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ABINIT is probably the first electronic-structure package to have been released under an open-source license, about
twenty years ago. It implements density functional theory (DFT), density-functional perturbation theory (DFPT),
many-body perturbation theory (GW approximation and Bethe-Salpether equation), and more specific or advanced
formalisms, like dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" (TDEP)
approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density and other
space-dependent quantities, with pseudopotentials or projector-augmented waves (PAW), it is well suited for the study
of periodic materials, although nanostructures and molecules can be treated with the supercell technique.

The present article starts with a brief description of the project, a summary of the theories upon which ABINIT
relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the
majority of electronic structure packages, either among planewave codes, or in general: treatment of strongly correlated
materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer
shifts, orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; DFPT calculations
of response to strain perturbation (elastic constants, piezoelectricity), spatial dispersion (flexoelectricity), electronic
mobility, temperature dependence of the gap, spin-magnetic-field perturbation. The ABINIT DFPT implementation is
very general, including systems with van der Waals interaction, or with noncollinear magnetism. Community projects
are also described: generation of pseudopotential and PAW data sets, high-throughput calculations (databases of phonon
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band structure, second-harmonic generation, and GW computations of band gaps), and the library LIBPAW. ABINIT has
strong links with many other software projects, that are briefly mentioned.

I. INTRODUCTION

Since the introduction of density functional theory (DFT)
in 19641, the field of electronic structure calculations has
changed profoundly. This theory became the most popular
electronic structure method used to characterize materials at
the atomic scale and has given rise to different research ef-
forts that have been pushed further by the use and applications
of DFT. One of the reasons why this theory has become the
workhorse of material characterization is the wide distribu-
tion of computational packages, where solutions of the Kohn-
Sham equations are implemented. Every package has a differ-
ent scheme and philosophy, but all of them have in common
the generation of a software that is user-friendly and solves
the DFT equations. In that respect, ABINIT 2–5 was one of the
first free licensed solid-state electronic structure packages on
the market.

In this publication, we give first a global overview of
ABINIT , at the level of its history, community and impact,
as well as its main capabilities. Then, we focus on selected
capabilities, that are perceived as rather specific among the
set of available first-principle packages.

After describing the historical development of the project
and its impact (Sec. II), we present an overview of ABINIT
capabilities through a collection of keywords and concepts,
with entry points in the documentation (Sec. III). This should
allow users to know whether ABINIT is able to deliver some
specific property of materials.

The two next sections, Sec. IV and V, single out some
specifics of ABINIT . Sec. IV focuses on ground-state and
electronic properties: correlated materials (Dynamical Mean-
Field Theory - DMFT) Sec. IV A; treatment of finite electric
field, Sec. IV B; properties at the atomic nuclei, Sec. IV C; and
positron annihilation, Sec. IV D). Sec. V focuses on response
properties: Raman intensities, Sec. IV A; responses to strain,
Sec. V B; responses including van der Waals interactions,
Sec. V C; spatial dispersion (flexoelectricity and dynamical
quadrupoles), Sec. V D; electron-phonon coupling, Sec. V E;
temperature-dependent properties of materials in the anhar-
monic regime, Sec. V F; responses of solids presenting non-
collinear magnetism, Sec. V G; response to spin-magnetic per-
turbation, Sec. V H; and temperature-dependent optical spec-
tra, Sec. V I. Finally, we spend a few words on our recent
community efforts related to accurate and efficient Norm-
Conserving Pseudopotentials as well as Projector-Augmented
Waves (PAW) atomic data, Sec. VI A, to High-Throughput
calculations (phonon band structure, second-harmonic gener-
ation and accurate GW band gap calculations), Sec. VI B, and
to the LIBPAW library, Sec. VI C.

II. THE PROJECT: HISTORY, COMMUNITY AND
IMPACT

The ABINIT project can be traced back to an initial effort in
the late eighties by D.C. Allan, supervised by Michael P. Teter,
at Corning Incorporated and Cornell University. The code
used norm-conserving pseudopotentials and a planewave rep-
resentation of the Kohn-Sham orbitals, with the local-density
approximation (LDA) as the only exchange-correlation func-
tional available, and was written in FORTRAN 77. In 1990, X.
Gonze joined at Cornell, and they implemented density func-
tional perturbation theory (DFPT) on top of what was then
dubbed the CORNING code, in a separate application, named
RESPFN (Corning Incorporated is a large American company
focused on glass and materials applications). After a few years
in the hands of Biosym inc., where the name was changed to
PLANE_WAVE and the code was sold commercially, the de-
velopment of CORNING was stopped in 1996. At that point,
Gonze and Allan decided to create a free license code that
should be available to the community, with the critical recog-
nition that worldwide collaboration was necessary to develop
the code. The previous codes (PLANE_WAVE , RESPFN ,
and CORNING ) became the pillars of this new implementa-
tion. Corning Incorporated agreed to release the source of
PLANE_WAVE to support this effort and agreed not to enforce
a patent they held on the preconditioned conjugate gradient
algorithm.6 The code was rewritten in Fortran 90 with par-
allel features, originally named DFT2000 but soon changed
to ABINIT (September 1998).

The first version of ABINIT was made public in March
1999, primarily to beta testers. Initially, ABINIT was only
able to find the total energy, electronic charge density, and the
electronic structures of periodic systems, using pseudopoten-
tials and a planewave basis. In July 1999, the full response
function capability was also available. This implementation
was a significant step, as it was one of the only codes that
allow users to calculate phonons, dielectric constants, Born
effective charges, etc. The first publicly available release of
ABINIT was made in December 1999, under the GNU Gen-
eral Public License. In June 2000, an international advisory
committee was selected, to help with the strategy, support and
management of the code. The first ABINIT developer work-
shop took place in Louvain-la-Neuve in 2002. Since then, the
developer Abinit meeting takes place every two years. The 9th
developer workshop took place in Louvain-la-Neuve in 2019,
with the participation of around 60 speakers.

The ABINIT spirit is not only to offer the community a free
license code but also to encourage users and developers to
reuse parts of the computational package. The source code is
always available, and if a user is interested in introducing spe-
cific implementations into the package, an account on GitHub
suffices, such that changes can be merged and tested in the
official version. The ABINIT community has created a series
of methods and tests to guarantee the stability of the code,
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FIG. 1. ABINIT citation count by adding the four references 2–5
and deleting all record repetitions. See details in text.

precisely to avoid the introduction of errors by new imple-
mentations. ABINIT is a very well documented code, with
extensive description of installation, details of the input vari-
ables and their different dependencies, a very established tuto-
rial, with specific applications and a full set of examples (more
than 800). To support general users, ABINIT has created a Fo-
rum, which is linked to the ABINIT web site, and allows users
to ask questions related to theory, implementations or use of
ABINIT . The Forum is a primary resource for users, and both
developers and users answer questions and offer advice.

To spread the use of ABINIT and to train young scien-
tists in the field of electronic structure, the ABINIT develop-
ers have been supporting schools around the world. While
the first ABINIT workshop was in 2002, there are usually be-
tween 2-3 schools and workshops per year in many different
places. There is a regular presence at the March Meeting of
the American Physical Society, where half day tutorials are or-
ganized by the ABINIT community, and at CECAM. Some of
the CECAM events are theory oriented workshops, with dis-
cussions of the formalism and algorithms behind ABINIT , and
examples of calculations are discussed. On the other hand,
there are also regular CECAM hands-on schools, which al-
low users to gain experience in the use of ABINIT , and also
learn the theoretical background. These schools are very well
attended, but depend on specific locations with sufficient ac-
cess to computational facilities. In all cases, the presentations
of the ABINIT developer workshops, schools and conferences
are stored in the ABINIT web page and are accessible glob-
ally. These presentations offer the users details of code but are
also an archive of the different implementations and how they
have been tested and used.

The ABINIT community champions free software devel-
opment, but also wants to keep the integrity and modularity
of the computational package. All new developments need
to be approved by the community, to be sure to keep track
of the different efforts, and conduct a minimal screening on
the dependability and ethical behavior of people involved in
the code development. The driving idea is to preserve a con-
structive and supporting environment for all scientists willing
to collaborate. All major implementation efforts in ABINIT
are connected to individual publications but they are also in-
troduced through specific publications, about every three-five

years, where the most recent research efforts are described.
With this method, ABINIT tries to acknowledge the devel-
opers’ achievements and use these publications to describe
how the new implementations are part of the broader pack-
age. The ABINIT attitude towards publications is based on
research independence, but also collaborative efforts that con-
tinue to grow the computational package.

The research interest of the developers group (around 50
people at the time of writing) are respected by the ABINIT
community and overseen by an international advisory com-
mittee. This committee consists of around ten senior scien-
tists, which have been involved in the development of ABINIT
and have been supportive of the philosophy and efforts of the
community.

A metric of ABINIT ’s impact can be obtained by using bib-
liometric analysis accessed from the Web of Science (data
taken on December 26th, 2019). This can be assessed by
adding all citations of all the main papers reporting ABINIT
developments, meaning Refs. 2–5. We found a total of 5125
citations since 2002, of which 3995 are unique, with an av-
erage number above 250 total citations per year since 2011
(see Figure 1). Using this database of unique entries, we can
address the impact of ABINIT on different fields of science
by counting some of the papers reported in high impact jour-
nals. For example, there are 160 papers from Physical Review
Letters, 109 Journal of Chemical Physics, 108 Computational
Materials Science, 32 Nano Letters, 33 Scientific Reports, 18
Nature Communications, 8 Nature Materials, 7 Nature, etc.
As it is clear from this analysis, ABINIT is a healthy package
that impacts several scientific fields and supports the work of
many agencies and institutions, with authors of 84 different
countries and from more than 2000 different institutions.

III. OVERVIEW OF FORMALISMS AND PROPERTIES

An overview of the capabilities of a large scientific code can
be structured in different ways. The present work targets users
who simply wish to know whether ABINIT is able to compute
a particular property of a material or nanosystem, and possi-
bly to represent it graphically. In this respect, Tables I and II
present an alphabetic list of keywords (or concepts), that best
represent a capability of ABINIT , with related documenta-
tion: possibly some section of the present publication, and/or
reference to some "topics" of the on-line ABINIT Web doc-
umentation https://docs.abinit.org/topics/features, and/or ref-
erence to some scripts and illustrations in the ABIPY gallery
http://abinit.github.io/abipy/gallery/index.html. Highlighted
(bold) keywords refer to specific sections of the present pub-
lication. The emphasis on these keywords stems from the be-
lief that such characteristics/capabilities of ABINIT are not
commonly found among first-principles codes, and can be put
forward as examples of what makes ABINIT unique.

In the "topics" tags of the online ABINIT Web documenta-
tion, we try to address the generic challenge of software docu-
mentation, by providing for each topic a hub to the underlying
theory (including bibliographical references), to the related
ABINIT input variables, to the example ABINIT input files

https://www.forum.abinit.org/
https://www.forum.abinit.org/
https://www.abinit.org
https://www.cecam.org/
https://docs.abinit.org/topics/features
http://abinit.github.io/abipy/gallery/index.html
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Keyword/Concept Documentation
Atomic mean square displacement (phonons) topic:Temperature, plot_phonons_msqd.html
Bader atomic charges topic:Bader
Born effective charges Sec. VI B, topic:DFPT
Born effective charges, non-collinear magnetism case Sec. V G
Correlated electronic state (dynamic - DMFT, static - DFT+U) Sec. IV A, topic:DMFT
Conductivity, electrical (electron-phonon coupling) topic:ElPhonTransport
Conductivity, thermal (electron-phonon coupling) topic:ElPhonTransport
Debye-Waller temperature factors (phonons) topic:Temperature, plot_phonons_msqd.html
Dielectric permittivity Sec. VI B, topic:DFPT, topic:Phonons
Dielectric permittivity, non-collinear magnetism case Sec. V G
Dielectric function (optical - frequency dependent) topic:Susceptibility, plot_mdf.html, plot_scr.html,

plot_multiple_mdf.html, plot_optic.html
Dielectric function (infrared - frequency dependent) topic:Phonons, plot_phonons_infrared.html
Dynamical matrices topic:Phonons
Dynamical quadrupoles Sec. V D
Effective mass topic:EffectiveMass
Elastic tensor Sec. V B, Sec. V C, topic:DFPT, topic:Elastic
Elastic tensor, temperature-dependent Sec. V F
Electric field (finite, using Berry phase) Sec. IV B, topic:Berry
Electric field gradient (at nuclei) Sec. IV C, topic:EFG
Electro-optic effect Sec. V A, topic:nonlinear
Electric polarization (Berry phase) Sec. IV B, topic:Berry
Electron self-energy (GW) topic:SelfEnergy
Electron spectral function (GW) topic:GW, plot_gw_spectral_functions.html
Electron spectral function (DMFT) Sec. IV A, topic:DMFT
Electron-phonon coupling strength topic:ElPhonInt, plot_a2f.html
Electronic band gap (GW) topic:GW, plot_qps.html
Electronic band gap, temperature-dependent Sec. V E, topic:TDepES
Electronic band structure Sec. VI B, topic:ElecBandStructure, topic:GW,

topic:ldaminushalf, plot_ebands_edos.html,
plot_ebands.html, plot_kpath_from_ibz.html,
plot_ejdos.html, plot_qpbands_with_scissors.html

