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The exceptionally low-symmetry crystal structures of the time-reversal symmetry breaking su-
perconductors LaNiCz and LaNiGas lead to an internally-antisymmetric non-unitary triplet (INT)
state as the only possibility compatible with experiments. We argue that this state has a distinct
signature: a double-peak structure in the Density of States (DOS) which resolves in the spin channel
in a particular way. We construct a detailed model of LaNiGaz capturing its electronic band struc-
ture and magnetic properties ab initio. The pairing mechanism is described via a single adjustable
parameter. The latter is fixed by the critical temperature T, allowing parameter-free predictions.
We compute the electronic specific heat and find excellent agreement with experiment. The size of
the ordered moment in the superconducting state is compatible with zero-field muon spin relaxation
experiments and the predicted spin-resolved DOS suggests the spin-splitting is within the reach of

present experimental technology.

The superconducting state is a condensate of electron
pairs characterized by an order parameter A. Usually A
is a complex scalar, its phase being a manifestation of
spontaneously-broken gauge symmetry. This is responsi-
ble for the macroscopic quantum coherence underpinning
quantum devices such as superconducting qubits [1] and
SQUIDs [2]. On the other hand, in so-called “unconven-
tional” superconductors additional symmetries may be
broken leading to more complex order parameters with
extra degrees of freedom. Of all the features of uncon-
ventional superconductors, broken time-reversal symme-
try (TRS) is perhaps the most surprising one as it chal-
lenges our view of superconductivity and magnetism as
antagonistic states of matter. In spite of this, the phe-
nomenon has been detected in numerous systems using
zero-field muon spin rotation/relaxation (uSR). Promi-
nent examples include (U, Th)Bejs [3], SraRuOy4 [4],
UPts [5], (Pr, La)(Ru, Os)4Sbi2 [6, 7], PrPt4Geis [8],
LaNiCy [9], LaNiGag [10, 11], SrPtAs [12], Reg(Zr, Hf,
Ti) [13-16], LusRhgSnyg [17] and Lay(Ir, Rh)s [18, 19].
Many of these systems have other unconventional fea-
tures, while in some cases an independent, direct obser-
vation of broken TRS has been made: optical Kerr effect
measurement in SroRuQO,4 [20] and UPts [21], and bulk
SQUID magnetization measurement in LaNiCq [22].

Unfortunately it has been difficult to establish the
structures of order parameters of these superconductors.
This is because, on the one hand, our knowledge of the
electron pairing mechanism is not sufficiently detailed to
make a prediction. On the other hand, their crystal struc-
tures tend to be highly symmetric, leading to many differ-
ent possible ways of breaking TRS, which limits our abil-
ity to work by elimination. TRS-breaking superconduc-
tivity requires a degenerate instability channel [23, 24]
which, for a uniform superconductor, must come from
a multi-dimensional irreducible representation (irrep) of

the point group of the crystal. As an example, the point
group of SroRuQy is Dy, which leads to 22 possible order
parameters breaking TRS [23, 24]: 20 under the assump-
tion of weak spin-orbit coupling (SOC) and two more in
the strong-SOC limit. The family formed by LaNiCy [9]
and LaNiGay [10] are an exception to this rule, as
their crystal structures have exceptionally low symme-
try. Their crystal point groups only have four irreps, all
of them one-dimensional. This precludes TRS breaking
in the strong-SOC case and leaves only four possible pair-
ing states, all of them non-unitary triplets [10, 25]. One
additional complication is the multi-band nature of these
systems: two [26] and five [27] bands cross the Fermi level
of LaNiCy and LaNiGay, respectively. In fact, both sys-
tems show thermodynamic properties that can be fitted
with a model assuming fully-gapped, 2-band supercon-
ductivity [11, 28, 29]. This is inconsistent with the line
nodes implied by the earlier symmetry analyses [10, 25].
On the other hand the 2-band model does not predict
TRS breaking. To resolve the discrepancy it was pro-
posed that only an internally-antisymmetric non-unitary
triplet pairing (INT) state is compatible with the exper-
imental observations [10, 11, 25, 30]. Here we show that
such a state has a very distinct experimental signature:
a double-peak structure in the Density of States (DOS)
which resolves in the spin channel. We construct a model
of LaNiGagy capturing detailed electronic band structure
ab initio, with the pairing interaction in the INT state
reduced to a single, adjustable parameter. The known
value of the critical temperature T, fixes this single pa-
rameter, allowing us to make parameter-free predictions.
We obtain the electronic specific heat and find an excel-
lent agreement with experiment [11]. We compute the
spin-resolved DOS having a double-peak structure with
each peak corresponding to a single spin channel. We
find that the splitting ~ 0.2meV —within the reach of



