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Abstract. In this paper we study a new class of quadratic polynomial dif-
ferential systems. We classify all global phase portraits in the Poincaré disk of
Bernoulli quadratic polynomial di�erential systems in R2.

1. Introduction

Quadratic polynomial di�erential systems appear frequently in many areas of ap-
plied mathematics, electrical circuits, astrophysics, in population dynamics, chem-
istry, neural networks, laser physics, hydrodynamics, etc. Although these di�eren-
tial systems are the simplest nonlinear polynomial systems, they are also important
as a basic testing ground for the general theory of the nonlinear di�erential systems.

There are more than one thousand papers written on the quadratic polynomial
di�erential systems. For example there is a bibliography of some of these compiled
by Reyn which has 426 items plus 55 preprints and 10 Reports published in TUDelft
series of reports in 1989. See the books of Ye Yanqian et al. [24], Reyn [20],
and Artés, Llibre, Schlomiuk and Vulpe [2] dedicated to the quadratic polynomial
di�erential systems. See also the classical surveys on these systems by Coppel [6],
and Chicone and Jinghuang [5].

Consider the di�erential equation

dy

dx
= A(x)yk +B(x)y, (1.1)

with k ∈ R \ {0, 1} and A, B non zero real functions. This di�erential equation
is called Bernoulli di�erential equation. Associated to the Bernoulli di�erential
equation we can de�ne the Bernoulli di�erential system given by

ẋ = p(x),
ẏ = a(x)yk + b(x)y.

(1.2)

Note that system (1.2) is equivalently equation (1.1).
In this paper we consider Bernoulli polynomial di�erential system of degree 2

in R2, i.e. p(x) is a polynomial with degree at most 2, k = 2, a(x) is a constant
non zero, and b(x) is a non zero polynomial of degree at most 1 (otherwise the
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system (1.2) will be of separable variables). Thus our objective is to classify all
phase portraits of the system

ẋ = ax2 + bx+ c,
ẏ = dy2 + (ex+ f)y,

(1.3)

with d(e2 + f2) 6= 0.
The topological phase portraits in the Poincaré of many classes of quadratic

polynomial di�erential systems have classi�ed. One of the �rst classes analyzed was
the classi�cation of the quadratic centers which started with the works of Dulac
[8], Kapteyn [11, 12], Bautin [4], Schlomiuk [21], �oª�adek [26], Ye and Ye [25],
Artés, Llibre and Vulpe [3], ... The class of the homogeneous quadratic systems by
Lyagina [14], Markus [15], Korol [13], Sibirskii and Vulpe [22], Newton [17], Date
[7] and Vdovina [23],... The class of Hamiltonian quadratic systems, see Artés and
Llibre [1], Kalin and Vulpe [10] and Artés, Llibre and Vulpe [3], etc.

Our main result is the following one.

Theorem 1.1. The phase portraits in the Poincaré disk of system (1.3) are topo-
logically equivalent to one of the 22 phase portraits presented in Figures 1 (except
Figure 1 (d)), 2 (except Figure 2 (b)), 3 and 4.

The proof of above theorem is given in the end of Section 6.

2. Definitions and useful results

Let U an open subset of R2 and X : U → R2 a vector �eld. If (x0, y0) ∈ U is
a singular point of X, we say that (x0, y0) is a hyperbolic singular point when the
real part of both eigenvalues of DX(x0, y0) are di�erent of zero. If DX(x0, y0) has
exactly one of the eigenvalues di�erent of zero, we say that (x0, y0) is semi-hyperbolic
singular point of X. The point (x0, y0) is called a elementary singular point of X if
(x0, y0) is a hyperbolic or a semi-hyperbolic singular point of X, otherwise (x0, y0)
is called a non-elementary singular point of X.

In this work to classify topologically the singular points of X, we use the de�ni-
tions of node and saddle points (with their stability), also elliptic, hyperbolic and
parabolic sectors (attracting or repelling) as in [19]. For analyzing the topological
behavior of the �ow near a hyperbolic singular point of X, we use the classical
theory of dynamical systems and if we want to analyze the behavior of the �ow
near a semi-hyperbolic singular point we use Theorem 1 of page 151 from [19].

Now we say that a non-elementary singular point (x0, y0) is a nilpotent singularity
of X if DX(x0, y0) has both the eigenvalues equals to zero, but DX(x0, y0) is not
zero. Information on this nilpotent singular points can be �nd in Theorem 3.5 of
[9]. Now, if DX(x0, y0) is the null matrix then (x0, y0) is a linearly zero singularity.

To study the local phase portraits of the linearly zero singular points, we do
blow-ups consisting of a change of coordinates of the form x 7→ x, y 7→ xy, and
x 7→ xy, y 7→ y ( for more details, see page 91 of [9]).

3. Poincaré Compactification

In the study of trajectories of polynomial vector �elds, is essential to understand
the behavior of solutions escaping to in�nity and a important tool for this is the
compacti�cation technique. In short, this method consists of extend analytically
the vector �eld to a compact manifold, in fact to a sphere. We identify Rn with



northern and southern hemispheres through simple projections, then the vector
�eld X in Rn can be extended to a vector �eld X in Sn. This method is called
the Poincaré compacti�cation. We describe below this method when n = 2, more
details, see [9].

Let X be the polynomial vector �eld de�ned on R2 by system

ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are polynomials in the variables x and y with real coe�cients. The
the degree of the polynomial vector �eld X is de�ned by d = max{degP,degQ}.

We denote by S2 = {(z1, z2, z3) ∈ R3; z21 + z22 + z23 = 1} and S1 = {(z1, z2, z3) ∈
S2; z3 = 0}. We identify R2 as the plane z3 = 1, i.e., the tangent plane π of S2
at the north pole (0, 0, 1), and using the central projection of π in S2, we obtain a
tangent vector �eld de�ned on S2\S1 such that the in�nity points of π are projected
in S1.

In general, this vector �eld is unbounded near S1 and symmetric about the center
of S2. But this vector �eld admits an unique analytical extension to S2, after of
a multiplication by an appropriate factor. This analytical extension is called the
Poincaré compacti�cation of X and denoted by p(X). For study p(X), due the
symmetry, is su�cient to consider its restriction to the closed northern hemisphere
H of S2. We call the Poincaré disk the orthogonal projection of H into the disk
{(z1, z2, z3) ∈ R3; z21 + z22 ≤ 1, z3 = 0}.