Electronic band structure (spin-polarized) topic:ElecBandStructure, plot_ebands_spin.html
Electronic Density Of States (DOS) topic:ElecDOS, plot_edos.html, plot_ebands_edos.html
Electronic fat band structure topic:ElecDOS, plot_efatbands.html,

plot_efatbands_spin.html
(with angular momentum weights) plot_ejdos.html

Electronic quasiparticles (SCGW) topic:GW, plot_scqpgw.html
Eliashberg function (electron-phonon) topic:ElPhonInt, plot_a2f.html
Entropy (phonons) topice:Temperature, plot_phthermo.html
Excited states (charged excitations) topic:GW, topic:Coulomb
Excited states (neutral excitations) topic:DeltaSCF, topic:BSE, topic:TDDFT
Fermi surface topic:ElecBandStructure, plot_fermisurface.html
Flexoelectricity Sec. V D
Free energy (phonons) Sec. VI B, topic:Temperature, plot_phthermo.html
Geometry optimization topic:GeoOpt, topic:ForcesStresses, plot_hist.html
Grüneisen parameters topic:Temperature, plot_gruneisen.html
GW corrections topic:GW, plot_qpbands_with_interpolation.html

TABLE I. Overview of ABINIT capabilities (first part, A-G). For each keyword, ordered alphabetically, one or several links are provided. Each
highlighted keyword emphasizes a capability of ABINIT that is not present in many first-principles packages, or that is particularly strong
(e.g. high-throughput calculations have been performed). A specific section is dedicated to such keywords in the present publication. In
addition, other links to documentation are pointed out. “topic:<name-of-topic>" refers to the ABINIT topic online documentation, available
at https://docs.abinit.org/topics/<name-of-topic>. “plot_<name-of-plot>" refers to the ABIPY gallery of plotting scripts, available at http:
//abinit.github.io/abipy/gallery/plot_<name-of-plot>.

and to the ABINIT tutorials, also mentioning possible restric-
tions in the implementation, or different levels of accuracy of
the implementation.

ABINIT implements different first-principles formalisms,
i.e. DFT7, DFPT3,8–10, time-dependent density functional the-

ory (TD-DFT)11, many-body perturbation theory (MBPT)12

and DMFT13,14. Each of these formalisms allows one to ad-
dress different properties at different levels of accuracy. As
an example, the electronic band gap can be computed from
DFT, but the predicted value is notoriously inaccurate. In-

https://docs.abinit.org/topics/Temperature
http://abinit.github.io/abipy/gallery/plot_phonons_msqd.html
https://docs.abinit.org/topics/Bader
https://docs.abinit.org/topics/DFPT
https://docs.abinit.org/topics/DMFT
https://docs.abinit.org/topics/ElPhonTransport
https://docs.abinit.org/topics/ElPhonTransport
https://docs.abinit.org/topics/Temperature
http://abinit.github.io/abipy/gallery/plot_phonons_msqd.html
https://docs.abinit.org/topics/DFPT
https://docs.abinit.org/topics/Phonons
https://docs.abinit.org/topics/Susceptibility
http://abinit.github.io/abipy/gallery/plot_mdf.html
http://abinit.github.io/abipy/gallery/plot_scr.html
http://abinit.github.io/abipy/gallery/plot_multiple_mdf.html
http://abinit.github.io/abipy/gallery/plot_optic.html
https://docs.abinit.org/topics/Phonons
http://abinit.github.io/abipy/gallery/plot_phonons_infrared.html
https://docs.abinit.org/topics/Phonons
https://docs.abinit.org/topics/EffectiveMass
https://docs.abinit.org/topics/DFPT
https://docs.abinit.org/topics/Elastic
https://docs.abinit.org/topics/Berry
https://docs.abinit.org/topics/EFG
https://docs.abinit.org/topics/nonlinear
https://docs.abinit.org/topics/Berry
https://docs.abinit.org/topics/SelfEnergy
https://docs.abinit.org/topics/GW
http://abinit.github.io/abipy/gallery/plot_gw_spectral_functions.html
https://docs.abinit.org/topics/DMFT
https://docs.abinit.org/topics/ElPhonInt
http://abinit.github.io/abipy/gallery/plot_a2f.html
https://docs.abinit.org/topics/GW
http://abinit.github.io/abipy/gallery/plot_qps.html
https://docs.abinit.org/topics/TDepES
https://docs.abinit.org/topics/ElecBandStructure
https://docs.abinit.org/topics/GW
https://docs.abinit.org/topics/ldaminushalf
http://abinit.github.io/abipy/gallery/plot_ebands_edos.html
http://abinit.github.io/abipy/gallery/plot_ebands.html
http://abinit.github.io/abipy/gallery/plot_kpath_from_ibz.html
http://abinit.github.io/abipy/gallery/plot_ejdos.html
http://abinit.github.io/abipy/gallery/plot_qpbands_with_scissors.html
https://docs.abinit.org/topics/ElecBandStructure
http://abinit.github.io/abipy/gallery/plot_ebands_spin.html
https://docs.abinit.org/topics/ElecDOS
http://abinit.github.io/abipy/gallery/plot_edos.html
http://abinit.github.io/abipy/gallery/plot_ebands_edos.html
https://docs.abinit.org/topics/ElecDOS
http://abinit.github.io/abipy/gallery/plot_efatbands.html
http://abinit.github.io/abipy/gallery/plot_efatbands_spin.html
http://abinit.github.io/abipy/gallery/plot_ejdos.html
https://docs.abinit.org/topics/GW
http://abinit.github.io/abipy/gallery/plot_scqpgw.html
https://docs.abinit.org/topics/ElPhonInt
http://abinit.github.io/abipy/gallery/plot_a2f.html
http://abinit.github.io/abipy/gallery/plot_phthermo.html
https://docs.abinit.org/topics/GW
https://docs.abinit.org/topics/Coulomb
https://docs.abinit.org/topics/DeltaSCF
https://docs.abinit.org/topics/BSE
https://docs.abinit.org/topics/TDDFT
https://docs.abinit.org/topics/ElecBandStructure
http://abinit.github.io/abipy/gallery/plot_fermisurface.html
https://docs.abinit.org/topics/Temperature
http://abinit.github.io/abipy/gallery/plot_phthermo.html
https://docs.abinit.org/topics/GeoOpt
https://docs.abinit.org/topics/ForcesStresses
http://abinit.github.io/abipy/gallery/plot_hist.html
https://docs.abinit.org/topics/Temperature
http://abinit.github.io/abipy/gallery/plot_gruneisen.html
https://docs.abinit.org/topics/GW
http://abinit.github.io/abipy/gallery/plot_qpbands_with_interpolation.html
https://docs.abinit.org/topics/
http://abinit.github.io/abipy/gallery/plot_
http://abinit.github.io/abipy/gallery/plot_
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Keyword/Concept Documentation
Infrared reflectivity topic:Phonons
Interatomic Force Constants topic:Phonons
Internal energy (phonons) Sec. VI B, topic:Temperature, plot_phthermo.html
Inverse Dielectric function (optical - frequency dependent) topic:Susceptibility, plot_scr_matrix.html
Joint Density Of States (electronic) topic:ElecBandStructure, plot_ejdos.html
Macroscopic average topic:MacroAve
Magnetic field (finite) topic:MagField
Magnetic moments topic:MagMom
Magnetic susceptibility Sec. V H
Molecular dynamics topic:MolecularDynamics, topic:DynamicsMultibinit, topic:PIMD
Mössbauer isomer shift Sec. IV C, topic:EFG
Optical absorption Sec. V I, topic:BSE, topic:Optic
Optical response, temperature-dependent Sec. V I, topic:BSE, topic:Optic
Phonon bands Sec. V C, Sec. VI B, topic:Phonons, topic:DFPT,

plot_phonons_lo_to.html, plot_phonons.html,
plot_ddb_asr.html, topic:Band2eps

Phonon bands, temperature-dependent Sec. V F, topic:Tdep
Phonon bands, non-collinear magnetic case Sec. V G, topic:Phonons, topic:DFPT
Phonon fat bands topic:Phonons, plot_phonon_fatbands.html, plot_phbands_and_dos.html
Phonon Density Of States topic:Phonons, plot_phonon_pjdos.html, plot_phbands_and_dos.html
Phonon Density Of States, temperature-dependent Sec. V F, topic:Tdep
Phonon linewidth (electron-phonon coupling) topic:PhononWidth
Piezoelectric tensor Sec. V B, Sec. V C, topic:DFPT, topic:Elastic
Positron annihilation Sec. IV D, topic:positron
Projected Phonon Density Of States topic:Phonons, plot_phonon_pjdos.html, plot_phonons_msqd.html
Quasiparticle energies (GW) topics:GW, plot_qps.html
Raman cross section/intensities Sec. V A, topic:nonlinear, topic:Phonons
Refraction index Sec. V I, topics:DFPT, topics:Optic, topic:BSE
Resistivity (electron-phonon coupling) Sec. V E, topic:ElPhonTransport
Scanning Tunneling Microscopy map topic:STM
Stopping power of charged particles topic:RandStopPow
Second Harmonic Generation Sec. VI B, topic:nonlinear, topic:Optic, plot_optic.html
Sound velocity Sec. VI B, topic:PhononBands, plot_speed_of_sound.html
Specific heat (phonons) Sec. VI B, topic:Temperature, plot_phthermo.html
Structural relaxation topic:GeoOpt, topic:ForcesStresses, plot_hist.html
Superconducting transition temperature Sec. V E, topic:ElPhonTransport
Thermal Expansion topic:Temperature
Thermodynamic properties Sec. VI B, topic:Temperature
Thermodynamic properties including anharmonicities Sec. V F, topic:Tdep
Transition states, transition paths topic:CrossingBarriers, topic:TransPath
Two-phonon DOS, sum and difference spectra topic:PhononBands
Unfolding supercell band structure topic:Unfolding, plot_fold2bloch.html
Wannier interpolation topic:ElecBandStructure, topic:Wannier, plot_wannier90_abiwan.html
Zero-point renormalization of band gap Sec. V E, topic:TDepES

TABLE II. Overview of ABINIT capabilities (second part, I-Z). For each keyword, ordered alphabetically, one or several links are provided.
Each highlighted keyword emphasizes a capability of ABINIT that is not present in many first-principles packages, or that is particularly
strong (e.g. high-throughput calculations have been performed). A specific section is dedicated to such keywords in the present publication.
In addition, other links to documentation are pointed out. “topic:<name-of-topic>" refers to the ABINIT topic online documentation, available
at https://docs.abinit.org/topics/<name-of-topic>. “plot_<name-of-plot>" refers to the ABIPY gallery of plotting scripts, available at http:
//abinit.github.io/abipy/gallery/plot_<name-of-plot>.

stead, the band gap is better computed using the GW ap-
proximation within MBPT, also implemented in ABINIT .
Moreover, even within MBPT-GW, different levels of ac-
curacy are available: the simple one-shot G0W0 approach,
with different plasmon pole models, or more sophisticated
self-consistent flavors of GW (SCGW). Similarly, different
families of exchange-correlations functionals can be used
in DFT: LDA, generalized-gradient approximation (GGA),
meta-GGA, hybrid functionals, van der Waals (vdW) cor-

rected functionals. It will not be the purpose of the present
section to specify for each property the different levels of ac-
curacy. By contrast, such information might be found thanks
to the on-line ABINIT topics.

