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Highlights

e Motif search improved pre-miRNA reconstruction from mature microRNA
sequences.

e Semi-supervised methods outperformed canonical supervised classification
algorithms.

e The presence of multiple isomiRs in the porcine muscle miRNA repertoire was
uncovered.

e A total of 47 novel microRNA genes were identified in the porcine genome.

e RT-qPCR analyses allowed us to confirm the existence of three novel porcine

microRNAs.

Abstract

Despite the broad variety of available microRNA (miRNA) prediction tools, their
application to the discovery and annotation of novel miRNA genes in domestic species is
still limited. In this study we designed a comprehensive pipeline (eMIRNA) for miRNA
identification in the yet poorly annotated porcine genome and demonstrated the
usefulness of implementing a motif search positional refinement strategy for the accurate
determination of precursor miRNA boundaries. The small RNA fraction from gluteus
medius skeletal muscle of 48 Duroc gilts was sequenced and used for the prediction of
novel miRNA loci. Additionally, we selected the human miRNA annotation for a
homology-based search of porcine miRNAs with orthologous genes in the human

genome. A total of 20 novel expressed miRNAs were identified in the porcine muscle



transcriptome and 27 additional novel porcine miRNAs were also detected by homology-
based search using the human miRNA annotation. The existence of three selected novel
miRNAs (ssc-miR-483, ssc-miR484 and ssc-miR-200a) was further confirmed by reverse
transcription quantitative real-time PCR analyses in the muscle and liver tissues of
Gottingen minipigs. In summary, the eMIRNA pipeline presented in the current work
allowed us to expand the catalogue of porcine miRNAs and showed better performance
than other commonly used miRNA prediction approaches. More importantly, the
flexibility of our pipeline makes possible its application in other yet poorly annotated

non-model species.

Keywords: MicroRNA discovery; Motif search; Porcine skeletal muscle; Semi-

supervised learning; Small RNA-seq.

Introduction

The accurate annotation of a comprehensive set of miRNAs in different species has been
challenging since the first genome assemblies were published, although an ever-
increasing amount of knowledge about miRNA diversity across species has been
accumulating during the past years, being available in public databases [1-3]. Despite
these advances, many commonly studied domestic species still lack a complete and

reliable set of annotated miRNAs in their genomes [1].

The computational prediction of miRNAs in sequenced genomes initially relied on the
strong conservation of mature miRNA sequences across closely related species [4,5],
taking advantage of homology-based comparisons between well annotated genome
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assemblies and other poorly annotated organisms [6-8]. Other approaches focused on
rule-based classification, integrating other sources of information such as sequencing data
or structural features to identify novel miRNAs [9-12]. More recently, several Machine
Learning (ML) approaches have been proposed for miRNA prediction. Different tools
have addressed the problem of correctly classifying miRNAs by training ML algorithms
with a set of positive (annotated miRNAs) and negative (other non-miRNA sequences)
data sets. [13-16]. Nevertheless, despite the broad array of available tools for novel
miRNA identification, their application to the discovery and annotation of novel miRNAs
in domestic species is still limited [17-25]. Moreover, the majority of miRNA surveys
carried out in domestic species do not generally take into account several issues regarding
miRNA genes prediction that have recently emerged. For instance, the set of positive
training annotated miRNAs often include misclassified sequences [26,27], whereas the
negative class is sometimes not clearly defined, i.e. different types of sequences have
been used as negative data sets (coding regions, pseudo-hairpins, non-coding hairpins or
artificial randomized miRNA sequences). Despite some efforts [28], obtaining a truly
representative negative class is still challenging and few approaches have critically
addressed this important issue [29-31]. Besides, miRNAs are thought to encompass a
small percentage of the total non-coding transcriptomic repertoire, with thousands of
other non-miRNA hairpin-like RNA molecules that represent a major fraction of it. This
circumstance contributes to create a high class-imbalance between positive and negative
sequences. Different approaches have dealt with such phenomenon [32], but recent
studies have shown that commonly used techniques for solving the high-class imbalance

problem in microRNA prediction may not be suited to a real-case classification scenario

[15].



In this study we present eMIRNA, a bioinformatics pipeline for miRNA discovery and
annotation in sequenced genomes. The proposed pipeline implements a semi-supervised
transductive learning approach to predict and annotate novel microRNAs in the porcine
genome, overcoming several of the drawbacks outlined above. In order to validate the
performance of our pipeline in a real-case scenario, we have applied it to the analysis of
a data set comprising the small RNA fraction of gluteus medius skeletal muscle from a
population of 48 Duroc gilts [33,34]. Furthermore, making use of the better annotated H.
sapiens miRNAome, an additional set of novel porcine miRNA genes were identified
based on a homology-based search approach. Finally, some of the identified novel porcine
miRNA candidates were independently validated in a Gottingen minipig population,

investigating their expression in skeletal muscle and liver tissues.

Materials and methods

A detailed flow chart depicting all steps described in the eMIRNA pipeline is shown
in Figure 1. Additional instructions and modular scripts needed for the implementation of

eMIRNA are available at: https://github.com/emarmolsanchez/eMIRNA/.

Positive and negative training data sets

To define the corresponding positive (annotated miRNAs) data set required for novel

miRNA prediction, two approaches were considered:

1) The annotated pre-miRNA coordinates in Sscrofal 1.1 genome assembly were obtained
from Ensembl repositories, release version 97

(http://www.ensembl.org/info/data/ftp/index.html), and the corresponding sequences

were extracted from the pig reference genome by using the BEDTools suite v2.27.0
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software [35]. miRNA loci located in scaffolds were removed from further analyses,
resulting in a total of 484 annotated porcine miRNA genes. Sequence repeats from pre-
miRNA duplicated elements were removed from the retrieved positive data set by using
the CD-HIT Suite [36] with a 0.9 sequence identity cut-off value (i.e. sequences showing
a similarity > 90% to each other were removed and only unique representative pre-
miRNA candidates were retained). Moreover, to avoid the inclusion of miss-annotated
miRNA loci, an additional filtering based on secondary structure folding was applied. To
this end, the RNAfold tool from the ViennaRNA Package 2.0 [37] was used to select
sequences with canonical pre-miRNA hairpin secondary structures (stem-loop
conformation with one single terminal loop and two stems). Sequences that failed to

comply with required folding structure pre-requisites were removed.

2) In the second approach, the curated miRNA annotation for Sscrofal 1.1 available in the
miRCarta database [2] was retrieved, and the same pre-filtering criteria based on sequence
identity and secondary structure employed in the analysis of the Ensembl data set were
applied. The miRCarta database [2] integrates one of the most comprehensive and curated
databases for miRNA annotation and functional activity, aiming to overcome the

limitations of other widely used miRNA databases such as miRBase [1].

Regarding the negative data set (other hairpin-like sequences), two different data sources
were used. First, the annotated non-coding transcripts in Ensembl repositories were
retrieved and non-miRNA sequences were retained. Analogously to what was
implemented for the positive data set, identity by sequence and secondary structure pre-
filters were applied, and non-miRNA non-coding hairpin-like unique sequences were
obtained. Only sequences ranging from 50 up to 150 nucleotides (nt) were retained, thus
removing hairpin-like long non-coding RNAs from the negative data set. Additionally, a

set of unlabeled sequences within the porcine reference genome (Sscrofall.l) were



generated by extracting candidate pre-miRNA-like sequences from random blocks of 1
Megabase (Mb) in each of the chromosomes of the porcine assembly with
the HextractoR package [38], and the previously described pre-filters for the negative

class were subsequently applied.

Obtaining putative miRNA candidate sequences from the porcine genome

In order to test our method with pig transcriptomic data, a small RNA-seq data set was
generated by sequencing the muscle transcriptome of 48 gilts used in two previous studies
[33,34]. Upon collection, muscle samples were individually submerged in RNAlater and
snap-frozen in liquid nitrogen. Samples were pulverized and homogenized in 1 ml of TRI
Reagent (Thermo Fisher Scientific, Barcelona, Spain). Total RNA was isolated with the
RiboPure kit (Ambion, Austin, TX). A Nanodrop ND-100 spectrophotometer (Thermo
Fisher Scientific, Barcelona, Spain) was used to assess RNA concentration and quality.
RNA integrity expressed in RNA Integrity Number (RIN) units was measured with a
Bionalyzer-2100 equipment (Agilent Technologies Inc., Santa Clara, CA). High quality
RNA  samples were then submitted to  Sistemas Genémicos  S.L.

(https://www.sistemasgenomicos.com) for small RNA sequencing. Library preparation

for each individual sample was carried out with the TruSeq Small RNA Sample
Preparation Kit (Illumina Inc., USA) and small RNA libraries were single-end sequenced

(1 x50 bp) in a HiSeq 2500 platform (Illumina Inc., CA).

FASTQ sequence files were subjected to a quality control check as reported by Cardoso
et al. [33]. After preliminary quality-based filtering, sequencing adaptors were trimmed
with the Cutadapt software [39] and an acceptance sequence window of 15-30 nt per read
was established. Processed FASTQ files from all sequenced samples (N =48) were

pooled and collapsed to unique FASTA sequences with the FASTQ collapser tool from
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FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Unique FASTA sequences

represented by >10 reads-per-million (RPM) were considered to be significantly
expressed above the background noise [40], and thus selected for further analyses (File
S1). The CD-HIT Suite [36] was employed to build sequence clusters with >0.9 sequence

identity.

Furthermore, the human mature miRNA coordinates were obtained from Ensembl
repositories and the corresponding sequences were retrieved from the GRCh38.p12
assembly. Pre-filtering based on sequence identity was applied and a set of non-redundant
human mature miRNAs was generated for homology-based search in the Sscrofall.l

porcine assembly (File S2).