In each hemisphere we have that p(X) is Cω-equivalent, but not Cω-conjugated,
to X. Then the singular points of X correspondent singularities of p(X), but may
be that p(X) has singularities in S1. A singular point of p(X) which belongs to
S2 \ S1 (respectively S1) is called �nite (respectively in�nite) singular point of X.
Moreover, we have that S1 is invariant under the �ow of p(X).

To obtain expressions of p(X) in local coordinates, we consider the charts of the
sphere S2. For j = 1, 2, 3 de�ne Uj = {(z1, z2, z3) ∈ S2; zj > 0}, Vj = {(z1, z2, z3) ∈
S2; zj < 0} and ϕj : Uj → R2, ψj : Vj → R2 given by

ϕ1(z) = −ψ1(z) =
(z2, z3)

z1
, ϕ2(z) = −ψ2(z) =

(z1, z3)

z2
, ϕ3(z) =

(z1, z2)

z3
.

If we denote by (u, v) the value of ϕj or ψj at the point z we can prove that the
expression of p(X) in the chart (U1, ϕ1) is given by

u̇ = vd
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vd+1P

(
1

v
,
u

v

)
.

The expression of p(X) in the chart (U2, ϕ2) is

u̇ = vd
[
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)]
, v̇ = −vd+1Q

(
u

v
,

1

v

)
,

and the expression of p(X) in the chart (U3, ϕ2) is

u̇ = P (u, v), v̇ = Q(u, v).

Finally, for each j = 1, 2, 3, the expression of p(X) in the chart (Vj , ψj) is the
expression of p(X) in the chart (Uj , ϕj) multiplied by the factor (−1)d−1.

Using this notation we observe that if (u, v) ∈ Uj is an in�nite singular point of
X if, and only if, the expression of p(X) in the chart (Uj , ϕj) vanishes in (u, v) and
v = 0.



Observe that if z is an in�nite singular point of X then −z is also an in�nite
singular point of X. In this case, from the expressions of p(X) in local coordinates
it follows that the behavior of the �ow near −z can be determined by the behavior
of the �ow near z, because the �ow near −z di�ers by the �ow near z by the factor
(−1)d−1. Then the study of p(X) in the charts (Vj , ψj), j = 1, 2, 3, is super�uous.
Moreover, notice that if z is an in�nite singular point of X with z ∈ U2, z 6= (0, 1, 0)
then z ∈ U1 ∪ V1. It follows that to study all the in�nite singular points of X, it is
su�cient to study the singularities of p(X) in U1 and the origin of U2.

4. Markus-Neumann-Peixoto Theorem

The study of the phase portrait of a given planar vector �elds can be reduced
to the determination of the separatrices (see de�nition below) and a �nite number
of special orbits. This result is known as Markus-Neumann-Peixoto Theorem, for
more details see [15], [16], [19] or p. 33 of [9].

Let X an Y be C1-vector �elds de�ned on the open sets U and V of R2, respec-
tively. Denote by (U,Φ) and (V,Ψ) the �ow of X and Y, respectively. We say that
(U,Φ) and (V,Ψ) are topologically equivalent if there exists a homeomorphism of U
in V which carries the orbits of X in orbits of Y, preserving the orientation of the
all orbits, and in this case we also say that their phase portraits are topologically
equivalent.

Consider the following vector �elds

• V = R2 and Y (x, y) = (1, 0),∀(x, y) ∈ R2,
• V = R2 \ {(0, 0)} and Y such that, in polar coordinates, is given by ṙ =

0, θ̇ = 1,
• V = R2 \ {(0, 0)} and Y such that, in polar coordinates, Y is given by
ṙ = r, θ̇ = 0.

We call the �ow of the three vector �elds above of strip �ow, annulus �ow and nodal
�ow, respectively. Now, suppose that U = R2, if the �ow (R2,Φ) is topologically
equivalent either to a strip �ow or annulus �ow or a nodal �ow it is called parallel.

Denote by γ(p) the orbit of p ∈ U , and by α(p) and ω(p), the respective α-limit
and the ω-limit of p. The orbit γ(p) is a separatrix if

• γ(p) is a singular point, or
• γ(p) is a periodic orbit and there is no neighborhood of γ(p) consisting of
periodic orbits, or
• γ(p) is homeomorphic to R and there is no neighborhood W of γ(p) with
the following two properties:
� q ∈W ⇒ α(q) = α(p) and ω(q) = ω(p),
� the boundary of W is composed by α(p), ω(p) and by two another or-
bits γ(p1), γ(p2) such that α(p1) = α(p2) = α(p) and ω(p1) = ω(p2) =
ω(p).

We denote by Σ the union of all separatrices of a given �ow (U,Φ) , Σ. is called
extended separatrix skeleton,. Note that it is a closed invariant subset of U and
each connected component of U \ Σ is an open invariant set, called a canonical
region. There exist only three possibilities for the �ow in each canonical region,
more precisely we have the following result.

Proposition 4.1. In each canonical region the �ow is parallel.



The union of the extended separatrix skeleton with one orbit in each canonical
region is called completed separatrix skeleton. Consider the extended separatrix
skeleton C1 and C2 of the �ows (R2,Φ) and (R2,Ψ), respectively. Then, if there
exist a homeomorphism of R2 in R2 which map orbits of C1 into orbits of C2

preserving the orientation, we say that C1 and C2 are topologically equivalent.
Now we can to present the Markus-Newmann-Peixoto theorem which implies

that, to draw the phase portrait of a given planar vector �eld, it is su�cient deter-
mine its completed separatrix skeleton.

Theorem 4.2 (Markus-Neumann-Peixoto). Consider the continuous �ows (R2,Φ)
and (R2,Ψ) and suppose that they have only isolated singular points. Then (R2,Φ)
and (R2,Ψ) are topologically equivalent if, and only if, its completed separatrices
skeleton are topologically equivalent.

5. Local Phase Portrait of Finite and Infinite Singular Points

In this section we determinate the local local phase portrait of the �nite and
in�nite singular points of system (1.3).

