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Abstract— Despite the recent advances in 3C-SiC technology, 

there is a lack of statistical analysis on the reliability of SiO2 layers 
on 3C-SiC, which is crucial in power MOS device developments. 
This paper presents a comprehensive study of the medium and 
long-term time-dependent dielectric breakdown (TDDB) of 65 nm 
thick SiO2 layers thermally grown on a state-of-the-art 3C-SiC/Si 
wafer. Fowler-Nordheim (F-N) tunnelling is observed above 7 
MV/cm and an effective barrier height of 3.7 eV is obtained, which 
is highest known for native SiO2 layers grown on the 
semiconductor substrate. The observed dependence of the oxide 
reliability on the gate active area suggests the oxide quality has not 
reached the intrinsic level. Three failure mechanisms were 
identified, confirmed by both medium and long-term results. 
Whereas two of them are likely due to extrinsic defects from 
material quality and fabrication steps, the one dominating the high 
field (>8.5 MV/cm) should be attributed to the electron impact 
ionization within SiO2. At room temperature, the field acceleration 
factor is found to be ≈0.906 dec/ (MV/cm) for high fields, and the 
projected life-time exceeds 10 years at 4.5 MV/cm. 
 

Index Terms— Reliability, 3C-SiC, MOS capacitor, TDDB, 
failure mechanism.  

 

I. INTRODUCTION 

ILICON CARBIDE (SiC) can provide better electrical 
performance than Si in more harsh operation conditions 

(high power, high frequency and high temperature), thus have 
been considered as the next generation substrates for power 
devices. 4H-SiC Schottky barrier diodes (SBD), JFETs, and 
MOSFETs are commercially available now. The 4H-SiC SBDs 
proved to be a success in boost converters, whereas the switches 
(JFETs or MOSFETs) have not been widely accepted as their 
Si counterparts.  

Compared with other wide band gap (WBG) semiconductors, 
SiC has the advantage that SiO2 layers can be directly thermally 
grown on the epilayer as the gate dielectric for MOS devices. 
The reliability of this SiO2 layer is a major attribute of a 
MOSFET development and the required lifetime of power 
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electronics systems can reach up to 30 years [1], thus gate 
dielectrics are expected to have a similar lifetime. In the early 
days of the Si industry, the SiO2 on Si system was intensively 
studied and is now well developed compared with 
investigations performed on 4H-SiC [2-12]. Even now, the gate 
oxide reliability of large active 4H-SiC MOS devices (5-50 
mm2) is still not as good as the early Si devices with comparable 
gate oxide area [13]. Regardless, in the last decade, a great 
improvement of the lifetime of SiO2 on 4H-SiC has been seen, 
from below 1000 s (6 MV/cm, 350 °C) [3] to most recently 
2300 h (6 MV/cm, 250 °C) [6]. Yet it was believed impossible 
to reach the stability of the Si/SiO2 interface, due to an inherent 
smaller conduction bands offset ∆EC between 4H-SiC and SiO2 
[4]. In the high field condition, the oxide intrinsic degradation 
is believed to be dominated by F-N tunnelling [14], and the 
affinity difference at the semiconductor/oxide interface is the 
potential barrier ΦB for such tunnelling. In a strong inversion 
case such as the MOSFET being switched on, ΦB≈∆EC  [4]. The 
theoretical value of ∆EC for 4H-SiC/SiO2 is 2.7 eV and had 
recently been experimentally reported [15], whereas the value 
for Si is 3.2 eV, and for 3C-SiC 3.7 eV [16], potentially the most 
stable among the three. Moreover, the smaller bandgap means 
most of the traps troubling the 4H-SiC/SiO2 interface are 
located in the conduction band of 3C-SiC, namely not 
contributing to degrade the channel mobility, thus lower 
channel resistance for a MOSFET. 3C-SiC technology is not yet 
as popular as 4H-SiC, mainly due to the lack of device grade, 
high quality 3C-SiC substrates. However, the ability to deposit 
3C-SiC on large area Si wafers (6-inch 3C-SiC on Si wafers 
demonstrated 20 years ago [17]) makes it attractive in terms of 
cost-effective. In the last ten years, there have been many 
improvements in 3C-SiC substrate preparation [18-24] that a 
defect density below 400 cm-1 became possible [24]. There 
were also further developments in 3C-SiC device processing, 
including implantation [25, 26], oxidation [27-29], and 
metallisation [30, 31]. 600 V vertical power MOSFET was 
demonstrated with a specific on-resistance of 8.2 mΩ.cm2 [32].  
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Regarding the 3C-SiC/SiO2 interface, some study was 
performed on the interface trap density [33, 34] and channel 
mobility [29, 35, 36], whereas very little on the reliability. In 
[16], dielectric breakdown of very thin (6-7 nm) and small area 
(100 nm diameter) thermally grown SiO2 on 3C-SiC(111) was 
studied by Time Dependent Dielectric Breakdown (TDDB) test 
at 10 V (≈15 MV/cm), and Weibull slope β values of 4.4-5.1 
were obtained. This is close to the performance of SiO2 layers 
on Si with similar thickness. However, for thin oxides the 
leakage current stays almost constant until failure, which is in 
contrast to thick oxides, where electron/hole trapping cause the 
current level to change a lot during stress [14]. Since the 
tunnelling current generates defects in the oxide, leading to 
their eventual degradation [4], thin and thick SiO2 layers tend 
to have different failure mechanisms. Also, under the same 
electric field, carriers in thicker oxides are more likely to gain a 
higher energy for impact ionization [9], which is often 
considered as another potential cause of oxide failure. Practical 
power devices usually have thick (>50 nm) SiO2 layer in order 
to sustain the gate voltage [4, 7]. To the best of our knowledge, 
the reliability of thick SiO2 on 3C-SiC has not been reported. 

