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Abstract. The aim of this paper is to study the following inverse problem of ordinary
differential equations: For a given set of analytic functions ω = {z1(t), . . . , zr(t)}, with

zj(t) = xj(t) + iyj(t) and z̄j(t) = xj(t) − iyj(t) for j = 1, . . . , r, defined in the open

interval I ⊆ R, we want to determine the differential equation

F (t, z̄, z, ż, ˙̄z, . . . , z(n), z̄(n)) = 0,

where z(j) =
djz

dtj
for j = 1, . . . , n, in such a way that the given set of functions ω is a

set of solutions of this differential equation.

1. Introduction and statement of the main results

In the theory of ordinary differential equations we can find two fundamental problems.
The direct problem which consists in a broad sense in finding the solutions of a given ordinary
differential equation, and the inverse problem. An inverse problem of ordinary differential
equations is to find the more general differential equation satisfying a set of given properties
(see [4, 10, 19, 20].

The inverse problem for determining the ordinary differential equations with given partial
and first integrals was studied in [10]. The obtained results were applied in particular

(i) to construct Lagrangian mechanical systems with a given set of linear constraints
with respect to the velocity and to obtain Hamiltonian systems with a given set of
first integrals (see [11, 20]),

(ii) to solve the 16th Hilbert problem for algebraic limit cycles (see [11, 12, 13, 14, 21]),
and

(iii) to study the center-focus problem (see [15, 16, 17]).

In the rest of this paper we assume that all the functions are analytic in their variables,
but we remark that this condition is for simplicity, although most of the results remain valid
for Cr functions with a convenient r ≥ 1.

We study the following two problems on the determination of ordinary differential equa-
tions with a given set of solutions.

Problem I. Determine the most general ordinary differential equations of order n of the
form

(1) F (t, z, ż, . . . , z(n)) = 0,

for which a given set of functions ω = {z1(t), . . . , zr(t)}, with zj(t) = xj(t) + iyj(t) for
j = 1, . . . , r, defined in the open interval I ⊆ R are solutions of the equation (1).

We consider the following particular case of Problem I.
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Problem I.1 Determine the conditions on the set of functions ω = {z1(t), . . . , zk(t)} in
order that a differential equation of the form

(2) ż = f(t, z),

has first the functions zj(t), for j = 1, . . . , k, as solutions, and second an invariant of the
form

(3) F = eΨ Λ(t)

k∏

j=1

(z − zj(t))αj (z̄ − z̄j(t))γj ,

where Ψ = Ψ(z, z̄, t) and Λ = Λ(t) are functions, and αj and γj , are complex constants for
j = 1, . . . , k.

Problem I.1 is studied in sections 4 and 5.

Problem II. Determine the most general ordinary differential equations of order n

(4) F (t, z̄, z, ż, ˙̄z, . . . , z(n), z̄(n)) = 0,

for which the given set of functions ω = {z1(t), . . . , zr(t)}, with zj(t) = xj(t) + iyj(t) and
z̄j(t) = xj(t)− iyj(t) for j = 1, . . . , r, defined in the open interval I ⊆ R are solutions of the
equation (4). We shall study the following particular case of Problem II.

Problem II.1 Let

(5) ż = F (t, z, z̄),

be a differential system, where F (t, z, z̄) is a polynomial of degree n in the variables z and
z̄.

(i) Determine the conditions of the set of functions ω = {z1(t), . . . , zk(t)} for k ≥ 1,
in order that there exists a differential equation (5) having the set of functions ω as
solutions.

(ii) Determine the maximum numbers of functions zj(t) for j = 1, . . . , k, which define a
unique polynomial differential system (5).

Problem II.1 is study in section 6.

The main results are the following.

Theorem 1. Let ω = {z1(t), . . . , zn(t)} be a set of functions such that

(6) det(A) := ∆(ω) =

∣∣∣∣∣∣∣∣∣

z1(t) z2(t) . . . zn(t)
ż1(t) ż2(t) . . . żn(t)

...
... . . .

...

z
(n−1)
1 (t) z

(n−1)
2 (t) . . . z

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣
6= 0.

Then the most general linear ordinary differential equations of order n of the form

(7) a0(t)z(n) + . . .+ an−1(t)ż + an(t)z = 0, a0(t) 6= 0

having ω as a set of solutions is

W (z, z1(t), . . . , zn(t)) =

∣∣∣∣∣∣∣∣∣

z z1(t) z2(t) . . . zn(t)
ż ż1(t) ż2(t) . . . żn(t)
...

...
... . . .

...

z(n) z
(n)
1 (t) z

(n)
2 (t) . . . z

(n)
n (t)

∣∣∣∣∣∣∣∣∣
= 0.

Moreover z(t) =
n∑

j=1

Cjzj(t) is a general solution of this differential equation, where Cj are

arbitrary constants.
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Corollary 2. If the set of functions ω = {z1(t), . . . , zn(t)} satisfies (6), then the general
solution of the differential equation

a0(t)z(n) + . . .+ an(t)ż + an(t)z = f(t), a0(t) 6= 0

is
z = C1(t)z1(t) + C2(t)z2(t) + . . .+ Cn(t)zn(t),

where C1(t), . . . , Cn(t) are functions such that AĊ = Λ, where C = (C1, . . . , Cn)T , Λ =
(0, . . . , 0, f(t))T , and the matrix A is defined in (6).

Theorem 1 and Corollary 2 are proved in section 2.

Theorem 3. Let ω = {z1(t), . . . , zn+1(t)} be a set of functions such that the Vandermonde
determinant
(8)

4(ω) =

∣∣∣∣∣∣∣∣∣∣∣

zn1 (t) zn−1
1 (t) . . . z1(t) 1

zn2 (t) zn−1
2 (t) . . . z2(t) 1

zn3 (t) zn−1
3 (t) . . . z3(t) 1

...
... . . .

...
...

znn+1(t) zn−1
n+1(t) . . . zn+1(t) 1

∣∣∣∣∣∣∣∣∣∣∣

:= detA =
∏

1≤k≤j≤n
(zk(t)− zj(t)) 6= 0, .

and

n+1∑

j=1

|żj |2 6= 0.

Then any first order nonlinear ordinary differential equation of the form

(9) a0(t)zmż + a1(t)zn + . . .+ an−1(t)z2 + an(t)z + an+1(t) = 0,

where n and m are non-negative integers with a0(t) 6= 0 and having z1(t), . . . , zn+1(t) as
solutions can be written as

(10)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
z z1(t) z2(t) . . . zn+1(t)
z2 z2

1(t) z2
2(t) . . . z2

n+1(t)
...

...
... . . .

...
zn zn1 (t) zn2 (t) . . . znn+1(t)

zmż zm1 (t)ż1(t) zm2 (t)ż2(t) . . . zmn+1(t)żn+1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

:= zm4(ω)ż − Z(z, t) = 0,

Moreover if zj = constant for j = 1, . . . , n then there exist the invariant

(11)

∫



zm dz(t)
n∏

j=1

(z(t)− zj)
− zmn+1(t) dzn+1(t)

n∏

j=1

(zn+1(t)− zj)



,

which is constant on the solutions of (9).

Corollary 4. Differential equation (10) for m = 0 under the change

z = zn+1 +
1

w

can be written as

(12) wn−2ẇ = β1(t) wn−1 + β2(t) wn−2 + . . .+ βn(t),

where
∂jZ(z, t)

∂zj

∣∣∣∣
z=zn+1

= −βj(t), for j = 1, . . . , n, where Z(z, t) is defined in (10).
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Theorem 3 and Corollary 4 are proved in section 3.

