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DIFFERENTIAL EQUATIONS WITH A GIVEN SET OF SOLUTIONS

JAUME LLIBRE!, RAFAEL RAMIREZ2, AND NATALIA SADOVSKAIA3

ABSTRACT. The aim of this paper is to study the following inverse problem of ordinary
differential equations: For a given set of analytic functions w = {z1(¢),..., z-(t)}, with
zj(t) = x;(t) +dy;(t) and Z;(t) = x;(t) —y;(t) for j = 1,...,r, defined in the open
interval I C R, we want to determine the differential equation

F(t,2,2, %, %,...,2M zM) =0,

. diz
where z(9) = - for 5 = 1,...,n, in such a way that the given set of functions w is a

set of solutions of this differential equation.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In the theory of ordinary differential equations we can find two fundamental problems.
The direct problem which consists in a broad sense in finding the solutions of a given ordinary
differential equation, and the inverse problem. An inverse problem of ordinary differential
equations is to find the more general differential equation satisfying a set of given properties
(see [4, 10, 19, 20].

The inverse problem for determining the ordinary differential equations with given partial
and first integrals was studied in [10]. The obtained results were applied in particular

(i) to construct Lagrangian mechanical systems with a given set of linear constraints
with respect to the velocity and to obtain Hamiltonian systems with a given set of
first integrals (see [11, 20]),

(i) to solve the 16th Hilbert problem for algebraic limit cycles (see [11, 12, 13, 14, 21]),
and

(iii) to study the center-focus problem (see [15, 16, 17]).

In the rest of this paper we assume that all the functions are analytic in their variables,
but we remark that this condition is for simplicity, although most of the results remain valid
for C" functions with a convenient r > 1.

We study the following two problems on the determination of ordinary differential equa-
tions with a given set of solutions.

Problem 1. Determine the most general ordinary differential equations of order n of the

form

(1) F(t,z,%,...,2") =0,

for which a given set of functions w = {z1(t),...,2:(t)}, with z;(t) = x;(t) + iy;(t) for
j=1,...,r, defined in the open interval I C R are solutions of the equation (1).

We consider the following particular case of Problem 1.

Key words and phrases. planar differential system, inverse problem for ordinary differential equations,
Ricatti equation, Abel equation, first integral.
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Problem 1.1 Determine the conditions on the set of functions w = {z1(t),...,zx(t)} in
order that a differential equation of the form

(2) z=[f(t,2),

has first the functions z;(t), for j = 1,...,k, as solutions, and second an invariant of the
form

k
(3) F=e" AO]](z = 20)% (2 = z)",
j=1

where U = ¥(z, z,t) and A = A(t) are functions, and «; and v;, are complex constants for
j=1,...,k

Problem 1.1 is studied in sections 4 and 5.
Problem I1. Determine the most general ordinary differential equations of order n
(4) F(t, 2,24 %,...,2M,zM) =0,
for which the given set of functions w = {z1(t),...,2-(t)}, with z;(t) = x;(t) + iy;(t) and
Zi(t) = z;(t) —iy,;(t) forj =1,...,r, defined in the open interval I C R are solutions of the
equation (4). We shall study the following particular case of Problem II.
Problem I1.1 Let
(5) 2=F(tz2),
be a differential system, where F(t,z,Z) is a polynomial of degree n in the variables z and

zZ.

(i) Determine the conditions of the set of functions w = {z1(¢t),...,zx(t)} for k > 1,
in order that there exists a differential equation (5) having the set of functions w as
solutions.

(ii) Determine the mazimum numbers of functions z;(t) for j =1,...,k, which define a
unique polynomial differential system (5).

Problem II.1 is study in section 6.
The main results are the following.

Theorem 1. Let w = {z(t),...,2,(t)} be a set of functions such that

21 (t) Z9 (t) N Zn (t)
41(t) Zt) ..o Za(t)
(6) det(A) := Aw) = : : : # 0.
AV Ve L )
Then the most general linear ordinary differential equations of order n of the form
(7) ao()2™ + .+ an_1()i+an(t)z =0, ao(t)#0

having w as a set of solutions is
z z1(t)  z(t) ... zu(t)
Wiz, z1(t),...,2n(t) = | . : : : =0.
P O I O () NP Ol ()
Moreover z(t) = Z C;z;i(t) is a general solution of this differential equation, where C; are
j=1

arbitrary constants.
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Corollary 2. If the set of functions w = {z1(t),...,zn(t)} satisfies (6), then the general
solution of the differential equation
ao(t)z2"™ + . an()i4an(t)z = f(t), ao(t) #0
18
z2=C1(t)z1(t) + Ca(t)z2(t) + ... + Cpn(t)zn (),
where C1(t),...,Cn(t) are functions such that AC = A, where C = (Cy,...,Cp)T, A =
0,...,0, f(t)T, and the matriz A is defined in (6).

Theorem 1 and Corollary 2 are proved in section 2.

Theorem 3. Let w = {z1(t),...,2n+1(t)} be a set of functions such that the Vandermonde
determinant

(8)

2 2N ... oz(t) 1
25 (t) zgfi(t) ooz() 1
Aw)=| z(@) =z (1) ) 1 l=detd= T (an(t) —2(1) #0,.
: : : : 1<k<j<n
() () o Zea(t) 1
n+1
and Z 2% # 0.

Then any first order nonlinear ordinary differential equation of the form

9) ap(t)z™2 4+ a1 (t)2" 4+ ...+ an_1(t)2* + an(t)z + a1 (t) =0,
where n and m are non-negative integers with ao(t) # 0 and having z1(t),. .., zn11(t) as
solutions can be written as
1 1 1 N 1
z z1(t) z9(t) . Zn+1(t)
2RO BO .. a0
(10) : : : : =2"A(w)z — Z(z,t) =0,
S Bl . )
iAW) OB . ()
Moreover if z; = constant for j =1,...,n then there exist the invariant
(11) / _ Lm dz(t) . i;n+1(t) dZnJrl(t) ,
[[GEH-2) T]GEm®-=2)
j=1 j=1

which is constant on the solutions of (9).

Corollary 4. Differential equation (10) for m = 0 under the change

1
Z=Znt1 + "
can be written as
(12) w" b = By (t) wT + Bo(t) w4+ Bal(t),
& Z(z,1)
027

where = —B;(t), for j =1,...,n, where Z(z,t) is defined in (10).