Similarly, within some formalism, the ABINIT implemen-
tation might not be compatible with both the norm-conserving
pseudopotential (NCPSP) approach and the PAW approach.
Also, the treatment of non-spin-polarized systems, collinear
magnetic systems, collinear antiferromagnetic systems, and

https://docs.abinit.org/topics/Phonons
https://docs.abinit.org/topics/Phonons
https://docs.abinit.org/topics/Temperature
http://abinit.github.io/abipy/gallery/plot_phthermo.html
https://docs.abinit.org/topics/Susceptibility
http://abinit.github.io/abipy/gallery/plot_scr_matrix.html
https://docs.abinit.org/topics/ElecBandStructure
http://abinit.github.io/abipy/gallery/plot_ejdos.html
https://docs.abinit.org/topics/MacroAve
https://docs.abinit.org/topics/MagField
https://docs.abinit.org/topics/MagMom
https://docs.abinit.org/topics/MolecularDynamics
https://docs.abinit.org/topics/DynamicsMultibinit
https://docs.abinit.org/topics/PIMD
https://docs.abinit.org/topics/EFG
https://docs.abinit.org/topics/BSE
https://docs.abinit.org/topics/Optic
https://docs.abinit.org/topics/BSE
https://docs.abinit.org/topics/Optic
https://docs.abinit.org/topics/Phonons
https://docs.abinit.org/topics/DFPT
http://abinit.github.io/abipy/gallery/plot_phonons_lo_to.html
http://abinit.github.io/abipy/gallery/plot_phonons.html
http://abinit.github.io/abipy/gallery/plot_ddb_asr.html
https://docs.abinit.org/topics/Band2eps
https://docs.abinit.org/topics/Tdep
https://docs.abinit.org/topics/Phonons
https://docs.abinit.org/topics/DFPT
https://docs.abinit.org/topics/Phonons
http://abinit.github.io/abipy/gallery/plot_phonon_fatbands.html
http://abinit.github.io/abipy/gallery/plot_phbands_and_dos.html
https://docs.abinit.org/topics/Phonons
http://abinit.github.io/abipy/gallery/plot_phonon_pjdos.html
http://abinit.github.io/abipy/gallery/plot_phbands_and_dos.html
https://docs.abinit.org/topics/Tdep
https://docs.abinit.org/topics/PhononWidth
https://docs.abinit.org/topics/DFPT
https://docs.abinit.org/topics/Elastic
https://docs.abinit.org/topics/positron
https://docs.abinit.org/topics/Phonons
http://abinit.github.io/abipy/gallery/plot_phonon_pjdos.html
http://abinit.github.io/abipy/gallery/plot_phonons_msqd.html
http://abinit.github.io/abipy/gallery/plot_qps.html
https://docs.abinit.org/topics/nonlinear
https://docs.abinit.org/topics/Phonons
https://docs.abinit.org/topics/BSE
https://docs.abinit.org/topics/ElPhonTransport
https://docs.abinit.org/topics/STM
https://docs.abinit.org/topics/RandStopPow
https://docs.abinit.org/topics/nonlinear
https://docs.abinit.org/topics/Optic
http://abinit.github.io/abipy/gallery/plot_optic.html
https://docs.abinit.org/topics/PhononBands
http://abinit.github.io/abipy/gallery/plot_speed_of_sound.html
https://docs.abinit.org/topics/Temperature
http://abinit.github.io/abipy/gallery/plot_phthermo.html
https://docs.abinit.org/topics/GeoOpt
https://docs.abinit.org/topics/ForcesStresses
http://abinit.github.io/abipy/gallery/plot_hist.html
https://docs.abinit.org/topics/ElPhonTransport
https://docs.abinit.org/topics/Temperature
https://docs.abinit.org/topics/Temperature
https://docs.abinit.org/topics/Tdep
https://docs.abinit.org/topics/CrossingBarriers
https://docs.abinit.org/topics/TransPath
https://docs.abinit.org/topics/PhononBands
https://docs.abinit.org/topics/Unfolding
http://abinit.github.io/abipy/gallery/plot_fold2bloch.html
https://docs.abinit.org/topics/ElecBandStructure
https://docs.abinit.org/topics/Wannier
http://abinit.github.io/abipy/gallery/plot_wannier90_abiwan.html
https://docs.abinit.org/topics/TDepES
https://docs.abinit.org/topics/
http://abinit.github.io/abipy/gallery/plot_
http://abinit.github.io/abipy/gallery/plot_


6

non-collinear magnetic systems might not all be available.
In Ref. [4], we provided such a more detailed description of

the formalism+implementation level for many of the ABINIT
capabilities (see Tables 1 - 4 of Ref. [4]). ABINIT has evolved
since then, and the best available source of information is now
the on-line topics.

Also, ABINIT has several graphical post-processors, in-
cluding ABIPY and AGATE . A gallery of ABIPY examples
(with associated Jupyter notebooks) is available at http://
abinit.github.io/abipy/gallery/index.html. The links to these
examples are also mentioned in Tables I and II.

Finally, note that some of the capabilities of ABINIT are
presently not yet available/documented in the latest public re-
lease of ABINIT (v8), but will be so in the forthcoming one
(v9). Some of these are mentioned in a section of the present
paper, but there is no associated topic or ABIPY example.
Some of the common variables used within this text are found
in Table III.

IV. GROUND STATE AND ELECTRONIC PROPERTIES

A. Correlated materials: Dynamical-Mean Field Theory

Systems with localized orbitals, such as transition metals,
lanthanides or actinides exhibit strong correlation effects and
are difficult to describe using DFT with currently available
functionals14. One way to improve their description is to ex-
plicitly include the onsite Coulomb interaction U between the
electrons in the correlated orbitals of the system (e.g the d or
f shells).

The DFT+U method, available in ABINIT 15–17, treats this
interaction statically and is most efficient on magnetic Mott
insulators. To describe in a more coherent way systems
with various interaction strengths, the method of choice is
DMFT13. This method solves the local many-body problem
for a given correlated atom in the effective field created by
the other atoms. This field is self-consistently related to the
solution of the atomic impurity problem. The combination of
DFT with DMFT14,18 enables the description of realistic sys-
tems with both correlated and non-correlated electrons. The
DFT+DMFT method has been helpful to improve in particular
spectral functions (describing both Hubbard bands and quasi-
particle peaks in the spectral function), total energy (for e.g.
iron systems, actinides or lanthanides), and magnetic proper-
ties (see e.g Ref. 14).

The method has been implemented in ABINIT 5,19,21 and
is presented in a tutorial. The key points of the available
DFT+DMFT implementation are the following:

• Correlated orbitals are defined as Projected Local Or-
bitals Wannier functions21, their localization can easily
be changed by modifying the associated energy win-
dows.

• The method is fully self-consistent with respect to the
electronic density (see Fig. 2)19.

Variable Description
B Magnetic field
c speed of light
C0 Clamped-ion elastic tensor
C6,IJ Dispersion coefficient
D/b f q Dynamic matrix
e electronic charge
e0 Clamped-ion piezoelectric tensor
E Total energy
E Electric Field
ε∞ Optical dielectric tensor
Eγ Energy of a nuclear transition
Ee−p

c Electron-positron correlation functional
f band occupancy
fmk+q Fermi-Dirac occupation factor
|i〉 Polarization vector along direction i
i, j Reduced coordinates
n(ω),nqν Bose occupation factor
nα Refractive index along α

P Polarization
re Classic electron radius
r linear electro-optic tensor
U Onsite Coulomb interaction energy
|unk〉 Bloch wavefunction
um Eigen-displacement vector
U0 Ground-state energy
〈v2〉 Mean square velocity of the nucleus
vext External Potential
vnk Particle velocity
Z Atomic number
Z∗ Born effective charge tensor
α,β Cartesian coordinates
αm mode dependent Raman tensor
Γ Mode independent line-width
γ Lattice-strain coupling tensor
δ Mössbauer isomer shift
∆〈r2〉 change in size of the nucleus
ηαβ Strain component
µ̄ II Frozen ion Flexelectricity
τ Positron Lifetime
χ(1) First order electric susceptibility
χ(2) Second order susceptibility
(p)
Φ Interatomic force constants
|Ψ〉 Planewave basis functions
|Φ〉 All electron wavefunctions
|Φ̃〉 Pseudized atomic wavefunctions
ωl Laser light frequency
Ω0 Unit cell volume

TABLE III. Summary of commonly used variables and there mean-
ings found within the text. Tensor and vector quantities are shown in
bold.

• Impurity solvers directly available in ABINIT are the
Hubbard I method and the Continuous Time Quan-
tum Monte Carlo22 (using either a diagonal or a gen-
eral hybridization function) in the simplified but ef-
ficient density-density approximation19,23. Spin–orbit
coupling calculations are possible, using a real valued
imaginary time hybridization function.

http://abinit.github.io/abipy/gallery/index.html
http://abinit.github.io/abipy/gallery/index.html
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DFT

DMFT Loop
Diagonalize HKS

KS Hamiltonian HKS[n(r)]

Define Wannier orbitals
Use KS orbitals and energies

Lattice Green’s function Hybridization function

Impurity Solver (CTQMC)
Green’s function
Self-energy

Electronic density n(r)

FIG. 2. The DFT+DMFT scheme as implemented in ABINIT com-
bines the DMFT self-consistent loop which computes the local
self-energy, and a DFT self-consistent loop which uses the DMFT
Green’s function to compute the DFT+DMFT electronic density. KS
stands for "Kohn Sham". See also Refs. 19 and 20.

• Internal energy and electronic entropy can be com-
puted19,23.

• Impurity and k-resolved spectral functions can be com-
puted using analytical continuation of the Green’s func-
tion or the self-energy, with an external code (e.g
OmegaMaxent24). Fig. 3 shows the LDA+DMFT spec-
tral function of α-cerium, as computed in ABINIT .

• Several parallelization schemes can be used17, allowing
application of the method to large systems.

• ABINIT is coupled to the CTHYB impurity solver of
the TRIQS library25,26 through a C++ interface. This al-
lows one to solve the impurity problem in the fully rota-
tionally invariant formulation of the interacting Hamil-
tonian.

• ABINIT is built with a python invocation scheme that
allows any personalised python script to solve the im-
purity problem. Thus, an experienced user can invoke
their favourite solver within a DFT+DMFT calculation
from ABINIT .

DFT+DMFT uses effective interactions parameters U and J
as input. They can be computed in ABINIT 27 on the same cor-
related Wannier orbitals, using the constrained Random Phase
Approximation (cRPA) method28,29. In cRPA29, as the screen-
ing arising from electronic transitions among the correlated
shell is a correlation effect already described in the CTQMC
solution of the impurity problem, only other electronic transi-
tions are used to compute the screening29. The cRPA method
in ABINIT is documented by a tutorial.

These schemes were recently used in f electron systems to
compute the f effective interactions parameters20,27,30 and to
improve the description of their spectral or structural proper-
ties16,20,23,31 and improve our understanding of the supercon-
ducting symmetries in Sr2RuO4

32.

B. Finite electric fields

ABINIT can be used to compute the response to electric
fields in several ways. From DFPT, the susceptibility can be
calculated33,34 as the second-order derivative of the total en-
ergy at zero field ∂ 2E/∂Ei∂EJ . Alternatively, the first order

FIG. 3. Spectral function of α-cerium computed in LDA+DMFT
along symmetry lines of the Brillouin zone (with U = 6 eV and
J = 0.7 eV). Two visible effects brought by LDA+DMFT are the
upper Hubbard band at 4 eV and the renormalization of the LDA
band structures near the Fermi level.

derivative is the electrical polarization P, which may be non-
zero even in the absence of external fields, e.g. in ferroelectric
materials. Computing this term appears formally equivalent to
computing

∫
dr rn(r), that is, the dipole moment density, but

this expression is ill-defined in an extended system. This prob-
lem is solved by the modern theory of polarization35, in which
the key insight is the recognition that while the polarization is
not well-defined, its derivative with respect to a change in the
system is, and so the polarization may be computed (up to a
constant) through integration. The key formula is

P =
f e

(2π)3 ∑
n

∫
dk〈unk| i∇k |unk〉 . (1)

Eq. (1) is implemented in ABINIT using both NCPSP and
the PAW formalism. In both cases the wavefunction deriva-
tives are computed using a finite-difference scheme, so that a
coherent phase relationship between the k-points may be en-
sured. From this approach, the polarization may be computed.

With a scheme in place to compute the polarization, the re-
sponse to a finite electric field may be computed by adding a
term −P ·E to the total energy36. Then, its effect is included
in the self-consistent energy minimization cycle, through the
gradient δ (−P ·E )/δ 〈unk|37,38. In this way, Kohn-Sham
states that minimize the total energy including the electric
field are found (the polarization from Eq. (1) is updated at
each step as the Kohn-Sham states evolve), provided that the
field is not so strong that the insulating gap breaks down.

Using this approach we have computed a number of re-
sponses, including linear terms that permit validation against
DFPT, and nonlinear responses that are only available using
finite field calculations38.

C. Properties at the atomic nuclei

ABINIT provides several features for computing properties
that arise from the electronic structure very near the atomic
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nuclei. These features are of use for computing and interpret-
ing a variety of experimental probes, in particular Mössbauer
spectroscopy39, and nuclear magnetic and nuclear quadrupole
resonance spectroscopy40,41.

Such observables involve the overlap of the electronic
wavefunctions with the nucleus, in the case of the Mössbauer
isomer shift, and the gradient of the electric field at the nu-
cleus, observed in both Mössbauer spectra and magnetic res-
onance experiments. As both observables depend sensitively
on details of the electronic structure very close to the nuclear
position, these are cases where a planewave-only treatment
with NCPSP is quite inaccurate and it is necessary to use the
PAW formalism.

The Mössbauer isomer shift δ , in velocity units, is deter-
mined by the overlap of the electronic density with a nucleus
undergoing a nuclear state transition, and is given by

δ =
c

Eγ

2πZe2

3
[ρA(0)−ρS(0)]∆〈r2〉, (2)

for the electron density of the absorber (A) and source (S) at
the nucleus (here located at 0). In this formula, Eγ , the energy
of a nuclear transition, and ∆〈r2〉, the change in size of the
nucleus, are nuclear properties that must be supplied by the
user, while ABINIT can determine the electronic contributions
ρA and ρS. To do this, the PAW formalism is used, in which
an observable 〈A〉 is computed as42–44

〈A〉= 〈Ψ|A |Ψ〉+ (3)

∑
i j
〈Ψ̃|p̃i〉〈p̃ j|Ψ̃〉

(
〈Φi|A |Φ j〉−〈Φ̃i|A |Φ̃ j〉

)
.

For properly constructed PAW data, all-electron accuracy may
be recovered in this formalism. For computation of ρ(0) ap-
pearing in Eq. (2), we use as the observable the 3-D delta-
function δ (0)39.