The differential equation

(13) z′ = p(t)z3 + q(t)z2 + r(t)z + s(t) = Q(t, z), with p(t) 6= 0,

is called the Abel equation of first kind and the differential equation

(14) ww′ + Ψ(t)w = Φw2 + Υ(t),

is called the Abel equation of a second kind. Note that Υ(t) 6= 0, otherwise we have a linear
differential equation.

The Abel equations in general has no invariants, but there exist some particular cases for
which these equations have an invariant. We shall study some of these cases.

Proposition 5. Let wj = wj(t) for j = 1, 2, 3 be solutions of the Abel differential equation
of second kind (14). Then equation (14) has the invariant

(15) F = e

−
3∑

j=1

mj

∫
Φ(t)dt 3∏

j=1,

(w − wj(t))mj ,

if and only if

(16)
3∑

j=1

mj

wj(t)
= 0.

Here the mj are constants not all zero.

Corollary 6. The Abel differential equation of the first kind has the invariant

F = e

−
3∑

j=1

mj

∫
Φ(t)dt 3∏

j=1,

(
z − zj

(z − z4)(zj − z4)

)mj

:= Λ(t)
3∏

j=1,

(
z − zj
z − z4

)mj

,

if and only if

(17)
3∑

j=1

mj(zj − z4)) = 0.

Moreover if
3∑

j=1

mj = 0 then
3∑

j=1

mjzj = 0 and the invariant F becomes

(18) F =

3∏

k=1, k 6=4

(
z − zj
zj − z4

)mj

= Λ(t)

3∏

k=1, k 6=4

(z − zj)mj ,

Proposition 5 and Corollary 6 are proved in section 5.
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Proposition 7. Let ω4 = {z1(t), . . . , zκ(t)} for κ = (m+ 1)(m+ 2)/2 be a set of functions
such that

∆(ω) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

z1 z2 . . . zκ

z̄1 z̄2 . . . z̄κ

...
... . . .

...

zm1 zm2 . . . zmκ

...
... . . .

...

z1z̄
m−1
1 z2(t)z̄m−1

2 . . . zκ z̄
m−1
κ (t)

z̄m1 z̄m2 . . . z̄mκ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0 withκ = (m+ 1)(m+ 2)/2

κ∑

j=1

|żj |2 6= 0,

as solutions can be written as

(19)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

z z1 z2 . . . zκ

z̄ z̄1 z̄2 . . . z̄κ

...
...

... . . .
...

zm zm1 zm2 . . . zmκ

...
...

... . . .
...

zz̄m−1 z1z̄
m−1
1 z2z̄

m−1
2 . . . zκ z̄

m−1
κ

z̄m z̄m1 z̄m2 . . . z̄mκ
ż ż1 ż2 . . . żκ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

Moreover if zj = constant for j = 1, . . . , κ− 1 then there exist the invariant

(20)

∫ (
dz

Υ(z, z1, . . . , zκ−1)
− dzκ

Υ(zκ, z1, . . . , zκ−1)

)
= C = constant.

where

Υ(ξ, z1, . . . , zκ−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

ξ z1 z2 . . . zκ−1

ξ̄ z̄1 z̄2 . . . z̄κ−1

...
...

... . . .
...

ξm zm1 zm2 . . . zmκ−1

...
...

... . . .
...

ξξ̄m−1 z1z̄
m−1
1 z2z̄

m−1
2 . . . zκ−1z̄

m−1
κ−1

ξ̄m z̄m1 z̄m2 . . . z̄mκ−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Proposition 7 is proved in section 6.
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Proposition 8. Consider the differential equation of the form

(21) ż =
m∑

n=0

∑

j+k=n

ajk(t)zj z̄k,

with m+ 1 complex solutions ω = (z1(t), . . . , zm+1(t)) such that

(22) z̄j(t) = eiαzj(t), for j = 1, . . . ,m+ 1,

where α ∈ R and the Vandermonde determinant

(23) ∆(ω) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
z1 z2 z3 . . . zm+1

z2
1 z2

2 z2
3 . . . z2

m+1
...

...
... . . .

...
zm1 zm1 zm1 . . . zmm+1

∣∣∣∣∣∣∣∣∣∣∣

6= 0,

can be written as

(24)
1

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 . . . 1
z z1 z2 z3 . . . zm+1

z2 z2
1 z2

2 z2
3 . . . z2

m+1
...

...
...

... . . .
...

zm zm1 zm1 zm1 . . . zmm+1

ż ż1 ż2 ż3 . . . żm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (z̄ − eiαz)P (z, z̄, t),

where P (z, z̄, t) is a convenient polynomial of degree m− 1.

Proposition 8 is proved in subsection 6.2.

2. Proofs of Theorem 1 and Corollary 2

Proof of Theorem 1. Clearly differential system (7) has the solutions given by the set of
functions ω. Indeed, if z = zj(t) with j = 1, . . . , n, then in view of the properties of the
determinant we have that W (zj(t), z1(t), . . . , zn(t)) ≡ 0.

The reciprocity is proved as follows. We assume that we have the linear differential
equation of order n

a0(t)z(n) + . . .+ an−1(t)ż + an(t)z = 0, a0(t) 6= 0,

and let ω = {z1(t), . . . , zn(t)} be the set of functions satisfying (6). Then, solving the system

a0(t)z
(n)
j + . . .+ an−1(t)żj + an(t)zj = 0, for j = 1, . . . , n.
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with respect to a1, . . . , an after some computations we get that

a1(t) =
(−1)n+2a0(t)

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣∣

z1(t) z2(t) . . . zn(t)
ż1(t) ż2(t) . . . żn(t)

...
... . . .

...

z
(n−2)
1 (t) z

(n−2)
2 (t) . . . z

(n−2)
n (t)

z
(n)
1 (t) z

(n)
2 (t) . . . z

(n)
n (t)

∣∣∣∣∣∣∣∣∣∣∣∣

:=
(−1)n+2a0(t)∆1(ω)

∆(ω)
,

...
...

...
...

an(t) =
−a0(t)

∆(ω)

∣∣∣∣∣∣∣∣∣

ż1(t) ż2(t) . . . żn(t)
z̈1(t) z̈2(t) . . . z̈n(t)

...
... . . .

...

z
(n)
1 (t) z

(n)
2 (t) . . . z

(n)
n (t)

∣∣∣∣∣∣∣∣∣
:=
−a0(t)∆n(ω)

∆(ω)
,

Inserting a1, . . . , an in (7) we obtain

a0(t)

∆(ω)

(
∆(ω) z(n) + (−1)n+2∆1(ω)z(n−1) + . . .−∆n(ω)z

)
= 0.

This last expression is the development of the determinant given in (8) using its first column.
Hence the theorem is proved. �

Proof of Corollary 2 . The proof of these Theorem is well known as variation of constants,
is a general method to solve inhomogeneous linear ordinary differential equations. �

3. Proofs of Theorem 3 and Corollary 4

Proof of Theorem 3. First we prove that the set of function ω = {z1(t), . . . , zn+1(t)} satisfies
(10). Indeed, in view of the properties of the determinant we get that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
zj(t) z1(t) z2(t) . . . zn+1(t)
z2
j (t) z2

1(t) z2
2(t) . . . z2

n+1(t)
...

...
... . . .

...
znj (t) zn1 (t) zn2 (t) . . . znn+1(t)

żj(t) ż1(t) ż2(t) . . . żn+1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

for j = 1, . . . , n+ 1.

The reciprocity is proved as follows. We assume that we have the nonlinear differential
equation of first order (10), and let ω = {z1(t), . . . , zn+1(t)} be the set of functions satisfying
(8). Then from the relations

a1(t)znj + . . .+ an−1(t)z2
j + an(t)zj + an+1(t) = −a0(t)zmj żj . for j = 1, . . . , n+ 1,

Since this system is a linear system with respect to a1(t), . . . , an+1(t) it can be written in
the matrix form



zn1 (t) zn−1
1 (t) . . . z1(t) 1

zn2 (t) zn−1
2 (t) . . . z2(t) 1

zn3 (t) zn−1
3 (t) . . . z3(t) 1

...
... . . .