In this paper, 3C-SiC MOS capacitors were fabricated with 
≈65 nm thermally grown SiO2 layers as the gate dielectric. I-V 
characterisation was used to study the effective barrier height at 
the 3C-SiC/SiO2 interface. Medium-term test lasting weeks was 
then performed and the failure distribution was obtained for a 
wide electric field range of 4.5-10.5 MV/cm. Following the 
medium-term results, long-term TDDB tests lasting months 
were conducted for 6, 7.5, 8.5 and 9 MV/cm. All 
characterisations were performed at room temperature. Based 
on the failure distribution and TDDB plots, Weibull models 
were used to predict the fabricated MOS capacitors failure rate 
and lifetime. 

II. EXPERIMENTAL 

10 µm thick unintentionally doped (<1×1016 cm-3) N-type 
3C-SiC(100) layers were epitaxy grown on-axis from a 4-inch 
Si(100) substrate. The as-grown 3C-SiC epilayer was treated 
with a chemical mechanical polishing (CMP) step in order to 
obtain a low surface root mean square roughness ≈0.2 nm, 
measured by atomic force microscopy (AFM). Since it is the 
3C-SiC/SiO2 interface that is of interests here, lateral MOS 
capacitors were fabricated in order to minimize the disturbing 
electrical effects from the 3C-SiC/Si heterojunction. For ohmic 
contact, nitrogen was selectively implanted to form a 300 nm 
deep box profile with the peak concentration of ≈5×1020 cm-3, 
and a post implantation anneal was performed at 1350 ºC for 2 
hours in Ar atmosphere. No surface capping layer was used 
during the post implantation anneal. Our previously study [26] 
shows that, this will lead to a ≈15% activation of the implanted 
nitrogen dopants. After the post implantation anneal, solvent 
cleans were performed (acetone, propanol, acetone, and 
methanol, each step 5 mins) in an ultrasonic bath. Following 
that, a two-stage acid clean was applied, first piranha 
(H2SO4:H2O2=3:1, 15 mins) then RCA (RCA1 15 mins+ RCA2 
15 mins). A 2 µm thick SiO2 layer was deposited via low 
pressure chemical vapour deposition as the surface passivation 