Using the above formalism, isomer shifts may also be com-
puted, given available data for Eγ and ∆〈r2〉 for the transi-
tion in question. To validate the method, a range of shifts
were computed and then ∆〈r2〉 extracted by comparison to
known shifts; we found excellent agreement for a variety of
nuclei, including tin, germanium, and zinc39. The zinc case
is a very stringent test because the isomer shift range is so
small and the transition so sharp; accurate modeling requires
inclusion of the secondary Doppler shift, which we computed
by first principles from the phonon dispersion relations. The
secondary Doppler shift takes the form SD = −〈v2〉/2c, and
is obtainable once the full phonon dispersion curves are com-
puted. We found that even in this case the PAW-derived ∆〈r2〉
was in excellent agreement with experimental values39.

The electric field gradient calculation proceeds along sim-
ilar lines, except the observable of interest is now the second
derivative of the potential n(r)/|r− r′|, for density n(r). The
implementation in ABINIT 40 is similar to that in other codes,
such as QUANTUM ESPRESSO 45. As usual in PAW, the den-
sity is decomposed into a planewave-based part, and PAW-
sphere corrections. In addition, there is a charge density due
to the ions. The planewave-based field gradient is computed

in reciprocal space and then evaluated at the nuclear site of in-
terest by Fourier-transformation; the PAW-sphere corrections
are computed in real space, noting that the use of the PAW
compensation charge ensures that no inter-sphere contribu-
tions need be considered; and the gradient due to the fixed ions
is computed using an Ewald-sum method46. As an example of
the application of this feature, we showed41 the sensitivity of
the electric field gradient response to strong correlation effects
in LaTiO3, by combining the field gradient calculation with
the DFT+U method, also available in ABINIT , see Sec. IV A.

D. Positron annihilation

One of the unique features of ABINIT is the fully self-
consistent implementation of two-component density func-
tional theory (TCDFT)47,48 within the PAW formalism44. This
technique allows one to accurately compute various proper-
ties of annihilating electron-positron pairs, which in turn can
be used to interpret positron annihilation spectroscopy (PAS)
measurements49.

Within TCDFT, the total energy of interacting positrons and
electrons is written as:

E[n+,n−] = E[n+]+E[n−]

+
∫

drvext(r)[n−(r)−n+(r)]

−
∫

dr
∫

dr′
n−(r)n+(r)
|r− r′|

+Ee−p
c [n+,n−],

(4)

where n+ and n− are positron and electron densities, E[n+]
and E[n−] are one-component functionals for positron and
electrons, and

∫
dr
∫

dr′ n−(r)n+(r)
|r−r′| corresponds to the Hartree

interaction. Various approximations can be used to calculate
the Ee−p

c term, both within LDA48,50 and GGA.51,52

The TCDFT implementation in ABINIT is based on a uni-
fied formalism, in which both electron and positron wave-
functions are expressed using the same mixed PAW basis
(planewaves and atomic orbitals)53. This means that the elec-
tronic and positronic energies and forces can be calculated
self-consistently. It allows, for example, for full geometry op-
timisation of systems containing positrons, an effect which
has been shown to be critical in determining reliable annihila-
tion features54. It is worth noting, however, that the positron
calculations within the PAW method are sensitive to the com-
pleteness of the PAW dataset. To achieve accurate description
of positron densities and wavefunctions, it is often necessary
to include semicore electrons in the PAW dataset53.

Various properties of annihilating electron-positron pairs
can be calculated within ABINIT . First, positronic wavefunc-
tions and densities in the direct space can be accessed and
visualized to inspect the localization of the particle in a given
system. An example is given in Fig. 4, where the isodensity of
a positron localized in a silicon vacancy in SiC is shown. Sec-
ond, total energies of a system containing a positron can be
used to calculate binding energies or affinities. Third, based
on the electron and positron densities, the positron lifetime τ
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FIG. 4. Isodensity of a positron localized inside a silicon vacancy in
silicon carbide. The figure was generated using VMD62.

can be calculated, as the inverse of the annihilation rate λ :

λ =
1
τ
= πr2

e c
∫

drn−(r)n+(r)g(n−,n+), (5)

where g(n−,n+) is an enhancement factor, corresponding to
the increase in annihilation due to the screening of the positron
by the electrons. Several parametrizations for g(n−,n+) can
be used in ABINIT . Finally, the electron and positron wave-
functions can be used to calculate momentum distributions
ρ(p) of annihilating pairs, following47

ρ(p) = πr2
e c∑

i

∣∣∣∣∫ dre−ip·r
Ψ

e-p
i (r)

∣∣∣∣2 , (6)

where Ψ
e-p
i is the two-particle wavefunction in the state i, and

p is the given momentum.
The TCDFT implementation in ABINIT has already been

applied to various systems. It has been used to calculate anni-
hilation properties of bulk metals and semiconductors53. Cal-
culations for vacancy-type defects in systems such as SiC54–56

UO2,57,58 GaN,59 and yttria-stabilized zirconia,60 have been
performed and used to analyze experimental data. Positron
lifetimes and binding energies have also been investigated on
Fe(001) surfaces with and without adatoms61.

V. RESPONSE PROPERTIES: SPECTROSCOPY,
VIBRATIONS, DIELECTRIC RESPONSE, TEMPERATURE
DEPENDENCE, SPIN-MAGNETIC FIELD COUPLING

Many physical properties of materials can be formulated as
derivatives of the energy. Although such derivatives might be
computed from finite differences techniques, they can also be
conveniently determined from perturbation theory. ABINIT
does not only compute many energy derivatives from DFPT
but also gives readily access to various related physical quan-
tities in Cartesian coordinates and conventional units.

As a basic feature, ABINIT routinely determines standard
second energy derivatives with respect to atomic displacement
(τq), homogeneous static electric field (E ) and homogeneous

∂

∂τ

∂

∂E
∂

∂η

∂

∂τ
Dq Z∗ γ

∂

∂E Z∗ ε∞ e0

∂

∂η
γ e0 C0

TABLE IV. Array of second derivatives of the appropriate energy
functional with respect to atomic displacement (τ), electric field (E )
and strain (η) perturbations. In addition to these three types of per-
turbations, the magnetic field perturbation is also implemented, with
corresponding cross derivatives, see Sec. V H.

strain (η) perturbations33,34,63, which are related to dynam-
ical matrices at any q-vector (Dq), optical dielectric tensor
(ε∞), Born effective charge tensors (Z∗), clamped-ion elas-
tic tensors (C0), clamped-ion piezoelectric tensors (e0) and
lattice-strain coupling tensor (γ) as summarized in Table IV.
Relying on these bare quantities ABINIT also provides ac-
cess to additional properties like the full phonon dispersion
curves (interpolated by separating short-range and long-range
dipolar interactions), interatomic force constants in real space
(short-range and dipolar contributions), infra-red intensities,
static and infra-red dielectric constants, relaxed ion elastic and
piezoelectric tensors. All of these are accessible both with
NCPSP and in PAW, using LDA or GGA functionals. The
specific case of the strain perturbation63 that is a unique fea-
ture of ABINIT is further discussed in Section V.B

Going further, ABINIT also implements some third-order
energy derivatives and responses to additional perturbations,
providing access to an even much broader set of properties as
discussed below.

A. Raman spectroscopy and the electro-optic effect

Beyond the development of DFPT up to second-order34,
non-linear properties can be accessed using third-order DFPT.
Thanks to the 2n+1 theorem9,64,65, third-order energy deriva-
tives can be obtained from wavefunction derivatives up to
first order, as already done in second-order response calcula-
tions. So, the additional computational cost to access such
third energy derivatives is typically negligible compared to
that needed for second-order energy derivatives. There are,
however, some linear and non-linear properties in which an
analytic treatment of the electric field perturbation requires
supplementary wavefunction derivatives33.

In ABINIT , the accessible non-linear properties are (i) the
second-order optical susceptibilities (χ(2)), (ii) the Raman
tensors (αm), and (iii) the electro-optic tensor (r).

The second-order nonlinear optical susceptibility is a third-
rank tensor related to the response of the electrons of the sys-
tem to optical electric fields, which are a priori frequency de-
pendent. In the present ABINIT context of the 2n+1 theorem
applied to (static) DFT, we neglect the dispersion of χ(2) and
compute it as the purely electronic response of the system at
zero frequency. Within these conditions, χ(2) is formulated as
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a third-order derivative of a field-dependent energy functional:

χ
(2)
i jk =− 1

2Ω0

∂ 3E
∂Ei∂E j∂Ek

(7)

The χ(2) tensor delivered by ABINIT is related to the non-
linear optic “d-tensor” as di jk = (1/2)χ(2)

i jk and can be calcu-
lated with an additional scissor correction on the electron band
energies. Such second-order optical susceptibility has been
recently used for high-throughput Second-Harmonic Genera-
tion calculations, see Sec. VI B 0 b.

The Raman tensor describes the change of linear optical
susceptibility, χi j, produced by an atomic displacement τκβ of
atom κ in direction β . It is therefore related to the following
third energy derivative66:

∂ χ
(1)
i j

∂τκβ

=− 1
Ω0

∂ 3E
∂τκβ ∂Ei∂E j

(8)

Using Placzek’s approximation67, the Raman intensity αm
i j of

a Stokes process associated with a phonon mode m depends
on the Raman tensors as66,68,69:

α
m
i j = ∑

κ,β

∂ χ
(1)
i j

∂τκβ

um(κβ ). (9)

Depending on the type of phonon mode, i.e. transverse optic
(TO) or longitudinal optic (LO), the derivative of the electric
susceptibility with respect to an atomic displacement must be
written as66,70:∂ χ

(1)
i j

∂τκβ


TO

=
∂ χ

(1)
i j

∂τκβ

∣∣∣∣
E=0

(10)

∂ χ
(1)
i j

∂τκβ


LO

=
∂ χ

(1)
i j

∂τκβ

∣∣∣∣
E=0
− 8π

Ω0

∑
l

Z∗
κβ ,lql

∑
l,l′

qlε
∞

ll′q
′
l
∑

l
χ
(2)
i jl ql (11)

where q is the direction along which the Brillouin zone center
is approached. Both quantities are provided by ABINIT .

The electro-optic tensor is related to the change of linear
optical susceptibility produced by a static field. As such,
it combines a priori electronic, lattice and strain contribu-
tions. The so-called clamped (fixed strain) electro-optic tensor
combining electronic and lattice contributions is directly pro-
vided by ABINIT from the knowledge of previously discussed
quantities66:

ri jγ =
−4π

n2
i n2

j

[
2χ

(2)
i jγ +

1√
Ω0

∑
m

αm
i j

ω2
m

∑
κ,β

Z∗
κβ ,γ um(κβ )

]
. (12)

The unclamped electro-optic tensor includes an additional
piezoelectric contribution (strain response) that can be com-
puted but requires an independent calculation of the elasto-
optic coefficients by finite differences71.

The computation of the third-order energy derivatives in
Eq. (7) and Eq. (8) (providing access to the different tensors
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FIG. 5. Raman spectra of polycrystalline quartz, α-SiO2. The green
line is obtained from DFPT and PAW pseudopotentials, where the
peak width is arbitrary set to 3 cm−1. The black dotted line shows
experimental data from Ref. 73.

discussed above) was first implemented in ABINIT relying on
the "Berry phase" formalism66; this implementation is avail-
able using a NCPSP approach within the LDA and for unpo-
larized systems. Following the scheme of Gonze33, Miwa72

used an alternative approach, where the electric field pertur-
bation is treated analytically, leading to a derivative operator
with respect to k vectors (∂/∂kα

). At the non-linear level,
this derivative operator is applied to first-order derivatives of
wavefunctions, leading to second-order wavefunction deriva-
tives. This way, even in the context of the 2n+ 1 theorem,
a (non self-consistent) second-order Sternheimer equation has
to be solved. Our second implementation follows that scheme,
and is valid for both NCPSP and PAW approaches. It is avail-
able with LDA functionals, and is valid for unpolarized or
collinear spin-polarized systems. This second implementa-
tion also converges faster than the original one in terms of the
k-point sampling. The extension to the PAW+U formalism is
under development.

ABINIT delivers all the tensors given above in Cartesian
coordinates and with clear units (SI or conventional literature
choices). These quantities can then be combined to compute
the polarization dependent Raman spectra of single crystals
or even Raman spectra of powders. In either case, the Raman
intensities can be obtained as74:

Im
i j (ω) =Cm(ω)| 〈i|αm | j〉 |2,

Im(ω) = 2πCm(ω)((10Gm
0 +4Gm

2 )+(5Gm
1 +3Gm

2 )) , (13)

where G0, G1, and G2 are functions of the components of
Eq. (9)75 and a Lorentzian function is used for the broaden-
ing:

Cm(ω) =
(ωm−ωl)

4

2ωmc4 [n(ωm)+1]
Γ

(ω−ωm)2 +Γ2 , (14)

Post-processing scripts are provided with ABINIT to extract
the Raman tensor and print the powder-average and polariza-
tion dependent Raman intensity to a file. An example of a
powder-averaged Raman spectra for polycrystalline quartz is
shown in Fig. 5.