...
...

znn+1(t) zn−1
n+1(t) . . . zn+1(t) 1







a1(t)
a2(t)
a3(t)

...
an+1(t)




= −a0




zm1 (t)ż1(t)
zm2 (t)ż2(t)
zm1 (t)ż3(t)

...
zmn+1(t)żn+1(t)



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In view of condition (8) and by applying the Cramer’s rule we obtain that

a1(t) = − a0(t)

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣

zm1 (t)ż1(t) zn−1
1 (t) . . . z1(t) 1

zm2 (t)ż2(t) zn−1
2 (t) . . . z2(t) 1

zm3 (t)ż3(t) zn−1
3 (t) . . . z3(t) 1

...
... . . .

...
...

zmn+1(t)żn+1(t) zn−1
n+1(t) . . . zn+1(t) 1

∣∣∣∣∣∣∣∣∣∣∣

:= −a0(t)∆1(ω)

∆(ω)
,

...
...

... ,

an+1(t) = −(−)n
a0(t)

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣

zm1 (t)ż1(t) zn1 (t) zn−1
1 (t) . . . z1(t)

zm2 (t)ż2(t) zn2 (t) zn−1
2 (t) . . . z2(t)

zm3 (t)ż3(t) zn3 (t) zn−1
3 (t) . . . z3(t)

...
... . . .

...
...

zmn+1(t)żn+1(t) znn+1(t) zn−1
n+1(t) . . . zn+1(t)

∣∣∣∣∣∣∣∣∣∣∣

:= (−1)n+1 a0(t)∆n+1(ω)

∆(ω)
,

By inserting a1(t), . . . , an+1(t) into (9) after some computations we get (10).

a0(t)

∆(ω)

(
∆(ω)zm z(n) + (−1)n+2∆1(ω)z(n−1) + . . .−∆n(ω)z

)
= 0.

This last expression is the development of the determinant given in 10 using its first column.
To prove the relation (11) it is easy to obtain by considering that żj = 0 for j = 1, . . . , n.

Clearly if

n+1∑

j=1

|żj |2 = 0 then the all coefficients aj(t) for j = 1, . . . , n+ 1 are equal to zero.

Consequently differential system (9) becomes ż = 0. Thus the theorem is proved. �

Proof of Corollary 4. By developing the polynomial Z(z, t) of degree n in the variable z (see
formula (10)) in powers of z − zn+1 we get

Z(z, t) = Z(zn+1, t) +
∂Z(z, t)

∂z

∣∣∣∣
z=zn+1

(z − zn+1) +
1

2!

∂2Z(z, t)

∂z2

∣∣∣∣
z=zn+1

(z − zn+1)2

+ . . .+
1

n!

∂nZ(z, t)

∂zn

∣∣∣∣
z=zn+1

(z − zn+1)n

= Z(zn+1, t)− β1(t)(z − zn+1)− β2(t)(z − zn+1)2 − . . .− βn(t)(z − zn+1)n.

Introducing the new variable 1/w = z−zn+1 and by considering that ∆(ω)żn+1 = Z(zn+1, t)
after some computations we obtain (12). Then the corollary is proved. �

Example 1. For differential equation (10) for m = 0 and n = 2 ( Ricatti equation)

(25)

z′ =
z′1(z3 − z2) + z′2(z1 − z3) + z′3(z2 − z1)

∆(ω)
z2

−z
′
1(z2

3 − z2
2) + z′2(z2

1 − z2
3) + z′3(z2

2 − z2
1)

∆(ω)
z

+
z′1(z3 − z2)z3z2 + z′2(z1 − z3)z1z3 + z′3(z2 − z1)z2z1

∆(ω)
.

differential equation (12) becomes

(26) ẇ = β1(t)w + β2(t), w =
1

z − z3
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with

β1(t) =
(z2 − z3)ż1

(z1 − z3)(z1 − z2)
− (z1 − z3)ż2

(z2 − z3)(z1 − z2)
+

(z1 − 2z3 + z2)ż3

(z2 − z3)(z1 − z3)

β2(t) = − ż1

(z1 − z3)(z1 − z2)
+

ż2

(z2 − z3)(z1 − z2)
− ż3

(z2 − z3)(z1 − z3)

Example 2. For differential equation (10) for m = 0 and n = 3 (Abel equation of first
kind), having four solutions z1, z2, z3, z4 satisfying (8) can be written as (10) or equivalently

(27) z′ =
∆1(ω)

∆(ω)
z3 − ∆2(ω)

∆(ω)
z2 +

∆3(ω)

∆(ω)
z − ∆4(ω)

∆(ω)
:= Z0(z, t).

equation (12) becomes

(28) wẇ = β1(t)w2 + β2(t)w + β3(t), w =
1

z − z4

with

β1(t) = λ(z1, z2, z3, z4)ż1 + λ(z2, z1, z3, z4)ż2 + λ(z1, z3, z2, z4)ż3

+
(z2 − z4)(z1 − z4) + (z3 − z4)(z1 − z2 − 2z4)

(z1 − z4)(z3 − z4)(z2 − z4)
ż4,

β2(t) = µ(z1, z2, z3, z4)ż1 + µ(z2, z1, z3, z4)ż2 + µ(z1, z3, z2, z4)ż3 + µ(z1, z2, z4, z3)ż4,

β3(t) = ν(z1, z2, z3, z4)ż1 + ν(z2, z1, z3, z4)ż2 + ν(z1, z3, z2, z4)ż3 + ν(z1, z2, z4, z3)ż4,

where λ(u, v, w, r) = − (w − r)(v − u)

(u− v)(u− w)(u− r) , µ(u, v, w, r) =
v − 2r + w

(u− v)(u− w)(u− r) , and

ν(u, v, w, r) = − 1

(u− v)(u− w)(u− r) .

We say that the set of functions ω1 = {z1, z2, . . . , zn+1} which are solutions of equation

(10) and the set of functions ωκ = {z(κ)
1 , . . . , z

(κ)
n+1} are equivalent and we write ω1 ' ωκ if

∆j(ω)

∆(ω)
=

∆j(ωκ)

∆(ωκ)
, for j = 1, . . . , n+ 1 κ ∈ N.

Clearly if ω1 ' ωκ then ω̃1 ' ω̃κ where ω̃1 = {z1, z2, zj−1, z
(κ)
j , zj+1, . . . , zn+1} and ω̃κ =

{z(κ)
1 , . . . , z

(κ)
j−1, zj , z

(κ)
j+1, . . . , z

(κ)
n+1, }, The set of equivalent solutions of (10) we shall denote

by Ω.

Example 3. For the Abel differential equations of the first kind

ż =
225 z3 + 16(3t8 − 17t6 + 6t4 − 1)z

4t(t4 − 1)(t4 − 4)(4t4 − 1)

a set of equivalent solutions Ω is (see [6])

{
z1 = −z2 =

2

5
t(t2 + 1), z3 = −z4 =

2

3
t(t2 − 1), z5 = −z6 =

4

15
(t4 − 1), z7 = 0

}

4. Study of Problem I.1

4.1. Nonlinear differential equations with constant solutions. Problem I.1 has an
easy solution when the functions zj(t), for j = 1, . . . , n+1, are complex constant zj , because
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then f(t, z) = λ(t)
n+1∏

s=1

(z−zs)κs with κj ∈ N and λ(t) is a convenient function. Indeed, from

(9) it follows that

ż = λ(t)
n+1∏

s=1

(z − zs)κs = λ(t)g(z),

where for simplicity we assume that the function λ(t) is real. From the equations ż = λ(t)g(z)
and ˙̄z = λ(t)g(z̄) it follows that

(29)
dz

g(z)
− dz̄

g(z̄)
= 0.

