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LINEAR TYPE GLOBAL CENTERS OF CUBIC
HAMILTONIAN SYSTEMS SYMMETRIC WITH RESPECT
TO THE z-AXIS

LUIS BARREIRA', JAUME LLIBRE?> AND CLAUDIA VALLS'

ABSTRACT. A polynomial differential system of degree 2 has no global
centers (that is, centers defined in all the plane except the fixed point).
In this paper we characterize the global centers of cubic Hamiltonian
systems symmetric with respect to the z-axis, and such that the center
has purely imaginary eigenvalues.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The notion of center goes back to Poincaré and Dulac, see [10, 4]. They
defined a center for a vector field on the real plane as a singular point having
a neighborhood filled of periodic orbits with the exception of the singular
point. The problem of distinguishing when a monodromic singular point
is a focus or a center, known as the focus-center problem started precisely
with Poincaré and Dulac and is still active nowadays with many questions
still unsolved.

If an analytic system has a center, then it is known that after an affine
change of variables and a rescaling of the time variable, it can be written in
one of the following three forms:

called linear type center, which has a pair of purely imaginary eigenvalues,

& =y+Pry), §=Q(y)

called nilpotent center

called degenerated center, where P(x,y) and Q(x,y) are real analytic func-
tions without constant and linear terms defined in a neighborhood of the
origin.

We recall that a global center for a vector field on the plane is a singular
point p having R? filled of periodic orbits with the exception of the singular
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point. The easiest global center is the linear center © = —y, ¥y = z. It
is known (see [11, 1]) that quadratic polynomial differential systems have
no global centers. The global degenerated (or homogeneous) centers were
characterized in [3] while the global quasihomogeneous centers were studied
in [5]. However the characterization of the global centers in the cases that
the center is either nilpotent or a linear-type center has been done for very
particular cases. In the case in which the system is of the form linear plus
cubic homogeneous terms with a linear-type center at the origin was done
in [8] and with a nilpotent center at the origin was done in [9]. The case
in which the system is a real cubic one (in the sense that it contains also
quadratic terms) has never been done because the difficulties grow brutally
with the appearance of new coefficients. That is the reason for which in this
paper we will focus in the case in which the system is Hamiltonian and it is
symmetric with respect to the z-axis. This is the first paper in which such
classification is done for these systems. We will focus in the case in which
there are quadratic terms, since the case of linear+cubic was done before in
[6] and we state it here as Theorem 1.

Theorem 1. Any Hamiltonian vector field having at the origin of coordi-
nates a singular point with purely imaginary eigenvalues of the form linear
plus cubic homogeneous terms has a global center at the origin if and only if,
after a linear change of variables and a rescaling of its independent variables,
can be written as one of the following systems:

(i)i?z—d:c—d2+wy Sapx’y — a?, v = cx + dy + ax® + 3auxy?;
(ii):’c:—dm—derw Y, ¥ = cx +dy + ax®;

(iii)j::—dm—d2+“’y 3az?y, § = cx + dy + 3azy?;
(iv)j;:—dm—d2+”y 3ax?y — o, = cx + dy + 3ax?,

witha=+1, ¢,d€R, ¢c#0, w >0, u > —1/3 and ca > 0.

We also focus in the case in which there is a linear-type center at the
origin since the case in which there is a nilpotent center at the origin was
done in [7] (see Theorems 1, 2 and the global phase portraits in Figure 1 of
that paper) and we state it here as Theorem 2.

Theorem 2. Any Hamiltonian planar polynomial vector field of degree three
with a global nilpotent center at the origin, symmetric with respect to the x-
axis and with all infinite singular points being mon-degenerated hyperbolic
sectors, after a linear change of variables and a rescaling of its independent
variables, can be written as one of the following systems

/I ! 3
r=Y,Yy=—-x, 3

)
(1?; o =y+yt Yy = —ad
)

S~
[

x/ :y+x2y+ay37 y/ = —x3—$y2 U}Ztha Z 0;
=y —22y+ayd, y = —a3 + zy® witha > 1,
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(v) o' =y + 2zy + axy + by?, v = —2% — y? — axy® with b > 0 and
either a > 1, or a < 1 with 4(a — 1)%(a® — a® — ab — 8b) — 27b* > 0.

We will now introduce the main results of the paper. For this, we recall
that a polynomial differential system can be extended in a unique analytic
way to infinity using the Poincaré compactification, for more details see
Chapter 5 of [2]. We also introduce some notation.