As in section 3 we denote by p(X) the Poincaré compacti�cation of system (1.3).
Here the singular points of p(X) in S1 will be denoted by qi. Remember that, if
qi is a singular point of p(X), then −qi is also. Moreover, as the degree of system
(1.3) is two, the behavior of the �ow near −qi is the same of near qi but reversing
the sense of the orbits. Thus we will describe the local phase portrait of the in�nite
singular points qi.

In terms of the number, multiplicity and type of the roots of the polynomial
p(x) = ax2 + bx+ c of system (1.3), we distinguish �ve cases.

5.1. Case 1: p(x) has two distinct reals roots. In this case, we can write
system (1.3) as

ẋ = (x− α)(x− β), ẏ = dy2 + (ex+ f)y, (5.1)

with d(e2 + f2) 6= 0 and α 6= β. The singular points of system (5.1) are:

p1 = (α, 0); p2 = (β, 0); p3 =

(
α,−eα+ f

d

)
and p4 =

(
β,−eβ + f

d

)
.

Denote by λi, µi, i = 1, . . . , 4, the eigenvalues of the linear parts of system (5.1)
at the singular point pi.

The next three results determine the local phase portrait of the �nite singular
points.

Proposition 5.1. Suppose that system (5.1) has four singular points, i.e., (eα +
f)(eβ + f) 6= 0.

(a) If eα + f > 0, α − β > 0 and eβ + f > 0, then p1 is an unstable node, p3
and p2 are saddles, and p4 is a stable node;

(b) If eα + f > 0, α − β > 0 and eβ + f < 0, then p1 is an unstable node, p3
and p4 are saddles, and p2 is a stable node;

(c) If eα + f < 0, α − β > 0 and eβ + f > 0, then p3 is an unstable node, p1
and p2 are saddles, and p4 is a stable node;

(d) If eα + f < 0, α − β > 0 and eβ + f < 0, then p3 is an unstable node, p1
and p4 are saddles, and p2 is a stable node;



(e) If eα+ f > 0, α− β < 0 and eβ + f > 0, then p3 is a stable node, p1 and
p4 are saddles, and p2 is an unstable node;

(f) If eα+ f > 0, α− β < 0 and eβ + f < 0, then p3 is a stable node, p1 and
p2 are saddles, and p4 is an unstable node;

(g) If eα+ f < 0, α− β < 0 and eβ + f > 0, then p1 is a stable node, p3 and
p4 are saddles, and p2 is an unstable node;

(h) If eα+ f < 0, α− β < 0 and eβ + f < 0, then p1 is a stable node, p3 and
p2 are saddles, and p4 is an unstable node.

Proof. We have that λ1 = eα+f , µ1 = α−β, λ2 = eβ+f , µ2 = β−α, λ3 = −eα−f ,
µ3 = α− β, λ4 = −eβ − f and µ4 = β − α. Therefore, the rest of the proof follows
of the fact that all the singular points are hyperbolic, and then its local phase
portraits are known. �
Proposition 5.2. Suppose that system (5.1) has exactly three singular points, i.e.,
(eα+ f)(eβ + f) = 0 and (eα+ f)2 + (eβ + f)2 6= 0.

(a) If eα+ f = 0, α− β > 0 and eβ + f > 0, then p1 is a saddle-node, p2 is a
saddle, and p4 is a stable node;

(b) If eα+ f = 0, α− β > 0 and eβ + f < 0, then p1 is a saddle-node, p2 is a
stable node, and p4 is a saddle;

(c) If eα + f = 0, α − β < 0 and eβ + f > 0, then p1 is a saddle-node, p2 is
an unstable node, and p4 is a saddle;

(d) If eα+ f = 0, α− β < 0 and eβ + f < 0, then p1 is a saddle-node, p2 is a
saddle, and p4 is an unstable node;

(e) If eα + f > 0, α − β > 0 and eβ + f = 0, then p1 is an unstable node, p2
is a saddle-node, and p3 is a saddle;

(f) If eα + f < 0, α − β > 0 and eβ + f = 0, then p1 is a saddle, p2 is a
saddle-node, and p3 is an unstable node;

(g) If eα + f > 0, α − β < 0 and eβ + f = 0, then p1 is a saddle, p2 is a
saddle-node, and p3 is a stable node;

(h) If eα+ f < 0, α− β < 0 and eβ + f = 0, then p1 is a stable node, p2 is a
saddle-node, and p3 is a saddle.

Proof. First we suppose that eα+ f = 0, so the eigenvalues associated to singular
points p1 = (α, 0) are λ1 = 0 and µ1 = α−β. Now, doing the change of coordinates
(x, y, t) 7→

(
u+ α, v,

s

α− β

)
, system (5.1) becomes

u′ = u+
1

α− β u
2 = u+ P (u, v),

v′ =
e

α− β uv +
d

α− β v
2 = Q(u, v),

and so p1 correspond to origin. Note that u ≡ 0 is the solution of equation u +

P (u, v) = 0 and Q(0, v) =
d

α− β v
2. Hence, by Theorem 1 from the page 151 of

[19], we have that p1 is a saddle-node. For the others two singularities p2 and p4,
it follows that λ2 = eβ + f , µ2 = β − α, λ4 = −eβ − f and µ4 = β − α. Therefore,
the rest of the proof of statements (a), (b), (c) and (d) follows taking into account
the signs of the eigenvalues because these points are hyperbolic.

The proof of case eβ + f = 0, i.e., statements (e), (f), (g) and (h) is analogous
to the previous case. �



Proposition 5.3. Suppose that system (5.1) has exactly two singular points, i.e.,
eα+ f = 0 and eβ + f = 0. Then the singular points are saddle-nodes.

Proof. The eigenvalues associated to singularities p1 = (α, 0) and p2 = (β, 0) are
λ1 = 0, µ1 = α− β, λ2 = 0 and µ2 = β − α, respectively. In this case, since α 6= β,

we have e = 0. Now, doing the change of coordinates (x, y, t) 7→
(
u+ α, v,

s

α− β

)
,

system (5.1) if e = 0, becomes

u′ = u+
1

α− β u
2 = u+ P (u, v), v′ =

d

α− β v
2 = Q(u, v),

and so p1 corresponds to the origin. Note that u ≡ 0 is the solution of equation

u+ P (u, v) = 0 and Q(0, v) =
d

α− β v
2. Hence, by Theorem 1 of page 151 of [19],

we have that p1 is a saddle-node. Analogously we have p2 is a saddle-node. �

The next result determine the local phase portrait of the in�nite singular points.