After the integration of (29) we get that

F̃ =

∫ (
dz

f(z)
− dz̄

f(z̄)

)

is a first integral of the differential equation (29). It is possible to show that the function

F = exp F̃ is an invariant, that in this case is a first integral

F = eΨ

n+1∏

s=1

(z − zs)A
(1)
s

n+1∏

s=1

(z̄ − z̄s)Ā
(1)
s

where

Ψ :=

(
− A

(2)
1

(z − z1)
+ . . .+

1

(1− κ1)

A
(ks)
1

(z − z1)−1+κ1

)
+ . . .

−
(
− Ā

(2)
n+1

z̄ − z̄n+1
+ . . .+

1

(1− κn+1)

Ā
(kn+1)
n+1

(z̄ − z̄n+1)−1+κn+1

)
,

where A
(j)
m is a convenient constants for j = 2, . . . , κn+1 and m = 1, . . . , n + 1. In short,

Problem I.1 is solved when all the functions of ω are constant.

4.2. First order linear ordinary differential equations and Riccati equations. Here
we see that Problem I.1 is easy to solve for first order linear ordinary differential equations
and for the Riccati equations. Indeed, by Theorem 3 the first order linear differential
equation with the two solutions z1(t) and z2(t) such that ∆(ω) = z1(t)− z2(t) 6= 0, can be
written as (10) for n = 1 and m = 0 is

(30) z′ − z′2(t)− z′1(t))

z2(t)− z1(t)
z +

z1(t)z′2(t)− z2(t)z′1(t)

z2(t)− z1(t)
= 0.

After some computations we get that

(31) F =
z − z1(t)

z2(t)− z1(t)
:= Λ(t)(z − z1(t)) =

is an invariant of the differential equation (5).

By Theorem 3 the first order Riccati differential equation having the three solutions
z1(t), z2(t) and z3(t) satisfying (8) for n = 2 and m = 0 can be written as (25). By
considering that Ricatti equation under the change w = 1/(z − z3) can be transformed to
the linear differential equation (26), which has the invariant

F =
w − w1(t)

w2(t)− w1(t)
,
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(see formula (31)). Clearly this differential equation has the solution w1 = 1/(z1−z3), w2 =
1/(z2− z3), then in view of formula (31) we have that this linear equation has the invariant

F = − w − w3

w1 − w2
= − 1/(z − z3)− 1/(z1 − z3)

1/(z1 − z3)− 1/(z2 − z3)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z3)
:= Λ(t)

(z − z1)

(z − z3)
.

The invariant for the linear differential equations is trivial and for the Riccati case corre-
sponds with the well known fact that the cross-ratio of four linearly independent solutions is
a constant (see for instance [2]). These results are known but the interest of the proofs which
we propose consists in showing that these proofs can obtained from the inverse approach:
we have the explicit expression of these differential equations for the given solutions.

5. Abel differential equations having an invariant

The main objective of this subsection is to study the problem of existence of the invariant
(3) for the Abel differential equations .

From Theorem 3 the Abel equation of the first kind (13) having four solutions z1, z2, z3, z4

satisfying (8) for n = 3 and m = 0 can be written as (27) Clearly that in this case

p(t) = −∆1(ω)

∆(ω)
=

z′1
(z1 − z2)(z1 − z3)(z1 − z4)

+
z′2

(z2 − z1)(z2 − z3)(z2 − z4)

+
z′3

(z3 − z2)(z3 − z1)(z3 − z4)
+

z′4
(z4 − z2)(z4 − z3)(z4 − z1)

,

q(t) =
∆2(ω)

∆(ω)
, r(t) = −∆3(ω)

∆(ω)
, s(t) =

∆4(ω)

∆(ω)
.

As we prove in section 3, the Abel equation of first kind (27) under the change z = z4(t)+
1

w
,

and introducing the respectively notations,becomes into the Abel equation of a second kind
(28) or equivalent (14).

Proof of Proposition 5. We consider

(32)
dF

dt
=


−

3∑

j=1

mjΦ(t) +

3∑

j=1

mj

w′ − w′j(t)
w − wj(t)


F.

Then in view of (14) and by considering that wj(t) is a solution of (14), i.e.

wjw
′
j + Ψ(t)wj = Φw2

j + Υ(t),

then (32) becomes

−
3∑

j=1

mjΦ(t) +
3∑

j=1

mj

w′ − w′j(t)
w − wj(t)

= −
3∑

j=1

mjΦ(t) +
3∑

j=1

mj

Φ(t)w −Ψ(t) +
Υ(t)

w
− Φ(t)wj + Ψ(t)− Υ(t)

wj
w − wj(t)

= −Υ(t)

z

3∑

j=1

mj

wj
= 0.
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Hence (32) can be written as
dF

dt
=


−Υ(t)

u

3∑

j=1

mj

wj


F. Since Υ(t) 6= 0, from this last

equality we have that dF/dt = 0 if and only if
3∑

j=1

mj/wj(t) = 0. The proof of representation

(15) it is easy to obtain. Hence this completes the proof of the proposition. �

Proof of Corollary 6. It follows from Proposition 9 by considering that w =
1

z − z4
, and

wj =
1

zj − z4
, for j = 1, 2, 3, consequently condition (16) becomes

3∑

j=1

mj

wj
=

3∑

j=1

mj(zj −

z4)) = 0. �

Example 4. We illustrated Corollary 6 for the case when zj for j = 1, 2, 3 are constants.
After some computations we can prove that differential equation (27) becomes

ż =
(z − z1)(z − z2)(z − z3)ż4(t)

(z4(t)− z1)(z4(t)− z2)(z4(t)− z3)

The invariant F in this case is (see invariant (11))

fF =

(
z − z1

z4(t)− z1

)m1
(

z − z2

z4(t)− z2

)m2
(

z − z3

z4(t)− z3

)m3

where

m1 =
1

(z1 − z2)(z1 − z3)
, m2 =

1

(z2 − z1)(z2 − z3)
, m3 =

1

(z3 − z1)(z3 − z2)
,

clearly that m1 +m2 +m3 = 0 and m1z1 +m2z2 +m3z3 = 0.

Clearly after the change of variables w 7−→ w e

∫
Φdt

equation (14) becomes

w (w′ + Ψ(t)) = Υ(t).

Proposition 9. Let the sets of functions

ω = {w1, w2, w3}, ωκ = {w(κ)
1 , w

(κ)
2 , w

(κ)
3 }, for 1 ≤ κ ≤ ς,

be equivalent sets of solutions of the Abel differential equation of second kind (13). Denoting

by Ω = {w1, w2, w3, w4 = w
(1)
1 , w5 = w

(1)
2 , w6 = w

(ς)
3 , . . .} the set of all equivalent solutions

where κ ∈ N and µ = 3(ς + 1). Then equation (14) has the invariant

F = e

−
µ∑

j=1

mj

∫
Φ(t)dt µ∏

j=1,

(w − wj)mj , with wj ∈ Ω,

if and only if
µ∑

j=1

mj

wj
= 0.