—ay i b, b, b
—_— an = — = —— = - = —
AO ) 0 AO ) 2 Bo ) 1 By ’ 0 By )
Ay = 902(a12 - a30)2, By = 03(3,u - 1)2(3u + 1)2a4,

a1 = 8afsc? — 12a35a30¢® — 2a35c*a — 10a2qcaw? + 6arzazoc®a
2)2

ap =

+ 24a1zaz0caw? — 18a35caw? — (¢* — w

)

ap = w?(4ajyc® — 6arzazoc® — 6arzazocw® + 9azgcw?® + alc® — w?)?),

52 = 3(9a%20u3 — 10a%20u + 36&12(1300#2 + 2a12a30C — 9agocu
(1) 10.2,3 2 4.2 2 2 9
18c o + 2¢” pa — 27p" aw” 4+ 12" ow” — aw ),
by = 8alyc? — 36a3,a30c% 1 + 1802, o — datycP o — 30a2ycpow?
12 12 12 12 12
+ 18a12a3003ua + 108a12a30cu2aw2 + 12(112&3060&&)2
— 54a§00u0zw2 —9c*u? — 54t Bw? + 127 puw? + 1820wt
— 3a2w4,
bo = w? (4a%2(:3 — 18a12a30(:3u — 6a12agocw2 + 27a§00uw2 + 904,u2a
— 6(:2,uozw2 + aw4)
and A = ¢"A?A,, where
Ay = 36a35cu? + 8aiyc — 162a25a30cu® — T2a35a30cu + 162a12a30cp
(2) + 81a1202u4a + 18a1202,u2a - 81a12u3aw2 - 81a3002u3a
+ 243@30u4aw2,
and
Ay = 3608y 1? + 32a85¢3 — 216a5,a30c3 1 + 36a1,a3,¢® + 108at,ctpa
— 48a‘112(:4oz — 324a‘112(:2u3aw2 — 180a‘11262uaw2 + 216a?2a3004ua
+ 1296a§2a30(:2u2aw2 + 108a:i)’2a3002aw2 — 366@2@%06404 + 24a%205
- 864@%2613002“04&)2 — 135a%205u2 — 648@%263,u3w2 + 18a%203,uw2
+ 972a%20u4w4 + 216@%20u2w4 — 27a%20w4 + 108@12(1%002040)2
— 54a12a3005u + 810a12a3003u2w2 - 54a12a3003w2
— 1944(112a30(:u3w4 + 162@12a300uw4 + 9(1%005 — 54a§003,uw2
+ 81a§0(3u2w4 + 3682 — 4c8a — 324¢* 3 aw? + 36¢H paw?
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+ 972 it aw® — 1082 2 aw® — 972 aw® 4+ 1083 aw®.

Theorem 3. Any Hamiltonian planar polynomial vector field of degree three
with a global linear type center at the origin, symmetric with respect to the
r-axis and with no infinite singular points in the Poincaré disc, after a
linear change of variables and a rescaling of its independent variables, can
be written as:

w?
T = —?y — 2a122Yy — 3,ua:r:2y - ay3

M

Y =cx+ 3aspz? + a12y2 + oz + 3,uowcy2,

where o = +1 and c,w,p € R with ¢ #0, w >0, u > —1/3, aly + a3, # 0,
and:

a) either i = 1/3, a2 = asg, a3y(3cw?® — 2¢®) + a(c? — w?)? < 0 and
H 30
0 < 9a3, < 4ca; or
(b) p=1/3, a12 # aszo, a — 4ag < 0 and 9a3, — 4ca < 0, or
(¢) p=1/3, a12 # aso, a3—4ag > 0 witha; > 0, ag > 0 and 9a3,—dca <
0, or
(d) p#1/3, A <0, by >0, and 9a2%, — 4ca < 0, or
e) w#1/3, A>0, by >0, by >0, baby > by and 9a3, — 4ca < 0.
30

The proof of Theorem 3 is given in section 2.

We note that if a2 = azg = 0 then our system becomes of the form linear
plus cubic homogeneous terms and these systems are a particular case of
the ones studied in [6] (see Theorem 1 above).

We recall that the conditions provided in Theorem 3 are not empty. For
example, for condition (a) it is sufficient to take p=1/3, a=c=1,w =2
and a2 = azp < 2/3. For condition (b) it is sufficient to take p = 1/3,
a=1,¢c="T7/13120, w = 1/16, a12 = 1, asp = 0. For condition (c) it is
sufficient to take p=1/3, a =c=1,w =1/2, a12 = 5/32 and azg = 0. For
condition (d) it is sufficient to take « = c=p =1, w = 1/16, a;2 = —13/16
and azp = 5/8. Finally, for condition (e) it suffices to take a = c=p =1,
w="T7/184, a1o = —21/32 and agy = —1/2.