Pre-miRNA reconstruction by sequence elongation and motif search

Once putative mature miRNA candidate sequences from the small RNA-seq data set and
the human mature miRNA sequences were retrieved, they were aligned against the
porcine reference assembly (Sscrofall.1) with the Bowtie aligner [41] and the following
specifications for short reads: 1) allowing 2 mismatches within the entire aligned
sequence with respect to the reference assembly, 2) removing reads with >50 putative
mapping sites and 3) reporting first single best stratum alignment (bowtie -n 2 -1 25 -m 50
-k 1 --best --strata). Reported alignment genome positions for successfully mapped
putative mature miRNAs were elongated upstream and downstream, thus ensuring an
adequate pre-miRNA reconstruction. As no prior knowledge about the 3p or 5p identity
of putative mature miRNA sequences was available for porcine small RNA-seq data, two
candidate pre-miRNA structures were generated for each expressed sequence. The same
procedure was applied to human mature miRNAs when 3p or 5p identity was not

specified. Candidate sequences that were aligned and extracted from overlapping regions
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corresponding to other annotated non-miRNA non-coding loci were discarded from

further analyses.

Elongation patterns were based on previously reported pre-miRNA favored size, with a
stem length of ~35 + 3 nt and an apical loop >10 nt [42,43]. With these specifications, we
established two upstream and three downstream elongation pattern combinations: 1) from
the starting genome position of each aligned sequence, 15 and 30 nt were added upstream,
beginning from each mature miRNA sequence start position. 2) Additionally, 60, 70 and
80 nt were added from each miRNA end position, resulting in the following elongation
pattern combinations for each candidate sequence: 15/60, 30/60, 15/70, 30/70, 15/80 and
30/80 added nt (i.e. we generated a total of 12 putative elongated pre-miRNA candidates
per each aligned sequence). Besides, the presence of flanking microprocessor motifs was
assessed for positionally correcting the elongated pre-miRNA candidate sequences.
Downstream CNNC and upstream UG motifs were assessed within the 30/60, 30/70 and
30/80 elongated candidates for each sequence, as described in [44], whereas downstream
mismatched GHG and upstream CHC motifs were searched in 15/60, 15/70 and 15/80

candidates [42].

To determine the most prevalent positional range of flanking processing motifs
surrounding pre-miRNA sequences in the porcine genome, 30 and 15 nt were added at
the flanking positions of annotated porcine pre-miRNAs available at the curated
miRCarta database [2]. The presence of CNNC and UG motifs within flanking +30 nt, as
well as GHG and CHC motifs within £15 nt was hence assessed. According to positional
results (Figure 2A), the CNNC and UG flanking motifs appeared more prominently
located 18 nt after miRNA gene ending and 12nt before miRNA starting points,
respectively. Therefore, when downstream CNNC or upstream UG motifs were found

within +30 nt flanking windows along pre-miRNA candidates, —18 and +12 nt positions
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were added from CNNC and UG motifs location, respectively, so as to establish accurate
miRNA genes boundaries determined by the microprocessor machinery. In the event that
none of the aforementioned motifs within flanking upstream and/or downstream defined
regions were found, the original elongated pre-miRNA candidates with no motif-based

positional refinement were kept.

Selecting putative pre-miRNA candidate sequences based on structural integrity

To better assess the optimal elongation pattern for each candidate sequence, the structural
stability of the 12 pre-miRNA candidates per single sequence was determined based on
the randfold algorithm [45]. This approach assumes the estimated minimum free energy
(MFE) of the folded pre-miRNA hairpin to be consistently lower than that of other
random sequences resembling hairpin-like folded structures [45]. Based on this property
of pre-miRNA sequences, we implemented a Monte Carlo randomization test to select
the most stable hairpin, i.e. those having the least folding minimum free energy (MFE)
values among the 12 previously generated candidates during pre-miRNA elongation
reconstruction for each of the analyzed sequences. To this end, we generated a total of
100 randomized sequences per candidate by shuffling their nucleotide distribution while
maintaining k-let counts [46]. The corresponding MFE values for each shuffled and
original hairpin-folded sequences were calculated with the RNAfold tool [37] and the

structural integrity score (p) was defined as:
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where R is the number of randomized sequences having an MFE value equal or smaller

than that of the MFE value of the original sequence and NV is the number of generated

iterations (100 in this study).

Subsequently, the candidate sequence showing the higher structural integrity (i.e. the one
showing the smallest p score) among all 12 generated pre-miRNA candidates per
sequence was selected. The proportion of the most structurally stable sequences for each
elongation pattern is shown in Figure 2B. When two or more sequences had equal p scores
(i.e. they had equivalent structural stability irrespective of the elongation pattern) the
reconstructed candidates belonging to the motif-corrected (if available) and shortest
elongation pattern were retained. The proportion of each elongation pattern selected as
the most structurally stable among all 12 tested patterns from expression-based and

homology-based data is shown in Figure 2C and D, respectively.

Candidates classification with semi-supervised transductive learning

After defining training and candidate data sets, we selected a total of 100 features
representing structural and statistical properties from each pre-defined sequence. These
extracted features have been previously reported in other state-of-the-art methods and

thoroughly reviewed in [47]. A complete list of all used features is shown in Table 1.

For pre-miRNA classification, the miRNAss algorithm proposed by Yones et al. [31] was
applied. This method implements a semi-supervised transductive learning scheme by
using well defined labeled cases, either positives (annotated pre-miRNAs) or negatives
(comprising other annotated non-coding hairpin-like sequences and unlabeled cases with
unknown hairpins), in order to draw a graph-based representation of each sequence based

on input features. Each node in the graph represents a sequence, whereas the
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corresponding edges account for the expected similarities among them. In order to
accurately represent the spatial distribution and connections of each node, the feature
importance is obtained by applying the Relief-F algorithm [48,49], where k-nearest
predictors are weighted based on conditional dependencies among all the considered
features and the response vector of labels. This algorithm penalizes those predictor
features giving different values to k-neighbors from the same label class and vice versa.

After graph construction, a prediction score is assigned to each sequence node [31].

Sscrofall.l pre-miRNA sequences from Ensembl and miRCarta databases were
evaluated and different imbalance ratios between positive (taken as reference) and
negative data sets were applied to assess the performance of the classification algorithm
for miRNA discovery in the porcine genome (i.e. 1:1, 1:2, 1:10, 1:20, 1:40, 1:60, 1:80,
1:100, 1:150 and 1:200 imbalance ratios were considered). Labeled sequences comprised
annotated pre-miRNAs (+1) as positive sequences, while other non-coding hairpin-like
transcripts (—1) were considered as negative. Genome-wide randomly extracted hairpins

were assigned as unlabeled cases (0) within the negative data set.

Testing subsets were randomly assigned from all proposed imbalanced training data set
combinations using a 0.25 ratio. The performance of the classification algorithm for
miRNA identification was assessed with a total of 100 random Monte Carlo iterations
and average performance measures based on Sensitivity (SE), Specificity (SP), Accuracy
(Acc), F-1 score (F1) and Adjusted Geometric-mean (Agm) [50] were estimated (Figure
3A). Furthermore, we evaluated the performance for each imbalance scenario by
computing the corresponding Receiver Operating Characteristics (ROC) curves and the
Precision-Recall (PR) curves. PR curves can be more informative than ROC curves for
highly imbalanced data sets [51]. ROC and PR curves as well as the corresponding Areas

under the curve (AUC) estimates are shown in Figure S1 and Table S1. The ability of the
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algorithm to correctly classify the list of Ensembl and miRCarta annotated porcine
miRNAs was also assessed by incorporating the positive data set as unlabeled candidate
sequences during the classification process in each of the defined imbalance scenarios.

Results for annotated porcine miRNAs assignment are shown in Table S2.

Finally, the reconstructed expressed candidate sequences from the porcine small RNA-
seq data and H. sapiens homologous miRNAs detected in the porcine genome were used
for identifying putative novel miRNAs. For this purpose, annotated pre-miRNAs from
the Ensembl database were used as positive class and other hairpin-like sequences were
considered as either negative or unlabeled sequences. Candidates classification was
implemented with all previously proposed imbalance ratios. In order to reduce the false
positive rate (i.e. reducing the misclassification of non-miRNA short hairpins as true
miRNA candidates), the Ensembl miRNA data set was defined as the positive class, due
to its higher overall reported specificity (Figure 3A and B). Prediction of novel miRNA
candidates was carried independently with every defined imbalance ratio. Only
candidates consistently reported as putative miRNAs in all imbalance scenarios were kept
in order to minimize the number of false positive miRNA candidates, albeit probably at

the expense of increasing the false negative rate.

Besides, for homology-based predicted novel pre-miRNA candidates, we calculated the
proportion of shared neighboring genes (setting a 2 Mb window before and after each
annotated human miRNA detected in the porcine genome) present in both S. scrofa and

H. sapiens assemblies and expressed as a Neighborhood Score (N):

G, NG

1O



where G7 is the number of orthologous genes within the 4 Mb window in the model

species (H. sapiens) and Gi is the number of genes within the same window in the species

of interest (S. scrofa). Only homology-based novel pre-miRNA candidates with N> 0.1
were considered for further analyses, based on the assumption that microRNAs residing
in genomic regions with surrounding and/or host genes phylogenetically conserved across
species are more prone to be integrated in biologically relevant transcriptional networks

[52].
Benchmarking for miRNA prediction performance

One of the most cited and used prediction miRNA algorithms is miRDeep. This tool was
developed by Friedldander et al. [53], and further improvements were made in subsequent
updates [11,54]. This algorithm implements a series of heuristics to compute a score for
each miRNA candidate expressing the log-odds probability of a sequence being a true
miRNA gene against the probability of being a miRNA-like pseudo-hairpin [53]. In order
to benchmark the eMIRNA pipeline compared with the widely used miRDeep approach,
we used the miRDeep?2 algorithm [54] to identify novel and annotated miRNAs by using
the same small RNA-seq data set employed for de novo miRNA identification with the
eMIRNA pipeline. To ensure a fair comparison, the arf alignment file needed for running
the miRDeep2 software was generated from the eMIRNA alignment pipeline using the
bowtie tool (bowtie -n 2 -1 25 -m 50 -k 1 --best --strata) on pre-filtered expressed small
RNA sequences generated in this study. After running the miRDeep2 algorithm, both
novel and already annotated pre-miRNA candidates were compared with those obtained
with the eMIRNA pipeline. The positional accuracy of the annotated pre-miRNA

candidates concurrently identified with both approaches was then determined using the
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Ensembl annotation available for the Sscrofall.l assembly. To further determine which
of the two approaches provided a better positional annotation of predicted miRNAs, the
deviation rate (dr) of each miRNA gene commonly detected was calculated for both
eMIRNA and miRDeep2, expressed as the average number of upstream and downstream
overhanging nucleotides compared with the latest porcine miRNA Ensembl annotation
(v97). The differential deviation estimate (AD) was assessed separately for each predicted

pre-miRNA candidate, as follows:

AD = eMIRNA;- — miRDeep2,,

Additionally, the performance statistics of the semi-supervised transductive learning
method [31] implemented in the eMIRNA pipeline was compared with other canonical
widely used state-of-the-art supervised ML approaches for miRNA prediction, such as
Support Vector Machine (SVM), Random Forest (RF), K-nearest Neighbors (KNN),
Naive Bayes (NB), Extreme Gradient Boosting Trees (XGB) and Light Gradient Boosting
Trees (IGBM). Only labeled positive and negative data sets were used for comparison
between semi-supervised and supervised algorithms. Training and testing subsets were
randomly generated with a 0.25 ratio for testing data and commonly used with all the
proposed methods. No imbalance correcting procedure was applied. The comparative
performance of these tools was assessed on the basis of SE, SP, F1-score, ROC and PR
curves obtained for each algorithm implementation. SVM, RF, KNN and NB algorithms
were trained allowing 10 iterations for parameter tuning and a 10-fold cross-validation
scheme, using built-in functions included in the caret R package [55]. The xgboost [56]

and lightgbm  (https://github.com/microsoft/LightGBM/tree/master/R-package) R
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packages with default parameters were employed for the training of XGB and IGBM

classifiers, respectively.