Using the non-linear tensors computed by ABINIT , theo-
retical Raman spectra have been successfully compared with
experiment for many materials including oxides76–78, organic
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compounds79 and transition metal dichalcogenides80,81 (see
also the WURM database of Raman spectra82). Electro-optic
tensors have also been computed for various compounds in-
cluding ferroelectric oxides71,78, multiferroics83 and mono-
layer transition metal dichalcogenides81. Going further, re-
lying on these quantities obtained in DFT at zero Kelvin, non-
linear optical properties at finite temperature were also suc-
cessfully computed making use of a first-principles based ef-
fective Hamiltonian approach84.

B. The strain perturbation in density-functional perturbation
theory

One of the unique capabilities of ABINIT is the direct cal-
culation of the elastic and piezoelectric properties of materi-
als by DFPT. This involves calculating the responses to three
types of perturbations: atomic displacements, electric fields,
and strains and appropriately combining the results85. The
general structure of DFPT is based upon the systematic expan-
sion of the variational expression for the DFT total energy in
powers of a parameter λ characterizing some dependence of
the energy functional. Such parameters as internal atomic co-
ordinates and the macroscopic electric field could be handled
in this framework in a conceptually straightforward manner.
Treating macroscopic strain as a parameter within this formal-
ism, however, is less straightforward. The approach developed
for ABINIT was based on its existing overall formulation of
the DFT energy expression in reduced coordinates. This in-
troduces real- and reciprocal-space metric tensors into every
expression. The underlying reduced-coordinate lattice struc-
ture is invariant – all unit cells are unit cubes. Strain affects
only the metric tensors, and the λ derivatives of every term
in the Hamiltonian can be developed from derivatives of these
tensors63.

The second derivatives of the energy with respect to a pair
of perturbations are evaluated using so-called non-stationary
expressions

Eλ1λ2
el =

occ
∑
α

〈
ψ

(λ2)
α

∣∣∣(T (λ1)+V (λ1)
ext +H(λ1)

Hxc0)
∣∣∣ψ(0)

α

〉
+

occ
∑
α

〈
ψ

(0)
α

∣∣∣(T (λ1λ2)+V (λ1λ2)
ext )

∣∣∣ψ(0)
α

〉
+ 1

2
∂ 2EHxc
∂λ1∂λ2

∣∣∣
n(0)

,

(15)
where ψ

(λ2)
α is first-order wavefunction obtained from the

self-consistent Sternheimer equation for perturbation λ2, the
parenthesized superscripts denote partial derivatives, and the
notation for the various energy terms and the ground-state
wavefunctions should be self-explanatory33. The derivative
with respect to strain and the electric field, necessary for the
piezoelectric tensor, has the alternative form

∂ 2Eel

∂ Ẽ j∂ηαβ

= 2
Ω

(2π)3

∫
BZ

occ

∑
m

〈
iψ

(k̃ j)
km

∣∣∣ ψ
(ηαβ )

km

〉
dk , (16)

where ψkm
(k̃ j) is the first-order wavefunction for the ∂/∂k

perturbation86. The metric tensors involved in this context are
simple and constant throughout space. They are expressed in

terms of the real- and reciprocal-space primitive lattice vectors
as

Ξi j = ∑
α

RP
αiR

P
α j , ϒi j = ∑

α

GP
αiG

P
α j. (17)

Dot products of real- and reciprocal-space vectors can be ex-
pressed in terms of their strain-invariant reduced-space coun-
terparts using these tensors. For example, reciprocal-space
vectors K = k+G represented by their reduced counterpart
K̃ have dot products

K′ ·K = ∑
i j

K̃′i ϒi jK̃ j . (18)

First and second strain derivatives of the metric tensors follow
from the derivatives of real and reciprocal space vectors with
respect to strains

∂Xγ

∂ηαβ

= δαγ Xβ ,
∂Kγ

∂ηαβ

=−δαγ Kβ . (19)

The only simplifying aspect of all this is that the dot product
of a real and a reciprocal lattice vector, typically appearing in
phase factors, are merely 2π times their reduced counterparts,
and therefore strain-independent63.

All the terms in the total energy expression in reduced coor-
dinates can be expressed in terms of dot products. Therefore
the evaluation of Eq. (15) is in principle straightforward while
in practice exceedingly tedious. This formalism was initially
developed for multi-projector NCPSP and LDA exchange-
correlation functionals. There are special considerations for
GGA functionals which were added87. Extension to PAW po-
tentials within LDA was recently added88.

The terms described so far, derivatives with respect to two
strain components (the elastic tensor), one strain component
and a uniform electric field (the piezoelectric tensor) and one
strain component and one atomic displacement (the so-called
internal strain) are all based on strain-independent atomic po-
sitions in reduced coordinates. In fact, infinitesimal strains do
produce infinitesimal reduced-coordinate changes in atomic
positions. Taking this into account modifies the clamped-atom
elastic and piezoelectric tensors calculated so far.

Combining the clamped-ion derivatives with the atomic
position contributions is reminiscent of the chain rule for
derivatives85. The necessary intermediate derivatives (inter-
atomic force constants and Born effective charges) were al-
ready available in ABINIT . The DFPT calculations of the
clamped-ion tensors and these additional derivatives are per-
formed separately in ABINIT , and the stored results combined
in the auxiliary program ANADDB to produce the final, phys-
ical relaxed-atom quantities. Both the NCPSP and PAW for-
malism and codes have been verified to a high degree of accu-
racy, by comparison with finite-difference calculations.

C. Density-functional perturbation theory including van der
Waals interaction: phonons and strain perturbation

Most DFT functionals lack a proper treatment of the long-
range e−- e− correlation. This term is crucial to properly
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describe the structure of weakly-bound compounds and, con-
sequently, their underlying properties (phonons, elastic con-
stants, ...). Several methods have been developed in the past
in order to include some long-range e−- e− correlation in DFT
computations. Notably, one could mention Grimme’s DFT-D
methods89,90, the vdW-DF functionals91,92 as well as the TS-
vdW and MBD methods93,94. All of these approaches add
new contributions to the energy and its derivatives, that have
to be properly taken into account in DFPT computations for
self-consistency.

ABINIT allows one to carry out such computations for the
Grimme’s DFT-D2, -D3 and -D3(BJ) methods95,96. These
methods add to the DFT energy a contribution that depends
only on the atomic positions:

Edisp = ∑
I,J

C6,IJ({R}) f (RIJ), (20)

where I and J are atomic indices, C6,IJ is the dispersion coeffi-
cient that depends on the whole set of atomic positions R, and
f (RIJ) is a function that depends on the chosen Grimme fla-
vor (∼ R−6

IJ at long range) and on RIJ , the difference in atomic
position between the I and J atoms. This dispersion contri-
bution is not compatible with all ad hoc exchange-correlation
functionals (see Refs. 89 and 90 for the current list of compat-
ible functionals). The common GGA-based functionals, like
GGA-PBE or revPBE, are nonetheless available. Due to the
way these DFT-D methods were constructed, they may not be
the most suited to deal with metals.

Nearly all response functions available in ABINIT can be
computed in DFPT with the inclusion of DFT-D dispersion
corrections, with the only exception of flexoelectricity. Note
that, since these corrections do not rely on the knowledge of
the electronic density, the (total) energy derivatives with re-
spect to electric fields remain untouched by the dispersion
scheme. This is both an advantage and a drawback of the
DFT-D method, since it eases considerably its implementa-
tion for response functions, but it prevents at the same time
the method to capture any direct electronic contribution (di-
electric constants, Raman susceptibility, etc.). The lack of
literature on this topic does not allow us to rule on the im-
portance of dispersion contributions in the proper description
of these properties. The reason why the DFT-D dispersion
corrections are not available for flexoelectricity comes from
the indirect dependence of this property on the spatial deriva-
tive of the dynamical matrix, as mentioned in Sec. V D. Such
spatial derivative is not yet implemented.

All response functions related to the energy derivatives with
respect to atomic displacements or to strains are directly af-
fected by the dispersion corrections. Thanks to their pair-wise
form, the DFT-D strain-related quantities can be related to
derivatives with respect to atomic positions

∂

∂ηαβ

= ∑
κ

Rκβ

∂

∂Rκβ

, (21)

where κ is an atomic index.
The investigation of several weakly-bound systems (ben-

zene, MoS2, etc.) using DFT-D methods has already high-

lighted the importance of the dispersion contributions to in-
teratomic force constants and to phonons80,95. Such meth-
ods generally lead to a better agreement with the experiments
than ordinary GGA-PBE. Similarly to the general DFPT im-
plementation, not only the zone-center phonons are accessi-
ble, but also those associated to an arbitrary wavevector, al-
lowing the computations of phonon band structures in a fully-
consistent manner. In addition, the present implementation
can also be straightforwardly used to study thermal expansion
within the quasi-harmonic approximation (see Ref. 97 for an
example application) or electron-phonon coupling.

D. Spatial dispersion: flexoelectricity and dynamical
quadrupoles

The flexoelectric (FxE) effect, where a strain gradient de-
formation results in a macroscopic polarization, is a challeng-
ing electromechanical coupling to simulate computationally.
The main reason is the a priori incompatibility of a spatially
varying strain perturbation with periodic boundary conditions.
A recent set of developments in ABINIT has overcome this
difficulty by adapting the long-wave method introduced by
Born and Huang98 in the early days of quantum mechanics
to the modern tools of the DFPT. ABINIT now has the unique
capability to calculate the bulk FxE tensor for any insulating
material.

Achieving this result has taken nearly a decade of contin-
uing efforts, in order to settle the remarkable number of for-
mal subtleties. Based on the seminal work of Resta,99 early
attempts100,101 made use of supercell geometries to calculate
the relevant ingredients discussed below Later, a long-wave
framework in reciprocal space102 was established, together
with a curvilinear-coordinates formulation,103 which led to
the calculation of the full flexoelectric response of SrTiO3
slabs104. (See Ref. 105 for a summary of the pre-2015 de-
velopments.) En route towards a practical implementation,
additional technical and formal issues were addressed, regard-
ing e.g. the generalization of the uniform strain response to
a "metric-wave" perturbation106,107, and the proper definition
of the current-density operator in presence of nonlocal pseu-
dopotentials108. These efforts culminated with the present
long-wave method,109 which paves the way towards the com-
putation of many spatial dispersion properties with a com-
putational burden that is comparable to conventional linear-
response calculations.

An ab initio calculation the FxE tensor (µ) requires the
sum of an electronic (clamped-ion), a lattice-mediated and a
mixed contribution. This intricate structure can be formulated
as102,105

µ
II
αλ ,βγ

= µ̄
II
αλ ,βγ︸ ︷︷ ︸
elec.

−P(1,λ )
α,κρ Γ

κ

ρβγ︸ ︷︷ ︸
mix.

+
1

Ω0
Z∗κ,αρ Lκ

ρλ ,βγ︸ ︷︷ ︸
latt.

, (22)

where κ labels the atomic sublattice and the II superscript in-
dicates that the strain gradient tensor is defined as the gradient
of the symmetric strain, i.e., the so-called type-II definition is
assumed. The quantities on the right-hand side are: µ̄ II

αλ ,βγ
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the clamped-ion FxE tensor, P(1,λ )
α,κρ the first spatial moment of

the polarization field induced by an atomic displacement (also
known as P(1) tensor), Γκ

ρβγ
the piezoelectric internal strain

tensor, and Lκ

ρλ ,βγ
the flexoelectric internal strain tensor.

Whereas Z∗ and Γ are well known quantities which can be
obtained by means of the linear response DFPT with standard
perturbations such as atomic displacements, electric field and
strain33,34,63, Eq. (22) demands the calculation of up to four
new tensor quantities. These include the µ̄ II

αλ ,βγ
and P(1,λ )

α,κρ

tensors introduced above, but also the first spatial moments of
the dynamical matrix (Φ(1,λ )

κα,κ ′ρ ) and of the piezoelectric force-
response tensor (C̄κ

αλ ,βγ
), both required to build Lκ

ρλ ,βγ
fol-

lowing the prescriptions in Ref. 102. These new tensors repre-
sent four spatial dispersion properties, i.e., they are only sen-
sitive to a perturbation gradient, not to a uniform perturbation.
In principle, however, it is possible to obtain them as momen-
tum derivatives of counterpart tensors from uniform perturba-
tions, when the corresponding DFPT second order energies
are generalized to finite momentum q. Thus, for example, the
clamped-ion FxE tensor is the spatial dispersion counterpart
of the clamped-ion piezoelectric tensor (ēα,βγ )63 and could be
calculated as the momentum derivative of a finite-q version of
ēα,βγ .

This is precisely the procedure adopted in the long-wave
DFPT of Ref. 109 that has been implemented in ABINIT . In
order to obtain the finite-q generalization of the second order
energies, the approach reformulates the electric-field and the
strain perturbation problems as the time derivative of a vector
potential and as the gradient of a metric wave,107 respectively.
In this way, both perturbations are generalized to finite q, as
is already the case for atomic displacements. This enables us
to carry out an analytical third order derivative of the energy
with respect to two of the standard perturbations, and to the
momentum q, which directly provides the sought-after spatial
dispersion tensors. Remarkably, by virtue of the 2n+ 1 the-
orem9, the third-order energies are computed in one shot us-
ing precalculated first-order response functions to the standard
perturbations, without the necessity of self-consistently com-
puting any response function to a perturbation gradient. After
execution, the long-wave DFPT routines generate a derivative
database that is subsequently used by post-processing tools
implemented in ANADDB to compute and print the different
contributions to the FxE tensor.