Z=Zn+41
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Theorem 3 and Corollary 4 are proved in section 3.

The differential equation
(13) 2 =p(t)2® + q(t)2* +r(t)z + s(t) = Q(t,2), with p(t) #0,
is called the Abel equation of first kind and the differential equation
(14) ww' 4+ ¥(t)w = dw? + Y (t),

is called the Abel equation of a second kind. Note that Y(t) # 0, otherwise we have a linear
differential equation.

The Abel equations in general has no invariants, but there exist some particular cases for
which these equations have an invariant. We shall study some of these cases.

Proposition 5. Let w; = w;(t) for j =1,2,3 be solutions of the Abel differential equation
of second kind (14). Then equation (14) has the invariant

3

7ij/<1>(t)dt 5
(15) F=e 7= I (w = wie)m,

Jj=1

if and only if

(16) 3 w”?{%) =0.

j=1 7
Here the m; are constants not all zero.

Corollary 6. The Abel differential equation of the first kind has the invariant

3

7j§::1mj /cb(t)dt

F=e

if and only if

3
(17) > mj(z = z1)) =0.

j=1
3 3
Moreover if Z m; =0 then Z m;z; = 0 and the invariant F' becomes
j=1 j=1
3 5 mj 3
(18) F= ]I ( j ) = A1) (z—2)"™,
- Zj T %4 -
k=1, k#4 k=1, k#4

Proposition 5 and Corollary 6 are proved in section 5.



Proposition 7. Let wy = {z1(t),...,2:(t)} for k = (m+ 1)(m +2)/2 be a set of functions

such that
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—m—1
z1Z7"

1 1
22 Rk
22 2k
zm—1 sm—1
22(t)7; 2y (t)
23 Z'

as solutions can be written as

1 1 1 1
z z1 Z9 Zk
z 2 Z z,
19 m m m m =0
(19) z 2] 2y 2! )
sm—1 -m—1 -m—1 sm—1
2z 2171 29Z5 2k 2]
~m ~m ~m ~m
Z Z] Zy zZ
z 1 2o %
Moreover if z; = constant for j =1,...,k — 1 then there exist the invariant
dz dz
(20) / ( - = = C = constant.
Y(z,21,. -y 20-1)  Y(2ky 21,y 25—1)
where
1 1 1 1
§ 21 22 Zr—1
§ Z1 Z2 Zr—1
Y 21, .., 20_1) =
(ga 1 ) AR 1) gm m m m
21 22 Zr—1
cm—1 sm— sm—1 —
&em 217, 292 Z—1Z, 4
cm >m sm >m
3 21 22 Zr—1

Proposition 7 is proved in section 6.

# 0 withk = (m+1)(m+2)/2
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Proposition 8. Consider the differential equation of the form

(21) z= Z Z a;(t)27 2",

n=0 j+k=n
with m 4+ 1 complex solutions w = (z1(t), ..., zm+1(t)) such that
(22) Z;i(t) = ez (t), for j=1,....m+1,

where o € R and the Vandermonde determinant

1 1 1 ... 1
z1 ) z3 oo Zm41
22 22 22 22
(23) Alw)=| # %2 2 - Zmy1 | #£0,
210 21 2 Zm 41
can be written as
1 1 1 1 ... 1
z z1 z9 z3 coo o Bm41
2 2 2 2 2
1 z 21z 23 ... Zmq )
(24) ~ | - . . ) ) = (z—€"*2)P(z, z,1),
A(w) : : : A, :
m m m m m
S S L “m+1
z 21 292 z3 e Zm+1

where P(z,Z,t) is a convenient polynomial of degree m — 1.

Proposition 8 is proved in subsection 6.2.

2. PROOFs OF THEOREM 1 AND COROLLARY 2
Proof of Theorem 1. Clearly differential system (7) has the solutions given by the set of

functions w. Indeed, if z = z;(t) with j = 1,...,n, then in view of the properties of the
determinant we have that W (z;(t), z1(¢),...,2z,(t)) = 0.

The reciprocity is proved as follows. We assume that we have the linear differential
equation of order n
ao®)z™ 4. an_1 ()i +an(t)z =0, ag(t) #0,

and let w = {z1(t),...,2,(t)} be the set of functions satisfying (6). Then, solving the system

ao(t)zs™ + .. ano1 (D)3 +Fan(t)z; =0, for j=1,...,n.
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with respect to aq,...,a, after some computations we get that
z1(t) z9(t) ceozn(t)
21(t) Z9(t) e Zn (1)
(1) 2ag(t) : : : (=)™ P2ap(t) A (w)
a(t) = A(w) (n—2) (n—2) T (e o Aw) ’
2 (1) (t) (1)
A7) ") 21" (1)
Z2(t)  Z() Zn(t)
- @] A0 20 B0 aAw)
N : ST Aw)
SRONE IO RN RI()
Inserting aq,...,a, in (7) we obtain
ap(?
A(J((w)) (A(w) () 4 (71)n+2A1(w)Z(n71) .. —An(w)z) —0.
This last expression is the development of the determinant given in (8) using its first column.
Hence the theorem is proved. O

Proof of Corollary 2 . The proof of these Theorem is well known as variation of constants,
is a general method to solve inhomogeneous linear ordinary differential equations. O

3. PROOFS OF THEOREM 3 AND COROLLARY 4

Proof of Theorem 3. First we prove that the set of function w = {z1(¢), ..., zn+1(t)} satisfies
(10). Indeed, in view of the properties of the determinant we get that

1 1 1 ... 1
zi(t) z1(t)  z(t) ... zZppa(t)
23 (t) A1) () ... zi(t)
: : o =0
2(t) 2r(t) 25(t) ... 2yt
2t A0t @) ... Zea(t)

forj=1,...,n+ 1.