dielectric. Photo lithography and reactive ion etching (RIE) was 
used to selectively etch the deposited 2 µm SiO2 down to the 
3C-SiC surface, where the gate thermal oxidation occurred. Dry 
oxidation (1200 ºC, 10 mins, 1 slm O2) followed by a post 
oxidation anneal in N2O (1200 ºC, 120 mins, 1 slm N2O) was 
performed to obtain the gate oxide. The final gate oxide was 
around 65 nm thick, measured by the ellipsometry. In our 
previous investigations, no significant degradation in the 3C-
SiC surface roughness was observed following AFM 
evaluations after post implantation anneal [26] and thermal 
oxidation [27]. Ohmic metallisation was obtained by RIE 
etching the passivation oxide and evaporating first a 30 nm Ti 
layer, followed by a 100 nm Ni layer on the N+ regions. A rapid 
thermal anneal at 1000 ºC for 2 mins in Ar was performed to 
form the ohmic contact with specific contact resistance below 
1×10-5 Ω.cm2 [31]. Finally, the gate contact was defined by 
selectively evaporating 500 nm thick Al above the gate oxide 
region. The final device has a circular gate active area, and a 
cross section view of the structure is shown in Fig. 1. MOS 
capacitors with three gate diameters were fabricated, namely 
Φ100 µm, Φ200 µm and Φ400 µm.  

III. RESULTS AND DISCUSSIONS 

A. Capacitance-voltage (C-V) characterisation 

Room temperature C-V (1 kHz and 1 MHz) characterisations 
were performed on these MOS capacitors using a LCR meter. 
A negative flat band voltage was observed as shown in Fig. 2, 
which is also commonly reported in the literature [32, 36, 37]. 
It is generally believed to be caused by the nature of donor-like 
states at the 3C-SiC/SiO2 interface, which have a lower density 
than 4H-SiC but are positively charged [38]. The effective fixed 
charge density was calculated to be around 2.1×1012 cm-2 
according to the flat band shift from the ideal value. This value 
is typical among lately reported results [16, 28]. Using the high-
low method [39], the interface trap density at 0.2 eV from the 
3C-SiC conduction band edge was extracted to be 2.5×1011 cm-

2eV-1, which is among the lowest values reported in recent 
literatures [28, 34, 40]. 

 
Fig. 1.  A schematic cross section view of the fabricated circular lateral 3C-
SiC MOS capacitors, dimensions are not to scale. 
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B. Dielectric breakdown and F-N tunnelling 

By performing room temperature I-V measurements using a 
Keysight B1500 parameter analyser, the leakage current density 
of Φ100 devices as a function of the electric field in the oxide 
is obtained and shown in Fig. 3. As can be seen in Fig. 3, when 
the electric field reaches ≈7 MV/cm, the gate leakage current 
density becomes dominated by F-N tunnelling, which usually 
comes into effect at a lower electric field of 5-5.5 MV/cm for 
4H-SiC MOS gate oxides [7-12, 15]. The effective barrier 
height ΦB can be obtained by fitting the linear region of the 
experimental “ln(J/Eox

2) vs 1/Eox” plot to the following 
expression [15]: 

 

               ln =
( )

−                           (1)  

            
where J is the gate leakage current density, Eox is the electric 
field within the gate oxide, m0 is the free electron mass, 
mox=0.42m0 [41] is the effective electron mass, q is the unit 
electron charge, and h is the Plank constant. The experimental 
effective barrier height ΦB was obtained as 3.65-3.71 eV for the 
representative results shown in Fig. 3, approaching the 

theoretical value of 3.7 eV. 

C. Medium-term reliability and failure distribution 

We investigated the failure distribution of these MOS 
capacitors in a wide field range of 4.5-10.5 MV/cm. For each 
studied electric field, the gate bias VG was kept constant for 1 
hour before increasing to the next value. More details about this 
method can be found in [1].  

For each gate diameter, 80 MOS capacitors were tested. As 
can be seen in Fig. 4, the failure distribution varies considerably 
with the gate diameter that, larger devices tend to fail more 
easily than smaller ones as the gate bias elevates. Similar area 
dependence was observed also in 4H-SiC TDDB results (area 
of 100×100-200×800 µm2) [7]. At least three mechanisms are 
recognisable from the failure distribution of the Φ100 MOS 
capacitors. Neglecting the 3 premature failures at 4.5 MV/cm, 
it can be seen that between 6 MV/cm and 7.5 MV/cm, the 
number of failures accumulate gradually. In this low field 
range, failure is crucially determined by the number of extrinsic 
defects per device (namely gate active area) and defined as 
mechanism I. From the literature, these first priority defects 
may be pre-existing basal plane dislocations in the 3C-SiC 
epilayer [42], or local step-bunching edges where dielectric 
break down can be accelerated [16]. Reaching 7.5 MV/cm, it 
seems that almost all mechanism I failures have occurred, and 
the increase of total failure number slows down, suggesting a 
new mechanism II becoming dominant. Mechanism II induced 
failures have a much smaller increase rate against elevating 
electric fields (more obviously shown later in Fig. 5), thus can 
be easily overshadowed by other mechanisms. The cause of 
mechanism II could be the extrinsic defects created during the 
device fabrication or a relatively high stacking fault density in 
the 3C-SiC epilayer. Above 8.5 MV/cm, a considerably sharp 
increase of the total failed devices is observed, namely 
mechanism III. It is worth mentioning that 8.5-9 MV/cm is also 
previously reported in 4H-SiC TDDB tests as a juncture point 
where the failure mechanism changes [7-9]. For 4H-SiC, one of 
the common explanations for such change at high electric fields 
is F-N tunnelling. As mentioned previously, F-N tunnelling 