present experimental technology.

The triplet pairing in the INT state relies heavily on
the inter-band pairing, which enables an isotropic gap
function and equal-spin pairing breaking TRS [11]. The
Cooper pair wave function is symmetric in the crystal
momentum and spin channels but it is anti-symmetric
with respect to the orbital degree of freedom. Recent
studies [11, 31-42] in several materials, including the Iron
based superconductors, half-Heusler compounds, UPtg
and SroRuQOy4, have also pointed out the importance of
internal degrees of freedom of electrons (coming from, for
example, sublattice or multiple orbitals) in determining
the pairing symmetries of superconducting ground states.

A convenient toy model of low-energy excitations in
the INT state proposed in Ref. [11] is provided by the
following Bogoliubov-de Gennes (BdG) Hamiltonian:

= (M Hi(k))' ®

Here k is the crystal momentum of the excitation,

eo(k) —pn—s )
Moy =tz (VW THT 8 )@

is the normal-state, single-electron Hamiltonian with the
chemical potential p and

A=i(do)o, ®ir, (3)

represents the pairing potential. In the tensor products,
the first sector represents the spin channels ¢ =7, | while
the second represents the two orbital channels. For the
purpose of initial discussion, we have assumed a very
simple band structure with two bands labeled by m = +
and —, one emerging from each orbital, that are related
by a rigid energy shift 2s and with a k—independent
hybridization factor §. The pairing matrix describes
k—independent triplet pairing but is antisymmetric in
the orbital channel in order to ensure the fermionic an-
tisymmetry of the Cooper pair wave function [11, 31].
Here, o and T are the vectors of Pauli matrices in the
spin and orbital sectors respectively. Writing the triplet
d-vector in the form d = Agn, where |n|?> = 1 and Ay is
a pairing amplitude, the nonunitarity of the triplet state
is characterized by a nonzero real vector g = i(n x n*)
which in general has |q| < |p|? = 1.

Diagonalizing H yields the quasi-particle spectrum Ej
shown, for a particular choice of parameters, in Fig. 1(a).
The plot is representative of cases where s, < Ag. This
is the physically-relevant regime for the toy model as in
a mean-field picture the pairing amplitude (Ag) has to
be able to overcome the band splitting ~ d,s. This un-
realistic requirement is relaxed when the band splitting
is allowed to be k-dependent, as in the more detailed
model discussed below. As indicated in the plot each
excitation has well-defined band and spin indices. The
Bogoliubov bands are paired up, with each member of
the pair sharing the spin index but differing in the band
index. The corresponding DOS is displayed in Fig. 1 (b)
and (c). Here we have introduced two different levels
of broadening to simulate different experimental resolu-
tions in the two figures. The DOS is fully-gapped, with
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FIG. 1. Properties of quasiparticles in the INT state with s =
0.05, § = 0.075, |A¢| = 1 and |g| = 1/2/3 in arbitrary units.
(a) Quasiparticle spectrum for the + and — bands for 1 and
J spins. (b) and (c) show the corresponding DOS calculated
from this spectrum using the same parameters. The DOS
features have been artificially broadened by convolution with
a Gaussian of width o = 0.07 in (b) and ¢ = 0.025 in (c).

four pairs of coherence peaks that are grouped in two
doublets, depending on the level of broadening. Cru-
cially, the spin-resolved DOS shows only one of the two
doublets in each spin channel. This qualitative feature
distinguishes this double-peak structure from that which
would be obtained, for example, in a multi-band super-
conductor. The observation of such a spin-resolved fea-
ture would provide definitive proof of the INT state.