The reciprocity is proved as follows. We assume that we have the nonlinear differential
equation of first order (10), and let w = {21(¢), ..., zn+1(t)} be the set of functions satisfying
(8). Then from the relations

ar(t)zj +...+ an_l(t)z? +an(t)zj + ant1(t) = —ao(t)z]"'z;. for j=1,...,n+1,

Since this system is a linear system with respect to ai(t),...,an+1(t) it can be written in
the matrix form

27 (t) z?_i(t) ooz 1 ay () 27 ()21 ()

28(t) 27 (t) ... z(t) 1 as(t) 25 (t)22(t)

220 27N .. z(t) 1 as(t) — —ag 2 (t)23(t)

o) 2O zan® 1)\ an® 2 () (1)
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In view of condition (8) and by applying the Cramer’s rule we obtain that

zgﬂgt;zlgt; z{”%t; Zlgti 1
25 (1) 2o (t 227t 2t
o aold) | i n1 . _ao(Ai(w)
ai(t) = —m 3 (t) 3(t) 3 ‘ (t) 3'(15) 1 = _OAT7
Zn41 () Zn41(2) 22111 (t) Zpy1(t) 1
A0a) =) AT z1(t)
o E®BRO 20 5 () 2a(t)
YT SR 1.1 GO e ) EN O I OO B () 2a(t) | o (—pyner 20l
A(w) ) . .
a1 (g (t) 2 () 25 (D) Znt1(t)
By inserting aq(t),...,an+1(t) into (9) after some computations we get (10).

ao(t) (A@)zm™ 20 4 (—1)"F 200 @)z 7D 4 —An(w)z) = 0.

Aw)

This last expression is the development of the determinant given in 10 using its first column.
To prove the relation (11) it is easy to obtain by considering that z; =0 for j =1,...,n.

n+1
Clearly if Z |2;> = 0 then the all coefficients a;(t) for j = 1,...,n+1 are equal to zero.
j=1
Consequently differential system (9) becomes Z = 0. Thus the theorem is proved. (]

Proof of Corollary 4. By developing the polynomial Z(z,t) of degree n in the variable z (see

formula (10)) in powers of z — z,41 we get

0Z(z,t 1 0%2Z(z,t
2Gt) = Zena )+ TN oy g TEED oy
Z=Zn+1 Z=Zn+1
1 0" Z(z1) §
+...+ i e o (z — zZnt1)
= Z(zps1,t) = Bi(t)(z = zn41) = Bo(t) (2 — 2n41)? — - = Bu(t) (2 — 2pg1)™

Introducing the new variable 1/w = z—z,41 and by considering that A(w)2,4+1 = Z(zn+1,1t)
after some computations we obtain (12). Then the corollary is proved.

O

Example 1. For differential equation (10) for m =0 and n = 2 ( Ricatti equation)

o 21 (23 — 22) + 25(21 — 2z3) + 25 (22 — 21) 2
Aw)
(25) (28 = 28) + (et — 23) + 25(25 — #f
A(w)
Zi (2’3 — 22)2’322 + Zé(Zl — 23)2123 + Zé(ZQ — 21)2221
Aw) '

differential equation (12) becomes

. 1
(26) w = By (t)w+ Pa(t), w =

zZ — Z3
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with
- (22 — 2’3)2':1 _ (21 — Z3)2'32 (Zl — 22’3 + 22)23
i) = (21 —23)(21 —22) (22— 23)(21 —22) (22 —23)(21 — 23)
Ba(t) = — a = &

(21 — 23)(21 — 22) * (22 — 23)(21 —22) (22 — 23)(21 — 23)

Example 2. For differential equation (10) for m = 0 and n = 3 (Abel equation of first
kind), having four solutions z1, za, 23, z4 satisfying (8) can be written as (10) or equivalently

_ AW 5 Be(w) n As(w)  Aa(w)

@) YTRW AW T AW Aw) e
equation (12) becomes
(29) wi = B0+ Baltw+ Bult), =
with
B1(t) = A(z1, 22, 23, 24) 21 + A(22, 21, 23, 24) 22 + A(21, 23, 22, 24) 23

+ (2’2 — 24)(21 — 24) —+ (2,’3 — Z4)(2’1 — Z9 — 22’4)2
(21 — 24)(23 — 24) (22 — 24)

(21, 22, 23, 24) 21 + (22, 21, 23, 24) 22 + P21, 23, 22, 24) 23 + P21, 22, 24, 23) 24,

)

Ba(t)
Bs(t)

V(Zla 22,23, 24)21 + Z/(ZQa 21y %3, 24)22 + V(Zl7z37 22, Z4)23 + I/(Zl, 22, %4, 23)2.47

(w—r7)(v—u) = v
pwlu,v,w,r) = (u—v)(u—w)(u—r)

, and

where A(u,v,w,r) = Tw—v)u—w)(u—r)’

v(u,v,w,r) = = (u—v)(u—w)(u—r)
We say that the set of functions wy = {21, 23, ..., 2,41} which are solutions of equation
(10) and the set of functions w, = {ziﬁ), ce zfli)l} are equivalent and we write w; ~ w,, if
Ajw) _ Aj(we)

AW :A(wm)7 for j=1,...,n4+1 keN.

Clearly if w; ~ w, then &1 ~ @, where W, = {zl,z27zj,1,z](-ﬁ),zj+1, veoyZnt1) and @, =
{z§”), ... ,zj(-'i)l, Zj, zj(-i)l, A z,(ﬁgl, }, The set of equivalent solutions of (10) we shall denote

by €.
Example 3. For the Abel differential equations of the first kind

. 22523 +16(3t% — 17t 4 6t* — 1)z
At = 1) (- 4) (4t 1)

a set of equivalent solutions ) is (see [6])

2 2 4
{21 = —29 = gt(tZ + 1), 23 = —Z4 = gt(t2 — 1), 25 = —26 = B(fl — 1), 27 = 0}

4. STUDY OF PROBLEM 1.1

4.1. Nonlinear differential equations with constant solutions. Problem I.1 has an
easy solution when the functions z;(t), for j = 1,...,n+1, are complex constant z;, because
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n+1
then f(t,2) = A(t) H (z—zs)" with k; € N and A(t) is a convenient function. Indeed, from
s=1
(9) it follows that
n+1
=) [ - 200" = A(Dg(2),
s=1

where for simplicity we assume that the function A(t) is real. From the equations 2 = A\(t)g(2)
and z = \(t)g(Z) it follows that

dz dz
9=) 93
After the integration of (29) we get that

SAENE)

is a first integral of the differential equation (29). It is possible to show that the function
F = exp F' is an invariant, that in this case is a first integral

(29)

n+1 W
H (z — zs)AS
_ ¥ s=1
i e—
IT G-z
s=1
where .
A 2 1 A(k?)
Vo= (-t ! ...
( (Z—Zl) (1—,‘4‘,1) (z—zl)—1+ﬁ1
(o i
Z— Zn+t1 (1 = Kpg1) (2= Zpyr) " Henn ’
where A%) is a convenient constants for j = 2,... k,41 and m = 1,...,n + 1. In short,

Problem 1.1 is solved when all the functions of w are constant.