A singular point p of a planar system is called hyperbolic if both eigen-
values of the Jacobian matrix at p have real part different from zero. It is
called semi-hyperbolic if only one of the eigenvalues of the Jacobian matrix
at p is zero, and if both eigenvalues of the Jacobian matrix at p are zero
but this matrix is not identically zero it is called nilpotent. Finally, if the
Jacobian matrix at p is identically zero then p is said to be linearly zero.

Let ¢ be an infinite singular point and let h be a hyperbolic sector of q.
We say that h is degenerated if its two separatrices are contained at infinity,
that is, are contained in the equator of the Poincaré sphere.
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It follows from Theorem 2.15 (for hyperbolic singular points), Theorem
2.19 (for semi-hyperbolic singular points) and Theorem 3.5 (for nilpotent
singular points) in [2] that a singular point which is either hyperbolic, semi-
hyperbolic or nilpotent cannot be formed by two degenerated hyperbolic
sectors. So, in order that an infinite singular point ¢ can be formed by two
degenerated hyperbolic sectors it must be linearly zero.

To state the last main theorem in the paper we introduce some notation.
Az = 9a2,3 (468, — 15a2,¢° + 12afycta + 4P a — 7203, c3w?

— 36(1%20204012 —36c*aw? + 108&%26(4)4 + 1082w — 108aw6),

(4) P a3yc — 2c2a — 3aw? B — 2a2,c — 2a — 6aw?
2= 3c R Yo 7
2
~ cw
bp = —.
"7 9a

Theorem 4. Any Hamiltonian planar polynomial vector field of degree three
with a global linear type center at the origin, symmetric with respect to the x-
axis and with all infinite singular points formed by two degenerated hyperbolic
sectors, after a linear change of variables and a rescaling of its independent
variables, can be written as one of the following systems

(i) 2’ = —w?y/e, y' = cx + 3azpz? + ax® with w > 0, ca > 0, a = +1
and 9a}, — dca < 0;
(iii) 2’ = —w?y/c— 2a127y — 3az?y, y' = cx + a12y® + 3axy? with w > 0,
ca >0, a =41 and c(carz — 3aw?) < 0;
(iv) & = —‘”—;y — 2a192y — 3ax’y — ayd, ¥ = cx + apy? + 3axy?, with
w >0, a==1, ca > 0 and either:
(iv.1) Az <0 and by > 0 (see (4));
(iv.2) A3 >0, by >0, by > 0 and baby > by (see (4)).

Theorem 4 is proved in Section 3. Note that the conditions in statement
(iv.1) are fulfilled for example when a =1, ¢ = 1/17, w = 1/8 and a13 = —1,
and the conditions in statement (iv.2) are fulfilled for example when o = 1,
¢c=2,w=1and ajp =1/16.

2. PROOF OF THEOREM 3

In order to prove Theorem 3 we will state and prove several propositions.

Proposition 5. Any Hamiltonian planar polynomial vector field of degree
three with a linear type center at the origin, symmetric with respect to the
x-axis and with no infinite singular points, after a linear change of variables
and a rescaling of its independent variables it can be written as the following
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w2
T = Y- 2a191y — Bapz’y — ay’,
U = cx + 3asox® + a12y® + 3oz,ua:y2,
where o = +1 and ¢,w, a12, aso, p € R with ¢ #0, > —1/3 and w > 0.

Proof. Doing a linear change of variables and a rescaling of the independent
variable, planar cubic homogeneous differential systems which has no infinite
singular points can be classified in the following class, see [3, Theorem 3.2]:

y & =p12° + (p2 — 3ap)z®y + pszy® — ay®,
v g = az’ + p1a’y + (p2 + 3ap)zy® + psy’,
with g > —1/3 and a = £1.
It was proved in [6] that in the case in which the vector field is Hamiltonian

then p; = 0 for i« = 1,2,3, that is we get the system (i’) with p; = 0 for
i=1,2,3.

For studying the Hamiltonian cubic planar polynomial vector fields having
linear, quadratic and cubic terms, it is sufficient to add to the above family
(with p; = 0 for i = 1,2, 3) a linear and quadratic parts being Hamiltonian.
This is due to the fact that the linear changes of variables that are done to
obtain the class (i’) are not affine, they are strictly linear.