Here the mj are constants not all zero. Moreover, under the changes

w = We

∫
Φdt

, wj = Wje

∫
Φdt

,
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the invariant F becomes

F =

µ∏

j=1

(W −Wj(t))
mj ,

Corollary 10. Let the sets of functions

ω1 = {z1, z2, z3, z4}, ωκ = (z
(κ)
1 , z

(κ)
2 , z

(κ)
3 , z

(κ)
4 }, for 1 ≤ κ ≤ ς,

be equivalent sets of solutions of the Abel differential equation of first kind (13). Denoting

by Ω = {z1, z2, z3, z4, z5 = z
(1)
1 , z6 = z

(1)
2 , z7 = z

(ς)
3 , z8 = z

(ς)
4 , . . .} the set of all equivalent

solutions. Then there exists the invariant

F = Λ(t)

µ∏

k=1, k 6=4

(
z − zj
z − z4

)mj

, with zj ∈ Ω,

if and only if
µ∑

j=1, j 6=4

mj(zj − z4) = 0.

Moreover if

µ∑

j=1

mj = 0 then

µ∑

j=1

mjzj = 0 and the invariant F becomes

F =

µ∏

k=1, k 6=4

(
z − zj
zj − z4

)mj

= Λ(t)

µ∏

k=1, k 6=4

(z − zj)mj .

Proof. It is analogous to the proof of Proposition 9. �

There are a lot of results on the existence of invariants F for the equation (17), or for its
canonical form (see for instance [2]).

Introducing the new independent variable x = −
∫

Ψ(t)dt we get the canonical form of

the Abel equation of the second kind becomes

(33) u

(
du

dx
− 1

)
= R(x) with R(x) =

−Υ

Ψ
.

Clearly that this differential equation with two solutions ω = {u1, u2} where u1 = u1(x) and
u2 = u2(x), can be written as

(34) uu′ +
∆1(ω)

∆(ω)
u+

∆2(ω)

∆(ω)
= 0,

where ′ :=
d

dx
, and

∆1(ω1)

∆(ω1)
= −1,

∆2(ω1)

∆(ω1)
= R(x)

Proposition 11. Let the sets of functions

ω1 = {u1, u2}, ωκ = {u(κ)
1 , u

(κ)
2 }, for 1 ≤ κ ≤ ς,

be equivalent sets of solutions of the Abel differential equation of second kind (13). Denoting

by Ω = {u1, u2, u3 = w
(1)
1 , u4 = w

(1)
2 , . . .} the set of all equivalent solutions of the Abel

differential equation of second kind (34). Then there exists the invariant

F =

µ∏

k=1, k

(u− uj)mj , with uj ∈ Ω,
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if and only if

(35)

µ∑

j=1,

mj

uj
= 0.

Proof. It is analogous to the proof of Proposition 9 with Φ = 0 and Ψ = −1. �
Example 5. We study equation (34) in the particular case

(36) u

(
du

dx
− 1

)
=

3x

16
− A

3
√
x
− B

3
√
x5
.

In [2] the authors showed that the set of function ω1 = {u1, u2} where

(37)

u1 =
3

4
x+

√
3A+

3

2

√
−3B 3

√
x+

√
−3B
3
√
x

,

u2 =
3

4
x−

√
3A+

3

2

√
−3B 3

√
x+

√
−3B
3
√
x

,

are solutions of equation (36). The following set of functions ω2 = {u3, u4}

u3 =
3

4
x+

√
3A− 3

2

√
−3B 3

√
x−
√
−3B
3
√
x

,

u4 =
3

4
x−

√
3A− 3

2

√
−3B 3

√
x−
√
−3B
3
√
x

,

is equivalent to (37). Indeed it is easy to show that

∆1(ω1)

∆(ω1)
=

∆1(ω2)

∆(ω2)
= −1,

∆2(ω1)

∆(ω1)
=

∆2(ω2)

∆(ω2)
=

3x

16
− A

3
√
x
− B

3
√
x5

By considering that m1/u1 +m2/u2 +m3/u3 +m4/u4 = 0, where

m1 =
√

12A− 6
√
−3B, m2 = −

√
12A− 6

√
−3B,

m3 = −
√

12A+ 6
√
−3B, m4 =

√
12A+ 6

√
−3B.

Then in view of Proposition 11 we obtain that equation (36) has the invariant

F = (u− u1)m1(u− u2)m2(u− u3)m3((u− u4)m4 ,

=

(
u− u1

u− u2

)m1
(
u− u4

u− u3

)m4

.

According to the result given by Alexeeva, Zaitsev and Zhvets [2], any Abel equation of
the second kind in the canonical form (33) has the invariant

(38) F =
m∏

j=1,

(u− uj(s))mj

where uj(s) is a particular solution of (33) and mj is a convenient constant for j = 1, . . . ,m
if the following relation holds

(39)
m∑

j=1



(
mj(

du

ds
− duj(s)

ds

) k 6=j∏

k=1,..,n

(u− uk(s))


 =

m∑

j=1

(
du

ds
Φj(s) + Ψj(s)u

j

)
,

where Φν(s) = −Ψν(s) Ψν−1(s) = −R(s)Φν(s), and equate the other Φk and Ψk with
zero.
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Selecting different values ν = 1, . . . , n− 1, we obtain n− 1 systems of different-algebraic
equations; only one of the systems, corresponding to mk 6= 0 for all k = 1, . . . , n and ui 6= uj
for i 6= j, leads to a non degenerate solution of the form (38). Clearly condition (39) is
complicated to compute unlike conditions (17). In the monograph [2] there is an example of
solutions of (33) obtained from (39) for a convenient R(x). All these solutions satisfy (35)
for a convenient constants mj . The examples given in [2] are the following and as we show
all of them satisfy the condition (35).

Example 6. For n = 2 differential equation (33) with R(x) = Ax + b where a and B are
constants has the following solutions

u1 ==
1 +
√

1 + 4A

2A
(Ax+ b) , u2 == − 1 +

√
1 + 4A

2A+ 1 +
√

1 + 4A
(Ax+ b) ,

and m1 = 2A+ 1 +
√

1 + 4A, m2 = 2A. Clearly that m1/u1 +m2/u2 = 0.

For n = 3 and for R(x) = −2/9t x+A+B/
√
x the obtained solutions in [2] are

uj =
2

3
(x+ λj

√
x) +

3B

λj
,

mj =
2A

3(2λ2
j − 3A)

for j = 1, 2, 3,

where λ is a root of λ3 − 9/2Aλ − 9/2B = 0. It is easy to show that m1/u1 + m2/u2 +
m3/u3 = 0. We can prove that Ω = {u1, u2, u3} is a set of equivalent solutions. Indeed if
ω1 = {u1, u2}, ω2 = {u1, u3} and ω3 = {u2, u3} then

∆1(ω1)

∆(ω1)
=

∆1(ω2)

∆(ω2)
=

∆1(ω3)

∆(ω3)
= −1,

∆2(ω1)

∆(ω1)
=

∆2(ω2)

∆(ω2)
=

∆1(ω3)

∆(ω3)
== −2/9x+A+B/

√
x.

For m = 4 and
3x

16
− A

3
√
x
− B

3
√
x5

the authors proposed the solutions given in example 5

with wrong constants m1 = −m2 = −2A +
√
−3B, and m3 = −m4 =

√
4A2 + 3B, because

m1/u1 +m2/u2 +m3/u3 +m4/u4 6= 0.

5.1. Julia invariant. Assume that the functions u1(s), . . . , uµ(s) satisfy the equation

uµ + a1(s)uµ−1 + . . .+ aµ−2(s)u2 + aµ(s) = 0,

and are solutions of the canonic Abel second kind differential equation (33), then there exists
an invariant

(40) F =

µ∏

j=1

(u− uj(s)).

Indeed, under the given assumption the functions u1(s), . . . , um(s) satisfy the relation

µ∏

j=2

uj(s) +

µ∏

j=1, j 6=2

uj(s) + . . .+

µ−1∏

j=1

uj(s) = 0,

or what is equivalent

µ∑

j=1

1

uj(s)
= 0, consequently, in view of Proposition 11 with mj = 1 for

j = 1, . . . , µ there exists the invariant F.
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In particular if µ = 2 we have that if
1

u1
+

1

u2
= 0 or, what is equivalent u1 + u2 = 0,

then the invariant becomes

F = (u− u1)(u+ u1).

