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Abstract 

Usually phononic properties are mostly studied using density functional perturbation theory 

(DFPT) simulations. Although DFPT simulations offer accurate estimations of phononic 

properties, but for low-symmetrical and nanoporous structures, the computational cost 

becomes quickly very demanding.  Besides these, due to computational setups nonphysical 

negative branches may appear in phonon dispersions, which impede the assessment of 

phononic properties and dynamical stability. Here, we compute phonon dispersion relations 

and examine the dynamical stability of a large ensemble of novel materials and compositions. 

We propose a fast and convenient alternative to DFPT simulations to evaluate the phononic 

properties of low-symmetrical and porous structures, via machine-learning interatomic 

potentials passively trained over computationally inexpensive ab-initio molecular dynamics 

trajectories. Results for diverse two-dimensional (2D) nanomaterials confirm that the 

proposed approach can reproduce fundamental phononic properties in close agreements 

with those by DFPT approach. The proposed approach offers a stable, efficient and 

convenient solution for the examination of dynamical stability and exploring the phononic 

properties of low-symmetry and porous 2D materials.  
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1. Introduction 

Phonon dispersion relations (PDRs) are key components to study the lattice dynamics and 

atomic vibrations in a crystal1,2. They also provide useful information regarding the transport 

properties such as the thermal conductivity. In particular, PDRs are extensively employed to 

examine the dynamical stability of various compositions and structures. To acquire PDRs, the 

most popular theoretical approach is to conduct density functional perturbation theory 

(DFPT) simulations. In order to assess the thermal properties, DFPT calculations are commonly 

executed using supercell structures. DFPT is a computationally efficient approach for the 

majority of highly symmetrical lattices. In recent years, two-dimensional (2D) materials3,4 are 

gaining remarkable attentions because of their unique properties, suitable to address critical 

challenges in various advanced technologies like nanoelectronics. Since the isolation of 

graphene1,2, 2D materials family has been continuously and quickly extending. This large  

family of new materials includes highly symmetric lattices, such as the graphene and 2H 

transition metal dichalcogenides5,6, as well as many structures with low-symmetrical or 

nanoporous lattices like graphdiyne7 and 1T’ transition metal dichalcogenides8. To date, high-

symmetrical and isotropic lattices have received higher concern. However recently, 

anisotropic and nanoporous 2D lattices are attracting considerable attention, because they 

offer novel possibilities to design angle-dependent devices and more efficient energy 

storage/conversion systems 9.  

In order to theoretically predict novel 2D systems, it is thus essential to carefully examine the 

dynamical stability and explore the vibrational properties on the basis of PDRs. For low-

symmetrical and nanoporous 2D structures, currently employed DFPT simulations manifest 

limited flexibilities due to severe computational issues. In these cases, to bypass the 

computational limitations, one usually treats smaller supercells and lower k-point girds and 

plane-wave cutoff energy within the DFPT simulations. But such simplifications may actually 

result in poorer accuracy of the acquired PDRs. Moreover, in some cases negative branches 

may appear in the PDRs and thus impeding the examination of dynamical stability or thermal 

properties. Astonishing recent advances in the field of machine-learning, have offered novel 

possibilities to address various challenges in materials science10–13. In this regard, machine-

learning interatomic potentials (MLIP) 14 have shown outstanding efficiency in many 

applications of computational material science, such as predicting novel materials 15,16 lattice 

dynamics17 and estimating the thermal conductivity18, etc. The main advantage of MLIPs is 

that they enable the efficient use of classical molecular dynamics simulations to evaluate the 

forces and energies with the density functional theory (DFT) level of accuracy. The 

employment of MLIPs is particularly promising to study the large systems, for those DFT-

based methods become infeasible due to renowned computational limitations. 

In this work we propose a computationally efficient and accurate methodology to acquire 

PDRs and explore other critical phononic properties on the basis of passively trained moment 

tensor potentials (MTPs)19. The proposed approach only requires inexpensive and short ab-

initio molecular dynamics trajectories, without need to active learning or additional DFT 

calculations. We employed the proposed approach to conveniently compute the phononic 
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properties of a wide-variety of 2D materials, for which close agreements with DFPT results 

were observed. We discuss that the proposed approach on the basis of passively-trained 

MTPs can be conveniently employed to explore the phononic properties of low-symmetrical 

and nanoporous 2D materials, with enhanced stability and computational efficiency.  