 
Fig. 3. Representative gate leakage current densities as a function of the 
electric field in the oxide for the Φ100 MOS capacitors. 

 
Fig. 4. The failure distribution of Φ100, Φ200 and Φ400 MOS capacitors in 
the electric field range of 4.5-10.5 MV/cm. 

 
Fig. 2. Experimental (1 MHz) and ideal C-V characterisations of the fabricated 
lateral MOS-C. 
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almost always occurred around 5-5.5 MV/cm in the case of 4H-
SiC, and here we have shown that it is delayed to above 7 
MV/cm for 3C-SiC. The fact they both change failure 
mechanisms around 8.5 MV/cm makes the F-N tunnelling 
explanation not satisfactory. On the other hand, the electron 
impact ionization within the SiO2 is determined by the oxide 
thickness and electric field. For the mostly studied ≈50 nm thick 
oxides of power MOS devices, the impact ionization is 
expected to occur at an electric field strength of ≈8 MV/cm [43, 
44]. While for thin oxide layers, impact ionization occurs at 
higher electric fields, which also explains why even at a very 
high electric field of 15 MV/cm, a Weibull distribution can still 
be observed for the TDDB results of very thin (6-7 nm) SiO2 
layers on 3C-SiC [16]. As such, here we attribute mechanism 
III to the electron impact ionization.  

The three failure mechanisms can be more easily 
distinguished for Φ100 MOS capacitors by plotting -ln(1-F) 
against VG-VUSE as shown in Fig. 5. F is the failure rate and VUSE 
is the nominal voltage of the device. Since the normal operating 
electric field of MOS devices is typically 3 MV/cm [4, 8], here 
we assume a VUSE of 20 V. An exponential function [45] 
described by Eq. (2) can be used to fit the three mechanism 
regions as seen in Fig. 5. 

 
                       −ln(1 − 𝐹) = 𝑎 ∙ 𝑒 ( )                    (2) 
 
a and b are the fitting parameters. By multiplying a by 106, 

the maximum failure parts per million (PPM) of the Φ100 MOS 
capacitors working for 1 hour at 3 MV/cm and room 
temperature can be estimated. With the low field being 
dominated by mechanism I, the failure rate can be estimated to 
be around 3450 PPM, which is close to the latest 4H-SiC 
MOSFET results of 4100 PPM [45]. Although the 4H-SiC 
MOSFETs were tested at a higher temperature (150 °C) and a 
longer gate bias (168 h), the channel length of these commercial 
MOSFETs usually goes down to 1 µm [46], namely 10-100 
times smaller gate active area than the Φ100 MOS capacitors 
studied here. Extrapolation from the high field (>8.5 MV/cm) 
data points suggests a much lower failure rate of 40 PPM, 

indicating a great room for further improvements if mechanism 
I can be minimized by improving material quality.   

D. TDDB 

Long-term TDDB test was performed on Φ100 MOS 
capacitors at room temperature using a custom-built dielectric 
breakdown rig. Gate leakage currents of up to 32 devices were 
monitored simultaneously in parallel, and the maximum current 
level was separately limited to 1 µA by series connected 
resistors. Any device with a gate leakage increasing to above 1 
µA was removed from operation to protect the adjacent devices. 
Literatures have suggested that the thick gate oxide breakdown 
is a “weakest link” type of problem [8, 47, 48], thus can be 
described by the Weibull distribution expression as below: 

 

                               𝐹(𝑇 ) = 1 − 𝑒
[ (

%
) ]

                        (3) 
 
where TBD is the TDDB running time, t63% is the characterisitc 
time when 63% of all tested devices fail, and β is the Weibull 
slope, which is an indicator of failure mechanism variance 
between devices and should increase with reducing number of 
mechanisms. 