For the linear part, we add the linear terms ax + by in & and the linear
terms cx+dy in y. Doing so, taking into account that we must have a linear
type center at the origin, it is not easy to see that we can add —dz — (d? +
w?) /ey in & and cx + dy in § with ¢ # 0 and w > 0.

For the quadratic part, we add the linear terms —0H3/dy in & and
0Hs/0x in § with
H3 = agoz”® + ag12”y + arpwy® + agsy’.
Doing so, we get the systems

d2 2
T =—dx — %y —aga? — 2a197y — 3a03y3 - 3a;wc2y - ay3,

y=cr+dy+ 3a30:152 + 2a012y + a12y2 + 3auxy2.

Since this system must be invariant under the transformation (z,y,t) —
(x, —y, —t) we must have d = ag; = ap3 = 0 and then we get the system (i)
in the statement of the proposition. This concludes the proof. ([

Now we continue with the proof of the theorem. To do so, we compute
the finite singular points of system (i). Note that on y = 0 we have the

solution
—3asg £ \/9a§0 — 4ca
T = .
2
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Since this solution cannot exist we must have 9a§0 —4eca < 0.

Now we consider y # 0 and we compute the Groébner basis for the poly-
nomials 2’ and 3. We get a set of six polynomials. The first polynomial is
a polynomial of degree six in the variable y while the polynomials p3 and p4
are linear in the variable x. More precisely,

p1 = —cBp —1)2(3u + 1)%y% + 3¢(2a12a30c — 10cualy — Iepady + 2c%au
+ 36a12a300,u2 + 9a%20u3 - 180204;[3 — aw? + 12a,u2w2 — 27Oz,u4w2)y4
+ c(8a‘11202 — 4a%203a — 36a‘;’2a3002,u + 18ar2a30 o + 18a%203a,u2
— 904u2 + 12a12a300aw2 — 30a%20auw2 — 54a§Ocauw2 + 12c2uw2
+ 108ajazpcap’w? — 542 pdw? — 3wt + 181 2wh)y? + w?(4a2yc?
— 18ayzaz0c® 1 + 9ot 112 — 6araasgcw® + 27a§0cuw2 — 6t auw? + aw4)
and
p3 = cay?(2a12 — Yasop + Ya1op?) + (2a12 — azou)w?
+ x(4a%20 — 18ayzazocu + 9 ap® — 3apw? + 3ep(3p — 1) (3 + l)yz),
pa = —c2y*(Bu — 1)(Bu+ 1) — w?(3c*u — w?) + cy*(6atycu — 3c®ap + 2aw?
— 9ap’w?) + x(cQa(Qau — 9azop + 9a12p®)y* + ¢(2a19 — 9a30,u)w2).

Note that for any value of y which is a solution of p; = 0 we get a unique
value of x which is a solution of p3 = 0 or py = 0, namely

(9&3000&/1 — 9&1260&“2 — 2a12(3a)y2 — 20,12(«)2 + 9@20,&(4)2

x = ,
4a2,c — 18ajaasocp — 3apw? + 9c2ap? + (3ep(3u +1)(3u — 1))y?

or

s (92 — Dyt — c(6a3ycp — 3apc® + 2aw? — 9apw?)y? + w?(3ciu — w2).
c(ca(2a12 — Yazop + 9a12p?)y? + 2a12w? — Yasopw?)

Moreover, both denominators of x and Z cannot be zero simultaneously and
then for each value of y we always have a value of x. Moreover, setting z
(or Z) into the Groébner basis we get that all the polynomials have p; as
a factor in them. In short, in order to show that there are no solutions of
system (i) with x # 0 we must guarantee that there are no real solutions of
p1 = 0. Since p; depends in the variable y? we introduce the new variable
z = /y and we must have that z > 0 (note that z = 0 yields y = 0).

We consider different cases.

Case 1: p=1/3 and a2 = asp. In this case
p1 = cz(—4asy® + 4adyBa — 4adscow? — * 4 267w — w?)

— w(—2a3yc? + 3a3ycw? + cra — 22w’ + aw?).
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Solving in the variable z we get

_ W(a3p(Bew® = 2¢%) + a(¢® — w?)?)
(5) z = 300(20%00 + Oz(oﬂ _ 02))2

whenever the denominator is not zero. Note that the denominator is equal
to zero (solving in w which is positive) whenever

[ .2 2
cca — 2a3,c
30¢
«

But then introducing w into p; we get
p1 = —a3yc®(2a3, — aa)?.

