorem we get

$$|y_1(s)^{\ell} - y_2(s)^{\ell}| \le \ell M^{\ell-1} ||y_1 - y_2||_{\infty}.$$

Hence

$$|T(y_1)(\theta) - T(y_2)(\theta)| \le 4(n-1)\rho^{2n-2} \int_{-\pi}^{\theta} |b(s)(y_1(s)^{\ell} - y_2(s)^{\ell})| ds$$

$$\le 8\pi (n-1)\rho^{2n-2} B\ell M^{\ell-1} ||y_1 - y_2||_{\infty},$$

for each $\theta \in [-\pi, \pi]$. So,

$$||T(y_1) - T(y_2)||_{\infty} \le 8\pi(n-1)\rho^{2n-2}B\ell M^{\ell-1}||y_1 - y_2||_{\infty}$$

for all $y_1, y_2 \in C([-\pi, \pi])$. Hence the operator T is continuous.

For proving that the operator T is compact, we shall see that T is bounded and equicontinuous. Now we prove that it is bounded. Indeed, by (10) and the condition in ρ in (9) we have

$$|T(y)(\theta:-\pi)| \le 2\rho^{n-1}$$
, for all $y \in B_M$ and $\theta \in [-\pi, \pi]$

and so

(11)
$$||T(y)||_{\infty} \le 2\rho^{n-1} \quad \text{for all } y \in B_M,$$

proving that the operator T is bounded.

Now we show that T is equicontinuous. For each $\theta_1, \theta_2 \in [-\pi, \pi]$ (that without loss of generality we can assume that $\theta_2 > \theta_1$), and any $y \in B_M$, we have

$$|T(y)(\theta_1) - T(y)(\theta_2)| = |(n-1)J_{\theta_1}(y)J_{\theta_2}(y)| \times \left| \int_{-\pi}^{\theta_1} (a(s) + b(s)y(s)^{\ell}) ds - \int_{-\pi}^{\theta_2} (a(s) + b(s)y(s)^{\ell}) ds \right|$$

$$\leq 4(n-1)\rho^{2n-2} \int_{\theta_1}^{\theta_2} |a(s) + b(s)y(s)^{\ell}| ds$$

$$\leq 4(n-1)\rho^{2n-2} (A + BM^{\ell}) |\theta_2 - \theta_1|.$$

Therefore $T(B_M)$ is an equicontinuous subset of $C([-\pi, \pi])$. By Ascoli-Arzela Theorem (see for instance [9]) we have that $T: B_M \to C([-\pi, \pi])$ is compact.

Since the functions $a(\theta)$ and $b(\theta)$ are odd and by assumptions $y(\theta)$ is an even function (and so also $y(\theta)^{\ell}$ is an even function), we have that $a(s) + b(s)y(s)^{\ell}$ is odd. Taking into account that the integral of an odd function is an even function

we conclude that $\int_{-\pi}^{\theta} (a(s) + b(s)y(s)^{\ell}) ds$ is an even function in θ . Hence, for each $y \in E$ we have that $T(y)(\theta) = T(y)(-\theta)$ for all $\theta \in [-\pi, \pi]$. Therefore, $T(y) \in E$ for every $y \in E$. Moreover, by (9) and (11) we have that

$$||T(y)||_{\infty} \le 2\rho^{n-1} < M$$
 for all $y \in B_M$.

So $T: B_M \to B_M$ is well defined. This concludes the proof of the proposition. \square

Proposition 4. Under the assumptions of Theorem 1 there are infinitely many closed even solutions $r(\theta; \rho)$ of system (1) for ρ satisfying (9).

Proof. It follows from Proposition 3 that the operator $T \colon B_M \to B_M$ is well defined, continuous and compact. By the Schauder fixed point Theorem, see [9], the operator T has a fixed point y satisfying

$$T(y)(\theta) = y(\theta) = \frac{\rho}{1 - (n-1)\rho^{n-1} \int_{-\pi}^{\theta} (a(s) + b(s)y(s)^{\ell}) \, ds}$$

and $y(-\pi) = \rho^{n-1}$ for each ρ satisfying (9). From (7) there exists $r(\theta; \rho)$ such that

$$r(\theta; \rho) = \frac{\rho}{\left(1 - (n-1)\rho^{n-1} \int_{-\pi}^{\theta} (a(s) + b(s)r(s; \rho)^{m-n}) \, ds\right)^{\frac{1}{n-1}}}$$

and $r(-\pi; \rho) = \rho$. Note that $r(-\theta; \rho) = r(\theta; \rho)$ and so the solution is closed and even. In short, there are many closed even solutions of system (1) near the origin.

Proof of Theorem 1. To prove Theorem 1 we first show that if $\bar{r}(\theta;\rho)$ is a solution of equation (1) that satisfies $\bar{r}(-\pi;\rho) = \rho$ with ρ satisfying (9), then $\bar{r}(\theta;\rho)$ is closed and even. Indeed, by Proposition 4 there is $r(\theta;\rho)$ a closed even solution of system (1) such that $r(-\pi;\rho) = \rho$, and by the uniqueness of solutions of an ordinary differential equation, we obtain that $\bar{r}(\theta;\rho) = r(\theta;\rho)$. Hence if a and b are odd functions in the variable θ , then each solution of equation (1) with initial condition ρ satisfying (9) is a closed even solution. Hence, for any ρ satisfying (9) we have

$$\int_{-\pi}^{\pi} a(s) \, ds = 0 \quad \text{and} \quad \int_{-\pi}^{\pi} b(s) r(s; \rho)^{m-n} \, ds = 0.$$

Therefore it follows from Proposition 2 that r=0 is a center for equation (1). \square

ACKNOWLEDGEMENTS

The first author is partially supported by a FEDER-MINECO grant MTM2016-77278-P, a MINECO grant MTM2013-40998-P, and an AGAUR grant number 2014SGR-568. The second author is partially supported by FCT/Portugal through UID/MAT/04459/2013.

References

- M.J. ALVAREZ, J.L. BRAVO, M. FERNNDEZ AND R. PROHENS, Centers and limit cycles for a family of Abel equations, J. Math. Anal. Appl. 453 (2017), 485-501.
- [2] M. Briskin, F. Pakovich and Y. Yomdin, Algebraic geometry of the center-focus problem for Abel differential equations, Ergodic Theory Dynam. Systems 36 (2016), 714-744.
- [3] A. BRUDNYI, Universal curves in the center problem for Abel differential equations, Ergodic Theory Dynam. Systems 36 (2016), 1379–1395.

- [4] A.L.A. ARAUJO, A. LEMOS AND A.M. ALVES, Conditions to the existence of center in planar systems and center for Abel equations, preprint in arXiv:1707.02664v1.
- [5] J. Giné, M. Grau and X. Santallusia, The center problem and composition condition for Abel differential equations, Expo. Math. 34 (2016), 210–222.
- [6] J. Giné and C. Valls, Nondegenerate centers for Abel polynomial differential equations of second kind, J. Comput. Appl. Math. 321 (2017), 469–477.
- [7] C. HOUZEL, *The work of Niels Henryk Abel*, The Legacy of Niels Henryk Abel, The Abel Bicentennial, Oslo, 2002.
- [8] F. PAKOVICH, Solution of the parametric center problem for the Abel differential equation, J. Eur. Math. Soc. (JEMS) 19 (2017), 2343–2369.
- [9] E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1986.
- 1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat

 2 Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049–001, Lisboa, Portugal

 $E\text{-}mail\ address{:}\ \mathtt{cvalls@math.ist.utl.pt}$