Proposition 5.4. Let p(X) be the Poincaré compacti�cation of system (5.1).

(a) If 1 − e 6= 0, then p(X) has six singularities ±q1, ±q2 and ±q3 in the
equator S1. Moreover, q1 is a saddle (resp. stable node) and q2 is a stable
node (resp. saddle) if 1− e < 0 (resp. 1− e > 0), and q3 is either a stable
node when d > 0, or an unstable node when d < 0.

(b) If 1 − e = 0, then p(X) has four singularities ±q1 and ±q3 in the equator
S1. Moreover q1 is a saddle-node and q3 is either a stable node when d > 0
or an unstable node when d < 0.

Proof. The system associated to p(X) in the charts U1 and U2 are

u′ = (−1 + e)u+ du2 + (β + α+ f)uv − αβuv2,
v′ = −v + (α+ β)v2 − αβv3, (5.2)

and
u′ = −du+ (1− e)u2 − (β + α+ f)uv + αβv2,
v′ = −dv − euv − fv3, (5.3)

respectively.
In the chart U1 for v = 0 we have the singular points q1 = (0, 0) and q2 =(

1− e
d

, 0

)
of system (5.2). The eigenvalues associated to q1 and q2 are λ11 = e−1,

λ12 = −1 and λ21 = 1−e, λ22 = −1, respectively. Now in the chart U2, q3 = (0, 0) is
a singular points of system (5.3), and its eigenvalues are λ31 = λ32 = −d. Therefore,
the proof of the statement (a) follows by studying the signs of the eigenvalues.

For case 1− e = 0, system (5.2) becomes, after a time rescaling,

u′ = −du2 − (β + α+ f)uv + αβuv2 = P (u, v),
v′ = v − (α+ β)v2 + αβv3 = v +Q(u, v).

(5.4)

Note that in this case q1 = q2 and, in the chart U1, q1 correspond to the singular
point at the origin of system (5.4) with eigenvalues λ11 = 0 and λ12 = 1. As v ≡ 0
is the solution of equation v + Q(u, v) = 0 and P (u, 0) = −du2. By Theorem 1 of
page 151 of [19], we have that q1 is a saddle-node. Hence statement (b) follows. �



5.2. Case 2: p(x) has a double real root. In this case we can write system (1.3)
as

ẋ = (x− α)2, ẏ = dy2 + (ex+ f)y. (5.5)

The singular points of system (5.5) are:

p1 = (α, 0) and p3 =

(
α,−eα+ f

d

)
. (5.6)

Denote by λi, µi, i = 1, 3, the eigenvalues of the linear parts of system (5.5) at
the singular point pi.

The next result determines the local phase portrait of the �nite singular points.

Proposition 5.5. Consider system (5.5).

(a) If eα + f 6= 0, then the singular points p1 and p3 are distinct and both are
saddle-nodes.

(b) If eα + f = 0, then p1 = p3 and it is a singular point with two parabolic
sectors and two hyperbolic sectors.

Proof. First we suppose that eα + f 6= 0, then λ1 = 0, µ1 = eα + f , λ3 = 0 and

µ3 = −(eα + f). Doing the change of variables (x, y, t) 7→
(
u+ α, v,

s

f + αe

)
,

system (5.5) becomes

u′ =
u2

f + αe
= P (u, v),

v′ = v +
e

f + αe
uv +

d

f + αe
v2 = v +Q(u, v),

and so p1 corresponds to the origin. Note that v ≡ 0 is the solution of equation

v+Q(u, v) = 0 and P (u, 0) =
1

f + αe
u2. Hence, by Theorem 1 of page 151 of [19],

we have that p1 is a saddle-node.

Now doing the change of variables (x, y, t) 7→
(
−dv + α, u+ ev − f + αe

d
, − s

f + αe

)
,

system (5.5) becomes

u′ = u− d

f + αe
u2 − ed

f + αe
uv − ed

f + αe
v2 = u+ P (u, v),

v′ =
d

f + αe
v2 = Q(u, v),

and so p3 corresponds to origin. Analogously to the previous case, we have that p3
is a saddle-node.

When eα+ f = 0, by (5.6) we have p1 = p3 and λ1 = µ1 = 0. Hence, doing the
change of variables (x, y) 7→ (u+ α, v), system (5.5) with f = −αe becomes

u′ = u2, v′ = euv + dv2. (5.7)

As (0, 0) is a linearly zero singular point of system (5.7), we will doing a blow-up
in the direction u. More precisely, doing u = x̃ and v = x̃ỹ in system (5.7) and
after a time rescaling, we obtain

x̃′ = x̃, ỹ′ = (e− 1)ỹ + dỹ2. (5.8)



When e−1 6= 0 system (5.8) has two singularities p̃1 = (0, 0) and p̃3 =

(
0,

1− e
d

)

with respective eigenvalues λ̃1 = 1, µ̃1 = e− 1, λ̃3 = 1 and µ̃3 = 1− e. If e− 1 > 0
(resp. e − 1 < 0), then p̃1 is an unstable node (resp. saddle), and p̃3 is a saddle
(resp. unstable node).

For e− 1 = 0, p̃1 is the unique singularity of system (5.8), and by Theorem 1 of
page 151 of [19], we have that p̃1 is a saddle-node.

Now we do a blow-up in the direction v. More precisely, doing u = x̃ỹ and v = ỹ
in system (5.7) and after a time rescaling, we obtain

x̃′ = −dx̃+ (1− e)x̃2, ỹ′ = dỹ + ex̃ỹ. (5.9)

We have to study only the singular point q̃3 = (0, 0) of system (5.9). This
singular point has eigenvalues ±d, and so q̃3 is a saddle. In summary, going back
through the blow ups, p1 is a singular point with two hyperbolic sectors and two
parabolic sectors. �

The local phase portraits of the in�nite singular points in this case are the same
obtained in Case 1. In fact, the Poincaré compacti�cation of system (5.5) in the
charts U1 and U2 are given by systems (5.2) and (5.3) doing α = β, respectively.
Therefore, we have the same result as Proposition 5.4 whose the proof is analogous.
The result is the following.

Proposition 5.6. Let p(X) be the Poincaré compacti�cation of system (5.5).