4.2. First order linear ordinary differential equations and Riccati equations. Here
we see that Problem 1.1 is easy to solve for first order linear ordinary differential equations
and for the Riccati equations. Indeed, by Theorem 3 the first order linear differential
equation with the two solutions z;(¢) and z2(t) such that A(w) = 2z1(t) — 22(¢t) # 0, can be
written as (10) for n =1 and m =0 is

() —z11)  z(t)z(t) — za(H)z(0)

30 2 — z+ =0.
( ) z9 (t) — Z1 (t) Zg(t) — Z1 (t)
After some computations we get that
z—2z1(2
(31) F= i A (2 — 21 (1) =

2a(t) — 21(t)
is an invariant of the differential equation (5).

By Theorem 3 the first order Riccati differential equation having the three solutions
z1(t), z2(t) and z3(t) satisfying (8) for n = 2 and m = 0 can be written as (25). By
considering that Ricatti equation under the change w = 1/(z — z3) can be transformed to
the linear differential equation (26), which has the invariant

w — w1 (t)

F= wa(t) — wr(t)’
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(see formula (31)). Clearly this differential equation has the solution wy = 1/(z1 —z23), we =
1/(z2 — z3), then in view of formula (31) we have that this linear equation has the invariant
w—ws 1/(z — z3) — 1/(21 — 23) _ (z— z1)(22 — 23) _ (z—21)

wy — Wa 1/(21 —23) = 1/(22 — 23) (2 —23)(22 — 23) (2 — 23)

F=-

The invariant for the linear differential equations is trivial and for the Riccati case corre-
sponds with the well known fact that the cross-ratio of four linearly independent solutions is
a constant (see for instance [2]). These results are known but the interest of the proofs which
we propose consists in showing that these proofs can obtained from the inverse approach:
we have the explicit expression of these differential equations for the given solutions.

5. ABEL DIFFERENTIAL EQUATIONS HAVING AN INVARIANT
The main objective of this subsection is to study the problem of existence of the invariant
(3) for the Abel differential equations .

From Theorem 3 the Abel equation of the first kind (13) having four solutions z1, 22, 23, 24
satisfying (8) for n = 3 and m = 0 can be written as (27) Clearly that in this case

p(t) _ _Al(w) _ Z£ + Zé
A(w) (21— 22)(21 — 23)(21 — 24) (22 — 21)(22 — 23)(22 — 24)
24 zy
+(23 — 22)(23 — 21)(23 — 24) - (24 — 22) (24 — 23) (24 — 21)’
Ag(w) A3(w) - A4(w)

q(t) = A(w) ’ T(t) = A(W) ’ S( ) - A(W) :

1
As we prove in section 3, the Abel equation of first kind (27) under the change z = z4(¢)+ o

and introducing the respectively notations,becomes into the Abel equation of a second kind
(28) or equivalent (14).

Proof of Proposition 5. We consider
dF 3 3 w' —wi(t
(32) =1 ; m;®(t) + ; my—— s w;((t)) F.
Then in view of (14) and by considering that w;(¢) is a solution of (14), i.e.
wjw} + V(tw; = Pw; + (1),
then (32) becomes
— wj(t)

3
_;mj +ij " w, t

o(tyw — w(t) + L8 _ a(tyw, + () — L8

3 3
w w;
= =D m®(t)+ ) m, ’

3

j=1 7
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dF T(t j
Hence (32) can be written as s —LZ " | F. Since T(t) # 0, from this last
u .

equality we have that dF'/dt = 0 if and only if Z m;/w;(t) = 0. The proof of representation
j=1
(15) it is easy to obtain. Hence this completes the proof of the proposition. O

Proof of Corollary 6. 1t follows from Proposition 9 by considering that w = and

z— 24
3 3
s
w; = , for j = 1,2,3, consequently condition (16) becomes — = m;(z; —
e (10 > =Y

Example 4. We illustrated Corollary 6 for the case when z; for j =1,2,3 are constants.
After some computations we can prove that differential equation (27) becomes

_ (z — 21)(z — 22) (2 — 23)24(1)
(24(t) — 21)(24(t) — 22)(24(t) — 23)

The invariant F in this case is (see invariant (11))

= (ﬂ) : (242(5 j222 ) ) <Z4?t; j323 ) :

1 — 1 — 1
(21 - 22)(21 - 2’3)7 2 (Z2 - 21)(22 - 23)7 5 (23 - Zl)(23 - Zz)7

clearly that my + ms +mg = 0 and myz1 + mozs + mgzz = 0.

where

my =

Clearly after the change of variables w — w e/ bt equation (14) becomes
w(w +¥(t) ="T(t).
Proposition 9. Let the sets of functions
w={w,ws,ws}, wy= {wgﬁ),wé’i),wéﬁ)}, for 1<k <g,

be equivalent sets of solutions of the Abel differential equation of second kind (13). Denoting

by Q = {wy, wa, w3, wy = wgl),ws = wgl),wﬁ = w:(;), ...} the set of all equivalent solutions

where k € N and p = 3(s + 1). Then equation (14) has the invariant

_Zujmj / () dt

o
F = H (w—w;)™, with w; € Q,

Jj=1,

if and only if

“w
BT
=1 Wi

Here the m; are constants not all zero. Moreover, under the changes

/<I>dt /<I>dt
w=We w; = Wje

) 7
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the invariant F' becomes
o
F =] -w;m)™,
j=1

Corollary 10. Let the sets of functions

w1 = {21,22,23,2’4}, Wg = (Zgﬁ)azéﬁ)azéﬁ)7zz(1ﬁ)}a fOT 1 <k < S,

be equivalent sets of solutions of the Abel differential equation of first kind (13). Denoting

_ _ M Y _ ) _ 9
by Q - {21,22723,24,25 - Zl 526 - Z2 527 - Z3 7Z8 - Z4 )
solutions. Then there exists the invariant

I N\ My
F = A(t) H (Z Zj) ,  with z; € Q,

...} the set of all equivalent

if and only if

I b
Moreover if Z m; = 0 then Z m;z; = 0 and the invariant I becomes

j=1 j=1
H Py mj H
F = J e A t _ A\ .
I (2=2) =20 II -2
k=1,k#4 77 k=1, k#4
Proof. 1t is analogous to the proof of Proposition 9. O

There are a lot of results on the existence of invariants F' for the equation (17), or for its
canonical form (see for instance [2]).