The French mathematician Gaston Julia proved 1933 in [5] (6, p. 82f) that the equation

(Dy + E)
dy

dt
+Ay2 +By + C = 0,

for A,B,C,D and E functions of t, has an implicit solution if the condition

L := E(2A−D′)−D(B − E′) = 0,

with D 6= 0 is satisfied. Then the invariant is

F = e

∫
2A

D
dt(y2

2
+
E

D
y

)
+

∫
C

D
e

∫
2A

D
dt

= const.

Doing two changes of variables the previous differential equation yields the general Abel

equation of first kind. First we do the change of variables y = w(t)− E

D
and we get

(41) ww′ +
A

D
w2 +

L

D2
w +

E2A− EDB + CD2

D3
= 0.

The invariant under the given change becomes

F = e

∫
2A

D
dt(

w2 − E2

D2

)
+

∫
C

D
e

∫
2A

D
dt
.

By putting L = 0 and after the change w −→ we

∫
A

D
dt

we obtain that the differential
equation (41) becomes

ww′ + e

∫ −2A

D
dt(E2A− EDB + CD2

D3

)
= 0.

This last differential equation has the invariant F = (u− u1)(u+ u1), where

u1 = −u2 =

√√√√E2

D2
e

∫
2A

D
dt

+

∫
C

D
e

∫
2A

D
dt
,

which corresponds to the invariant (40) with µ = 2.

Finally we observe that there exits a big numbers of papers devoted to study the existence
of exactly solutions and applications of the Abel equation (see for instance [1, 3, 7, 8, 9, 18]).

6. Planar polynomial differential equations with given solutions

In this section we study the problem II.1. We determine the planar differential systems

(42) ẋ = P (x, y, t) ẏ = Q(x, y, t),

having the given set of solutions ω = {z1(t), . . . , zk(t)} where k ≥ 1.

After the change z = x+ iy and z̄ = x− iy differential system (42) becomes

(43) ż = R(z, z̄, t)

where

R = R(z, z̄, t) = (P + iQ)|x=(z+z̄)/2, y=(z−z̄)/(2i) .
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First we determine the simplest case when ω = {z1(t)}.
Proposition 12. The most general planar analytic differential system with the given solu-
tion z1(t) can be written as

(44) ż = ż1 + Φ(z, z̄, t),

or equivalently

ẋ = ẋ1(t) + ReΦ(z, z̄, t)), ẏ = ẏ1(t) + ImΦ(z, z̄, t)),

where z1(t) = x1(t) + iy1(t) and Φ is any analytic function (Erugyn function) such that

(45) Φ(z, z̄, t))|z=z1(t), z̄=z̄1(t) = 0.

Proof. Indeed z = z1(t) is a solution of (44) because (45) holds. Assume that differential
system ż = L(z, z̄, t) is another differential equation having z = z1(t) as a solution, i.e.
L(z1(t), z1(t), t) = ż1(t). taking Φ(z, z̄, t) = L(z, z̄, t) − ż1(t) we get that this differential
equation is a particular case of (44). �

Proposition 13. The most general planar polynomial differential system of degree m with
coefficients functions depending on t and with the given solution z1(t), can be written as (44)
with either

Φ = α1(t)H11 + α2(t)H12 + α3(t)H21 + α4(t)H22 =< ξ̃(t),M(t)ξT >,

where αj(t) are arbitrary functions, Hjk is a component of the matrix

H = G(t, z, z̄)G(t, z1(t), z̄1(t))−G(t, z1(t), z̄1(t))G(t, z, z̄) := [G(t, z, z̄), G(t, z1(t), z̄1(t))],

with the matrix

G(t, z, z̄) =

(
1 1

p1(t, z, z̄) p2(t, z, z̄)

)
,

and

p1(t, z, z̄) =
m∑

n+j=0

anj(t)z
nz̄j , p2(t, z, z̄) =

m∑

n+j=0

bnj(t)z
nz̄j ,

ξ = (1, z, z̄, z2, zz̄2, z̄2, . . . , zm, . . . , z̄m), ξ̃(t) = ξ|z=z1(t), z̄=z̄1(t) ,

and M(t) is a convenient (m+ 1)(m+ 2)/2× (m+ 1)(m+ 2)/2 antisymmetric matrix with
components functions of t. In particular, the most general differential equation with a given
singular point z1(t) = α+ iβ ∈ C can be written as (44) with ż1(t) = 0.

Proof. The proof of this statement require a huge number of computations. We prove this
proposition only for linear and quadratic differential equations.

First we study the linear case, when p1(t, z, z̄) = z, p2(t, z, z̄) = z̄ Hence

H =

(
1 1
z z̄

)(
1 1

z1(t) z̄(t)

)
−
(

1 1
z1(t) z̄(t)

)(
1 1
z z̄

)

=

(
z1(t)− z z̄1(t)− z̄

z̄z1(t)− z̄1z + z − z1(t) z − z1(t)

)

Consequently

Φ = α̃1(t)(z − z1(t))− α2(t)(z̄ − z̄1(t)) + α3(t)(z̄z1(t)− zz̄1(t))

=
(

1, z1(t), z̄1(t)
)



0 α̃1(t) −α2(t)
−α̃1(t) 0 α3(t)
α2(t) −α3(t) 0






1
z
z̄


 ,
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where α̃1(t) = −α1(t) + α3(t) + α4(t). Thus from (44) we obtain that the most general
planar linear differential system of first order with the given solution z1(t) is

ż = ż1 + α̃1(t)(z − z1(t))− α2(t)(z̄ − z̄1(t)) + α3(t)(z̄z1(t)− zz̄1(t)),

where α̃1(t), α2(t) and α3(t) are arbitrary functions. So the proposition is proved for the
linear differential equations of first order with the given solution z1(t).

For the quadratic differential systems we have that

ξ̃(t)M(t)ξ(t) = −(a46z
2
1 + a56z1w1 + a26z1 + a36z̄1 + a16)z̄2

(a56w
2
1 − a45z

2
1 − a25z1 − a35z̄1 − a15)zz̄

+(a45z1z̄1 + a46z̄
2
1 − a24z1 − a34z̄1 − a14)z2

(a34z
2
1 + a35z1z̄1 + a36z̄

2
1 − a23z1 − a13)z̄

+(a24z
2
1 + a25z1z̄1 + a26z̄

2
1 + a23z1 − a12)z

a14z
2
1 + a15z1z̄1 + a16z

2
1 + a12z1 + a13z̄1,

where Mjk = ajk(t). From the equation Φ = σ1z
2 +σ2z̄

2 +σ3zz̄+σ4z+σ5z̄ = ξ̃(t)M(t)ξ(t)
we get that

σ1 = a16 + a46z
2
1 + a56z1w1 + a26z1 + a36z̄1,

σ2 = −a15 + a56w
2
1 − a45z

2
1 − a25z1 − a35z̄1,

σ3 = −a14 + a45z1z̄1 + a46z̄
2
1 − a24z1 − a34z̄1,

σ4 = −a13 + a34z
2
1 + a35z1z̄1 + a36z̄

2
1 ,

σ5 = −a12 + a24z
2
1 + a25z1z̄1 + a26z̄

2
1 + a23z1,

Φ|z=z1, z̄=z̄1 = σ1z
2
1 + σ2z̄

2
1 + σ3z1z̄1 + σ4z1 + σ5z̄1 = 0.

This completes the proof of the proposition for the quadratic polynomial differential systems
with a given solution z1(t).