(a) If 1 − e 6= 0, then p(X) has six singularities ±q1, ±q2 and ±q3 in the
equator S1. Moreover, q1 is a saddle (resp. stable node) and q2 is a stable
node (resp. saddle) if 1− e < 0 (resp. 1− e > 0), and q3 is either a stable
node when d > 0, or an unstable node when d < 0.

(b) If 1 − e = 0, then p(X) has four singularities ±q1 and ±q3 in the equator
S1. Moreover q1 is a saddle-node and q3 is either a stable node when d > 0
or an unstable node when d < 0.

5.3. Case 3: p(x) has only one real root. In this case, we can write system
(1.3) as

ẋ = x− α, ẏ = dy2 + (ex+ f)y. (5.10)

The singular points of system (5.10) are:

p1 = (α, 0) and p2 =

(
α,−eα+ f

d

)
. (5.11)

Denote by λi, µi, i = 1, 2, the eigenvalues of the linear parts of system (5.10) at
the singular point pi.

The next result determines the local phase portrait of the �nite singular points.

Proposition 5.7. Consider system (5.10).

(a) If eα+ f > 0 (resp. eα+ f < 0), then the singular point p1 is an unstable
node (resp. saddle) and p2 is saddle (resp. unstable node).

(b) If eα+ f = 0, then p1 = p2 and it is a saddle-node.

Proof. When eα + f 6= 0, we have λ1 = 1, µ1 = eα + f , λ2 = 1, µ2 = −(eα + f).
Therefore the proof of statement (a) follows from the signs of the eigenvalues.



Now if eα + f = 0, by (5.11) we have p1 = p2 and λ1 = 1 and µ1 = 0. Hence
doing the change of variables (x, y) 7→ (u+ α, v), system (5.10) with f = −αe
becomes

u′ = u, v′ = euv + dv2.

Hence by Theorem 1 of page 151 of [19], we have that p̃1 is a saddle-node. Statement
(b) is proved. �

The next result determines the local phase portrait of the in�nite singular points.

Proposition 5.8. Let p(X) be the Poincaré compacti�cation of system (5.10).

(a) If e 6= 0, then p(X) has six singularities ±q1, ±q2 and ±q3 in the equator
S1. Moreover, ±q1, ±q2 are saddle-nodes and q3 is stable (resp. unstable)
node when d > 0 (resp. d < 0).

(b) If e = 0, then p(X) has four singularities ±q1 and ±q3 in the equator S1.
Moreover q1 is a singular point with two hyperbolic sectors and two parabolic
sectors, and q3 is either a stable node when d > 0, or an unstable node when
d < 0.

Proof. The system associated to p(X) in the charts U1 and U2 are

u′ = eu+ du2 + (f − 1)uv + αuv2,
v′ = −v2 + αv3,

(5.12)

and
u′ = −du− eu2 + (1− f)uv − αv2,
v′ = −dv − euv − fv2, (5.13)

respectively.
In the chart U2, q3 = (0, 0) is a singular point of system (5.13), and its eigenvalues

are λ31 = λ32 = −d. Therefore q3 is stable (resp. unstable) node when d > 0 (resp.
d < 0).

We suppose e 6= 0. In the chart U1 for v = 0 we have the singular points

q1 = (0, 0) and q2 =
(
− e
d
, 0
)
of system (5.12). The eigenvalues associated to q1

and q2 are λ11 = e, λ12 = 0 and λ21 = −e, λ22 = 0, respectively. By Theorem 1 of
page 151 of [19], we have that q1 is a saddle-node. Analogously, after the change of

variables (u, v, t) 7→
(
x+

1− f
d

y − e

d
, y,−s

e

)
applied to system (5.12), we obtain

that q2 is a saddle-node. This proves statement (a).
For the case e = 0 in the chart U1 we have that q1 = q2 = (0, 0) is a linearly zero

singular point. We do a blow-up in the direction u. More precisely, doing u = x̃
and v = x̃ỹ in system (5.12) and after a time rescaling, we obtain

x̃′ = dx̃+ (f − 1)x̃ỹ + αx̃2ỹ2, ỹ′ = −dỹ − fỹ2. (5.14)

When f 6= 0, system (5.14) has two singularities q̃1 = (0, 0) and q̃2 =

(
0,− d

f

)

with respective eigenvalues λ̃1 = d, µ̃1 = −d, λ̃2 =
d

f
and µ̃2 = d. Note that q̃1 is

always a saddle. Now q̃2 is either a saddle if f < 0, or an unstable (resp. stable)
node if f > 0 and d > 0 (resp. f > 0 and d < 0).

Now when f = 0, q̃1 is a unique singularity of system (5.14) ,and as in the
previous case it is a saddle.



We do a blow-up in the direction v. More precisely, doing u = x̃ỹ and v = ỹ in
system (5.12) and after a time rescaling, we obtain

x̃′ = fx̃+ dx̃2, ỹ′ = −ỹ + αỹ2. (5.15)

We study only the singular point q̃3 = (0, 0) of system (5.15). This singular point
has eigenvalues λ̃3 = f and µ̃3 = −1, and so q̃3 is either a saddle if f > 0, or a
stable node if f < 0, or (by Theorem 1 of page 151 of [19]) a saddle-node if f = 0.

In short, going back through the blow-ups we get that q1 is a singular point with
two hyperbolic sectors and two parabolic sectors. So statement (b) is proved. �

5.4. Case 4: p(x) is constant. In this case, we can write system (1.3) as

ẋ = 1, ẏ = dy2 + (ex+ f)y. (5.16)

Note that system (5.16) does not have �nite singular points. The next result
determines the local phase portrait of the in�nite singular points.

Proposition 5.9. Let be p(X) be in the equatorthe Poincaré compacti�cation of
system (5.16).

(a) If e 6= 0, then p(X) has six singularities ±q1, ±q2 and ±q3 in the equator
S1. Moreover, q1 is a topological saddle (resp. stable node) if e > 0 (resp.
e < 0), q2 is a topological saddle (resp. stable node) if e < 0 (resp. e > 0),
and q3 is stable (resp. unstable) node when d > 0 (resp. d < 0).

(b) If e = 0 and f 6= 0, then p(X) has four singularities ±q1 and ±q3 in the
equator S1. Moreover q1 is a saddle-node and q3 is either a stable node
when d > 0, or an unstable node when d < 0.