Introducing the new independent variable z = — / U(t)dt we get the canonical form of
the Abel equation of the second kind becomes
T

(33) u (ZZ — 1) = R(x)  with R(z)= %

Clearly that this differential equation with two solutions w = {uy, us} where u; = u1(z) and
uz = uz(z), can be written as

Ay (w) Az (w)

(34) uu' + Alw) u+ Aw) 0,
b4 Ay(wi) 0 Agwr) .
where / := e d A(wr) 1, Alwn) R(x)

Proposition 11. Let the sets of functions
wi = {u,up}, we = {u\? U8}, for 1<k <5,

be equivalent sets of solutions of the Abel differential equation of second kind (13). Denoting
by Q = {uy,us, ug = wgl),uzl = wél), ...} the set of all equivalent solutions of the Abel
differential equation of second kind (34). Then there exists the invariant

m
F= H (w—u;)™, with u; € Q,
k=1,k
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if and only if

"
mj o _
(35) Z W= 0.
j=1

)

Proof. 1t is analogous to the proof of Proposition 9 with ® =0 and ¥ = —1. O

Example 5. We study equation (34) in the particular case
du 3x A B

36 ——1l)==-—= - —=.

(36) o(G-1) .

In [2] the authors showed that the set of function wy = {u1,us} where

3 3 V=3B
w= Juty\[3A+ V3B Vit TR

4
3 —3B
SVBBYa

are solutions of equation (36). The following set of functions wy = {us, us}

3 / 3 —3B
us = Zl’—i— 3A—§\/—3B\3/5— 3 5
vV T

3 3 —3B
w= o \[3A- SVBB Y-

(37)

:

3
up = T 3A+

%

X

:

pE

-

x
is equivalent to (37). Indeed it is easy to show that

A1(w1) _ Al(w2) -
A(w1) A(ws) ’

Ag (wl) AQ (CL)Q) 3z A B

Alw))  Alwy) 16 Yz pp
By considering that my/uy + ma/us + mg/us + ma/us = 0, where

m; = V12A—6v—-3B, mo=—12A —6v/—-3B,
mg = —V12A+6vV—-3B, my=+12A+6v—-3B.

Then in view of Proposition 11 we obtain that equation (36) has the invariant

F= (u—u)™ Tiu — ug)™? (um— u3)"™ ((u — ug)™,
- (i) ()

According to the result given by Alexeeva, Zaitsev and Zhvets [2], any Abel equation of
the second kind in the canonical form (33) has the invariant

m

(38) F =T (w=us(s)™
Jj=1,
where u;(s) is a particular solution of (33) and m; is a convenient constant for j =1,...,m

if the following relation holds

B 3 [ (e - ) I - o) > (a6 + w).

=1 k=1,..,n j=1

J
where ®,(s) = =¥, (s) U,_1(s) = —R(s)P,(s), and equate the other ®; and ¥; with
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Selecting different values v =1,...,n — 1, we obtain n — 1 systems of different-algebraic
equations; only one of the systems, corresponding to my, # 0 forall k =1,...,n and u; # u;
for ¢ # j, leads to a non degenerate solution of the form (38). Clearly condition (39) is
complicated to compute unlike conditions (17). In the monograph [2] there is an example of
solutions of (33) obtained from (39) for a convenient R(x). All these solutions satisfy (35)
for a convenient constants m;. The examples given in [2] are the following and as we show
all of them satisfy the condition (35).

Example 6. For n = 2 differential equation (33) with R(x) = Ax + b where a and B are
constants has the following solutions

1+v1+4A
2A

~ 1+V1444
2A+1+V1+4A

and mp = 2A+ 1+ 1+ 4A, mg = 2A. Clearly that my/us + ma/us = 0.
For n =3 and for R(x) = —=2/9tx + A+ B/\/x the obtained solutions in [2] are

(Az +0b), U == (Az +b),

U ==

2 3B
u; = §(x+)\J\/E)+TJ’
2A
= —— 1 =1,2,3
mJ 3(2)\?_314) for .] b A

where \ is a root of N3 — 9/2AX — 9/2B = 0. It is easy to show that mi/uy + mao/uz +
ms/ug = 0. We can prove that Q = {uy, us,us} is a set of equivalent solutions. Indeed if
w1 = {ug,us}, we = {u1,us} and ws = {uz,uz} then

Ar(wr)  Agws) _ Ay (ws3)

= = —17
A(wr) Alwz)  Afws)
Az(wi) Ap(wz) _ Ag(ws)
Mo~ Bl A Ve
For m = 4 and 3z _ i - i the authors proposed the solutions given in example 5

16  Jr  ob
with wrong constants mi1 = —mg = —2A + /=3B, and mg = —my = V4A2 + 3B, because
m1/U1 +m2/u2 +m3/U3 +m4/U4 7é 0.

5.1. Julia invariant. Assume that the functions u;(s),...,u,(s) satisfy the equation
ut 4 ar(s)u" "+t au_a(s)u +au(s) =0,

and are solutions of the canonic Abel second kind differential equation (33), then there exists
an invariant

(40) P =Tt us(s))

Indeed, under the given assumption the functions wui(s), ..., u,(s) satisfy the relation

Iz p—1
Huj(s)—i— H uj(s)—i—...—i—Huj(s):Q
=2 =1, j#2 j=1

“w

1
or what is equivalent
a ; u;(s)

7 =1,..., p there exists the invariant F.