An analytical formula for Ej can be easily obtained in
the limits s — 0 or § — 0. In either case, the result is

B =+ [£a+V/Teolk) — P + AP ]|, (&)

where a = ¢ or s, respectively. Note that both § and s
play similar roles. This shows that our toy model does
not rely on the two bands being orthogonal. The above
formula can be used to estimate the ratio between the
gaps in the energy spectrum for spin-up (£44) and spin-
down (&) quasiparticles. In the limit a < A, it is
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The above toy model assumes that an isotropic, equal-
spin pairing potential can lower the free energy in spite
of the need for it to breach the energy gap between the
bands. We explicitly show this by considering the toy
many-body Hamiltonian

k

Here \I/k = (ék,-',-,T,ék,-‘,—,l,,ék,—,mék,—,oa where ék,m,a
creates an electron in the m'® band with crystal mo-
mentum k and spin o. The single-electron Hamiltonian
Ho(k) is given in Eq. (2) where for simplicity we take
d =0 and €y (k) = —2t[cos(k;)+cos(ky)]. We consider an



on-site, inter-orbital, equal-spin pairing interaction pro-
posed in Ref. [11], which can be written [43] as

4 S E ’ T 4
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with U > 0 being the effective attraction strength. A
standard mean-field treatment of this model [44] yields
the phase diagram shown in Fig. 2. In the limit s — 0,
the theory is formally equivalent to two copies of a BCS
theory, but with the band index m playing the role of the
spin index (one copy corresponding to each value of the
real spin). For finite s, a critical interaction strength U, is
necessary for the critical temperature T, to be finite, but
for U > U, the results are very similar to the case s — 0.
This is confirmed by the inset, showing the temperature-
dependence of the pairing amplitude Ag. While the su-
perconducting transition can be of first order and even
re-entrant (not shown; see Ref. [44]) for a very narrow
window U Z U, and displays some shoulders for slightly
larger U, BCS-like behavior is recovered for U > U..
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FIG. 2. Superconducting phase diagram of the toy model in
Eq. (6). T. is the critical temperature where inter-orbital,
equal-spin pairing sets in. Each curve shows the dependence
of T, on the interaction strength U for a different value of
the band splitting 2s, as indicated. The inset shows the
temperature-dependence of the pairing amplitude Ay for the
largest splitting s/t = 0.1 and a few values of U just above
the critical value U. at which 7. becomes finite.

The above simple calculation shows that an equal-spin
pairing potential can, in principle, breach a band gap to
lead to a fully-gapped triplet pairing state. On the other
hand our simple mean field theory yields g = (0,1, 0), i.e.
a unitary triplet pairing state with ¢ = 0. A more re-
alistic theory must treat the pairing and exchange fields
on equal footing. Symmetry arguments [10] show that
any triplet instability leads to a subdominant magneti-
sation, which lowers the free energy of the non-unitary
state with |q| # 0 [10, 45]. We now therefore build a more
sophisticated, realistic description which not only incor-
porates an accurate description of the exchange field, but
also a realistic prediction of the normal-state electronic
structure of LaNiGas, making quantitative predictions of
superconducting properties possible.

Density-Functional Theory (DFT) in the Local-density
approximation (LDA) shows that LaNiGay is a multi-

band superconductor with several bands crossing the
Fermi level giving rise to multiple Fermi surface
sheets [27]. None of the bands can be obtained from
one another through a simple rigid shift as in our toy
model. There are, however, several regions within the
Brillouin zone where the pairs of Fermi surface sheets
are parallel and very close to each other, that is, nearly
degenerate [44]. Moreover, the five bands have mixed Ni
3d, La 5d and Ga 4p characters. As a result, the Fermi
surfaces have strong orbital degeneracy. To capture these
details, we adopt a semi-phenomenological strategy [46].
We consider the relativistic version of the BdG Hamil-
tonian in Eq. (1) together with the realistic LDA band
structure and a phenomenological pairing interaction of
the type given by Eq. (7). This leads to the Kohn-Sham-
Dirac-BdG Hamiltonian [47]