Experimental confirmation of novel identified porcine miRNAs through the RT-

qPCR analysis of an independent Gottingen minipig population

In order to investigate the existence of several of the novel putative predicted miRNAs in
the porcine genome, three well established orthologous novel miRNA candidates detected
by homology-based search and not previously annotated in the Sscrofall.l assembly
were selected (hsa-miR-483-3p, hsa-miR-484-5p and hsa-miR-200a-3p). The existence
of miRNA genes orthologous to hsa-miR-483-3p and hsa-miR-484-5p was supported by
the identification of the corresponding expressed mature miRNA sequences in our small
RNA-seq data set. Transcripts corresponding to hsa-miR-200a-3p were detected at very
low expression levels (RPM < 10) in the porcine skeletal muscle transcriptomic data, so
they were not considered as biologically relevant or functionally active in our
experimental conditions. Longissimus dorsi muscle and liver RNA samples were
collected from an independent Gottingen minipig population [57]. A total of 7 extracted
RNA samples from muscle and liver tissues were randomly selected and cDNA synthesis
was carried out as reported by Balcells et al. [58]. Primers for the qPCR amplification of
miRNAs were designed with the miRprimer software [59] according to described

protocols [60] and they are indicated in Table S3.

MiRspecific qPCR was performed on a MX3005P machine (Stratagene, USA). Briefly,
1 pul of cDNA diluted 8 fold, 5 pl of 2x QuantiFast SYBR Green PCR master mix (Qiagen,
Germany) and 250 nM of each primer (Table S3) were mixed in a final volume of 10 pl.
Cycling conditions were: 95 °C for 5 min followed by 40 cycles of 95 °C for 10s and

60 °C for 30 s. Melting curve analyses (60 °C to 99 °C) were performed after completing
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amplification reaction to ensure the specificity of the assays. Data were processed with
the MxPro qPCR associated software. Assays were considered successful when: 1) the
melting curve was specific (1 single peak) and 2) the samples had Cq values <33 cycles
(i.e. sufficiently expressed to be considered biologically functional). Finally, amplified
products for muscle and liver samples were visually inspected by electrophoresis in a 3%

agarose gel.

Results

Motif-based positional refinement enhances structural stability of pre-miRNA

candidates

We have evaluated the usefulness of previously reported flanking motifs that enhance
pre-miRNA processing [42,44] as possible novel determinants for pre-miRNA
reconstruction from mature sequences. The presence of UG and CHC motifs in upstream
flanking regions as well as of downstream CNNC and GHG motifs was assessed in the
curated porcine miRNA annotation available in the miRCarta database [2] (Figure 2A).
Consistent with data reported by Fang et al. [42] and Auyeung et al. [44], the most
common flanking upstream positions for UG and CHC motifs from the 5’ start of the
porcine pre-miRNA genes were —13/—12 and —7/-5, respectively, whereas for
downstream CNNC and GHG motifs, the most common position from the 3’end of the

pre-miRNA genes were +18/+21 and +4/+6 (Figure 2A).

Moreover, we determined the percentage of annotated porcine miRNAs that were
surrounded by the aforementioned processing motifs, allowing +2nt of positional

variation from their corresponding expected sites. From a total of 328 confidently
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annotated porcine pre-miRNAs in the miRCarta database [2], CNNC, UG, GHG and
CHC flanking motifs were found in 53.05%, 42.68%, 30.79% and 33.54% of the
sequences, respectively. The high frequency of the CNNC motif agrees well with its key
role in the correct Drosha ribonuclease III (DROSHA) positioning through the
recruitment of Serine and Arginine rich splicing factor 3 (SRSF3) at the basal junction of
the processed pri-miRNA [61]. The proportion of the three other flanking motifs were

also consistent with previously reported surveys [42,44].

To further elucidate the contribution of each motif to better delineate the boundaries of
pri-miRNA processing, we compared the structural stability (i.e. the estimated p score of
the hairpin secondary structure with the randfold approach [45]) for every pre-miRNA
candidate in each of the 12 generated elongation patterns per sequence (15/60, 30/60,
15/70, 30/70, 15/80 and 30/80, with and without taking into account motif search
positional refinement). As depicted in Figure 2B, predictions of candidate miRNA
sequences based on positional information obtained through processing motif search
showed a consistently increased structural stability compared with non-positionally
corrected original sequences. This phenomenon was less evident for shorter elongation
patterns, where the structural stability of the positionally corrected hairpins resembled
that of non-corrected candidates (Figure 2B). In certain cases, both approaches resulted
in equally stable secondary structures. Furthermore, shorter elongation patterns appeared
to be more favored than their longer counterparts, showing higher overall structural
stability both in small RNA-seq and homology-based derived candidate sequences
(Figure 2C and D). This result highlights that the preferred length for pre-miRNA
processed transcripts would be approximately in the range of 80 to 90 nt, with few cases
showing longer stable hairpin structures. Interestingly, this favored pre-miRNA length

interval coincides with that reported by Roden et al. [43], who determined a preferred 2%
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stem length of 35 nt and a terminal loop of ~10 nt, accounting for a total pre-miRNA
sequence length of ~80 nt. Indeed, the average length of annotated pre-miRNAs in the
porcine genome after filtering for secondary structure and sequence similarity was
84.63 nt, also in accordance with results obtained after selecting the most structurally

stable elongation pattern from all generated candidates per sequence.

Classifier performance and feature importance

For assessing the performance of transductive semi-supervised miRNA classification on
the porcine transcriptome, Ensembl and miRCarta positive pre-filtered porcine miRNA
data sets (415 Ensembl and 244 miRCarta non-redundant hairpin-like stable annotated
miRNAs) were tested against selected non-coding hairpin-like sequences (252 annotated
non-coding hairpin-like RNAs other than miRNAs) and different imbalance ratios were
applied by incorporating genome-wide randomly extracted hairpins (unlabeled). Overall,
SE and SP obtained with the Ensembl miRNA data set (Figure 3A) were slightly better
than those inferred for the miRCarta data set (Figure 3B). Ensembl average SE and SP
were 0.9199 and 0.9101 respectively, whereas results obtained with the miRCarta data
set were slightly worse (SE =0.8975, SP=0.9019). Optimal performance was achieved
by using a balanced ratio between positive and negative classes, with a slightly
descending trend in the classifier performance when increasing the imbalance ratio
(Figure 3A and B), a result that was also observed when analyzing the ROC and PR curves
(Figure S1). When we compared the performance of the semi-supervised approach vs that
of other supervised algorithms, the miRNAss algorithm [31] implemented in the eMIRNA
pipeline outperformed the rest of supervised approaches, with the exception of IGBM,
which showed similar performance results (Table 2). SP, as well as AUROC and AUPR
estimates obtained with the miRNAss method [31] showed its high ability to discard false
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positives miRNA candidates, at the cost of a lower SE (Table 2). Additionally, after
evaluating the ability of the algorithm to correctly identify the annotated porcine miRNA
loci in all defined imbalance scenarios, a total of 399 (89.92%) and 213 (87.30%)
annotated miRNAs were consistently classified as miRNA sequences using Ensembl

(415) and miRCarta (244) positive databases, respectively.

The improved performance achieved with the Ensembl data set was expected because
Ensembl annotation includes a more diverse and complete miRNA catalogue (415) than
miRCarta (244). However, these differences are probably due to a more strict miRNA
annotation procedure in the case of miRCarta database [2], which only includes manually
curated bona fide miRNA genes. Nevertheless, the slight increase in overall performance
observed in the Ensembl miRNA data set evidenced that even when reducing the set of
positive sequences to a more stringent annotation, as that available in the miRCarta
database [2], the ability of the eMIRNA pipeline to accurately distinguish miRNA

sequences from other non-miRNA hairpins remained almost unaltered.

Besides, we determined the importance of the set of calculated features for classifying the
miRNA candidates with the relief-F algorithm [48,49]. The estimated importance of the
30 most discriminant features is depicted in Figure 3C. The estimated impact of each
feature on the accuracy of miRNA is shown in Table S4. Structural stability-related
features accounted for the most important variables for classifying miRNAs correctly
(MFEadj, EFEadj, MFE, EFE, MEAFE, MFEadj.GC and CFE). All of these parameters
represented different hairpin structure folding statistics and they were highly
intercorrelated (Figure 3D). The discriminant power of structural stability features is
better exemplified in Figure 3E, where Ensembl annotated pre-miRNA sequences had an
overall higher structural stability (i.e. lower MFEadj values) compared with that of other

non-coding hairpin-like RNA sequences. These results clearly show the outmost
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importance of the structural folding configuration in order to discriminate true miRNA
candidates from other hairpin-like sequences, hence supporting the need of a careful

determination of pre-miRNA boundaries.