(c) If e = 0 and f = 0, then p(X) has four singularities ±q1 and ±q3 in the
equator S1. Moreover q1 is a singular point with two hyperbolic sectors
and two parabolic sectors and q3 is either a stable node when d > 0, or an
unstable node when d < 0.

Proof. The system associated to p(X) in the charts U1 and U2 are

u′ = eu+ du2 + fuv − uv2, v′ = −v3, (5.17)

and
u′ = −du− eu2 − fuv + v2, v′ = −dv − euv − fv2, (5.18)

respectively.
In the chart U2, q3 = (0, 0) is a singular points of system (5.18), and its eigenval-

ues are λ31 = λ32 = −d. Therefore q3 is stable (resp. unstable) node when d > 0
(resp. d < 0).

We suppose e 6= 0. In the chart U1 for v = 0 we have the singular points

q1 = (0, 0) and q2 =
(
− e
d
, 0
)
of system (5.17). The eigenvalues associated to q1

and q2 are λ11 = e, λ12 = 0 and λ21 = −e, λ22 = 0, respectively. By Theorem 1 of
page 151 of [19], we have that q1 is a topological saddle if e > 0, and stable node if

e < 0. Analogously after the change of variables (u, v, t) 7→
(
x− f

d
y − e

d
, y,−s

e

)

in system (5.17), we obtain that q2 is a topological saddle if e < 0, and a stable
node if e > 0 .

For case e = 0 in the chart U1 we have that q1 = q2 = (0, 0) is a linearly zero
singular point. We do a blow-up in the direction u. More precisely, doing u = x̃



and v = x̃ỹ in system (5.17) and after a time rescaling, we obtain

x̃′ = dx̃+ fx̃ỹ − x̃2ỹ2, ỹ′ = −dỹ − fỹ2. (5.19)

When f 6= 0, system (5.19) has two singularities q̃1 = (0, 0) and q̃2 =

(
0,− d

f

)

with respective eigenvalues λ̃1 = d, µ̃1 = −d, λ̃2 = 0 and µ̃2 = d. Note that q̃1 is

always a saddle. Now doing the change of variables (x̃, ỹ, t) 7→
(
ũ, ṽ − d

f
,
s

d

)
to

system (5.19), it becomes

ũ′ = − d

f2
ũ2 +

f

d
ũṽ +

2

f
ũ2ṽ − 1

d
ũ2ṽ2, ṽ′ = ṽ − f

d
ṽ2.

Hence by Theorem 1 of page 151 of [19], we have that q̃2 is a saddle-node.
Now when f = 0, q̃1 is the unique singularity of system (5.19), and as the

previous case it is a saddle.
We do a blow-up in the direction v. More precisely, doing u = x̃ỹ and v = ỹ in

system (5.17) and after a time rescaling, we obtain

x̃′ = fx̃+ dx̃2, ỹ′ = −ỹ2. (5.20)

We have to study only the singular point q̃3 = (0, 0) of system (5.20). This
singular point has eigenvalues λ̃3 = f and µ̃3 = 0, and so q̃3 is a saddle-node, by
Theorem 1 of page 151 of [19], if f 6= 0.

If f = 0 we do a new blow-up to system (5.20) in the direction x̃ (x̃ = ũ and
ỹ = ũṽ) obtaining, after a time rescaling

ũ′ = dũ, ṽ′ = −dṽ − ṽ2. (5.21)

System (5.21) has two singular points (0, 0) and (0,−d) with respective eigenvalues
[d,−d] and [d, d], so (0, 0) is a saddle, and (0,−d) is a node (stable if d < 0 and
unstable if d > 0).

Now doing a blow-up in direction ỹ (x̃ = ũṽ and ỹ = ṽ), system (5.20) becomes
after time rescaling

ũ′ = ũ+ dũ2, ṽ′ = −ṽ. (5.22)

We have that (0, 0) is a saddle of system (5.22).
Going back through the blow-ups we conclude that q1 is either a saddle-node if

f 6= 0, or a singular point with two hyperbolic sectors and two parabolic sectors if
f = 0. �

5.5. Case 5: p(x) has two complex conjugated roots. In this case we can
write system (1.3) as

ẋ = x2 − 2αx+ α2 + β2, ẏ = dy2 + (ex+ f)y. (5.23)

Note that α± iβ are the roots of x2 − 2αx+ α2 + β2 = 0, and so system (5.23)
does not have �nite singular points. The next result determine the local phase
portrait of the in�nite singular points.

Proposition 5.10. Let p(X) be the Poincaré compacti�cation of system (5.23).

(a) If e 6= 1, then p(X) has six singularities ±q1, ±q2 and ±q3 in the equator
S1. Moreover, q1 (resp. q2) is either a saddle (resp. stable node) if e > 1,
or a stable node (resp. saddle) if e < 1, and q3 is stable (resp. unstable)
node when d > 0 (resp. d < 0).



(b) If e = 1, then p(X) has four singularities ±q1 and ±q3 in the equator S1.
Moreover q1 is a saddle-node, and q3 is either a stable node when d > 0, or
an unstable node when d < 0.

Proof. The system associated to p(X) in the charts U1 and U2 are

u′ = (e− 1)u+ du2 + (2α+ f)uv − (α2 + β2)uv2,
v′ = −v + 2αv2 − (α2 + β2)v3,

(5.24)

and
u′ = −du+ (1− e)u2 − (2α+ f)uv + (α2 + β2)v2,
v′ = −dv − euv − fv2, (5.25)

respectively.
In the chart U2, q3 = (0, 0) is a singular points of system (5.25), and its eigenval-

ues are λ31 = λ32 = −d. Therefore q3 is stable (resp. unstable) node when d > 0
(resp. d < 0).

We suppose e 6= 1. In the chart U1 for v = 0 we have the singular points

q1 = (0, 0) and q2 =

(
1− e
d

, 0

)
of system (5.24). The eigenvalues associated to

q1 and q2 are λ11 = e − 1, λ12 = −1 and λ21 = 1 − e, λ22 = −1, respectively.
Therefore, the proof of statement (a) follows from the signs of the eigenvalues.