The implementation also provides access to another spatial
dispersion property, the dynamical quadrupoles, which can be
obtained as the symmetrized sum of the P(1) tensor,109

Q(2,γδ )
κβ

= Ω0

(
P(1,γ)

δ ,κβ
+P(1,δ )

γ,κβ

)
. (23)

The dynamical quadrupoles are the spatial dispersion coun-
terparts of Z∗ and can be used in lattice dynamics calcula-
tions to improve the prevalent dipole-dipole treatment of the
long-range interactions. The ANADDB routines that carry
out the process of interpolating the dynamical matrix fol-
lowing Ref. 34 have been adapted to incorporate the dipole-
quadrupole and quadrupole-quadrupole electrostatic interac-
tions derived in Ref. 102. This new functionality results in a

faster convergence of the phonon bands calculation with re-
spect to the density of q points and, in some materials, repre-
sents the only route to obtain the correct sound velocities.

The ABINIT implementation of the long-wave DFPT has
been used to compute the clamped-ion FxE tensor of Si and
SrTiO3 obtaining an excellent agreement with existing results
in the literature109. The computed spatial dispersion proper-
ties accurately reproduce the sum rules predicted in Refs. 110
and 102 that relate them with specific quantities from uniform
perturbation theories.

Currently, the implementation is restricted to the use of
NCPSP without non-linear core corrections, and the LDA
functional.

E. Electron-phonon interaction

With ABINIT , it is possible to compute many physi-
cal properties related to electron-phonon (e-ph) interaction.
In metallic systems, for instance, one can study conven-
tional superconducting properties within the isotropic Migdal-
Eliashberg formalism111 and compute transport properties in
the normal state by solving the linearized Boltzmann equa-
tion within the LOVA approach112–114. In this section, how-
ever, we focus on temperature-dependent band structures and
the zero-point renormalization of the band gap in semiconduc-
tors115,116, a subject that in recent years has received increased
attention within the electronic structure community117–120. As
discussed in the review paper by Giustino111, the renormal-
ization of the electron state due to the e-ph interaction is de-
scribed by the self-energy Σe-ph(ω) = ΣFM(ω) + ΣDW. The
diagonal matrix elements of the Fan-Migdal self-energy in the
KS basis set are defined by

Σ
FM
nk (ω) = ∑

m,ν

∫
BZ

dq
ΩBZ
|gmnν(k,q)|2× (24)[

nqν + fmk+q

ω− εmk+q +ωqν + iη
+

nqν +1− fmk+q

ω− εmk+q−ωqν + iη

]
,

where η is a positive real infinitesimal. The e-ph matrix ele-
ments gmnν(k,q) are given by

gmnν(k,q) = 〈ψmk+q|∆qνV KS|ψnk〉 , (25)

with ∆qνV KS the first-order variation of the self-consistent KS
potential that can be computed with DFPT33,121. The static
Debye-Waller (DW) term involves the second order derivative
of the KS potential with respect to the nuclear displacements.
State-of-the-art implementations approximate the DW contri-
bution with

Σ
DW
nk = ∑

qνm
(2nqν +1)

g2,DW
mnν (k,q)
εnk− εmk

, (26)

where g2,DW
mnν (k,q) is an effective matrix element that, within

the rigid-ion approximation, can be expressed in terms of the
gmnν(k,q) matrix elements111. In principle, the quasi-particle
(QP) excitations are defined by the solution(s) in the complex
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plane of the equation z = εnk +Σ
e-ph
nk (z). In practice, the prob-

lem is usually simplified by seeking approximated solutions
along the real axis following two different approaches. In the
on-the-mass-shell approximation, the QP energy is given by
the real part of the self-energy evaluated at the bare KS eigen-
value

ε
QP
nk = εnk +ℜΣ

e-ph
nk (εnk). (27)

The second approach linearizes the self-energy near the KS
eigenvalue and evaluates the QP correction using

ε
QP
nk = εnk +Znk ℜΣ

e-ph
nk (εnk) (28)

with the renormalization factor Z given by

Znk =

1−ℜ

[
∂Σ

e-ph
nk

∂ε

]∣∣∣∣∣
ε=εnk

−1

. (29)

Both approaches are implemented in ABINIT although it
should be noted that, according to recent works, the on-the-
mass-shell approach provides results that are closer to those
obtained with more advanced techniques based on the cu-
mulant expansion122 or self-energy calculations employing an
eigenvalue–self-consistent cycle123.

Accurate calculations of e-ph renormalization are still chal-
lenging even by present standards, because the e-ph self-
energy is quite sensitive to the q-point sampling. Moreover
a large number of empty states m is usually required to con-
verge the real part of the self-energy. In order to avoid the ex-
plicit computation of the DFPT scattering potentials on dense
q-grids, ABINIT generalizes the Fourier-based interpolation
scheme proposed by Eiguren et al.124 to account for the non-
analytical behaviour associated to the long-range interactions
present in semiconductors125. The dipolar potentials gen-
erated by the Born effective charges in polar materials are
treated using a generalized Fröhlich model126,127. Further de-
tails concerning the implementation are given in Ref. 17. In
order to accelerate the convergence with the number of empty
states, ABINIT replaces the contributions given by the high-
energy states above a certain band index M with the solu-
tion of a non-self-consistent Sternheimer equation in which
only the first M states are required. The methodology, pro-
posed in Ref. 128, is based on a quasi-static approximation in
which the phonon frequencies in the denominator of Eq. (24)
are neglected and the frequency dependence of Σ is approx-
imated with the value computed at ω = εnk. This approxi-
mation is justified when the bands above M are sufficiently
high in energy with respect to the nk states that must be cor-
rected. Furthermore, this upper-bands contribution to Σ con-
verges quickly with respect to q-points sampling, and it can
be safely computed on a coarse q-grid123,129.

The code can compute QP corrections and lifetimes due to
e-ph scattering as well as spectral functions. The lifetimes
obtained from the imaginary part of Eq. (24) can be used to
compute carrier mobilities within the self-energy relaxation
time approximation111,130,131:

µe,αβ =
−1

Ω0ne
∑
n

∫ dk
ΩBZ

vnk,α vnk,β τnk
∂ f
∂ε

∣∣∣∣
εnk

, (30)

For the computation of electron lifetimes, ABINIT imple-
ments advanced integration techniques that take advantage of
the linear tetrahedron method44 and double-grid techniques
for the q-space integration. Last but not least, ABINIT pro-
vides a specialized driver to interpolate the DFPT scattering
potentials, compute e-ph matrix elements on arbitrarily dense
k-meshes and save the results to NETCDF files. This driver can
be used by externals codes such as BERKELEYGW 132 to treat
e-ph interactions at the GW level as discussed in Ref. 133.

F. A-TDEP: Temperature dependent thermodynamic
properties using the TDEP approach

The features and the temperature dependence of the phonon
spectrum determine a large number of thermodynamic proper-
ties of crystals, such as dynamic and thermodynamic stability,
elastic properties, and heat transport within the material. The
theory of lattice dynamics at finite temperature has long been
a central field of research in condensed matter, and its appli-
cations are numerous in geophysics, material science, astro-
physics...

The calculation of the phonon spectrum is available in
ABINIT since the 90’s and is based on DFPT. In this frame-
work, the ground state undergoes a small perturbation around
its 0 K equilibrium positions in order to describe the shape
of the potential energy surface (PES) very near the minimum.
Thereafter, in order to capture the temperature effects, the har-
monic approximation (HA) or quasi-harmonic approximation
(QHA) can be applied. The latter approximation is handled by
assuming that the temperature dependency of the phonon fre-
quencies can be taken into account implicitly through a vari-
ation of the volume. This treatment generally gives excellent
agreement with experimental measurements of the thermal ex-
pansion and the elastic constants134.

However, the QHA fails or cannot be applied in various par-
ticular cases. For example, when the system is close to a phase
transition, when the phase of interest is not stable at 0 K, or
when one wants properties at high temperature. In these situ-
ations, an implicit treatment of the temperature through a vol-
ume variation is no longer sufficient and a dedicated calcula-
tion, taking into account the temperature explicitly, is needed.
One can formalize and synthesize this statement as follows:(

∂ω

∂T

)
p
=

(
∂ω

∂T

)
V
+

(
∂ω

∂V

)
T

(
∂V
∂T

)
p
. (31)

The second term of the right hand side of Eq. (31) is in-
cluded in the QHA. However, the first term on the right side
of Eq. (31) is only included when the temperature dependence
is explicit.

Since the beginning of the 60’s, a large number of theo-
retical studies have been carried out in order to go beyond
the simple harmonic crystal and to deal with anharmonic ef-
fects135–141. More recently, there has been a revival of such
developments. During the last decade, several groups pro-
posed theoretical frameworks coupled to computational meth-
ods able to capture anharmonic effects in crystals142–148. One
way, chosen and implemented in ABINIT , has been proposed
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by Esfarjani and Stokes149 then developed by Hellman et
al.150–152. In the framework of TDEP, the anharmonic terms
are treated in an effective manner.

Let us define a 3-dimensional crystal and consider that a
ground state energy U0 is obtained when the atoms are in their
equilibrium positions. The potential energy of this system can
be rewritten using a Taylor expansion around equilibrium po-
sitions as

U =U0 + ∑
p≥1

1
p ! ∑

α1...αp
i1...ip

(p)
Φ

α1...αp
i1...ip

p

∏
k=1

uαk
ik
. (32)

with
(p)
Φ

α1...αp
i1...ip

the interatomic force constants (IFC) at the pth

order and uα
i the displacement of atom i along Cartesian di-

rection α .
By performing ab initio molecular dynamics (MD) simula-

tions, the forces Fα
i,MD(t) and atomic displacements uα

i,MD(t)
are acquired at each time step t. If we differentiate Eq. (32)
with respect to atomic displacements and insert the MD quan-
tities, we obtain the following system of equations :

Fα1
MD,i1

(t) =−
P

∑
p≥2

1
(p−1) ! ∑

α2...αp
i2...ip

(p)
Θ

α1α2...αp
i1i2...ip

p

∏
k=2

uαk
MD,ik

(t),

(33)

with
(p)
Θ

αβ ...δ
i j...l the effective IFC at the pth order and P the max-

imum order of the expansion. Eq. (33) is non-linear with re-
spect to the atomic displacements and can be rewritten as:

Fα
i,MD(t) = ∑

pλ

f α

i,pλ
(uMD(t))θpλ , (34)

where θpλ being the λ th are now the effective IFC at the pth

order and f α

i,pλ
(uMD(t)) a function gathering all the contri-

butions coming from the atomic displacements. This sys-
tem of equations is now linear as a function of θpλ (the un-
known variables of the system) and can be solved using a
least-squares method. The solution is given by Θ = f†.FMD,
with FMD ≡ Fα

i,MD(t), Θ ≡ θpλ and f† the pseudoinverse of
f≡ f α

i,pλ
(uMD(t)).

Note the difference between the true
(p)
Φ and effective

(p)
Θ

IFC. The latter includes the effects of all the IFC not taken
into account in the expansion (i.e. beyond the Pth order). For
instance, if P = 2, the 2nd order effective IFC incorporates all
higher anharmonic terms, in an effective way. Consequently,
the effective IFC acquire a dependency on the temperature, at
odds with the true IFC.

The number of time steps needed to solve Eq. (34) has to
be large with respect to the number of unknown variables θpλ .
By taking into account properties of the system (translation
and rotation invariances, crystal symmetries...) the number
of independent and non-zero IFC coefficients of a cubic sys-
tem with one hundred atoms in the supercell can be reduced
to around ten at the second order, tens at the third order and
around a hundred at the fourth order.

Once the IFC coefficients are obtained, many dynamic,
elastic and thermodynamic properties can be evaluated:

• As usual, the phonon spectrum is obtained after the di-
agonalization of the dynamical matrix.

• Then, the phonon density of states is built and used to
compute various thermodynamic properties153: the free
energy, the specific heat, the entropy...

• By computing the elastic constants using the second-
order effective IFC135,141, it is possible to obtain the
bulk and shear moduli.

• The Grüneisen parameter is obtained using the third or-
der effective IFC154,155 which leads to other important
quantities: the thermal expansion, the isentropic com-
pressibility, the constant pressure specific heat, sound
velocities...

Since the effective IFC include an explicit temperature depen-
dency, all the quantities listed above do as well.

The ABINIT implementation of the TDEP algorithm, re-
ferred to as A-TDEP , has produced a number of applications
in the last five years156–160. We recommend the user to read
the A-TDEP documentation distributed in the ABINIT package
before any calculations, and also to read the article dedicated
to this implementation161.