In similar way we could obtain the result of Proposition 13 for polynomial differential
equations of degree m > 2 with a given solution z1(t), but the computations increases
strongly. �

Proposition 14. The most general planar polynomial differential system of degree m with
the given solutions ω = {z1(t), 0}, can be written as

(46) ż =
ż1(t)

z1(t)
z + Φ(z, z̄, t),

where

Φ(z, z̄, t) =< ξ̃(t),M(t)ξT >,

and ξ = (z, z̄, z2, zz̄2, z̄2, . . . , zm, . . . , z̄m), ξ̃(t) = ξ|z=z1(t), z̄=z̄1(t) and M = M(t) is a m(m+

3)/2 × m(m + 3)/2 antisymmetric matrix with components arbitrary functions of t. In
particular, the most general differential equation with a given singular points z1(t) = α+iβ ∈
C and z2 = 0 can be written as (46) with ż1(t) = 0.

Proof. It is analogous to the proof of Proposition 13. �
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6.1. Construction the quadratic differential system with a given set of solutions.

Proposition 15. Let ω = {z1(t), z2(t), z3(t), z4(t), z5(t), z6(t)} be a set of functions such
that

(47) ∆(ω) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1

z1 z2 z3 z4 z5 z6

z̄1 z̄2 z̄3 z̄4 z̄5 z̄6

z2
1 z2

2 z2
3 z2

4 z2
5 z2

6

z̄2
1 z̄2

2 z̄2
3 z̄2

4 z̄2
5 z̄2

6

z1z̄1 z2z̄2 z3z̄3 z4 z̄4 z5z̄5 z6z̄6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0

where

κ∑

j=1

|żj |2 6= 0. Then the most general quadratic differential equations of the first order

(48) ż = a0(t) + a1(t)z + a2(t)z̄ + a3(t)z2 + a4(t)zz̄ + a5(t)z̄2,

for which ω is a given set of solutions can be rewritten as

(49)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1

z z1 z2 z3 z4 z5 z6

z̄ z̄1 z̄2 z̄3 z̄4 z̄5 z̄6

z2 z2
1 z2

2 z2
3 z4

5 z2
5 z2

6

z̄2 z̄2
1 z̄2

2 z̄2
3 z̄2

4 z̄2
5 z̄2

6

zz̄ z1z̄1 z2z̄2 z3z̄3 z4 z̄4 z5z̄5 z6z̄6

ż ż1 ż2 ż3 ż4 ż5 ż6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Moreover the quadratic vector field with the set of solutions ω = {z1, z2, z3, z4, z5, z6} where
zj for j = 1, 2, 3, 4, 5 are constants solutions such than (47) holds has the invariant

(50)

∫ (
dz

Υ(z, z1, z2, z3, z4, z5)
− dz6

Υ(z6, z1, z2, z3, z4, z5)

)
= C = contstant.

where

Υ(ξ, z1, z2, z3, z4, z5) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1

ξ z1 z2 z3 z4 z5

ξ̄ z̄1 z̄2 z̄3 z̄4 z̄5

ξ2 z2
1 z2

2 z2
3 z4

5 z2
5

ξ̄2 z̄2
1 z̄2

2 z̄2
3 z̄2

4 z̄2
5

ξξ̄ z1z̄1 z2z̄2 z3z̄3 z4 z̄4 z5z̄5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. By applying the property of the determinant we easily prove that z = zj(t) are
solutions of (51). The reciprocity we prove as follows. From the equations

żj = a0(t) + a1(t)zj + a2(t)z̄j + a3(t)z2
j + a4(t)zj z̄j + a5(t)z̄2

j , for j = 1, . . . , 6,
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or equivalently




1 z1 z̄1 . . . z̄2
1

1 z2 z̄2 . . . z̄2
2

1 z3 z̄3 . . . z̄2
3

...
...

... . . .
...

1 z6 z̄6 . . . z̄2
6







a0

a1

a3

...
a6




=




ż1

ż2

ż3

...
ż6




we obtain that

a0 =
1

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z1 z2 z3 z4 z5 z6

z̄1 z̄2 z̄3 z̄4 z̄5 z̄6

z2
1 z2

2 z2
3 z2

4 z2
5 z2

6

z̄2
1 z̄2

2 z̄2
3 z̄2

4 z̄2
5 z̄2

6

z1z̄1 z2z̄2 z3z̄3 z4 z̄4 z5z̄5 z6z̄6

ż1 ż2 ż3 ż4 ż5 ż6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

:=
∆0(ω)

∆(ω)
,

a1(t) = − 1

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1

z̄1 z̄2 z̄3 z̄4 z̄5 z̄6

z2
1 z2

2 z2
3 z2

4 z2
5 z2

6

z̄2
1 z̄2

2 z̄2
3 z̄2

4 z̄2
5 z̄2

6

z1z̄1 z2z̄2 z3z̄3 z4 z̄4 z5z̄5 z6z̄6

ż1 ż2 ż3 ż4 ż5 ż6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

:=
∆1(ω)

∆(ω)
,

a2(t) =
1

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1

z1 z2 z3 z4 z5 z6

z2
1 z2

2 z2
3 z2

4 z2
5 z2

6

z̄2
1 z̄2

2 z̄2
3 z̄2

4 z̄2
5 z̄2

6

z1z̄1 z2z̄2 z3z̄3 z4 z̄4 z5z̄5 z6z̄6

ż1 ż2 ż3 ż4 ż5 ż6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

:=
∆2(ω)

∆(ω)
,

...
...

...
...

By inserting into (48) we get

ż =
∆0(ω)

∆(ω)
+

∆1(ω)

∆(ω)
z +

∆2(ω)

∆(ω)
z̄ +

∆3(ω)

∆(ω)
z2 +

∆4(ω)

∆(ω)
zz̄ +

∆5(ω)

∆(ω)
z̄2,

after some computations we obtain (51). The proof of (50) it is easy to obtain. Indeed from
the equation
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(51)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1

z z1 z2 z3 z4 z5 z6

z̄ z̄1 z̄2 z̄3 z̄4 z̄5 z̄6

z2 z2
1 z2

2 z2
3 z4

5 z2
5 z2

6

z̄2 z̄2
1 z̄2

2 z̄2
3 z̄2

4 z̄2
5 z̄2

6

zz̄ z1z̄1 z2z̄2 z3z̄3 z4 z̄4 z5z̄5 z6z̄6

ż 0 0 0 0 0 ż6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

and developing this determinant with respect to the last row we get (20). Clearly if
κ∑

j=1

|żj |2 = 0, then differential equation (51) becomes ż = 0. �

Proof of Proposition 7. The problem on the construction the polynomial planar vector field
(48) of degree m from a given set of (m+ 1)(m+ 2)/2 solutions is solved in Proposition 7.
The proof of this result is analogous to the proof of Proposition 15. �

The set of functions ωκ = {z(κ)
1 , . . . , z

(κ)
κ ) for 1 ≤ κ ≤ µ we call equivalent to the set

ω1 = {(z1(t), . . . , zκ(t))} if

∆j(ω1)

∆(ω1)
=

∆j(ωκ)

∆(Υκ)
.

for j = 2, . . . , κ.

Another interesting problem will be to determine the set of solutions ω such that

∆j(ω1)

∆(ω1)
= aj = constants, for j = 1, . . . , 6.

Remark 16. By considering that (m+1)(m+2)/2 < m2 for m = 2, 3 then the most general
quadratic and cubic polynomial differential systems can be obtained from (19) taking zj =
constants for m = 2, 3.

6.2. Complex polynomial differential equations of degree m with m+ 1 real solu-
tions. In this section we study the problem on the determination the complex polynomial
differential system of degree m of the form (21) with m+ 1 complex solution satisfying (22)
and m+ 1 real solutions.