Setting it to zero, taking into account that acv > 0 and 9a%;, — 4aa < 0 we
conclude that azg = 0. But then a2 = 0 which is not possible. Hence, z in
equation (5) is well-defined. Taking into account that it must be negative
we must have

a3y(3cw? —2¢3) +a(c? —w?)? <0
In short, the condition so that there are no finite singular points besides the
origin in this case is

2

a2 (3cw?® — 2¢3) + a(c® —w?)? <0, 0 < 9ad) < 4ca.

This concludes the proof of statement (a).

Case 2: n=1/3 and aj2 # asp. In this case

p1 = —w2(4a%203 — 6a12a3003 — 6a12a300w2 + 9a§06w2 + o — 22 aw?

() + aw?) + c2(8alyc? — 12a35a30c? — 2a35c3a — 10a3ycaw?
+ 6ajgasoc®a + 24aisazpcaw® — 18a§00aw2 — 4 20%0% — a2w4)
- 90322(CL12 - a30)2.

Note that now p; is quadratic in z. We need to investigate when this qua-
dratic equation has either no real roots or both real roots are negative. We
state and prove an auxiliary result.

Proposition 6. Any quadratic polynomial of the form
(7) P(z) =22 + a1z + ap

has complex roots if and only if a% —4ag < 0. It has all roots being real and
negative if and only if a3 — 4ag >0, a; > 0 and ag > 0.

Proof of Proposition 6. The solutions are real if and only if a? — 4ag > 0.
In this case, it follows directly from the Routh-Hurwitz criterium that these
roots are negative if and only if a; > Oand ag > 0. This concludes the proof
of the proposition. O
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We can write p; in (6) as in (7) with (note that aj2 # asg) a1 and ag as in
(1). So, the conditions so that there are no finite singular points are either
a%—4a0 < 0 and 9a§0—4ca<0, or a%—4a0 > 0 with a; > 0, ag > 0 and
9a3, — 4ca < 0. This concludes the proof of statements (b) and (c).

Case 3: p # 1/3. or in other words, that all the solutions of the cubic
equation

p1 = —* (3 —1)*(3u+ 1)z + 3¢*(2a12a30¢ — 10cpay — Iepas,
+ 22 ap + 36a10a30cu® + 9a%2(:,u3 —18c2ap® — aw? + 120%w?
— 27Taptw?)2? + ¢(8alyc® — 4a2y o — 36a3,a30c% 1 + 183,
(8) + 18arzasz0 o — 9¢t i + 12a19a30caw? — 30a2,capw? + 12¢2 pw?
— 54agocozuw2 + 108a12as0cap’w? — 54c?pPw? — 3wt + 18u2w4)z
+ w2(4a%203 — 18a12a3063u + 90404,u2 — 6ajoasocw? + 27agocuw2
— 6% apw? + aw?)

are negative. For that we state and prove an auxiliary result that charac-
terize when this happens for a general cubic equation.

Proposition 7. Any cubic polynomial of the form
(9) P(z) = 2° + by2” + b1z + by
has only negative real roots if and only if:

(1) either A := b2b3 — 4b3 — 4b3by + 18b1boby — 27b8 <0 and by > 0, or
(2) A > 0, by > 0, bo > 0 and baby > ag.

Proof. Note that A < 0 if and only if the cubic equation P(z) has one real
root and two complex conjugate roots. Since P(z) — —oo as z — —o0, the
unique real root is negative if and only if P(0) = by > 0.

On the other hand, A > 0 if and only if the cubic equation P(z) has three
(counted with multiplicity) real roots. Using the Routh-Hurwitz criterium
these roots are negative if and only if by > 0, bg > 0 and bgb; > bg. This
concludes the proof of the proposition. O

We can write p; in (8) as in (9) with bg, by and by as in (1). So, the
conditions so that there are no finite singular points are either A < 0 (see
(2)—(3)), bo > 0 and 9a%, — 4ca < 0, or A > 0, by > 0, by > 0, baby > by
and 9a%, — 4ca < 0. This concludes the proof of statements (d) and (e) and
finishes the proof of the theorem.