For case e = 1 in the chart U1 we have that q1 = q2 = (0, 0), and the eigenvalues
are λ11 = 0, λ12 = −1. By Theorem 1 of page 151 of [19], we have that q1 is a
saddle-node. Hence statement (b) follows. �

6. Main Results

In this section we classify all global phase portraits in the Poincaré disk of system
(1.3). The �rst result is about the existence of limit cycles.

Proposition 6.1. Systems (1.3) do not have limit cycle.

Proof. Observe that the �rst equation of system (1.3) does not depend of the vari-
able y. Hence, solving this di�erential equation, the solutions are not a periodic
functions and so system (1.3) does not have periodic solutions. �

Theorem 6.2. Consider system (1.3). If p(x) = ax2 +bx+c has two distinct reals
roots, then the phase portrait is topological equivalent to one of the phase portraits
of Figure 1.

Proof. In this case system (1.3) can be written in the form (5.1). We have that
x = α, x = β and y = 0 are invariant straight lines of system (5.1). These three
straight lines intersect in the singular points p1 = (α, 0) and p2 = (β, 0), and
determine four in�nite singular points ±q1 and ±q3 corresponding to the origin of
the charts U1, V1, U2 and V2 in the Poincaré compacti�cation, respectively. By
Theorem 5.4, ±q3 are always a nodes. Moreover we can have additionally two
in�nite singular points ±q2 and either one, or two �nite singular points p3 and p4.

First we suppose system (5.1) has four �nite singular points. By Theorem 5.1,
p1 and p2 are saddles or nodes.

When they are saddles, p3 and p4 are nodes and, by statements (3) and (6) of
Theorem 5.1, these nodes live in opposite half-planes determined by the invariant
straight line y = 0, and we obtain that 1− e > 0. In fact, consider the statements
(3) of Theorem 5.1, we have that eα+ f < 0 and −eβ− f < 0 and so e(α−β) < 0.



Now, as α − β > 0, it follows that (α − β) − e(α − β) = (α − β)(1 − e) > 0, i.e.
1 − e > 0. Since 1 − e > 0, by Theorem 5.4, we always have six in�nite singular
points, ±q1 are nodes and ±q2 are saddles. Therefore in this case using Theorem
4.2 the phase portrait of system (5.1) is equivalent to Figure 1 (a).

If p1 and p2 are nodes, as in the previous case, p3 and p4 are saddles and live
in opposites half-planes determined by the invariant straight line y = 0. However
in this case we can have 1 − e 6= 0 and 1 − e = 0. Hence, by Theorem 5.4, there
are either six in�nite singular points (i.e., ±q1 and ±q2 are nodes or saddles), or
four in�nite singular points (i.e., ±q1 are saddle-nodes). Thus the phase portrait
of system (5.1) is equivalent to one of Figure 1 (b)-(c).

If p1 is saddle (resp. node) and p2 is node (resp. saddle), then by statements
(1), (4), (5) and (8) of Theorem 5.1, p3 is a node (resp. a saddle) and p4 is a saddle
(resp. a node) and they live in the same half-plane determined by the invariant
straight line y = 0. Moreover as in the previous case there are either six in�nite
singular points (i.e., ±q1 and ±q2 are nodes or saddles), or four in�nite singular
points (i.e., ±q1 are saddle-nodes). Note that when ±q1 is a saddle, we have a
heteroclinic connection between a �nite saddle and ±q1. Otherwise we do not have
heteroclinic orbits. Thus in this case the phase portrait of system (5.1) is equivalent
to one of Figure 1 (d)-(f).

Suppose system (5.1) has three �nite singular points. By Theorem 5.2 these
singular points are a saddle-node, a saddle and a node. Moreover the saddle-
node is p1 or p2. If we have a saddle in the variant straight line y = 0, then by
statements (1), (4), (6) and (7) of Theorem 5.2 and by Theorem 5.4, the in�nite
singular points ±q1 are nodes and ±q2 are saddles. Thus the phase portrait is
equivalent to Figure 1 (i).

Now if we have a node in the invariant straight line y = 0, then by statements
(2), (3), (5) and (8) of Theorem 5.2 and by Theorem 5.4, we can have either four or
six in�nite singular points. When there exist only four in�nite singular points ±q1
are saddle-nodes and the phase portrait is equivalent to Figure 1 (j). When there
exist six in�nite singular points and ±q1 are nodes (resp. saddles), then ±q2 are
saddles (resp. nodes) and phase portrait is equivalent to one of Figure 1 (g)-(h).

Finally we consider the case that system (5.1) has two �nite singular points. By
Theorem 5.3 these singular points are saddle-nodes. Now as eα + f = eβ + f = 0
and α 6= β, we obtain e = 0. Hence by Theorem 5.4 system (5.1) has six in�nite
singular points, ±q1 and ±q3 are nodes and ±q2 are saddles, then the phase portrait
is equivalent to Figure 1 (k). �

Theorem 6.3. Consider system (5.5). If p(x) have one real double root, then the
phase portraits are topological equivalent to one of Figure 2.

Proof. In this case system (1.3) can be written in the form (5.5). We have that
x = α and y = 0 are invariant invariant straight lines of system (5.5). These
straight lines intersect at the singular point p1 = (α, 0) and determine four in�nite
singular points ±q1 and ±q3 corresponding to the origin of the charts U1, V1, U2

and V2 in the Poincaré compacti�cation. By Theorem 5.4 ±q3 are always nodes.
Moreover we can have additionally two in�nite singular points ±q2, and one �nite
singular point p3.

By Proposition 5.5 if eα + f 6= 0, we have two �nite singular points, both are
saddle-nodes. If 1 − e 6= 0, by Theorem 5.4, we have six in�nite singular points.



(a) (r, s) = (6, 25) (b) (r, s) = (7, 26) (c) (r, s) = (7, 22)

(d) (r, s) = (7, 26) (e) (r, s) = (6, 25) (f) (r, s) = (6, 21)

(g) (r, s) = (7, 24) (h) (r, s) = (6, 23) (i) (r, s) = (7, 24)

(j) (r, s) = (6, 19) (k) (r, s) = (6, 21)

Figure 1. Phase Portraits of Case 1. Here r denotes the number of
canonical regions of the phase portrait and s its number of separatrices.