Proof of Proposition 8. Assume that (21) has m + 1 solutions such that (22) holds. Then
from (21) it follows that

(52) żj = λ0 + λ1zj + . . .+ λmz
m
j , for j = 1, . . . ,m+ 1
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where λk =

k∑

n=0

einα ak−n,n(t), , for k = 0, . . . ,m. By solving (52) with respect to λk for

k = 0, . . . ,m, we get that

(53)

λ0 =
1

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣

ż1 z1 z2
1 . . . zm1

ż2 z2 z2
2 . . . zm2

ż3 z3 z2
3 . . . zm3

...
...

... . . .
...

żm zm+1 z2
m+1 . . . zmm+1

∣∣∣∣∣∣∣∣∣∣∣

,

...
...

...

λm =
1

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣

1 z1 z2
1 . . . ż1

1 z2 z2
2 . . . ż2

1 z3 z2
3 . . . ż3

...
...

... . . .
...

1 zm+1 z2
m+1 . . . żm

∣∣∣∣∣∣∣∣∣∣∣

,

By considering that

am,0 = λm − am−1,1e
iα − am−2,2e

2iα − . . .− a0,me
imα,

am−1,0 = λm−1 − am−2,1e
iα − . . .− a0,m−1e

i(m−1)α,

...
...

...

a00 = λ0,

and inserting them (21) we get

ż −
m∑

j=0

λjz
j = am−1,1(z̄zm−1 − eiαzm)

+am−2,2(z̄2zm−2 − e2iαzm) + . . .+ a0,m(z̄m − eimαzm)

+ . . .+ a0,1(z̄ − eiαz) = (z̄ − eiαz)
(
am−1,1z

m−1

+am−2,2z
m−2(z̄ + eiαz) + . . .+ a0,m(z̄m−1 + z̄m−2eiαz

+ . . .+ ei(m−1)αzm−1) + . . .+ a0,1

)
:= (z̄ − eiαz)P (z, z, t).

Hence in view of (53) we get that

ż −
m∑

j=0

λjz
j =

1

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 . . . 1
z z1 z2 z3 . . . zm+1

z2 z2
1 z2

2 z2
3 . . . z2

m+1
...

...
...

... . . .
...

zm zm1 zm1 zm1 . . . zmm+1

ż ż1 ż2 ż3 . . . żm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Therefore we obtain the proof of the proposition. �

Corollary 17. The most general complex polynomial differential equations of degree m with
m+ 1 real solutions ω = (z1(t), . . . , zm+1(t)) such that the Vandermonde determinant (23)
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is non-zero can be written as

(54)
1

∆(ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 . . . 1
z z1 z2 z3 . . . zm+1

z2 z2
1 z2

2 z2
3 . . . z2

m+1
...

...
...

... . . .
...

zm zm1 zm1 zm1 . . . zmm+1

ż ż1 ż2 ż3 . . . żm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (z̄ − z)P (z, z̄, t),

where P (z, z̄, t) is a convenient polynomial of degree m− 1.

Proof. It follows from Proposition 8 with α = 0. �

Remark 18. From Proposition 17 it follows the next remarks.

(i) If a complex polynomial differential equation of degree m has m+ 1 singular points
such that z̄j = eiαzj , for j = 1, . . . ,m + 1 , then it has the singular straight line
z̄− eiαz = 0, i.e. (1− cos α)x+ sinα y = 0. The proof of this result follows trivially
from (24). Indeed, in this case differential equation (54) becomes

ż = (z̄ − eiαz)P̃ (z, z, t).

where P̃ (z, z, t) is a convenient polynomial of degree m− 1.
(ii) If a complex polynomial differential equation of degree m has m + 1 real singular

points, then it has the singular straight line z̄ − z = 0. The proof of this well known
result follows trivially from (21). Indeed, in this case differential equation (54)
becomes

ż = (z̄ − z)P (z, z, t).

(iii) If a complex polynomial differential equation of degree m has m + 2 real solutions,
then we have

(55)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 . . . 1
zm+2 z1 z2 z3 . . . zm+1

z2
m+2 z2

1 z2
2 z2

3 . . . z2
m+1

...
...

...
... . . .

...
zmm+2 zm1 zm1 zm1 . . . zmm+1

żm+2 ż1 ż2 ż3 . . . żm+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Indeed if z = zm+2(t) is another real solutions of a complex polynomial differential
equation of degree m, then from (54) it follows (55). Consequently zm+2(t) is a
solution of the generalized real Abel equation

ẋ =
m∑

j=0

aj(t)x
j .

6.3. Polynomial differential system of degree m > 3 with m2 singular points.
We shall determine the most general polynomial differential system of degree m for which
ω = {(z1, z2, . . . , zm2)} where zj is constant for j = 1, . . . ,m2 such that zj 6= zk for j, k =
1, . . . ,m with j 6= k.

Proposition 19. The most general differential polynomial differential system of degree m
with m2 singular points can be represented as follows

(56) ż = α11(t)H11(z, z̄, t)+α21(t)H21(z, z̄, t)+α22(t)H22(z, z̄, t)+ . . .+ακκ(t)Hκκ(z, z̄, t),
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where ajn(t) is an arbitrary function for j, n = 1, . . . , κ > m, and Hjn(z, z̄, t) for j, n =
1, . . . , κ are polynomials of degree m elements of the κ× κ matrix H = Hm2 where

Hr =
[
Hr−1(z, z̄, t), Hr−1(zr, z̄r, t)

]
,

where [H,G] = HG − GH is the Lie bracket, r = 1, . . . ,m2 and H0 = G(z, z̄, t) is an
arbitrary κ× κ matrix whose are elements are arbitrary polynomials of degree m.

Proof. Clearly that all elements of the matrix H1 =
[
H0(z, z̄, t), H0(z1, z̄1, t)

]
are vanishing

when z = z1, and all elements of the matrix

H2 =
[[
H0(z, z̄, t), H0(z1, z̄1, t)

]
,
[
H0(z2, z̄2, H0(z1, z̄1, t)

]]

are vanishing when z = z1, and z = z2. By continuing this process we obtain that all
elements of the matrix

Hm2 =
[
Hm2−1(z, z̄, t), Hm2−1(zm2 , z̄m2 , t)

]
,

are vanishing when z = z1, . . . , z = zm2 . Consequently the function

Φ = α11(t)H11 + α12(t)H12 + α21(t)H21 + α22(t)H22 + . . .+ ακκ(t)Hκκ,

is a polynomial of degree m for which the given m2 complex constants are it zeros. In short
the proposition is proved. �

Corollary 20. The most general differential polynomial differential system of degree m with
m2 singular points can be represented as follows

ż =< ξ̃(t),M(t)ξT >,

where ξ = (1, z, z̄, z2, zz̄2, z̄2, . . . , zm, . . . , z̄m), ξ̃(t) = ξ|z=zm2 (t), z̄=z̄m2 (t) , and M(t) is an

arbitrary (m+1)(m+2)/2×(m+1)(m+2)/2 antisymmetric matrix such that < ξ̃(t),M(t)ξTj (t) >=

0 with ξj = (1, z, z̄j , z
2
j , zz̄

2
j , z̄

2
j , . . . , z

m
j , . . . , z̄

m
j ), for j = 1, . . . ,m2.

Proof. After huge computations it is possible to show that there exists the antisymmetric
matrix M such that the right side of (56) can be written as

κ∑

j,n=1

αjnHjn =< ξ̃(t),M(t)ξT >,

where Hjn are elements of the matrix Hm2 given above. �
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[13] J. Llibre, R. Raḿırez and N. Sadovskaia, Integrability of the constrained rigid body, Nonlinear
Dynamics 73 (2013), 2273–2290.
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