Novel porcine miRNA identified in the muscle transcriptome and by homology-

based search

After microRNA identification from the porcine small RNA-seq data set, a total of 1,403
reconstructed pre-miRNA candidates from expressed transcripts were successfully
identified as putative novel miRNAs in the porcine gluteus medius transcriptome, which
corresponded to 160 unique miRNA loci after assigning clustered isomiRs to consensus
single miRNA genes. Among these, 140 consensus candidates (87.5%) overlapped
already annotated miRNAs in the porcine genome, whereas the 20 remaining ones

(12.5%) were classified as novel miRNA candidates.

Regarding homology-based search miRNA discovery in the porcine assembly
(Sscrofall.1), a total of 310 annotated human miRNAs had orthologous miRNA genes
in the porcine genome. The already annotated miRNAs in the porcine genome comprised
281 (90.64%) of the 310 homologous miRNAs detected with eMIRNA (File S3), and the
29 (N>0.1) remaining candidates were classified as novel non-previously annotated
homologous miRNAs in the porcine assembly (Table 3). The miR-483 and miR-484
genes were also identified as novel expressed miRNA candidates in the gluteus medius
muscle transcriptome generated in our small RNA-seq experiment. A complete list of the
novel miRNA candidates obtained with de novo and homology-based approaches is
shown in Table 3. The full list of detected miRNAs that had been already annotated and
all isomiRs associated with novel miRNA sequences can be found in File S3. The

existence of multiple isoform candidates for single predicted miRNA loci, either
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displaying polymorphisms within the mature miRNA sequence or corresponding to 5’ or
3'-trimming variations (File S3), evidenced the wide variety of isomiR sequences

expressed at significant levels in our gluteus medius muscle transcriptomic data set.

The eMIRNA pipeline accurately recalls miRNA loci

The same gluteus medius skeletal muscle transcriptomic data from the small RNA-seq
experiment employed for de novo miRNA discovery with the eMIRNA pipeline was used
for running the miRDeep2 algorithm [54]. A total of 148 transcripts belonging to 134
unique annotated miRNA loci were identified with miRDeep2. These numbers were
slightly smaller than the 140 annotated porcine miRNAs recovered as expressed
transcripts by the eMIRNA pipeline. Among these, 126 annotated miRNAs (85.14%)
were consistently recovered with eMIRNA and miRDeep2, 14 (9.46%) were only
reported by eMIRNA, and 8 (5.41%) were exclusively predicted by miRDeep2 (Table

S5).

Regarding novel candidates, miRDeep2 was able to recover a total of 11 putative novel
candidates belonging to 10 unique loci (Table S6). Seven of these candidates displayed
an estimated probability of being a true positive miRNA above 19% (miRDeep2
score >4, Table S6). Noteworthy, two of the putatively true miRNAs detected by
miRDeep2 spanned other previously annotated non-coding RNAs in the porcine assembly
and were hence considered as miRNA-like false positives (Table S6). Among the 5
remaining candidates, 4 of them (miR-193a, miR-26a, miR-106b and miR-17) spanned
other already annotated miRNAs in the porcine assembly and were thus wrongly
classified as novel miRNAs by miRDeep2. The remaining candidate corresponded to
miR-483, which had already been identified with the eMIRNA pipeline (Table 3, Table

S6).
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When comparing the accuracy of miRNA loci boundaries determined by the eMIRNA
pipeline and miRDeep2, the eMIRNA approach demonstrated an overall better capability
to accurately assign miRNA boundaries according to data from porcine miRNA loci
annotated in the Ensembl database. A total of 103 out of 126 (81.74%) annotated miRNA
genes detected by both eMIRNA and miRDeep2 showed reduced AD values (Table S7).
This result implies that genomic positions of miRNA precursors predicted with the
eMIRNA pipeline were more concordant with the annotation of the Sscrofall.1 assembly
than those predicted with miRDeep2. This outcome illustrates the effectiveness of motif
search positional correction for reconstructing pre-miRNA candidates with a higher
reliability than the fixed elongation patterns strategy used by miRDeep2 [54]. Three of
the miRNA candidates showed no differences in positional accuracy between both
approaches, while the positions of the remaining sequences (15.87%) were more

accurately predicted with miRDeep2 (Table S7).

Experimental confirmation of the existence of three novel miRNAs in the muscle

and liver tissues of Gottingen minipigs

The RT-qPCR analyses allowed us to detect the expression of the novel ssc-miR-483,
ssc-miR-484 and ssc-miR-200a candidates in both longissimus dorsi skeletal muscle and
liver tissues (Figure S2A and B) retrieved from Gottingen minipigs. Both ssc-miR-483
and ssc-miR-484 were also detected as consistently expressed in the skeletal muscle of
Duroc gilts from our small RNA-seq experiment. The ssc-miR-200a was also detected in
our generated data set but at very low expression levels. Nevertheless, its expression was
further confirmed independently by RT-qPCR analyses. Amplification profiles and
melting curves for the three novel miRNA candidates detected by RT-qPCR are shown
in File S4.
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Discussion

In the discovery of novel miRNA genes, one essential issue is the generation of pre-
miRNA sequence candidates, given that the majority of miRNA prediction tools are based
on feature extraction from the well-defined pre-miRNA hairpin structure [62]. At the
cellular level, the most abundant and stable miRNA transcripts are the mature miRNA
forms. Indeed, precursor stages, such as pri or pre-miRNAs, are much less abundant and
have shorter half-lives than mature miRNAs [63,64]. Therefore, the accurate definition
of pre-miRNA boundaries reconstructed from mature miRNAs is a crucial issue in order

to predict folding structure and minimum free energy (MFE) estimates in a robust manner.

Noteworthy, the majority of state-of-the-art methods for miRNA prediction are solely
focused on the miRNA classification of predefined candidate sequences. Moreover, many
of them do not contemplate the generation of such candidates for the identification of
unannotated miRNAs. On the contrary, they rely on well-known hairpins or on sets of
manually curated candidate sequences that are embedded in their prediction pipelines

[30,31,65-72].

Several other algorithms take advantage of the automated generation of hairpin
candidates, adopting fixed defined elongation patterns in order to reconstruct pre-miRNA
candidates from mature miRNA sequences [9,11,73,74]. However, fixed assumptions
about elongation patterns do not take into consideration the expected variable length of
pre-miRNA loci, and tend to generate candidate sequences that, despite harboring mature
miRNAs, might have unreliable boundaries. This may lead to inaccuracies in the folding
prediction and thus to an augmentation of the false negative rate. Even worse, non-
miRNA hairpin-like sequences strongly resembling pre-miRNAs may be generated
through the blind elongation of short sequences, which could result in the emergence of

false positive candidates. This situation is particularly critical when analyzing the
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reliability of miRNA annotation in public databases [27,75,76]. Other approaches have
also adopted a multiple hairpin candidate search for each query sequence to further select
those showing a higher structural stability [77-79]. By using this strategy, we explored
the influence of flanking processing motifs on the accurate determination of the length
and boundaries of pre-miRNA candidates. By doing so, we have demonstrated that the
inclusion of processing motif search criteria for the estimation of pre-miRNA boundaries
resulted in an improved ability to better assess the optimal candidate sequences to be used

for miRNA prediction.

Compared with miRDeep2 [54], the eMIRNA pipeline showed an improved ability to
better assess the already annotated miRNA loci boundaries after pre-miRNA sequence
reconstruction. However, the presence of embedded processing motifs within the
boundaries of miRNA genes is not a universal feature, with a non-negligible amount of
miRNA loci lacking the well-known CNNC and UG motifs [44], as well as the CHC and
GHG mismatches [42] in their proximal surroundings. Additional work is needed to better
characterize other processing motifs or structural determinants that may also contribute

to miRNA maturation.

In contrast with pre-existing supervised methods for miRNA discovery, few semi-
supervised methods have been developed for such purpose [31,80]. From a biological
perspective, the scarce miRNA annotation typically found in non-model species poses a
great challenge when attempting to predict novel miRNA loci uniquely based on labeled
data. This happens because the amount of unknown non-miRNA sequences with hairpin-
like secondary structures is expected to be hundreds of times larger than the number of
confidently annotated miRNAs to be used for training supervised algorithms. Despite the
fact that good performance statistics may be obtained after classifier training, supervised

algorithms heavily depend on the existence of an extensive miRNA annotation. Indeed,
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the ability of such classifiers to detect unannotated miRNA sequences is mainly driven

by the amount and diversity of positive and negative instances used for learning training.

On the contrary, semi-supervised transductive approaches [31] are able to overcome such
limitation by incorporating unlabeled cases to the training process, with the aim of
increasing the variability of the data used for target sequences classification. In fact,
allowing the classifier to check hundreds or thousands of unknown unlabeled sequences
has proven to increase the validity of microRNA prediction over other methods solely
based on labeled data [31], a result that was also verified when comparing the semi-
supervised approach used in this study with other broadly reported supervised methods
(Table 2). This strategy is particularly reliable when few positive data are available and
the annotated negative data set only represent a small proportion of the whole non-
miRNA class. Besides, in classification problems where the negative class is expected to
be dozens or hundreds of times larger than the positive class, the accurate identification
of false positives is crucial. Indeed, such scenario is completely applicable to miRNAs,
where thousands of non-miRNA sequences exist compared with the few hundreds of
reliably annotated miRNA genes, and the annotation of negative hairpin-like sequences

only represents a small proportion of the whole non-miRNA class.

After miRNA prediction, the detection of multiple isoforms for each single predicted
miRNA loci evidenced the existence of a broad array of isomiR sequences expressed at
significant levels in our gluteus medius muscle transcriptomic data set (File S3). Previous
studies have highlighted the importance of isomiRs in expanding the biological diversity
of miRNA function [81-84]. Like canonical miRNAs, isomiRs are also evolutionary
conserved [81]. Both 5" and 3’ miRNA isoforms can be generated either from alternative

processing sites of DROSHA and Dicer [43,85] or from post-transcriptional
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modifications, influencing miRNA half-lives as well as their interactions with RNA-

binding proteins (RBPs) [86,87].