Measurements were taken for 6 MV/cm, 7.5 MV/cm, 8.5 
MV/cm and 9 MV/cm, and the Weibull distributions are shown 
in Fig. 6 with obvious premature failure tails removed. Even at 
high electric fields above 8.5 MV/cm, the extracted β values are 
still very low ≈1, an order of magnitude smaller than the values 
reported for 4H-SiC [7], suggesting that mechanism II may still 
be working behind the scene at such high fields. It can be seen 
in Fig. 6 that, the slope β for 9 MV/cm and 8.5 MV/cm are 
almost the same (≈1), whereas considerably reduced to 0.39 for 
7.5 MV/cm. From previous discussions, we know it is because 
of the change of dominating failure mechanism from II to III 
with elevated electric fields. Further reducing the test field to 6 
MV/cm confirmed an increase of β to 0.58 due to mechanism I, 
agreeing with the medium-term distribution analysis. 

To project the lifetime of the fabricated MOS capacitors, t63% 

is plotted against the applied gate electric field (the E model 

 
Fig. 5. Weibull distributions of Φ100 MOS capacitors as a function of applied 
gate bias, F is the failure rate and VUSE is the normal use voltage. 

 
Fig. 6. Weibull distributions of devices failures at various electric fields on 
Φ100 MOS capacitors, obvious premature failures have been removed. 
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[49]) as seen in Fig. 7. The field acceleration parameter is 
extracted to be 0.906 dec/ (MV/cm) for 7.5-9 MV/cm. From the 
projection, the lifetime of these devices can reach 10 years at 
room temperature with a maximum operating electric field of 
4.5 MV/cm as shown in Fig. 7.  Temperature has a significant 
impact on the life time of SiO2. Although the testing rig is 
limited to room temperature, higher temperature performance 
of these MOS capacitors can still be estimated using the 
Arrhenius model t63% ∝ exp(Ea/kT), where Ea is the thermal 
activation energy. 3C-SiC MOSFETs operating at 300 °C have 
been demonstrated [36], but there were no reports on the Ea 
value. From the Al gated 4H-SiC MOS capacitor results [50], 
0.5 eV was assumed for these 3C-SiC devices, and the life time 
projection for 150 °C is shown in Fig. 7. The predicted critical 
electric field required for 10 year life time drops considerably 
to 1.4 MV/cm at 150 °C, much lower than the 4H-SiC MOS 
capacitors results, ≈6 MV/cm [8]. However, it should be noted 
that, due to a positively charged 3C-SiC MOS interface as 
mentioned before, a forward gate bias accumulates more 
electrons at the 3C-SiC/SiO2 interface at room temperature 
compared with the 4H-SiC case. As such, the actual 
temperature effects may be smaller than predicted in Fig. 7. 

IV. SUMMARY 

A reliability study has been thoroughly performed on 3C-SiC 
MOS capacitors at room temperature, including leakage current 
evaluation, medium-term constant voltage and long-term 
TDDB tests. The effective barrier height at 3C-SiC/SiO2 is 
experimentally obtained as very close to the theoretical value of 
3.7 eV, and the F-N tunnelling is found to be dominating the 
gate leakage current only above a relatively high electric field 
of ≈7 MV/cm. According to the medium-term reliability test at 
a wide electric field range, an acceptable failure rate of 3450 
PPM (1 hour at 3 MV/cm, room temperature) for the 100 µm 
diameter MOS capacitors is obtained, which can be further 
reduced to 40 PPM if the extrinsic defects (mechanism I) are 
neglected. Long-term TDDB tests over several months have 
been done for Φ100 MOS capacitors at 7.5 MV/cm, 8.5 MV/cm 

and 9 MV/cm. The field acceleration factor is found to be 
≈0.906 dec/(MV/cm) in the studied range. Both the medium-
term and long-term tests show a failure mechanism change of 
these MOS capacitors at 8.5 MV/cm, which is most likely 
caused by the impact ionization of electrons rather than the F-
N tunnelling. Although the fabricated MOS capacitors are still 
suffering from a high number of extrinsic defects and further 
improvements are required, the projected lifetime is still 
remarkable and can reach 10 years, at 4.5 MV/cm and room 
temperature. 
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