When 1− e < 0, ±q1 are saddles, ±q2 are nodes and we have a connection between
the separatrices of a hyperbolic sector from p1 with one of these in�nite saddles
and the phase portrait is topologically equivalent to Figure 2 (a). Now if 1− e > 0,
±q1 are nodes, ±q2 are saddles, and the phase portrait are topologically equivalent
to Figure 2 (b). For 1 − e = 0 by Theorem 5.4 we have four in�nite singular
points and ±q1 are saddle-nodes, so the phase portrait is topologically equivalent
to Figure 2 (c).

In the case eα + f = 0 by Theorem 5.5, p1 is the only �nite singular point
and it is a singular point with two parabolic sectors and two hyperbolic sectors.
Now by Theorem 5.4, we have six in�nite singular points when 1− e 6= 0 and four



in�nite singular points otherwise. Hence the phase portrait is equivalent to one of
Figure 2 (d)-(e). �

(a) (r, s) = (5, 20) (b) (r, s) = (6, 21) (c) (r, s) = (5, 16)

(d) (r, s) = (6, 19) (e) (r, s) = (4, 13)

Figure 2. Phase Portraits of Case 2.

Theorem 6.4. Consider system (5.10). If p(x) have a unique real root, then the
phase portraits are topological equivalent to one of Figure 3.

Proof. In this case system (1.3) can be written in to the form (5.10). We have
that x = α and y = 0 are invariant straight lines of system (5.10). These straight
lines intersect at the singular point p1 = (α, 0) and determine four in�nite singular
points ±q1 and ±q3 corresponding to the origin in the charts U1, V1, U2 and V2 in
the Poincaré compacti�cation, respectively. By Theorem 5.8 q3 is always a node.
Moreover we can have additionally two in�nite singular points ±q2 and one �nite
singular point p2.

By Theorems 5.7 and 5.8 if eα + f > 0 and e 6= 0, then p1 is a node, p2 is a
saddle, ±q1 and ±q2 are saddle-nodes. Hence the phase portrait is topologically
equivalent to Figure 3 (a). Analogously if eα + f < 0, p1 is a saddle, p2 is a node
and the phase portrait is topologically equivalent to Figure 3 (b).

If eα+ f = 0, then there exist a unique �nite singular point p1, and by Theorem
5.7 it is a saddle-node. When e 6= 0 by Theorem 5.8 we have six in�nite singular
points, the saddle-nodes ±q1 and ±q2 and the nodes ±q3. Then the phase portrait
is topologically equivalent to Figure 3 (c). Now when e = 0, by Theorem 5.8, we
have four in�nite singular points, i.e., ±q1 are singular points with two hyperbolic
sectors and two parabolic sectors and ±q3 are nodes. Hence the phase portrait is
given by Figure 3 (d). �

Theorem 6.5. Consider system (5.16). Then the phase portraits are topological
equivalent to one of Figure 4.



(a) (r, s) = (5, 20) (b) (r, s) = (4, 19)

(c) (r, s) = (5, 18) (d) (r, s) = (3, 12)

Figure 3. Phase Portraits of Case 3.

Proof. In this case system (1.3) can be written in to the form (5.16). We have that
y = 0 is an invariant straight line of system (5.16). This straight line determines
two in�nite singular points ±q1 corresponding to the origin of the charts U1 and V1
in the Poincaré compacti�cation, respectively. In this case, we do not have �nite
singular points and by Theorem 5.9, the singular points ±q3, corresponding to the
origin of the charts U2 and V2, always are nodes. Moreover, when e 6= 0 we have six
in�nite singular points, i.e., we have additionally two in�nite singular points ±q2.
If e > 0, then ±q1 are topological saddles and ±q2 are nodes. For e < 0, ±q1 are
nodes and ±q2 are topological saddles. Hence the phase portrait is topologically
equivalent to one of Figure 4 (a)-(b).

Now when e = 0 by Theorem 5.9, we have four in�nite singular pints. Moreover,
±q1 are saddle-nodes if f 6= 0, or singular points with two hyperbolic sectors and two
parabolic sectors if f = 0. Therefore the phase portrait s topologically equivalent
to one of Figure 4 (c)-(d). �

Theorem 6.6. Consider system (5.23). Then the phase portraits are topological
equivalent to one of Figures 4 (a), (b) and (d).

Proof. The proof of this theorem is analogous to Theorem 6.5. However in this case
we do not have an in�nite singular point with two parabolic and two hyperbolic
sectors, and so we have only three phase portraits given in Figures 4 (a), (b) and
(d). �

Proof of Theorem 1: The proof of Theorem 1 it follows from Theorems 6.3, 6.4,
6.5 and 6.6. By Theorem 4.2, phase portraits with distinct numbers (r, s) are not
topologically equivalent. Note that (r, s) are distinct in all Figures 1�4, except in
Figures 1 (a) and (e); Figures 1 (b) and (d); Figures 1 (f), (k) and Figure 2 (b);
Figures 1 (g) and (i); Figure 1 (j) and Figure 2 (d); Figure 2 (a) and Figure 3 (a).

The phase portraits of Figures 1 (a) and (e) are topologically distinct, because in
(a) we have a saddle connection between the �nite saddles and in (e) do not. The



(a) (r, s) = (2, 13) (b) (r, s) = (3, 14)

(c) (r, s) = (3, 10) (d) (r, s) = (2, 9)

Figure 4. Phase Portraits of Case 4.

phase portraits in Figures 1 (b) and (d) are topologically equivalent by Theorem
4.2. The phase portrait of Figure 1 (f) is topologically distinct of Figures 1 (k) and
Figure 2 (b), because Figure 1 (f) we have only four in�nite singular points. Now,
doing a rotation by a angle of π/2 radians, after a re�ection through the y-axis
and reversing the orientation of the orbits, is easy to see that the phase portraits
of Figures 1 (k) and Figure 2 (b) are topologically equivalent. The phase portraits
of Figure 1 (g) and (i) are topologically distinct, because in Figure 1 (i) we have
a connection between a �nite and in�nite saddle, and in Figure 1 (g) do not. The
phase portraits of Figure 1 (j) and Figure 2 (d) are topologically distinct, because
in Figure 1 (j) we have three �nite singular points and in Figure 2 (d) we have
one �nite singular point. The phase portraits of Figure 2 (a) and Figure 3 (a)
are topologically distinct, because in Figure 2 (a) the �nite singular points are two
saddle-nodes and in Figure 3 (a) the �nite singular points are a node and a saddle.
�
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