More recently, other integrative approaches have addressed the detection of isomiRs and
the potential functional influence that subtle modifications in the 3’ and 5’ boundaries of
mature miRNA sequences might have on target recognition [88-91]. Other studies have
also reported 5’ alternative processing events in a large number of miRNAs, contributing
to the expansion of their target repertoire at a higher rate than previously thought [92].
Despite these promising results, the biological implications of miRNA alternative
processing events leading to the generation of isomiRs are still poorly understood and
further research is needed in order to exclude potential biases in isomiR quantification
and functional validation, as variations in 3" or 5’ ends of mature miRNAs can strongly

affect the reliability of stem-loop qPCR amplification protocols [93].

One potential limitation of our study is that 17 of the novel miRNAs predicted with
eMIRNA and based on muscle transcriptomic data have not been further investigated in
order to confirm their existence by RT-qPCR, so their experimental validation is still
pending. Indeed, we only investigated 3 out of 20 predicted novel porcine miRNAs.
Noteworthy, the three selected miRNAs were successfully confirmed as bona fide

miRNAs by RT-qPCR thus suggesting that eMIRNA predictions are accurate.

Among the three validated miRNAs, it is worth mentioning miR-483, which has been
functionally associated with cell growth regulation [94] as well as with insulin resistance
and metabolic syndrome susceptibility likely due to its strong implication in the
regulation of glucose metabolism [95,96]. Additionally, the expression of miR-483,
whose coding sequence maps to the second intron of the insulin growth factor 2 (IGF2)
gene, has been tightly associated with an enhancement of /GF2 gene expression. This is
achieved through the binding of miR-483 to transcription factors in a positive feed-back
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loop [97], although other authors have questioned such dependence [98]. Other relevant
successfully profiled miRNAs were ssc-miR-200a and ssc-miR-484. The miR-200a gene
has been mainly reported as a regulator of cell growth and differentiation through
targeting several protein-encoding transcripts like the growth factor receptor-bound 2
(GRB2), a-smooth muscle actin (a-SMA) or the fibroblast-specific protein-1 (FSP-1), thus
hampering the endothelial-mesenchymal transition [99]. Furthermore, miR-484 has been
associated with the inhibition of Fisl-mediated mitochondrial fission and apoptosis

signaling [100].

Conclusions

In this study we have implemented an end-to-end pipeline that may facilitate the
identification of novel miRNAs in the porcine genome. We have tested the eMIRNA
pipeline by following a homology-based approach making use of the well annotated
human microRNA transcriptome. Besides, we have analyzed the presence of non-
annotated miRNAs in the porcine genome using data from a small RNA-seq experiment
comprising muscle samples from 48 Duroc gilts. We have also taken into consideration
several issues that are critical to robustly predict miRNA genes, such as the accurate
reconstruction of candidate pre-miRNAs, the correct definition of negative training data
sets and the evaluation of the high class-imbalance phenomenon, which is not fully
addressed in many miRNA-prediction studies. In parallel, we have established hard-
threshold filtering steps to keep false positive predictions at a minimum. We have also
demonstrated the usefulness of positional refinement through flanking motif search to

better determine the boundaries of pre-miRNA hairpin-like candidate sequences. The
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expression of several of the novel miRNAs described in this work was further confirmed
by RT-qPCR analyses. In the light of these results, we believe that the eMIRNA pipeline
will facilitate the discovery and annotation of novel miRNAs, thus broadening the

miRNA catalogue of non-model species with yet poorly annotated genome assemblies.

Support

The research presented in this publication was funded by grants AGL2013-48742-C2-1-
R and AGL2013-48742-C2-2-R awarded by the Spanish Ministry of Economy and
Competitivity. E. Marmol-Sanchez was funded with a Ph.D. fellowship FPU15/01733

awarded by the Spanish Ministry of Education and Culture (MECD).

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the Department of Veterinary Animal Sciences in the
Faculty of Health and Medical Sciences of the University of Copenhagen for providing
their facilities and materials for RT-qPCR experiments. We would also like to express
our gratitude to Dr. Caroline M. Junker Mentzel for kindly providing RNA samples for
gPCR analyses. We also acknowledge Seleccion Batallé S.A. for providing animal
material and the Spanish Ministry of Economy and Competitivity for the Center of

Excellence Severo Ochoa 2016-2019 (SEV-2015-0533) grant awarded to the Center for

29



Research in Agricultural Genomics (CRAG). Thanks also to the CERCA Programme of

the Generalitat the Catalunya for their support.

References

[1] A. Kozomara, M. Birgaoanu, S. Griffiths-Jones, miRBase: from microRNA sequences

to function, Nucleic Acids Res. 47 (2019) D155-D162.

[2] C. Backes, T. Fehlmann, F. Kern, T. Kehl, H.-P. Lenhof, E. Meese, A. Keller,
miRCarta: a central repository for collecting miRNA candidates, Nucleic Acids Res. 46

(2018) D160-D167.

[3] B. From, D. Domanska, L. Haye, V. Ovchinnikov, W. Kang, E. Aparicio-Puerta, M.
Johansen, K. Flatmark, A. Mathelier, E. Hovig, M. Hackenberg, M.R. Friedldnder, K.J.
Peterson, MirGeneDB2.0: the metazoan microRNA complement, Nucleic Acids Res.

(2019) gkz885.

[4] J. Meunier, F. Lemoine, M. Soumillon, A. Liechti, M. Weier, K. Guschanski, H. Hu,
P. Khaitovich, H. Kaessmann, Birth and expression evolution of mammalian microRNA

genes, Genome Res. 23 (2013) 34-45.

[5] M. Warnefors, A. Liechti, J. Halbert, D. Valloton, H. Kaessmann, Conserved
microRNA editing in mammalian evolution, development and disease, Genome Biol. 15

(2014) R83.

[6] L.P. Lim, N.C. Lau, E.G. Weinstein, A. Abdelhakim, S. Yekta, M.W. Rhoades, C.B.
Burge, D.P. Bartel, The microRNAs of Caenorhabditis elegans, Genes Dev. 17 (2003)

991-1008.

30



[7] E.C. Lai, P. Tomancak, R.W. Williams, G.M. Rubin, Computational identification of

Drosophila microRNA genes, Genome Biol. 4 (2003) R42.

[8] X. Wang, J. Zhang, F. Li, J. Gu, T. He, X. Zhang, Y. Li, MicroRNA identification

based on sequence and structure alignment, Bioinformatics. 21 (2005) 3610-3614.

[9] A. Mathelier, A. Carbone, MIReNA: finding microRNAs with high accuracy and no
learning at genome scale and from deep sequencing data, Bioinformatics. 26 (2010)

2226-2234.

[10] K. Qian, E. Auvinen, D. Greco, P. Auvinen, miRSeqNovel: An R based workflow

for analyzing miRNA sequencing data, Mol. Cell. Probes 26 (2012) 208-211.

[11]J. An, J. Lai, M.L. Lehman, C.C. Nelson, MiRDeep*: An integrated application tool
for miRNA identification from RNA sequencing data, Nucleic Acids Res. 41 (2013) 727—

737.

[12] T.B. Hansen, M.T. Veng, J. Kjems, C.K. Damgaard, miRdentify: high stringency
miRNA predictor identifies several novel animal miRNAs, Nucleic Acids Res. 42 (2014)

el24.

[13] D. Kleftogiannis, A. Korfiati, K. Theofilatos, S. Likothanassis, A. Tsakalidis, S.
Mavroudi, Where we stand, where we are moving: surveying computational techniques

for identifying miRNA genes and uncovering their regulatory role, J. Biomed. Inform. 46

(2013) 563-573.

[14] M. Bortolomeazzi, E. Gaffo, S. Bortoluzzi, A survey of software tools for microRNA

discovery and characterization using RNA-seq, Brief. Bioinform. 20 (2017) 918-930.

[15] G. Stegmayer, L.E. Di Persia, M. Rubiolo, M. Gerard, M. Pividori, C. Yones, L.A.

Bugnon, T. Rodriguez, J. Raad, D.H. Milone, Predicting novel microRNA: a

31



comprehensive comparison of machine learning approaches, Brief. Bioinform. (2018)

bby037.

[16] A. Rajendiran, A. Chatterjee, A. Pan, Computational approaches and related tools to
identify microRNAs in a species: a bird's eye view, Interdiscip. Sci. Comput. Life Sci. 10

(2018) 616-635.

[17] J.-E. Long, H.-X. Chen, Identification and characteristics of cattle microRNAs by

homology searching and small RNA cloning, Biochem. Genet. 47 (2009) 329-343.

[18] Z. Wang, K. He, Q. Wang, Y. Yang, Y. Pan, The prediction of the porcine
premicroRNAs in genome-wide based on support vector machine (SVM) and homology

searching, BMC Genomics 13 (2012) 729.

[19] X. Hou, Z. Tang, H. Liu, N. Wang, H. Ju, K. Li, Discovery of microRNAs associated
with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs,

PLoS One 7 (2012) e52123.

[20] C. Yuan, X. Wang, R. Geng, X. He, L. Qu, Y. Chen, Discovery of cashmere goat
(Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing, BMC

Genomics 14 (2013) 511.

[21] J. Sun, M. Li, Z. Li, J. Xue, X. Lan, C. Zhang, C. Lei, H. Chen, Identification and
profiling of conserved and novel microRNAs from Chinese Qinchuan bovine longissimus

thoracis, BMC Genomics 14 (2013) 42.

[22] T. Buza, M. Arick, H. Wang, D.G. Peterson, Computational prediction of disease

microRNAs in domestic animals, BMC Res. Notes. 7 (2014) 403.

[23] B. Sadeghi, H. Ahmadi, S. Azimzadeh-Jamalkandi, M.R. Nassiri, A. Masoudi-
Nejad, BosFinder: a novel pre-microRNA gene prediction algorithm in Bos taurus, Anim.

Genet. 45 (2014) 479-484.

32



[24] J. Wu, H. Zhu, W. Song, M. Li, C. Liu, N. Li, F. Tang, H. Mu, M. Liao, X. Li, W.
Guan, X. Li, J. Hua, Identification of conservative microRNAs in Saanen dairy goat testis

through deep sequencing, Reprod. Domest. Anim. 49 (2014) 32—40.