G. Density functional perturbation theory within
non-collinear magnetism

The necessity to treat non-collinear magnetism (NCM) in
DFT codes is more and more important for spintronic appli-
cations studies. NCM can arise naturally, from geometrical
frustration of anti-ferromagnetic interactions, e.g. in triangu-
lar lattices, by the magnetic anisotropy generated by the pres-
ence of a preferred direction of magnetization, or by the com-
petition between exchange interactions. However, the gen-
eralization of DFPT for non-collinear magnetic simulations
has only recently been attempted. Within the non-collinear
DFT scheme, the density is described by a four-component
matrix instead of two (in collinear magnetism) which is re-
quired to account for the spin-orbit coupling (SOC), except
when time-reversal symmetry induces vanishing of the mag-
netization everywhere162. This last term, in current DFT code
implementations, implies a partial loss of symmetry163–165,
which worsens the calculation time and explains the scarcity
of such calculations. Additionally, the treatment of the elec-
tronic exchange-correlation (XC) term is more complicated,
since the functionals are usually built in a collinear frame-
work. We have proposed166 three different approaches to per-
form the energy derivatives in the non-collinear regime treat-
ing opportunely the XC term, and have implemented these for
the atomic displacement (phonons) and electric field perturba-
tions.

The first method exploits the local transformation from
non-collinear to collinear magnetization: at each point of
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space, we align the local system of reference to the local quan-
tization axis of the magnetization, then we perform the deriva-
tives in this locally collinear framework and finally we return
to the lab frame of reference. The unitary transformation di-
agonalizing the 2× 2 density matrix ρ̂(0), and its derivative
ρ̂(1), have to be determined at the zeroth (U (0)) and first order
(U (1)) of perturbation, to fully characterize the problem (see
Ref. 166).

The second method consists in writing the U (0) and U (1)

analytically in terms of the Pauli matrices σαβ , i. e., the gen-
erators of the Lie group SU(2).

The third method evaluates explicitly the expression of the
first order XC potential, specifically for the LSDA expression
of the XC energy, which is easy to derive.

The three methods have been tested on two particular sys-
tems Cr2O3 and RuCl3166. Cr2O3 has been used to test
the implementations because it is one of the simplest and
best known collinear antiferromagnetic and magneto-electric
systems. Thanks to these tests we have demonstrated that
the two first methods are closely equivalent in terms of sec-
ond derivatives quality and timing performance (calculations
of phonons, electronic dielectric constant and Born effective
charges). However, the third one requires twice as many self
consistent iterations to give the same quantities. On RuCl3,
we have applied our methods to predict the change in phonon
frequencies induced by the non-collinearity of the magnetic
moments. Comparing the frequencies estimated in collinear
and non-collinear frameworks, we have shown the signature
of non-negligible NCM: certain phonon modes of specific ir-
reducible representations have their frequency modified by up
to 10 cm−1 depending on the chosen direction (see Ref. 166
for more details).

The different methods of magnetization rotation can be set
through the ixcrot ABINIT input flag. The default value is
method 1 (ixcrot=1). The method 2 or 3 can be used by setting
ixcrot to 2 or 3.167 Although in the corresponding ABINIT
version of Ref. 166 we implemented the NCM DFPT formal-
ism at the Γ point only, further developments have been com-
pleted in order to account for the full q dependence in the
phonon spectra (available in the next production version, only
with ixcrot=3). The implementation is valid for NCPSP only
but work is ongoing to extend it to the PAW formalism.

H. Spin-magnetic-field perturbation

The linear response of the magnetization to static and dy-
namical magnetic fields (spin magnetic susceptibility χm), is
one of the key characteristics of magnetic materials. This
quantity is intrinsically linked to the spin fluctuation spec-
trum and hence not only allows one to identify and charac-
terize the relevant magnetic excitations, but also to under-
stand their character and estimate the strength of spin inter-
actions. The latter case appears to be particularly important
in the view of the ever-growing need for accurate lattice spin
models to predict finite-temperature properties of spin sys-
tems, and understand the physics of magnetic and topologi-
cal materials. While the theoretical framework for linear spin

response calculations within the DFPT formalism has been es-
tablished several decades ago168, practical implementations of
this method are still rare in DFT codes169.

We have implemented and tested the variational DFPT
method for computing the linear spin response to a small, q-
dependent, magnetic field of the form B = beiq·r + b∗e−iq·r.
The first derivatives of the density and magnetization are ob-
tained by considering the first order external potential v(1)ext =
1
2 σα , where the Cartesian component α of the Pauli matrix
corresponds to the direction of the external field. The pe-
riodic part of the first order (spin) magnetization is repre-
sented as m(1)

q = ∑nk u†
nkσu(1)nk+q + u† (1)

nk−qσunk, with the sum
running over the occupied Kohn-Sham orbitals n. For an
arbitrary wavevector q 6= 0 it is thus necessary to find the
Bloch-periodic parts of the first-order wavefunctions u(1)nk−q

and u(1)nk+q at both k+q and k−q points. This is done by
performing two state-by-state minimizations of the second or-
der energy functional at each SCF iteration, using the self-
consistent potential v(1)scf,q and its Hermitian conjugate v(1)scf,−q,
respectively.

The implementation of the algorithm has been tested by
comparing the spin susceptibility obtained from DFPT cal-
culations with the finite-difference derivatives estimated from
ground state DFT calculations with finite magnetic field.
Specifically, for q = 0, we have performed calculations of
the longitudinal magnetization response of ferromagnetic bcc
Fe as well as longitudinal and transverse spin susceptibili-
ties of antiferromagnetic Cr2O3. These two examples were
chosen to test both metallic and insulating occupations. To
verify the validity of q 6= 0 implementation, we have further
performed ground-state DFT calculations with harmonically
varying Zeeman field B = bcos(qr) with q = (1/2,0,0) and
q = (1/4,0,0) for bcc Fe in corresponding supercells. The
periodic parts of the first order density and magnetization ob-
tained using the first-order finite-difference scheme were then
compared to the corresponding results obtained from single
unit cell DFPT run. All considered test cases for q = 0 and
q 6= 0 showed good agreement between DFPT and finite field
results, even in the case of coarse Brillouin zone sampling,
e.g. 2x2x2 and 4x4x4 k-point grids. Furthermore, to verify the
accuracy of the approach we have performed the calculation
of the Heisenberg exchange parameters J for bcc Fe. These
are derived from the transverse spin susceptibility χ⊥(q) and
the corresponding Fourier components of the super-exchange
parameters J(q) = χ(q)(−1), yielding couplings of 18.9 meV
(9.8 meV) for the first (second) shell of nearest neighbors, in
good agreement with previous literature170.

All the test simulations described above were performed
within the LSDA approximation, which is currently the only
exchange-correlation functional implemented for linear spin
response calculations in ABINIT . Furthermore, for the q 6= 0,
case, it is imperative to use the explicit evaluation of the first-
order XC functional (ixcrot=3 ABINIT input flag). Further-
more, at present and similarly to atomic displacement pertur-
bations with non-collinear magnetism, the implementation of
zeeman magnetic field perturbation is limited to NCPSP for-
malism.
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FIG. 6. Comparison of the imaginary part of the dielectric function
of silicon, directly related with the optical absorption, obtained in
the present work (red and cyan curves) with Ref. 175 (“Marini”,blue
curves), and experimental measurements (“Exp”, green curves)176,
for different temperatures.

I. Optical response with the Bethe-Salpeter equation,
including temperature dependence

Within MBPT, one can address the computation of the ener-
gies and related characteristics of charged excitations as well
as those of neutral excitations11. For the former, the GW ap-
proximation is the state-of-the-art, while for the latter, one
relies on the Bethe-Salpeter equation (BSE) which includes
excitonic effects. Such approaches produce optical absorp-
tion spectra which are much more accurate than independent-
particle approaches, such as the simple sum-over-states.

The implementation of the BSE in ABINIT has been previ-
ously described in Refs. 5 and 171. An efficient interpolation
allows on to cut down significantly the CPU time needed to
obtain optical spectra converged with respect to the Brillouin
Zone sampling.

As a salient example, the ABINIT implementation has been
used to obtain frequency-dependent Raman intensities172–174,
by finite difference of optical spectra, even for the second-
order Raman spectrum.

The MBPT calculations can be combined with temperature
dependent electronic structure presented above, Sec. V E, to
compute temperature-dependent optical spectra. The effect
of the electron-phonon interaction is included in the diagonal
part of the BSE Hamiltonian according to: Hvck,v′c′k′(T ) =
HFA

vck,v′c′k′+[∆εck(T )−∆εvk(T )]δvv′δcc′δkk′ , where HFA is the
“frozen-atom” expression for the BSE Hamiltonian intro-
duced in Ref. 5. Fig. 6 illustrates the agreement observed
for silicon, when compared with experimental data, as well
as with Ref. 175. Note that the Bethe-Salpether Hamiltonian
is not Hermitian, but can be tackled by an iterative Bi-Lanczos
algorithm5,174.

VI. COMMUNITY PROJECTS: PSEUDOPOTENTIALS,
HIGH-THROUGHPUT, AND THE LIBPAW LIBRARY

A. Pseudopotentials and PAW data sets

Planewave calculations are almost invariably performed
in conjunction with some sort of pseudization scheme that
freezes the inner core electrons and replaces their sharply
varying wavefunctions in the region around the nucleus with
smoother orbitals, which are easier to describe in Fourier
space with a finite basis set7. On the one hand, this approach
allows one to reduce significantly the computational cost and
enjoy the advantages of the planewave basis set: orthogonal-
ity, systematic convergence, ease of implementation and ef-
ficient Fast-Fourier-Transforms. On the other hand, as these
pseudopotential operators are supposed to mimic the KS po-
tential felt by the valence electrons in an all-electron DFT cal-
culation, they imply a trade-off between accuracy and compu-
tational efficiency. Generating reliable and accurate tables of
pseudopotentials therefore represents a highly nontrivial task,
especially for end-users who are not familiar with the pseu-
dopotential formalism and all its intricacies. For this reason,
in the last few years, a significant effort has been made by the
ABINIT community in order to provide users with a recom-
mended set of pseudopotential tables that have been carefully
crafted and validated against ground-state reference results
obtained with all-electron codes177,178. In what follows, we
briefly describe the main features of the two official PAW and
norm-conserving (NC) tables provided by the ABINIT group,
and their design principles.

a. JTH table To perform calculations in the frame of
the PAW44 methodology, atomic data are needed, which cor-
respond to the pseudopotentials in the norm-conserving ap-
proach. We deliver a Mendeleev table of PAW data - the JTH
table179- on the ABINIT website. This table has been gener-
ated thanks to the atomic code ATOMPAW 180 for 86 elements,
from H to Rn. It is available within the scalar relativistic ap-
proximation, both for LDA and PBE XC functionals. The files
are provided in a standard XML format for use in any PAW
electronic structure code, following the specifications given in
Ref. 181. The XML format allows one to introduce new tags
for special developments: for instance, pre-calculated atomic
matrix elements are given, to be used for calculations with
hybrid functionals. In v2.0 version of the JTH table, data
enabling calculations within the LDA-1/2182 approximation
are provided for some elements. Each file contains suggested
planewave cut-offs, according to a requested accuracy. The
input file of the ATOMPAW code is also provided for each ele-
ment to allow the user to modify the parameters used for the
generation of the data, if needed.

b. PseudoDojo The PSEUDODOJO project183 provides
two predefined set of NC pseudopotentials: standard and
stringent. The standard set is designed for conventional
DFT and DFPT applications while the stringent version con-
tains pseudopotentials with more electrons in valence, smaller
pseudization radii and improved scattering properties at high
energies. The stringent set is recommended for performing
DFT/DFPT calculations in which high precision is needed, or
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for many-body applications such as GW that are quite sen-
sitive to the inclusion of semi-core states and to the quality
of the logarithmic derivative in the empty region. The ma-
jority of the pseudopotentials include non-linear core correc-
tions184 with model core charges generated following Teter’s
approach185, which produces smooth core charges in real
space with reasonably fast decay in reciprocal space. The in-
clusion of the non-linear core correction improves the trans-
ferability of the pseudopotential and turned out to be crucial to
avoid unphysical oscillations in the local part of the potential
in the region around the atom. These oscillations worsen the
convergence rate, as well as the fulfillment of the acoustic sum
rule in phonon calculations, especially when GGA functionals
are employed183.

At present, the PSEUDODOJO provides NC tables gener-
ated with three different XC functionals: LDA, PBE and PBE-
sol. For each XC flavor, one can opt for the scalar-relativistic
or for the fully relativistic version, which includes the addi-
tional projectors required to treat spin-orbit coupling186. Fi-
nally, a specialized set of pseudopotentials for the lanthanides
is also available, with f -electrons frozen in the core. These
pseudopotentials are supposed to be used for calculations in
which the lanthanide is in the 3+ oxidation state. For each
pseudopotential, three different hints (low, normal and high)
for the planewave cutoff energy are suggested on the basis
of the convergence studies performed during the validation
tests183. These cutoff hints are employed in high-throughput
studies, to implement machine-friendly workflows, but can
also be used as a starting point in more conventional conver-
gence studies. The pseudopotentials can be downloaded from
the official website or alternatively from a GitHub repository.
The data is available in three different formats: the original
psp8 file format implemented by Hamann, the UPF format
and the psml format187. The graphical interface of the of-
ficial website allows users to select an element of the peri-
odic table, the XC functional as well as the accuracy level and
the relativistic version. Jupyter notebooks with pre-generated
figures showing the convergence of physical properties as a
function of the cutoff energy and the results produced by the
ONCVPSP pseudopotential generator are also provided. The
same interface can be used to download the PAW atomic data
of the JTH table.