(®)
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where Hp is the effective normal state Dirac Hamiltonian
given by

Hp = del+(d2—]l4)02/2+(veff(T)—EF)114+Beff(T)(d’§,.
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Here, &1 = 6, ®6, a9 =6, @15 and &3 = 15 ® 6 with 6
being the Pauli matrices and 1,, being the identity ma-
trix of order n. Vess(r) and Bess(r) are the effective
electrostatic potential and the effective exchange-field,
respectively. A(’P) is the 4 x 4 pairing potential ma-
trix due to the four component Dirac spinors. Requiring
self-consistency in the electrostatic potential, exchange-
field and pairing potential, the solution is provided by
our recently developed method [47] which generalizes the
Korringa-Kohn-Rostoker (KKR) formalism. Within the
KKR formalism intra-orbital and inter-orbital pairings
could be described both in the singlet and triplet channel
by transforming the (L, o) representation of the pairing
potential into a relativistic basis set, where L refers to the
real spherical harmonics assuming that the z direction is
perpendicular to the layered structure of LaNiGas. The
technical details are given in the Ref. [44].

It is important to note that the ground state does not
show ferromagnetism in the normal state, although there
is a significant contribution from the Ni 3d states at the
Fermi level [27]. Since it is known that Hund’s rule cou-
pling plays an important role on the Ni atoms [48, 49],
and on the other hand Hund’s coupling can also pro-
duce local pairing [50], therefore, it is physically rea-
sonable to assume an inter-orbital equal-spin pairing in-
volving two orbitals on the same Ni atom. We describe
this by a two-body onsite attractive interaction Uy, 1 be-
tween electrons with equal spins in only two of these or-
bitals (L # L’) with the pairing potential satisfying the
self-consistency equation: Az, 1/6(r) = UL 1/ XL, 170 (T)
where X1o.1/0(7) is the corresponding pairing amplitude.
Since all of the Ni d orbitals contribute to the density
of states at the Fermi level, there are 10 possible pair-
ing models within this approach. Only one of the 10
possible combinations, namely pairing between d.» and
dzy, yields a fully-gapped quasi-particle spectrum (all the
other possibilities have nodes on at least one of the Fermi
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FIG. 3. (Color online) Properties of the superconducting ground state corresponding to a phenomenological inter-orbital equal-
spin pairing interaction between the (d,2 - ds,) orbitals in the 3d sector of the Ni atom in LaNiGas. (a) Variation of the
specific heat with temperature (v is the Sommerfeld coefficient). We note an excellent agreement between the theoretical result
and the experimental data taken from Ref. [11]. (b) Variation of the spontaneous magnetic moment (us) as a function of
temperature. A clear increase in the magnetic moment below 7. is an indication of the imbalance between two spin-species
due to migration of Cooper pairs. (c) Spin-resolved density of states (arbitrary units) of the Bogoliubov quasi-particles as a
function of energy. We note that the two coherence peaks correspond to up and down species of Cooper pairs leading to two

gaps in the quasi-particle spectrum.

surface sheets— see the Ref. [44]). The strength Ug , 4,,
of the interaction between these two orbitals is the only
adjustable parameter in our theory, to be fixed by requir-
ing T, to be the same as in experiments [11]. Then we
can make parameter-free predictions of observable prop-
erties of the system. The requirement that 7, is the same
as in experiments leads to Ug_, a,, = 0.65 eV which is
comparable to the values of Hund’s coupling found for
Ni atom [49]. This result should motivate high-pressure
measurements and Dynamical Mean Field Theory stud-
ies to further explore the role of electronic correlations
involving Hund’s coupling. We stress that the present
attractive interaction is described by a phenomenological
parameter and therefore our calculation cannot directly
address the question of its origin.