[25] Z. Li, H. Wang, L. Chen, L. Wang, X. Liu, C. Ru, A. Song, Identification and
characterization of novel and differentially expressed microRNAs in peripheral blood
from healthy and mastitis Holstein cattle by deep sequencing, Anim. Genet. 45 (2014)

20-27.

[26] D.M.D. Sagar, H. Hamzeiy, J. Allmer, Can miRBase provide positive data for
machine learning for the detection of miRNA hairpins? J. Integr. Bioinform. 10 (2013)

1-11.

[27] N. Ludwig, M. Becker, T. Schumann, T. Speer, T. Fehlmann, A. Keller, E. Meese,
Bias in recent miRBase annotations potentially associated with RNA quality issues, Sci.

Rep. 7 (2017) 5162.

[28] L. Wei, M. Liao, Y. Gao, R. Ji, Z. He, Q. Zou, Improved and promising identification
of human microRNAs by incorporating a high-quality negative set, [IEEE/ACM Trans.

Comput. Biol. Bioinforma. 11 (2014) 192-201.

[29] M. Yousef, J. Allmer, W. Khalifa, Accurate plant microRNA prediction can be

achieved using sequence motif features, J. Intell. Learn. Syst. Appl. 8 (2016) 9-22.

[30] G. Stegmayer, C. Yones, L. Kamenetzky, D.H. Milone, High class-imbalance in
premiRNA prediction: a novel approach based on deepSOM, IEEE/ACM Trans. Comput.

Biol. Bioinforma. 14 (2017) 1316-1326.

[31] C. Yones, G. Stegmayer, D.H. Milone, C. Sahinalp, Genome-wide pre-miRNA

discovery from few labeled examples, Bioinformatics. 34 (2018) 541-549.

33



[32] Y. Wang, X. Li, B. Tao, Improving classification of mature microRNA by solving

class imbalance problem, Sci. Rep. 6 (2016) 25941.

[33] T.F. Cardoso, R. Quintanilla, J. Tibau, M. Gil, E. Marmol-Sanchez, O.
GonzalezRodriguez, R. Gonzéalez-Prendes, M. Amills, Nutrient supply affects the mRNA

expression profile of the porcine skeletal muscle, BMC Genomics 18 (2017) 603.

[34] M. Ballester, M. Amills, O. Gonzélez-Rodriguez, T.F. Cardoso, M. Pascual, R.
Gonzalez-Prendes, N. Panella-Riera, 1. Diaz, J. Tibau, R. Quintanilla, Role of AMPK

signalling pathway during compensatory growth in pigs, BMC Genomics 19 (2018) 682.

[35] A.R. Quinlan, .M. Hall, BEDTools: a flexible suite of utilities for comparing

genomic features, Bioinformatics. 26 (2010) 841-842.

[36] Y. Huang, B. Niu, Y. Gao, L. Fu, W. Li, CD-HIT suite: a web server for clustering

and comparing biological sequences, Bioinformatics. 26 (2010) 680—682.

[37] R. Lorenz, S.H. Bernhart, C. Honer zu Siederdissen, H. Tafer, C. Flamm, P.F.

Stadler, I.L. Hofacker, ViennaRNA Package 2.0, Algorithms Mol. Biol. 6 (2011) 26.

[38] C. Yones, HextractoR: Integrated tool for hairpin extraction of RNA sequences, R

Package Version 1.3, 2018 https://cran.r-project.org/package=HextractoR.

[39] M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing

reads, EMBnet.journal. 17 (2011) 10.

[40] Y. Lu, A.S. Baras, M.K. Halushka, miRge 2.0 for comprehensive analysis of

microRNA sequencing data, BMC Bioinforma. 19 (2018) 275.

[41] B. Langmead, C. Trapnell, M. Pop, S. Salzberg, Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome, Genome Biol. 10 (2009) R25.

34


https://cran.r-project.org/package=HextractoR

[42] W. Fang, D.P. Bartel, The menu of features that define primary microRNAs and

enable de novo design of microRNA genes, Mol. Cell 60 (2015) 131-145.

[43] C. Roden, J. Gaillard, S. Kanoria, W. Rennie, S. Barish, J. Cheng, W. Pan, J. Liu, C.
Cotsapas, Y. Ding, J. Lu, Novel determinants of mammalian primary microRNA
processing revealed by systematic evaluation of hairpin-containing transcripts and human

genetic variation, Genome Res. 27 (2017) 374-384.

[44] V.C. Auyeung, 1. Ulitsky, S.E. McGeary, D.P. Bartel, Beyond secondary structure:
primary-sequence determinants license pri-miRNA hairpins for processing, Cell. 152

(2013) 844-858.

[45] E. Bonnet, J. Wuyts, P. Rouze, Y. Van de Peer, Evidence that microRNA precursors,
unlike other non-coding RNAs, have lower folding free energies than random sequences,

Bioinformatics. 20 (2004) 2911-2917.

[46] M. Jiang, J. Anderson, J. Gillespie, M. Mayne, uShuffle: a useful tool for shuffling

biological sequences while preserving the k-let counts, BMC Bioinforma. 9 (2008) 192.

[47] L. Lopes, A. Schliep, A.C.L.F. de Carvalho, The discriminant power of RNA features

for pre-miRNA recognition, BMC Bioinforma. 15 (2014) 124.

[48] 1. Kononenko, E. Simec, M. Robnik-Sikonja, Overcoming the myopia of inductive

learning algorithms with RELIEFF, Appl. Intell. 7 (1997) 39-55.

[49] M. Robnik-Sikonja, I. Kononenko, Theoretical and empirical analysis of ReliefF and

RReliefF, Mach. Learn. 53 (2003) 23—69, https://doi.org/10.1023/ A:1025667309714.

[50] R. Batuwita, V. Palade, Adjusted geometric-mean: a novel performance measure for
imbalanced bioinformatics data sets learning, J. Bioinforma. Comput. Biol. 10 (2012)

1250003.

35



[51] J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves,

ACM Int. Conf. Proceeding Ser. (2006) 233-240.

[52] G.S. Franga, M.D. Vibranovski, P.A.F. Galante, Host gene constraints and genomic
context impact the expression and evolution of human microRNAs, Nat. Commun. 7

(2016) 11438.

[53] M.R. Friedldnder, W. Chen, C. Adamidi, J. Maaskola, R. Einspanier, S. Knespel, N.
Rajewsky, Discovering microRNAs from deep sequencing data using miRDeep, Nat.

Biotechnol. 26 (2008) 407—415.

[54] M.R. Friedldnder, S.D. MacKowiak, N. Li, W. Chen, N. Rajewsky, MiRDeep2
accurately identifies known and hundreds of novel microRNA genes in seven animal

clades, Nucleic Acids Res. 40 (2012) 37-52.

[55] M. Kuhn, Building predictive models in R using the caret package, J. Stat. Softw. 28

(2008) 1-26.

[56] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, Proc. ACM

SIGKDD Int. Conf. Knowl. Discov. Data Min., 2016, pp. 785-794.

[57] C.M.J. Mentzel, C. Anthon, M.J. Jacobsen, P. Karlskov-Mortensen, C.S. Bruun, C.B.
Jorgensen, J. Gorodkin, S. Cirera, M. Fredholm, Gender and obesity specific microRNA

expression in adipose tissue from lean and obese pigs, PLoS One 10 (2015) e0131650.

[58] L. Balcells, S. Cirera, P.K. Busk, Specific and sensitive quantitative RT-PCR of

miRNAs with DNA primers, BMC Biotechnol. 11 (2011) 70.

[59] P.K. Busk, A tool for design of primers for microRNA-specific quantitative RT-

gPCR, BMC Bioinforma. 15 (2014) 29.

36



[60] S. Cirera, P.K. Busk, Quantification of miRNAs by a simple and specific qPCR

method, Methods Mol. Biol. (2014) 73-81.

[61] K. Kim, T. Duc Nguyen, S. Li, T. Anh Nguyen, SRSF3 recruits DROSHA to the

basal junction of primary microRNAs, RNA. 24 (2018) 892—-898.
[62] D.P. Bartel, Metazoan microRNAs, Cell. 173 (2018) 20-51.

[63] L. Gan, B. Denecke, Profiling pre-microRNA and mature microRNA expressions
using a single microarray and avoiding separate sample preparation, Microarrays. 2

(2013) 24-33.

[64] Y. Guo, J. Liu, S.J. Elfenbein, Y. Ma, M. Zhong, C. Qiu, Y. Ding, J. Lu,
Characterization of the mammalian miRNA turnover landscape, Nucleic Acids Res. 43

(2015) 2326-2341.

[65] C. Xue, F. Li, T. He, G.-P. Liu, Y. Li, X. Zhang, Classification of real and pseudo
microRNA precursors using local structure-sequence features and support vector

machine, BMC Bioinforma. 6 (2005) 310, https://doi.org/10.1186/1471-2105-6- 310.

[66] P. Jiang, H. Wu, W. Wang, W. Ma, X. Sun, Z. Lu, MiPred: classification of real and
pseudo microRNA precursors using random forest prediction model with combined

features, Nucleic Acids Res. 35 (2007) W339-W344.

[67] R. Batuwita, V. Palade, microPred: effective classification of pre-miRNAs for

human miRNA gene prediction, Bioinformatics. 25 (2009) 989-995.

[68] Y. Wu, B. Wei, H. Liu, T. Li, S. Rayner, MiRPara: a SVM-based software tool for
prediction of most probable microRNA coding regions in genome scale sequences, BMC

Bioinforma. 12 (2011) 107.

37



[69] A. Gudy$, M.W. Szcze$niak, M. Sikora, I. Makatowska, HuntMi: an efficient and

taxon-specific approach in pre-miRNA identification, BMC Bioinforma. 14 (2013) 83.

[70] Q. Zou, Y. Mao, L. Hu, Y. Wu, Z. Ji, miRClassify: an advanced web server for

miRNA family classification and annotation, Comput. Biol. Med. 45 (2014) 157-160.

[71] D. Kleftogiannis, K. Theofilatos, S. Likothanassis, S. Mavroudi, YamiPred: a novel
evolutionary method for predicting pre-miRNAs and selecting relevant features,

IEEE/ACM Trans. Comput. Biol. Bioinforma. 12 (2015) 1183-1192.