3. PROOF OF THEOREM 4

In order to prove Theorem 4 we will state and prove several propositions.
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Proposition 8. Any Hamiltonian planar polynomial vector field of degree
three with a linear type center at the origin, symmetric with respect to the
x-azis and with all infinite singular points being linearly zero, after a linear
change of variables and a rescaling of its independent variables it can be
written as one of the following systems

(I1) & = —"’—;y — 2a19y, Y = cx + 3azox? + apy? + axd;
(ITI) & = —“—;y — 2a121y — 3ax?y, ¥ = cx + 3azor? + apy® + 3axy?;
(IV) ¢ = fw—jy —2a12xy — 3ax’y — ay?, ¥ = cx + 3azox? + ar2y® + 3axy?

where a = £1 and ¢,w, aia, azo € R with ¢ # 0, a3y + a3y # 0 and w > 0.

Proof. The proof is very similar to the one of Proposition 5. Doing a linear
change of variables and a rescaling of the independent variable, planar cubic
homogeneous differential systems which have infinite singular points being
linearly zero can be classified in the following three classes, see [3]:

(ii") @ = pre® + por?y, = ax® + pra’y + pozy?;
(i) & = (p2 = Be)ay, 4= (p2+ e)ay®;
(iv)) & = (p2 — 3a)z?y + psay® — ay®,  § = (p2 + 3a)zy® + p3y?,

where oo = *1.

System (ii’) comes from systems (IX’) of Theorem 3.2 of [?] of taking into
account that the unique pair of infinite singular points at the origins of the
local chart Us and Vs (see the Poincaré compactification in [2]) is linearly
zero if and only if p3 = 0).

System (iii’) comes from system (VII’) of [?] taking into account that the
unique pair of infinite singular points are the origins of U; and V; for i = 1, 2,
and all of them are linearly zero if and only if p; = p3 = 0.

System (iv’) comes from system (IV’) of [?]. Here the unique pair of
infinite singular points is the origins of U; and Vj, which are linearly zero if
and only if p; = 0.

It was proved in [6] that if systems (ii’), (iii’) and (iv’) are Hamiltonian
then p; = 0 for ¢ = 1,2,3. So, we get systems (ii’)—(iv’) with p; = 0 for
i=1,23.

For studying the Hamiltonian cubic planar polynomial vector fields having
linear, quadratic and cubic terms, it is sufficient to add to the above families
(with p; = 0 for i = 1,2,3) linear and quadratic parts being Hamiltonian.
This is due to the fact that the linear changes of variables that are done to
obtain the classes (ii’), (iii’) and (iv’) are strictly linear, see [?].

For the linear part we add the linear terms ax + by in & and the linear
terms cx +dy in y. Doing so, taking into account that we must have a linear
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type center at the origin, it is easy to see that we can add —dz — dQLCwa in
4 and cx + dy in ¢ with ¢ # 0 and w > 0.

For the quadratic part we add the quadratic terms —0H3/dy in & and
0H3/0x in y with

H3 = agoz”® + ag12°y + arpzy® + agsy’.
Doing so, we get the systems

d? + w?

T =—dr — Y- Cl21362 — 2a197y — 3610393 + B3,

y=cr+dy+ 3a30x2 + 2a912y + a12y2 + Q3,

where P3 and @3 are the vector fields in each of the classes (ii’)—(iv’) with
p;i=0fori=1,2,3.

Since the above systems must be invariant under the transformation
(z,y,t) — (x,—y,—t) we must have d = az; = apz3 = 0 and then we get
the systems (IT)—(IV) in the statement of the proposition. This concludes
the proof. O

Proposition 9. Systems (II) have a global linear-type center at the origin
and no more finite singular points with all the infinite singular points formed
by two degenerated hyperbolic sectors if and only if they can be written as
in (ii) of Theorem 4. Consequently systems (II) have a global center at the
origin.

Proof. We already know that the pair of infinite singular points of system
(IT) are the origins of the local charts Uy and V5. Thus on the local chart
U we get
/ 3 2,2 i Wy
u = —3a1ouv — 3azpu’v — cu v — au” — —v°,
(10) 12 30 B
v = —v(av + cuv® + 3azouv + au®).
The origin of the local chart U, is linearly zero. We need to do blow-ups
to understand the local behavior at this point. We perform the directional
blow-up (u,v) + (u,w) with w = v/u and we get
w? w?
TE— (3a12w +3a30u2 +cutw? +au® + —wQ) , v = uw? (2@12 + —w) .
c c
We eliminate the common factor u between u’ and w’ and we obtain the
system
w2 w2
u = —u(3a12w + 3a30u2 + cu’w? + au® + —wQ), v = w? (2&12 + fw>
c c
When v = 0, this system has the singular points