= 0, consequently, in view of Proposition 11 with m; = 1 for
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1 1
In particular if 4 = 2 we have that if — + — = 0 or, what is equivalent u; 4+ us = 0,
Ul u2
then the invariant becomes

F=(u—wup)(u+uy).
The French mathematician Gaston Julia proved 1933 in [5] (6, p. 82f) that the equation

dy
(Dy-i—E)E—i—Ay +By+C=0,

for A, B,C, D and F functions of ¢, has an implicit solution if the condition
L:=FEQRA—-D")-DB-FE')=0,
with D # 0 is satisfied. Then the invariant is

2A
/ﬁdt Y2 /—dt
F=e (2+D ) = const.

Doing two changes of variables the previous differential equation yields the general Abel

equation of first kind. First we do the change of variables y = w(t) — D and we get

(1) oA, L FPA-EDB+CD*
ww DU} D2 D3 = u.

The invariant under the given change becomes

oD P (B ed vt

—dt
By putting L = 0 and after the change w — we/ D" we obtain that the differential
equation (41) becomes

—24
. — 4 (E?A - EDB + CD?
ww' + e 3 = 0.

This last differential equation has the invariant F' = (u — uy)(u + u1), where

R /—dt e /—dt

which corresponds to the invariant (40) with p = 2.

Finally we observe that there exits a big numbers of papers devoted to study the existence
of exactly solutions and applications of the Abel equation (see for instance [1, 3, 7, 8, 9, 18]).

6. PLANAR POLYNOMIAL DIFFERENTIAL EQUATIONS WITH GIVEN SOLUTIONS

In this section we study the problem II.1. We determine the planar differential systems
(42) i=Px,yt) §=Qy1),
having the given set of solutions w = {z1(t), ..., zk(t)} where k > 1.

After the change z = z + iy and z = x — iy differential system (42) becomes
(43) 2= R(z,z,t)

where

R=R(z,z,t) = (P +1iQ)|,— 2122, y=(:—2)/20) -
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First we determine the simplest case when w = {21(¢)}.

Proposition 12. The most general planar analytic differential system with the given solu-
tion z1(t) can be written as

(44) 2 =21+ ®(z,2,1),
or equivalently
& =21(t) + Red(z, z,1)), ¥ =101(t) + Im®(z, 2, 1)),
where z1 (t) = x1(t) + iy1(t) and ® is any analytic function (Erugyn function) such that

(45) B(z,7,t))] 5 =0.

z2=2z1 (t), 2:51(

Proof. Indeed z = z;(t) is a solution of (44) because (45) holds. Assume that differential
system Z = L(z,Zz,t) is another differential equation having z = z;(¢) as a solution, i.e.
L(z1(¢), z21(¢),t) = 21(¢). taking ®(z,z,t) = L(z,z,t) — 21(t) we get that this differential
equation is a particular case of (44). O

Proposition 13. The most general planar polynomial differential system of degree m with
coefficients functions depending on t and with the given solution z1(t), can be written as (44)
with either

o = Oél(t)Hll + Ozg(t)ng + O[3(t)H21 + 044(t)H22 =< g(t),M(t)fT >,
where o (t) are arbitrary functions, H;y, is a component of the matriz
H= G(t’ Z, E)G(t’ 21 (t)a Z1 (t)) - G(t’ 21 (t)a Z1 (t))G(tv 2, Z) = [G(ta 2, Z)’ G(tv 21 (t)v Z1 (t))]v

with the matriz

G(t,z,2) = ( pl(t,lz,z) pg(t,lz,i) )

and
pl(tvz72) = Z anj(t)zn2j7 p?(tazvz) = Z an(t)Zszj,
n+j=0 n+j=0
E= (1,2,2,2%,222,22,...,2™, ..., Z™), &(t) = e 1), 5= (1) -

and M (t) is a convenient (m+1)(m+2)/2 x (m+ 1)(m + 2)/2 antisymmetric matriz with
components functions of t. In particular, the most general differential equation with a given
singular point z1(t) = a4+ i € C can be written as (44) with 2,(t) = 0.

Proof. The proof of this statement require a huge number of computations. We prove this
proposition only for linear and quadratic differential equations.

First we study the linear case, when pi(¢, 2, Z) = z, pa2(t, 2, Z) = Z Hence

H= (ii)(;w z(lt)><Z1l(t) Z(lt))<ii>
- ( 221 (t) - 12(12 . j —21(t) ?Et)zl_(; >
Consequent]
’ ;: a(t)(z — 21 (1)) — e2(t)(2 — 21(1) + as(t)(221() — 221(F)
0 a(t) —at) 1

= (1, z(t), &) )| —at) 0 a3 (t)
as(t)  —as(t) 0

)

)

I\
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where @1 (t) = —aq(t) + as(t) + a4(t). Thus from (44) we obtain that the most general
planar linear differential system of first order with the given solution z(¢) is

t=Z+tat)(z—2() —a2t)(z — z1(t) + as(t)(z21(t) — 221(¢)),
where &1 (t), az(t) and as(t) are arbitrary functions. So the proposition is proved for the
linear differential equations of first order with the given solution 21 (t).

For the quadratic differential systems we have that

2 = =2
ER)M)E() = —(aasz] + asez1wi + azez1 + azeZ1 + a16)Z
2 2 - -
(as6wi — aas2] — G521 — A3521 — G15)2Z
- =2 . 2
+(aa52121 + Qa6Z7 — Q2421 — Q3471 — Q14)Z
2 . -2 -
(as3a2] + ass2121 + ageZi — a2321 — 413)Z
2 = =2
+(a0427 + ass52121 + a26Z7 + a3z — a12)z
2 - 2 -
01421 + a152121 + @162y + a1221 + a1321,

where M;j, = a;;,(t). From the equation ® = 0122 + 0922 + 0327 + 042 + 057 = E(t) M (£)E(t)
we get that

01 = ai6+ au6z} + asez1wi1 + asez1 + azeZi,

02 = —ai15 + aseWi — a4527 — Az521 — 3521,

O3 = —a14+ Q452171 + Qu6Z — 2471 — 3471,

o4 = —aiz+azzl +agsnz + asezi,

05 = —ai2 + a242] + ags2171 + ag6Zi + azz,
q)|z:zl,2:21 = 0'12%+0'22%+0'32151 + 0421 +0521 =0.

This completes the proof of the proposition for the quadratic polynomial differential systems
with a given solution 2 (¢).