B. High-throughput: phonons, second-harmonic generation,
and GW

Using a first-principles package for high-throughput ap-
plications places more stringent demands on the implemen-
tation details than the traditional approach based on single-
step operations. ABINIT implements two important fea-
tures to accommodate these needs: portable machine-readable
output files in binary NETCDF format188,189 to communi-
cate results to external software, as well as automatic algo-
rithms to select optimal parallelization settings at runtime.
Besides these features directly implemented in the code it-
self, efficient high-throughput calculations require a high-
level library to programmatically interact with the Fortran

code; the ABINIT group provides this framework in the
ABIPY project190. These features have enabled the develop-
ment of the following high-throughput projects.

a. DFPT phonons The vibrational properties of a ma-
terial represent a fundamental ingredient for understanding a
variety of physical phenomena and ABINIT provides accu-
rate and efficient algorithms based on the DFPT formalism
(Sec. V). In order to fully exploit the features of the code and
handle a large number of calculations, a new python project
has been developed, ABIFLOWS . The package contains all
the functionalities required to execute high-throughput work-
flows with the FIREWORKS framework191 and to store the re-
sults in a MongoDB database in a standardized format for
later queries and analysis. ABIFLOWS heavily relies on the
API implemented in ABIPY , not only for the aforemen-
tioned properties, but also for the automatic generation of
ABINIT inputs for different kinds of calculations, and the
post-processing of results. In order to provide sensible input
configurations for phonon calculations and avoid expensive
convergence studies for each material, a global study has been
performed and a set of heuristic optimal parameters has been
determined192. These parameters have been used to compute
in an automated way the dynamical matrix, the phonon disper-
sion and the density of states for more than 2000 materials193.
Taking advantage of the post-processing tools implemented
in ANADDB , a set of derived quantities has been obtained
for these materials. These include the dielectric permittivity
tensors, Born effective charges, temperature dependent ther-
modynamic properties (entropy, heat capacity, Helmholtz free
energy, vibrational internal energy), frequency-dependent di-
electric tensor, speed of sound along high symmetry direc-
tions, and the Debye-Waller tensor153. All these quantities are
freely available on the MATERIALS PROJECT website194.

b. DFPT SHG The workflow for the calculation of vi-
brational properties discussed in the previous paragraph has
been extended to compute the optical dielectric tensor ε∞ and
the second-order susceptibility χ(2) (see Sec. V). This gives
access to optical properties beyond the linear regime with
minimum effort. For instance, the second-order susceptibility
leads to the nonlinear Second Harmonic Generation (SHG)
coefficient deff

195. SHG processes play an important role in
modern optics, especially in laser-related science and technol-
ogy196. Only non-centrosymmetric materials are SHG-active
and the calculation of the deff is possible in ABINIT through
the 2n+1 theorem9,66.

By selecting the non-centrosymmetric materials from
databases197,198 in which the optical dielectric tensors were al-
ready available, we built up a new set of candidates including
more than 800 compounds aiming at calculating their second-
order susceptibility. At this stage, we have computed the non-
linear properties for more than 400 materials employing the
above-mentioned ABIFLOWS workflow. The results of this
study will be presented in more detail in a future publication,
and many more materials are being added to the list.

c. GW Computing the excited-state properties of ma-
terials (such as band gaps) implies going beyond standard
DFT and its fundamental shortcomings. MBPT provides a
rigorous and well-established formalism for accurate band-

https://materialsproject.org/
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structure calculations11. The main ingredients of MBPT are
the Green’s function G, the screened Coulomb interaction W
and the electronic self-energy Σ that is usually approximated
with the GW method199. Automating GW calculations at the
high-throughput level represents, however, a significant chal-
lenge. Compared to the DFT electron density in which only
occupied states are needed, the Green’s function requires the
knowledge of all unoccupied states of the systems. In practi-
cal implementations, the sum over an infinite number of bands
is avoided by introducing a cutoff (nband) beyond which the
contribution of the high-energy states is considered negligi-
ble and the Fourier expansion of the two-point function W
is restricted to G-vectors lying inside a sphere of kinetic en-
ergy ecuteps. The required computational resources increase
steeply when these two cutoffs are increased. An additional
problem is that these two convergence parameters are linked,
i.e. the convergence with respect to one cutoff is determined
by the value of the other parameter with a rate that is system-
dependent. The level of coupling, moreover, varies strongly
from one material to another. Determining reliable input pa-
rameters is, hence, of crucial importance to achieve precise
and efficient MBPT calculations.

To enable high-throughput GW calculations, an auto-
mated convergence framework has been developed using the
ABIPY package200,201. A typical workflow is illustrated in
Fig. 7. At a low density k-grid, the two interdependent cut-
offs are treated in the same loop ensuring convergence of both.
The convergence in k-space is treated separately since it was
found to be unconnected. In the last step, the convergence
rates of the screening cutoff and the unoccupied states cutoff
at high k-space sampling are compared to those at low sam-
pling density to finally ensure converged results. This method
was used to compute the GW correction for about 90 crys-
talline compounds200.

C. The libpaw library

The ABINIT implementation of PAW44 — although not the
only one — is one of the most complete available in a DFT
code. Ground-state properties (DFT), excited states (MBPT)
and response functions (DFPT) can be computed within PAW.
However, the PAW method should theoretically be imple-
mented in the same way in all DFT codes, regardless of the
basis used to represent the electronic wavefunctions.

From our original PAW implementation42, we have devel-
oped a portable PAW library, called LIBPAW202 in order to
facilitate the porting of PAW in other codes. This library pro-
vides a formalism for computational physics — the pseudopo-
tential/PAW approach — at a relatively high implementation
level (not only low-level methods, such as I/O, error-handling
or systems resolution). It is packaged in such a way that it
gives access to implementations of core PAW procedures with
basis-independent data interfaces and thus can potentially be
combined with any other basis used in different programs.

At present, the LIBPAW library — initially used in
ABINIT — has been integrated in at least two other codes:
the wavelet-based BIGDFT software202,203 as well as a re-
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FIG. 7. Schematic representation of a typical GW workflow. First
(w0), the SCF density is calculated (DEN) followed by a non-SCF
calculation of a large number of unoccupied states (WFK). Then
(w1), the latter are used to determine the screening (SCR). Finally
(w2), the GW corrections are computed for different k-points. In the
graph, two screening calculations are represented corresponding to
different sets of values for the two cutoff parameters. Each of them
is followed by three GW calculations corresponding to different k-
points.

cently developed Gaussian-Type Atomic Orbital based DFT
code204. The use of LIBPAW in three codes, using three differ-
ent types of basis functions (planewaves, wavelets, gaussians)
highlights its portability. Other projects based on the LIBPAW
are in progress.

The library is currently built "on the fly" from ABINIT
source files. A standalone and ABINIT independent package
is generated and can be directly inserted in a "host" code. At
present this is the only way to get the LIBPAW library; in the
near future the LIBPAW package will be directly downloadable
as a separate package.

As soon as a host code uses the LIBPAW library, it can
access at low cost a full PAW implementation, and take
advantage of regular library updates, new features and de-
bugging. Some features are automatically available be-
cause they are only implemented in "on-site" PAW contri-
butions such as, for example, Hubbard Hamiltonian calcula-
tions (DFT+U). The library provides a module to access PAW
atomic datasets in XML format and in ABINIT proprietary
format (legacy). The XML format181 then gives access to sev-
eral PAW atomic datasets tables: JTH179, GBRV177, ATOM-
PAW205, and GPAW206.

The library fits very easily into the host code. A simple
libpaw.h header file has to be adapted to integrate the LIB-
PAW. In the libpaw.h file, one has to specify which routines
are used for the I/O and the error handling, as well as the de-
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pendencies shared with the LIBPAW (eg, the LIBXC electronic
exchange and correlation library207 or NETCDF interfaces).
Most of the low-level dependencies can be shared with the
host code. The library is made of a complete collection of
Fortran 2003 modules. Therefore it can most easily be in-
corporated in codes written in Fortran. Each Fortran mod-
ule is related to a specific "object" of the PAW formalism and
contains associated methods.

Among the provided objects, the following are worth men-
tioning (a more complete description is available in Ref. 202):

• m_pawrad: contains all functions related to the PAW
radial meshes and associated derivation/integration rou-
tines, for different kinds of meshes (linear or logarith-
mic).

• m_pawpsp: used to read PAW atomic datasets (XML or
ABINIT legacy formats),

• m_pawtab: used to define non-self-consistent tabulated
PAW data either read from the atomic dataset or directly
deduced from it,

• m_pawxc: computes the exchange and correlation po-
tential/energy in the PAW augmentation regions using
developments over spherical harmonics,

• m_pawcprj: calculates, stores and manipulates projec-
tions of pseudo-wavefunctions Ψ̃nk on PAW non-local
projectors p̃i: ci

nk = 〈p̃i|Ψ̃nk〉. Note that the routine ded-
icated to the computation of these projections has to be
provided by the host code,

• m_pawrhoij: computes and manipulates the PAW oc-
cupancy matrix ρi j =∑nk ci∗

nkc j
nk, especially ensuring the

use of symmetries,

• m_pawdij: computes and manipulates the PAW non-
local potential intensities Di j (see Ref. 42 for a com-
plete expression). In this routine all the physical in-
gredients are included (eg electronic correlations, spin-
orbit, hybrid functionals, etc.).

All available methods are fully compatible with the Mes-
sage Passing Interface (MPI) distributed parallelism, includ-
ing parallelization over atomic sites, as well as over the real
space grid sampling the augmentation regions. A MPI com-
municator has to be provided.

The LIBPAW library is a perfect example of "code shar-
ing", in the perspective of outsourcing and sharing compo-
nents common to DFT pseudopotential-based codes. The ad-
vantages of code sharing are numerous:

• It enforces clean and structured object-oriented pro-
gramming (not obvious in the case of Fortran). Strong
links to a specific code must be removed, and strong op-
timization can be implemented once and used widely.

• It allows one to implement a cross-validation process,
thanks to the use of the code in different contexts (here
different electronic wavefunction bases).

• It allows one to substantially expand the user base and
thus to reinforce user feedback.

• It avoids developers re-coding what already exists, and
concentrates human work in implementations of novel
physical quantities.

In the case of ABINIT , this code sharing effort is only in
its early stages; other features could be easily packaged and
shared: the handling of crystal symmetries, sampling of the
Brillouin zone, self-consistent cycle preconditioning/mixing
algorithms, ...

VII. CONCLUSION

With the increasing use of DFT for materials science appli-
cations, the need to have user-friendly packages which calcu-
late and predict structural, electronic, vibrational, and elastic
properties is essential. In this paper, we have presented the
case of ABINIT , an electronic structure package for materials
and nanosystem simulations. Though ABINIT originally fo-
cused on the “simple” solution of the ground state Kohn-Sham
equations of DFT, it has broadened to include many different
theories with far reaching applications, including DFT, DFPT,
TD-DFT, MBPT, and DMFT. Similarly, two different treat-
ments of core electrons are provided: norm-conserving pseu-
dopotentials and projector-augmented waves. Each of these
methodologies implement a different set of properties, which
are summarized in the previous sections. A list of the ca-
pabilities offered by ABINIT has been presented, with par-
ticular attention given to the graphical interfaces created by
the ABIPY workflow manager and the post-processing tool
AGATE .

In this paper, we have also concentrated on the properties
which make ABINIT rather unique. We started with DMFT,
the application of finite electric fields, probes of nuclei prop-
erties (such as the Mössbauer and nuclear spectroscopy), and
positron annihilation. We then moved to response functions,
which are the most developed features of ABINIT : sections on
Raman spectroscopy, electro-optic effects and strain perturba-
tion, van der Waals interactions, flexoelectricity, the electron-
phonon interaction, anharmonic interatomic force constants,
non-collinear magnetism, spin magnetic field and temperature
dependence of the optical response with the Bethe-Salpeter
equation.

After examining individual properties, we presented some
of our efforts in community projects and library generation,
which can be used by ABINIT and many other electronic
structure codes. For example, we mention the distribution of
reliable and well tested PAW data sets, LIBPAW, the PSEU-
DODOJO project, and high-throughput developments to calcu-
late advanced properties in the MBPT and DFPT formalisms.

In conclusion, we have presented here the evolution of
ABINIT , from its history to the most recent developments. We
have also included links to the code documentation and tutori-
als. The basic theory and frameworks were discussed, which
allow users to calculate a broad set of properties. Beyond the
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features with unique implementations in ABINIT , we encour-
age interested users to visit the ABINIT web page for more
general documentation, tutorials, and information.

VIII. DATA AVAILABILITY

A large part of the data presented in this paper is available
directly from the Abinit Web page www.abinit.org. Any other
data not appearing in this web page can be provided by the
corresponding author upon reasonable request.
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