[72] D.M.D. Sagar, J. Baumbach, J. Allmer, On the performance of pre-microRNA

detection algorithms, Nat. Commun. 8 (2017) 330.

[73] D.M. Vitsios, E. Kentepozidou, L. Quintais, E. Benito-Gutiérrez, S. van Dongen,
M.P. Davis, A.J. Enright, Mirnovo: genome-free prediction of microRNAs from small
RNA sequencing data and single-cells using decision forests, Nucleic Acids Res. 45

(2017) el 77.

[74] R.J. Peace, M. Sheikh Hassani, J.R. Green, miPIE: NGS-based prediction of miRNA

using integrated evidence, Sci. Rep. 9 (2019) 1548.

[75] M.J. Axtell, B.C. Meyers, Revisiting criteria for plant microRNA annotation in the

era of big data, Plant Cell 30 (2018) 272-284.

[76] J. Alles, T. Fehlmann, U. Fischer, C. Backes, V. Galata, M. Minet, M. Hart, M.
AbuHalima, F.A. Grisser, H.-P. Lenhof, A. Keller, E. Meese, An estimate of the total

number of true human miRNAs, Nucleic Acids Res. 47 (2019) 3353-3364.

[77] J. Lei, Y. Sun, miR-PREFeR: an accurate, fast and easy-to-use plant miRNA

prediction tool using small RNA-seq data, Bioinformatics. 30 (2014) 2837-2839.

38



[78] M. Evers, M. Huttner, A. Dueck, G. Meister, J.C. Engelmann, miRA: adaptable
novel miRNA identification in plants using small RNA sequencing data, BMC

Bioinforma. 16 (2015) 370, https://doi.org/10.1186/s12859-015-0798-3.

[79] C. Paicu, 1. Mohorianu, M. Stocks, P. Xu, A. Coince, M. Billmeier, T. Dalmay, V.
Moulton, S. Moxon, miRCat2: accurate prediction of plant and animal microRNAs from

next-generation sequencing data sets, Bioinformatics. 33 (2017) 2446-2454.

[80] M. Sheikh Hassani, J.R. Green, Multi-view co-training for microRNA prediction,

Sci. Rep. 9 (2019) 10931.

[81] G.C. Tan, E. Chan, A. Molnar, R. Sarkar, D. Alexieva, .M. Isa, S. Robinson, S.
Zhang, P. Ellis, C.F. Langford, P.V. Guillot, A. Chandrashekran, N.M. Fisk, L.
Castellano, G. Meister, R.M. Winston, W. Cui, D. Baulcombe, N.J. Dibb, 5’ isomiR
variation is of functional and evolutionary importance, Nucleic Acids Res. 42 (2014)

9424-9435.

[82] A.G. Telonis, P. Loher, Y. Jing, E. Londin, I. Rigoutsos, Beyond the one-locus-one-
miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer

heterogeneity, Nucleic Acids Res. 43 (2015) 9158-9175.

[83] F. Yu, K.A. Pillman, C.T. Neilsen, J. Toubia, D.M. Lawrence, A. Tsykin, M.P.
Gantier, D.F. Callen, G.J. Goodall, C.P. Bracken, Naturally existing isoforms of miR-222

have distinct functions, Nucleic Acids Res. 45 (2017) 11371-11385.

[84] P. Sheng, C. Fields, K. Aadland, T. Wei, O. Kolaczkowski, T. Gu, B. Kolaczkowski,
M. Xie, Dicer cleaves 5'-extended microRNA precursors originating from RNA

polymerase II transcription start sites, Nucleic Acids Res. 46 (2018) 5737-5752.

[85] B. Kim, K. Jeong, V.N. Kim, Genome-wide mapping of DROSHA cleavage sites on

primary microRNAs and noncanonical substrates, Mol. Cell 66 (2017) 258-269.¢5.

39


https://doi.org/10.1186/s12859-015-0798-3

[86] C.T. Neilsen, G.J. Goodall, C.P. Bracken, [somiRs — the overlooked repertoire in the

dynamic microRNAome, Trends Genet. 28 (2012) 544-549.

[87] X. Bofill-De Ros, A. Yang, S. Gu, IsomiRs: expanding the miRNA repression

toolbox beyond the seed, Biochim. Biophys. Acta - Gene Regul. Mech. (2019) 194373.

[88] G. Urgese, G. Paciello, A. Acquaviva, E. Ficarra, isomiR-SEA: an RNA-seq analysis
tool for miRNAs/isomiRs expression level profiling and miRNA-mRNA interaction sites

evaluation, BMC Bioinforma. 17 (2016) 148.

[89] Y. Zhang, Q. Zang, B. Xu, W. Zheng, R. Ban, H. Zhang, Y. Yang, Q. Hao, F. Igbal,
A. Li, Q. Shi, IsomiR Bank: a research resource for tracking IsomiRs, Bioinformatics. 32

(2016) 2069-2071.

[90] X. Bofill-De Ros, K. Chen, S. Chen, N. Tesic, D. Randjelovic, N. Skundric, S. Nesic,
V. Varjacic, E.H. Williams, R. Malhotra, M. Jiang, S. Gu, QuagmiR: a cloud-based

application for isomiR big data analytics, Bioinformatics. 35 (2019) 1576—1578.

[91] X. Bofill-De Ros, W.K. Kasprzak, Y. Bhandari, L. Fan, Q. Cavanaugh, M. Jiang, L.
Dai, A. Yang, T.-J. Shao, B.A. Shapiro, Y.-X. Wang, S. Gu, Structural differences
between pri-miRNA paralogs promote alternative Drosha cleavage and expand target

repertoires, Cell Rep. 26 (2019) 447-459.¢4.

[92] H. Kim, J. Kim, K. Kim, H. Chang, K. You, V.N. Kim, Bias-minimized
quantification of microRNA reveals widespread alternative processing and 3’ end

modification, Nucleic Acids Res. 47 (2019) 2630-2640.

[93] A. Schamberger, T.I. Orban, 3’ IsomiR species and DNA contamination influence
reliable quantification of microRNAs by stem-loop quantitative PCR, PLoS One 9 (2014)

el06315.

40



[94] T.H. Vu, N.V. Chuyen, T. Li, A.R. Hoffman, M. Blick, F. Fornari, N. Zanesi, H.
Alder, G. D'Elia, L. Gramantieri, L. Bolondi, G. Lanza, P. Querzoli, A. Angioni, C.M.
Croce, M. Negrini, Loss of imprinting of IGF2 sense and antisense transcripts in Wilms'

tumor, Cancer Res. 63 (2003) 1900-1905.

[95] D. Ferland-McCollough, D.S. Fernandez-Twinn, [.G. Cannell, H. David, M. Warner,
A.A. Vaag, J. Bork-Jensen, C. Brons, T.W. Gant, A.E. Willis, K. Siddle, M. Bushell, S.E.
Ozanne, Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal

diet in type 2 diabetes, Cell Death Differ. 19 (2012) 1003—-1012.

[96] F. Pepe, S. Pagotto, S. Soliman, C. Rossi, P. Lanuti, C. Braconi, R.
MarianiCostantini, R. Visone, A. Veronese, Regulation of miR-483-3p by the O-linked
N-acetylglucosamine transferase links chemosensitivity to glucose metabolism in liver

cancer cells, Oncogenesis. 6 (2017) e328.

[97] M. Liu, A. Roth, M. Yu, R. Morris, F. Bersani, M.N. Rivera, J. Lu, T. Shioda, S.
Vasudevan, S. Ramaswamy, S. Maheswaran, S. Diederichs, D.A. Haber, The IGF2
intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and

enhances tumorigenesis, Genes Dev. 27 (2013) 2543-2548.

[98] A. Veronese, L. Lupini, J. Consiglio, R. Visone, M. Ferracin, F. Fornari, N. Zanesi,
H. Alder, G. D'Elia, L. Gramantieri, L. Bolondi, G. Lanza, P. Querzoli, A. Angioni, C.M.
Croce, M. Negrini, Oncogenic role of miR-483-3p at the IGF2/483 locus, Cancer Res. 70

(2010) 3140-3149.

[99] H. Zhang, J. Hu, L. Liu, MiR-200a modulates TGF- B 1-induced endothelial-to-
mesenchymal shift via suppression of GRB2 in HAECs, Biomed. Pharmacother. 95

(2017) 215-222.

41



[100] K. Wang, B. Long, J.-Q. Jiao, J.-X. Wang, J.-P. Liu, Q. Li, P.-F. Li, miR-484

regulates mitochondrial network through targeting Fis1, Nat. Commun. 3 (2012) 781.

Figures

42



Annotated pre- Non-coding hairpin- Unlabeled hairpins (2) Candidate

miRNAs FASTA like FASTA FASTA miRNAs FASTA
eMIRNA.Hunter
eMIRNA Filter 1 l
(1) (3) Candidatepre- | _ _ _ _ Candidate pre-
miRNAS FASTA ' miRNAS BED

eMIRNA.Features

eMIRNA.Structural.Pscore

' !

Positive Negative Unlabeled Candidate pre-miRNAs
Features Features Features filtered FASTA

eMIRNA.Filter

eMIRNA.Features

l (4)

eMIRNA. Predict + Candidate
Features

Reference
Annotation GTF

Predicted

i : eMIRNA.Refiner *
miRNA Candidates

! }

(5) Novel miRNA Novel miRNA Annotated miRNA
Candidates FASTA Candidates BED Candidates BED

Figure 1: eMIRNA pipeline scheme for homology-based miRNA prediction using data
from closely related species and de novo miRNA prediction from small RNA-seq data.
(1) Positive, negative and unlabeled data are filtered based on size and secondary folding
structure and a set of features is extracted for each sequence. (2) Mature miRNA
sequences from small RNA-seq data or related model species are mapped against the
selected genome assembly and elongated to reconstruct putative pre-miRNA candidates.
(3) Candidate precursors are filtered based on size and secondary folding structure and a
set of features is extracted for each candidate sequence. Optionally, sequences showing
unstable secondary structure are removed. (4) Candidate sequences are embedded in the

semi-supervised transductive classifier and a list of putative miRNAs is predicted. (5)
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Predicted miRNAs are either assigned to already annotated miRNA loci in the provided

reference assembly or classified as putative novel miRNAs genes.