In similar way we could obtain the result of Proposition 13 for polynomial differential
equations of degree m > 2 with a given solution z1(¢), but the computations increases
strongly. (]

Proposition 14. The most general planar polynomial differential system of degree m with
the given solutions w = {z1(t),0}, can be written as

;= Zl(t)z 2,2
(46) z= ) + &(z,2,t),

where

D(z,2,t) =< (1), M(t)¢" >,

and € = (2,2,2%,222,2% ..., 2™, ..., 2™), £(t) = 5|z:z1(t),z:zl(t) and M = M(t) is a m(m+
3)/2 x m(m + 3)/2 antisymmetric matric with components arbitrary functions of t. In

particular, the most general differential equation with a given singular points z1(t) = a+if €
C and z2 = 0 can be written as (46) with %1 (t) = 0.

Proof. 1t is analogous to the proof of Proposition 13. O
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6.1. Construction the quadratic differential system with a given set of solutions.

Proposition 15. Let w = {z1(t), 22(t), 23(t), 24(t), 25(t), 26(t)} be a set of functions such
that

21 Z2 z3 2 Z5 26
Z1 22 Z3 24 25 26
(47) Aw) = £0
: 2 2 2 2 2 2
23 25 23 25 T 28
A S B S~ B

2121 Z2Z2  23Z3 Z4Z4 Z5%Z5  Z26%6

K
where Z |z'j|2 % 0. Then the most general quadratic differential equations of the first order
j=1

(48) 2 =ao(t) + a1(t)z + az(t)z + as(t)2* + as(t)2z + as(t) 2%,

for which w is a given set of solutions can be rewritten as

z Z1 zZ92 z3 Z4 zZ5 Z6
z zZ1 2o Z3 Z4 Zs5 26
2 2 2 2 4 2 2 |
(49) 2 2 23 23 25 25 2z | =0.
2 2 2 £ 2 2 33

2Z 2121 R2Z2 2323 2424 2525 2626

P B A A3 A4 ks g

Moreover the quadratic vector field with the set of solutions w = {z1, 29, 23, 24, 25, 26} where
zj for j =1,2,3,4,5 are constants solutions such than (47) holds has the invariant

dz dzg
(50) / < - = C = contstant.
Y (2,21, 22, 23,24, 25)  Y(26, 21, 22, 23, 24, 25)
where
1 1 1 1 1 1
& = 22 23 24 25
¢ 21 22 Z3 24 25
T(§7217Z2,Z3,Z4,Z5) =
2 2 2 2 4 2
13 21 D) 23 25 25
2 =2 -2 =2 -2 -2
§ 1 23 Z3 Zy 25

§& mZ1 %2 23%Z3 zaZa 2575

Proof. By applying the property of the determinant we easily prove that z = z;(t) are
solutions of (51). The reciprocity we prove as follows. From the equations

Z; = ao(t) + al(t)zj + ag(t)ij + ag(t)zjz + CL4(t)Zij + a5(t)232, for 7=1,...,6,
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or equivalently

1 AR 2% agn Z1
1 Z2 22 2% aq z9
1 23 23 2% as _ 23
1 2z Z z2 a 1
6 26 6 6 6
we obtain that
21 Z2 Z3 Z4 z5 26
z1 22 Z3 24 Zs5 26
2 2 2 2 2 2
1 Z Z3 3 2 Z5 &% Ap(w)
apg = = )
Aw)| 22 22 2 2 2 2 Aw)
Z1Z1 Z2Z2 23Z3 Z4Z4 Z5Z5 2626
21 Z9 Z3 Z4 Z5 26
1 1 1 1 1 1
21 22 Z3 Z4 Zs5 26
2 2 2 2 2 2
) 1 21 23 23 2 25 26 Aq(w)
al = —_— = —
Aw)| 22 2 2 2 2 2 Aw)
2121 22%Z2 23Z3 Z4Z4 2525 %626
Z1 Z9 Z3 24 Zs 26
1 1 1 1 1 1
21 22 Z3 24 Z5 26
2 2 2 2 2 2
) 1 z1 z5 z3 2y 25 24 A (w)
a2 == )
Aw)| 22 22 2 2 2 22 Aw)
2121 R9Z2 2323 2424 2525 2626
Z Z9 23 Z4 25 Z6

By inserting into (48) we get

Lo Bow)  Aiw) L As(w) . As(w) 5 Ad(w) o As(w)
AW AW T AW T AW T T AW T AW T

after some computations we obtain (51). The proof of (50) it is easy to obtain. Indeed from
the equation
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z Z1 Z9 z3 zZa z5 Z6
z 21 2o z3 Z4 Zs5 26

(51) 22 22 22 22 28 22 2 |=0.
2 2 2 £ 2 2 33

2Z 21Z1 R2Z2 2323 2424 2525 2626

z 0 0 0 0 0 %6

and developing this determinant with respect to the last row we get (20). Clearly if

Z 1Z;|* = 0, then differential equation (51) becomes # = 0. O
j=1

Proof of Proposition 7. The problem on the construction the polynomial planar vector field
(48) of degree m from a given set of (m + 1)(m + 2)/2 solutions is solved in Proposition 7.

The proof of this result is analogous to the proof of Proposition 15. O
The set of functions w,, = {zfﬁ), .. .,z,gf)) for 1 < k < p we call equivalent to the set

w1 = {(Zl(t)v sy Zﬁ(t))} if

for j=2,... k.

Another interesting problem will be to determine the set of solutions w such that

Aj(wr)
A(wr)

= a; = constants, for j=1,...,6.

Remark 16. By considering that (m+1)(m+2)/2 < m? form = 2,3 then the most general
quadratic and cubic polynomial differential systems can be obtained from (19) taking z; =
constants for m = 2, 3.

6.2. Complex polynomial differential equations of degree m with m + 1 real solu-
tions. In this section we study the problem on the determination the complex polynomial
differential system of degree m of the form (21) with m + 1 complex solution satisfying (22)
and m + 1 real solutions.