Having fixed our single parameter, we can now make
parameter-free predictions. We first compute the specific
heat of LaNiGay as a function of temperature by evalu-
ating the temperature dependence of the quasi-particle
DOS self-consistently [46, 51]. It is shown in Fig. 3(a)
comparing to the corresponding experimental data from
Ref. [11]. The agreement is excellent, suggesting that
the observed two-gap behavior of this curve is consistent
with our equal-spin, inter-orbital pairing model.

The solution of the self-consistency equations reveal
a charge imbalance between 11 (67%) and || (33%)
triplet components on the Ni atom. The migration of
Cooper-pairs from the minority || state to the majority
T state is expected to generate a finite magnetization.
Since our pairing interaction Ug_, 4,, is spin indepen-
dent (hence preserves TRS), we have found a spontaneous
TRS breaking in the INT state, which is a perfect ana-
logue of a ferromagnetic transition in a normal-state DF'T
calculation. The pairing-induced spontaneous magneti-
zation (ps) is shown in Fig. 3(b). The magnetic moment
is expected to vary linearly very close to T, [10], however
this behavior is hard to resolve here due to demanding
numerical accuracy near T.. We can estimate the size of
the internal magnetic field at zero temperature using 2,

0
the value of ps at T' = 0, as B &~ i:’f;c ~ 0.3 Gauss

which is of similar order as seen in the zero-field uSR
measurements [10].

Finally, we compute the spin-resolved quasiparticle
DOS of LaNiGag as shown in Fig. 3(c). Its similarity
with Fig. 1(b) is striking, confirming that our DFT-KKR
calculation for this material describes the same physics.
The two distinct superconducting gaps are clearly visible,
and the spin-resolved curves show that they correspond
to different spin species. The double-peak structure of
the DOS is our main prediction. We note that the split-
ting between the two peaks is of the order of 0.2 meV
—within the resolution of current scanning tunneling mi-
croscopy [52], photo-emission [53], and tunneling exper-
iments [54]. The crucial feature is that, unlike the case
of a multi-band superconductor [55], the two peaks cor-
respond to distinct spin channels. Verifying this experi-
mentally would thus require spin resolution [56].

Interestingly, in Ref. 11 the specific heat measurement
was fitted by a phenomenological two-band model lead-
ing to the gap values A; = 1.08kgT, and Ay = 2.06kpT,,
while we find that the difference between the gaps is only
around 20%. Clearly, the difference between the two
procedures comes from the fact that our first-principles
based calculation included all of the five bands crossing
the level. However, our main point is that the DOS is
spin-polarized around the Fermi level, and the supercon-
ducting gaps correspond to different spin channels, not
different bands.

We note that it is important to consider the effect of
magnetic and nonmagnetic impurities on the INT state.
Although this is outside the scope of the present paper,
due to the two full gaps we expect the INT state to be
protected from nonmagnetic impurity scattering and a
version of the Anderson’s theorem [57] to hold.

Conclusions: We showed that an unconventional su-
perconductor in the INT state has at least two gaps, one
for each spin flavour, irrespective of the number of Fermi
surfaces. Instead of the traditional route of ignoring the



microscopic complexity of Fermi surfaces, we consider the
fully-relativistic electronic band structure of LaNiGas.
We perform fully self-consistent computations of its ob-
servables by taking a phenomenological pairing model on
the Ni atom in the INT state. The pairing model has
a single adjustable parameter fixed by the experimen-
tal value of T, of the material. There is an excellent
agreement between the computed and measured specific
heat of the system. We showed that due to migration of
Cooper pairs a sub-dominant order parameter, magne-
tization, arises spontaneously, breaking TRS consistent
with the zero-field muSR experiment. The salient fea-
ture of our calculations is a double-peak structure in the
quasi-particle DOS arising from the two spin channels.
We have predicted quantitatively the splitting between
the two peaks and showed that it is well within the reach
of present experimental technology and resolution. We
have thus achieved a desired milestone: a quantitative
theory of exotic pairing in an unconventional supercon-
ductor, namely LaNiGag, predicting a smoking-gun sig-
nature of its unconventional pairing state.
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