20(112)
w2 /)

(0,0) and (0,
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Computing the eigenvalues of the Jacobian matrix at the second singular
point we get that it is a node. Going back through the changes of variables
we see that in this case the origin of Us must have parabolic sectors, and so
the origin of U; cannot be the union of two degenerated hyperbolic sectors.
Hence, aj2 = 0. In this case the unique singular point is the origin which is
again linearly zero. Hence we need to do another blow up. We do it in the
form (u,w) — (u,z) with z = w/u. Doing so, and eliminating the common
factor u? we get

2 2

w 2w
u = —u(a+3a30uz+cu2z2+—22>, Z = z<a+3a30uz+cu2z2+—z2>.
c c

When u = 0 the possible singular points are

(0,0) and (o, i:}\/?)

The sign of ca determines the existence of the last two singular points, and
so we analyze both possibilities.

If ca < 0, all three singular points are real. The origin which is a saddle
and the points (0, +ica/ (ﬂw)) which are nodes. Again going back through
the changes of variables up to systems (10) we get that the origin of Us
contains parabolic sectors. Hence, we must have ca > 0.

If ca > 0 the only singular point is the origin which is a saddle. Going
back to the changes of variables until systems (10) we see that locally the
origin of Us consists of two degenerated hyperbolic sectors.

In short, in order that the origin of the local chart Us is formed by two
degenerated hyperbolic sectors. we must have a;2 = 0 and caw > 0. Then
system (II) becomes

w2

i=——y, U=czx+3azx’+ax’
c

with ca > 0. The finite singular points are

(0.0) <—3a30 + v/9a%, — dcar 0)
) ) 2a ) -

Since we want that there are no finite singular points among the origin we
must have 9a%, — 4ca < 0. This completes the proof of the proposition. O

Proposition 10. Systems (I11) have a global linear-type center at the origin
and no more finite singular points with all the infinite singular points formed
by two degenerated hyperbolic sectors if and only if they can be written as in
(i1i) of Theorem 4.

Proof. We already know that the unique pairs of infinite singular points of
system (III) are the origins of U; and V; for ¢ = 1,2. System (III) on the
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local chart U; becomes
(11)

2 2
= 6au’+ 3asov + 3ajpu’v + cv? + %uQUQ, v = uw (3a +2a10v + %v2> .
Computing the eigenvalues of the Jacobian matrix at the origin we get that
it is nilpotent if agg # 0 and linearly zero if agg = 0. So, in order that it
is formed by the union of two degenerated hyperbolic sectors we must have
azp = 0. We need to do blow-ups to understand the local behavior at this
point. We perform the directional blow-up (u,v) — (u,w) with w = v/u
and we eliminate the common factor u between v’ and w’ and we get

2
u = —u(6a + 3ajpuw + cw? + w—u2w2), w = —w <3a + ajouw + ch).
c

When u = 0, there are three singular points which are

(0,0) and (0, :I:Z\/?)

if caw < 0. Computing the eigenvalues of the Jacobian matrix at the second
and third singular points we get that they are nodes. Going back through
the changes of variables we see that in this case the origin of U; must have
parabolic sectors and so the origin of U; cannot be the union of two degen-
erated hyperbolic sectors. Hence, ca > 0. In this case the unique singular
point is the origin which is a saddle. Going back through the changes of
variables until systems (11) we see that locally the origin of Uy consists of
two degenerated hyperbolic sectors.

On the local chart Uy system (III) is

2
(12) v’ = —6au® — 3aypuv — %’I}Q —cu?v?, v = —v(3au + ajpv + cuv?).
The origin of the local chart U is linearly zero. We perform the directional
blow-up (u,v) — (u,w) with w = v/u, and eliminating the common factor
u we get

w? w?
u = —u(6a + 3arow + cu’w? + ;wQ), v =w (3a + 2a12w + ?w2>

When u = 0 the possible singular points are

(0,0) and

(0, —cayg + \/a?a3, — 3caw2>.
If c2a?, — 3caw? > 0 the two last singular points exist. Computing the
eigenvalues of the Jacobian matrix at these points we get that at least one
of them is a node. Hence, going back through the changes of variables until
system (12) we get that the origin of the local chart Uy must have parabolic
sectors and so it cannot be formed by two degenerated hyperbolic sectors.