Proof of Proposition 8. Assume that (21) has m + 1 solutions such that (22) holds. Then
from (21) it follows that

(52) Zl’j:/\o—l—)\le—F...—F/\mZ?, for 57=1,....m+1
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k
where A\, = Z e ay_pna(t),, for k=0,...,m. By solving (52) with respect to A for

n=0

k=0,...,m, we get that

; 2
1 21 25 o2
) 29 22 P U
: 2 m
)\0 — zZ3 z3 z3 . Z3 ,
A(w) .
z z 22 zm
m m+1 m4+1 - m+1
(53)
1 z1 2’12 .o 2.,’1
1 1 Z9 Z% e 2.,’2
2 .
Ay = 1 23 z3 e Z3 |
A(w)
2 .
1 zZmt1 2zZpg1 -0 Zm
By considering that
am,0 = Am — am—l,leia - am—2,2e2ia .. aO,meimaa
Am-1,0 = Am-1— Am-21€"" — ... — ag ym_1e MDY
ago = Ao,

and inserting them (21) we get
m . .
z— Z Azl = am_m(izm*l —e'*2™)
7=0

+am7272(22zm—2 _ e2iazm) + ..+ aO,m(Zm _ eimazm)
+.oFag1(Z —e2) = (2 —el?z) (czm,l’lzm*1
Fam—222""2(Z 4 €92) + ...+ agm(Z™T + 226l

. eimDagm=1y 1 4 a0,1) = (2 — e 2)P(z, 2,t).

Hence in view of (53) we get that

1 1 1 1 1
z Z1 ) z3 ceo Zm41
2 2 2 2 2
m ) 1 Z 21 23 23 ... Zpaa
zZ— g Nl =—1| . . . )
- N
= : : : :
m m m m m
z 21t 2t 2 Zin+1
z Z1 Z9 zZ3 ceo Zm41
Therefore we obtain the proof of the proposition. O

Corollary 17. The most general complex polynomial differential equations of degree m with
m ~+ 1 real solutions w = (z1(t), ..., 2m+1(t)) such that the Vandermonde determinant (23)
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is mon-zero can be written as

1 1 1 1 ... 1
z Z1 z9 z3 R A |
2 2 2 2 2
1 z zZq zZ5 Z3 cee Zm B _
~ | - . . . . =(z—2)P(z,z,t),
Alw) | : : Do :
m m m m m
z 21 21 21 Zm+1
z Z1 z9 z3 oo Bm41

where P(z,Z,t) is a convenient polynomial of degree m — 1.

Proof. 1t follows from Proposition 8 with oo = 0. O

Remark 18. From Proposition 17 it follows the next remarks.

(1)

(iii)

(55)

If a complex polynomial differential equation of degree m has m + 1 singular points
such that z; = €"“z;, for j = 1,...,m+ 1, then it has the singular straight line
Z—e%2 =0, i.e (1—cosa)r+sinay=0. The proof of this result follows trivially
from (24). Indeed, in this case differential equation (54) becomes

3= (2 —e"“2)P(z,2,1).
where ]5(2, z,t) is a convenient polynomial of degree m — 1.
If a complex polynomial differential equation of degree m has m + 1 real singular
points, then it has the singular straight line Z — z = 0. The proof of this well known
result follows trivially from (21). Indeed, in this case differential equation (54)
becomes

2= (z—2)P(z,21).

If a complex polynomial differential equation of degree m has m + 2 real solutions,
then we have

1 1 1 1 ... 1
Zm+2 21 22 23 ... Zm+l
2 2 2 2 2
Zmto 21 %5 23 ... Z;aa
) ) . . ) =0.
m m m m m
Zm+2 A1 *1 A Zm+1
Zm+2 Z1 zZ9 z3 cee Bm41

Indeed if 2 = zpyo(t) is another real solutions of a complex polynomial differential
equation of degree m, then from (54) it follows (55). Consequently z,12(t) is a
solution of the generalized real Abel equation

6.3. Polynomial differential system of degree m > 3 with m? singular points.
We shall determine the most general polynomial differential system of degree m for which
w = {(21, 22, ..., Z,2)} where z; is constant for j = 1,...,m? such that z; # 2 for j, k =
1,...,m with j # k.

Proposition 19. The most general differential polynomial differential system of degree m
with m? singular points can be represented as follows

(56) z = Otll(t)Hll(Z, z, t) —|-0621(t)H21(Z, z, t) —|—oz22(t)H22(z, z, t) +.. .—|—Oé,€,§(t)H,;,€(Z, z, t),
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where a;,(t) is an arbitrary function for j,n = 1,...,k > m, and H;,(z,%,t) for j,n =
1,...,k are polynomials of degree m elements of the k X k matrix H = H,,2 where

Hr = Hr,l(z,i,t), Hrfl(zragrvt)}v

where [H,G] = HG — GH is the Lie bracket, r = 1,...,m? and Hy = G(z,%,t) is an
arbitrary k X Kk matriz whose are elements are arbitrary polynomials of degree m.

Proof. Clearly that all elements of the matrix H; = [Ho(z, z,t), Ho(z1, Z1, t)] are vanishing

when z = 21, and all elements of the matrix
Hy = HHo(z@,t)a Ho<z1,zht)], [Ho(zz,zz, HO(Zl,ght)H

are vanishing when z = z;, and z = 29. By continuing this process we obtain that all
elements of the matrix

Hm2 = |:Hm2_1(2, z, t)a H7rL2—1(Zm2 ) Zm2, t):| )
are vanishing when z = z1,...,2 = z,,2. Consequently the function

® = 1 (t)Hir + caa(t)Hiz + o1 (t)Har + o (t)Hao + .. . + v (t) Hicre,

is a polynomial of degree m for which the given m? complex constants are it zeros. In short

the proposition is proved. O

Corollary 20. The most general differential polynomial differential system of degree m with

m? singular points can be represented as follows

2 =< &), M) >,

where & = (1,2,2,2%, 222, 22, ..., 2™, ..., 2™), £(t) = &|,_, 2 (1), 522 2(t)» And M(t) is an
arbitrary (m+1)(m+2)/2x (m+1)(m~+2) /2 antisymmetric matriz such that < £(t), M(t)ij(t) >=
0 with & = (1,2,2]-72?,22]2,2]2-,...,z;",...,,i;"), forj=1,....,m2

Proof. After huge computations it is possible to show that there exists the antisymmetric
matrix M such that the right side of (56) can be written as

Z ajnHjn =< g(t)7M(t)£T >7

j,n=1

where Hj,, are elements of the matrix H,,> given above. U
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