A
30- I
&
11 ¥ :
20- I UG motif CHC motif
Il
Il : start m start
11
10- || end D end
11
I
D-l ' l l 1 [
-30 20 10 0
0 |
poT-—
151 1/ | B
| | N ’ .
| GHG motif CNNC motif
10- [
il start B start
5 : : end J end
[
[
0- ' I Ll l Ll L}
0 5 10 15
B Small RNA-Seq
1.00-
0.75-
0.50-
0.25-
Pattern
OOD- ' 1 1 ' ] 1
80/15 60/30 70115 70/30 80/15 80/30 . 6015
. Corrected . 60/30
7 ; . Equality . 70i15
- H. sapiens miRNA homologs . K . 70130
80/15
0.75- 80/30
0.50-
0.25-
0.00-

' ' ' ' ' '
60/15 60/30 7015 70/30 80/15 80/30

44



Figure 2: Processing motifs distribution and structural stability metrics. (A) Positional
distribution of upstream and downstream motifs across annotated pre-miRNA boundaries
in the porcine genome. (B) Proportion of candidate sequences for each elongation pattern
showing the most stable folding structure according to randfold p score. The proportion
of sequences for which the structural stability was higher in motif corrected candidates
or, conversely, in non-corrected (native) candidates are shown as red and green bars,
respectively. The proportion of sequences for which the structural stability was equivalent
between motif corrected and native candidates were labeled as equally stable (blue). (C)
Proportion of selected pre-miRNA candidates detected in the porcine gluteus medius
muscle small RNA-seq data and (D) Proportion of selected pre-miRNA candidates
detected through a H. sapiens homology-based miRNA search strategy, according to the
most structurally stable elongation pattern tested. If two or more pre-miRNA sequences

showed equivalent stability, the shortest motif-corrected candidate was selected.
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Figure 3: Classification performance and feature importance statistics. Performance
metrics for Sensitivity (SE), Specificity (SP), Accuracy (Acc), Fl-score (F1) and
Adjusted Geometric-mean (Agm) across incremental imbalance-ratios by using positive
miRNAs from (A) Ensembl and (B) miRCarta databases. (C) Thirty most discriminant
features according to the relief-F algorithm. (D) Pearson’s correlation coefficient among
the seven most discriminant features associated with secondary structure stability metrics.
(E) Comparison of the folding structure stability between annotated miRNAs and other
hairpin-like non-coding RNA sequences present in the porcine genome. Stability is
expressed as the scaled Minimum Free Energy of the folded hairpins adjusted by sequence
length (MFEadj).
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Tables

Table 1: List of calculated features extracted from candidate hairpins.

Number
Sequence Features Symbol
of variables
Triplet Elements by SVM-Triplet T1...T32 32
Sequence Length Length 1
G+C/Length GC 1
A+U/G+C AU.GCr 1
A, U, G, C/Length Ar, Ur, Gr, Cr 4
Dinucleotide/Length Aar, GGr, CCr ... 16
Number of
Secondary Structure metrics Symbol
variables
Hairpin loop Length Hl 1
5’ and 3’ Stems Length Steml5, Steml3 2
Basepairs in Secondary Structure BP 1
Matches in 5° and 3’ Stems BP5, BP3 2
Mismatches in 5’ and 3’ Stems MismS5, Mism3 2
Bulges in 5’ and 3 Stems B5, B3 2
Bulges in 5’ and 3’ Stems of types 1 to 7 mismatch BN1.5,BN1.3 ... 14
A-U, G-C and G-U basepairs Aup, GCp, Gup 3
Number of
Structural Statistics Symbol
variables
Minimum Free Energy MFE 1
Ensemble and Centroid Free Energy EFE, CFE 2
Centroid Distance to Ensemble CDE 1
Maximum Expected Accuracy MEA, MEAFE 2
BP/Length BPP 1
MFE Ensemble Frequency Efreq 1
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Ensemble Diversity ED 1
MFE/Length, EFE/Length and CDE/Length MFEadj, EFEadj, Dadj 3
Shannon Entropy/Length Seadj 1
MFE-EFE/Length DiffMFE.EFE 1
MFEadj/GC and MFEadj/BP MFEadj.GC, MFEadj.BP 2
MEAFE/Length and ED/Length MEAFEadj, Edadj 2

Table 2: Comparative benchmarking between the semi-supervised transductive learning

approach employed by the miRNAss algorithm and other state-of-the-art supervised

algorithms (i.e. SVM: Support Vector Machine, RF: Random Forest, KNN: k-Nearest

Neighbors, NB: Naive Bayes, XGB: Extreme Gradient Boosting and 1GBM: light

Gradient Boosting Tree) for miRNA classification. Only labeled positive and negative

data sets were used for training.

SE: Sensitivity; SP: Specificity; F-1: F-score measure of the harmonic mean of the

precision and recall; AUROC: Area under the Receiver Operating Characteristics (ROC)

curve; AUPR: Area under the Precision-Recall curve.

Statistic SVM RF KNN NB XGB IGBM miRNAss
SE 0.932 0.932 0.9223 0.9126 0.9515 0.9223 0.8835
SP 0.8413 0.9524 0.9524 0.9683 0.9365 0.9048 0.9683
F-1 0.9187 0.9505 0.9453 0.9447 0.9561 0.9314 0.9226

AUROC 0.6428 0.7246 0.5757 0.4291 0.7063 0.9781 0.9783

AUPR 0.7222 0.8489 0.6751 0.5818 0.8509 0.9873 0.987
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Table 3: Novel porcine miRNA genes predicted through a homology-based comparison
with human miRNA annotation and on the basis of data generated by sequencing small

RNAs expressed in the gluteus medius muscle of Duroc pigs.

Chr: Chromosome; N: Neighborhood score.

Chr Start End Strand ID N
1 191218572 | 191218651 + miR-3529 0.33
1 268816970 | 268817050 + miR-219b 0.92
2 32718 32792 + miR-6743 0.82
2 1473428 1473495 - miR-483 0.84
2 1474436 1474513 - 3229-4643 -
2 40104336 40104403 - 1325-14520 -
2 134660802 | 134660897 - 1323-14559 -
3 7180536 7180603 - miR-484 0.1
3 40421320 40421409 + 427-63874 -
3 40772345 40772445 + 176-178526 -
4 22195784 22195880 + 2340-6855 -
5 3397056 3397130 - 1111-18619 -
5 17410008 17410122 + 1794-9841 -
5 95548384 95548458 + miR-3059 1
6 56426941 | 564267012 - miR-520e 0.3
6 63490755 63490822 + miR-200a 0.6
8 1205684 1205760 - miR-4800 0.85
9 52087075 52087155 + 1864-9314 -
9 114528009 | 114528076 + miR-3120 0.7
10 27079413 27079489 - miR-24-1 0.79
11 1824995 1825062 + 504-51258 -
11 49808356 49808431 - miR-3665 0.86
12 1538011 1538119 + 337-84973 -
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12 1601453 1601506 - miR-3065 0.82
12 18989584 18989651 + 399-69074 -

12 45088806 45088863 s miR-451b 0.78
12 45597382 45597459 + miR-4523 0.81
12 46211527 46211594 - miR-3184 0.61
12 48162620 48162704 - miR-132 0.84
12 56201226 56201300 - 518-49963 -

13 30242047 30242114 + 772-29980 -

13 33152284 33152383 i miR-4787 0.83
13 197168804 | 197168901 + miR-6501 0.97
14 87673881 87673954 i 3552-4147 -

14 109233945 | 109234032 - miR-3085 0.95
14 122706280 | 122706361 s miR-6715a 0.96
14 122706285 | 122706353 - miR-6715b 0.96
14 127016706 | 127016794 - miR-9851 0.83
14 140979533 | 140979627 + 3525-4198 -

15 128165751 | 128165827 - miR-5702 0.86
17 61915309 61915376 + 1544-12001 -

X 41793240 41793315 i 451-58980 -

X 43716471 43716538 + miR-502 0.73
X 59551153 59551220 i miR-374c¢ 0.8
X 94122543 94122610 + miR-1264 0.83
X 96979691 96979765 i miR-1277 0.68
X 124724889 | 124724956 - miR-718 0.89
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Supplementary Materials

Figure S1: (A) Receiver Operating Characteristics (ROC) and (B) Precision-Recall (PR)
curves computed for each pre-defined imbalance scenario using porcine Ensembl
annotation for positive (miRNAs) and negative (other hairpin-like non-coding RNAs)

data sets.

Figure S2: RT-qPCR results of selected novel miRNAs. Successfully profiled novel
miRNAs in (A) the longissimus dorsi skeletal muscle and (B) liver tissues from 7
Gottingen minipigs.

File S1: FASTA file of collapsed expressed sequences (RPM > 10) used in the de novo

discovery of miRNAs expressed in the porcine gluteus medius skeletal muscle.

File S2: Non-redundant annotated mature miRNA sequences obtained from the H.
sapiens GRCh38.p12 genome assembly used as a reference in the homology-based search

of novel miRNAs in the current release of the porcine genome (Sscrofall.l).

File S3: List of already annotated miRNAs and all isomiRs detected as expressed (RPM

> 10) in the porcine gluteus medius skeletal muscle.

File S4: Amplification profiles and melting curves for the three novel miRNA candidates

subjected to confirmation by RT-qPCR analyses.

Table S1: Area under the curve (AUC) computed for each pre-defined imbalance

scenario using Ensembl annotation for positive and negative data sets.

Table S2: True positive ratio of porcine miRNA loci annotated in the Ensembl and
miRCarta databases and identified by the eMIRNA pipeline in all considered imbalance

scenarios.
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Table S3: Mature miRNAs and primers used for RT-qPCR confirmation of selected

novel miRNA candidates.
Table S4: Feature importance according to the relief-F algorithm.

Table S5: Previously annotated miRNAs genes that are correctly classified as miRNAs

by eMIRNA and miRDeep2.

Table S6: miRDeep2 algorithm results for miRNA prediction using the gluteus medius

muscle small RNA-seq data generated in the present study.

Table S7: Deviation rates (dr) and Differential deviation (AD) estimates for miRNA

genomic positional prediction with eMIRNA and miRDeep?2.
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