If c?a;p — 3caw? = 0, that is a;a = V3aw/\/c, we have two finite
singular points which are the origin (which is a saddle) and the point
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(0, —v/3y/ac/w) which is linearly zero. First we translate it to the ori-

gin setting w = —+v/3ca/w + W. We perform the directional blow-up
(u, W) + (u,z) with z = W/u, and eliminating the common factor u?
we get

1
u = -— (303au — 2V3a3Veau’z + ut2Pw? + V3ycazw? + uw4z2>,
cw
Z = % (3ac3 — 2V3c3Veawuz + Fwu?2? + 2w4z2).
cw

The singular points are (0,0) and (0, i\/gcg/Q\/a/(ﬁoﬂ)) which due to the
fact that ca > 0 the last two do not exist. Computing the eigenvalues of
the Jacobian matrix at the origin we get that it is a saddle. Going back
through the changes of variables up to system (12) we get that the origin
of the local chart Us is not formed by two degenerated hyperbolic sectors,
because there are more hyperbolic sectors not in the equator of the Poincaré
sphere coming from these last saddles. Finally, if c?a1s — 3caw? < 0 we get
that the unique finite singular point is the origin which is a saddle. Hence,
going back trough the changes of variables up to system (12) we get that the
origin of the local chart Us is formed by two degenerated hyperbolic sectors.

In short, in order that the origins of the local charts U; and Us are formed
by two degenerated hyperbolic sectors we must have agg = 0, ca > 0 and
c(carg — 3aw?) < 0.

System becomes

2
w
¥ = -y — 2a7y — 3am2y, Yy =cr+ a12y2 + 3aacy2.
c

The singular points are (0,0) and (£x,y+) where

—cayy F Vc2ars — 3caw? CT1
Ty = y Yr =t ——
v/ —a12 — 3axr4

3ca
Taking into account that c?ajs — 3caw? < 0 we get that the unique finite
singular point is the origin. This completes the proof of the proposition. [

Proposition 11. Systems (IV) have a global linear-type center at the origin
and no more finite singular points with all the infinite singular points formed
by two degenerated hyperbolic sectors if and only if they can be written as in
(tw.1) or (iv.2) of Theorem 4.

Proof. We already know that the unique pair of infinite singular points are
the origins of U; and V3. On the local chart U; system (IV) becomes

2

w
o = 3asov + 3a12u%v + cv? + 6au® + aut + 7027
c

(13) 5

v = wwv (304 + 2a19v + Y24 au2>.
c
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Computing the eigenvalues of the Jacobian matrix at the origin we get that
it is nilpotent if agg # 0 and linearly zero if agg = 0. So, azg = 0.

We perform the directional blow-up (u,v) — (u,w) with w = v/u, and

eliminating the common factor u we get
2
u' = u(6a + 3arguw + cw? 4+ au® + %usz),

w = —w(3a + ajpuw + cw?).
The singular points are (0,0) and (0, £i1/(3c)/c). The two last points exist
if and only if ca < 0. In this case computing the eigenvalues of the Jacobian
matrix at these points we get that they are nodes. So this case is not
possible. Hence, we must have ca > 0. Then the unique singular point is
the origin which is a saddle. Going back through the changes of variables
till system (13) we get that the origin of the local chart U; is formed by two
degenerated hyperbolic sectors.

System (IV) becomes
w2
T=——1Y— 2a127Y — 3axy — ay3, y=cx+ a12y2 + 3azy?.
c
On y = 0 the unique finite singular point is the origin. With y # 0 solving
y =0 we get

a2 2
14 -t 2
(14) LA v
Note that if y = % then g has no solution and so we can assume that
c+3ay® #0.
Substituting (14) in & we get
m(-%%%f + SyPa — 3calyyta + 6%yt a® + 9eybad + Aw?

+ 6cy’aw? + 9ytalw?).

We must see that there is no solutions of the sextic equation

cay® + 3a(—ca?y + 20 4 3aw?)yt + c(—2caly + ac® 4 6aw?)y? + Aw?
Or in other words, that there are not positive roots of the cubic equation
Q = 9caz® + 3ax(—caly +2ac? +3aw?) 2% + c(—2caty + ac? + 6aw?) 2 + Pw?.

We can write @ as in (9) with by = b, by = by and by = by given in (4). S

in view of Proposition 7, the conditions so that there are no finite smgular
points are either Az < 0 (see (4)) and bo > 0, or Az >0, by > 0, by > 0 and
baby > b() This concludes the proof of the proposition. [l

Proof of Theorem 4. The proof of Theorem 4 is an immediate consequence
of Propositions 8-10. O
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