 

2. Computational methods  

First-principles DFT calculations in this work were carried out using the Vienna Ab-initio 

Simulation Package (VASP)20–22. Generalized gradient approximation (GGA) within 

Perdew−Burke−Ernzerhof (PBE)23 method was employed in the calculations. We assumed 

plane-wave cutoff energies of 600 eV and 400 eV for carbon-based and rest of the studied 

systems, respectively. For geometry optimization, the convergence criterion for the energy 

and forces were set to 10–5 eV and 0.001 eV/Å, respectively. DFPT simulations were 

performed over supercell samples using a 3×3×1 Monkhorst-Pack24 k-point grid. The plane-

wave cutoff energy of DFPT simulations was set as the default value by VASP. PHONOPY 

code25 was utilized to create the optimal sets of atomic position for DFPT calculations and 

also to acquire phonon dispersions and group velocities with DFPT results as inputs. Ab-initio 

molecular dynamics (AIMD) simulations were performed with a time step of 1 fs suing a 3×3×1 

k-point gird.  

A class of machine-learning interatomic potentials―moment tensor potentials19 were used 

to describe interatomic interactions. Similar to classical potentials, MTPs include parameters 

that are found by solving of a minimization problem. In this work AIMD simulations were used 

to create the training sets. MTP was first proposed for single-component systems19 and has 

been recently generalized for the multiple component systems15,26. This potential is local, i.e., 

the total energy E of the system containing N atoms is partitioned into contributions V of 

neighborhoods 𝑢𝑖  of each 𝑖-th atom: 𝐸 ≡ 𝐸𝑀𝑇𝑃 = ∑ 𝑉(𝑢𝑖)
𝑁
𝑖=1 . We refer to the 𝑗-th atom as 

neighbor of the 𝑖-th (central) atom if the distance between them is less than a predefined cut-

off distance 𝑅cut. The Neighborhood is then expressed as a tuple, 𝑢𝑖 =

({𝑟𝑖1, 𝑧𝑖 , 𝑧1} … , {𝑟𝑖𝑗, 𝑧𝑖 , 𝑧𝑗} … , {𝑟𝑖𝑁𝑛𝑒𝑖𝑔ℎ
, 𝑧𝑖 , 𝑧𝑁𝑛𝑒𝑖𝑔ℎ

}), where 𝑟𝑖𝑗 is the relative atomic position 

(interatomic vector), 𝑧𝑖 and 𝑧𝑗 are the types of the central and neighboring atoms, respectively 

and 𝑁𝑛𝑒𝑖𝑔ℎ is the number of atoms in neighborhood. Each contribution to the total energy 

has the following form: 𝑉(𝑢𝑖) = ∑ 𝜉𝛼𝛼 𝐵𝛼(𝑢𝑖), where 𝜉𝛼 are the free parameters of the 

potential to be optimized, 𝐵𝛼 are the potential basis functions. We construct the basis 

functions as all possible contractions of the moment tensor descriptor: 

𝑀𝜇,𝑣(𝑟𝑖) = ∑ 𝑓𝜇

𝑁𝑛𝑔

𝑗=1

(|𝑟𝑖𝑗|, 𝑧𝑖 , 𝑧𝑗)𝑟𝑖𝑗
⊗𝑣        (1) 

yielding a scalar (see Ref.19 for details). The first factor 𝑓𝜇(|𝑟𝑖𝑗|, 𝑧𝑖 , 𝑧𝑗) in the aforementioned 

summation is the radial part depending only on the distance between atoms 𝑖 and 𝑗 and their 

types. We expand the radial part through a set of radial basis functions 𝜑𝛽(|𝑟𝑖𝑗|) multiplied 

by a factor (𝑅𝑐𝑢𝑡−|𝑟𝑖𝑗|)
2
 for smoothing near the distances close to cut-off radius.  
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𝑓𝜇(|𝑟𝑖𝑗|, 𝑧𝑖 , 𝑧𝑗) = 𝑐𝜇,𝑧𝑖,𝑧𝑗

(𝛽)
𝜑𝛽(|𝑟𝑖𝑗|)(𝑅𝑐𝑢𝑡−|𝑟𝑖𝑗|)

2
,   (2)   

Where 𝑐𝜇,𝑧𝑖,𝑧𝑗

(𝛽)
𝜑𝛽 are the are the radial coefficients. We denote “⊗” by outer product and 

refer to the second factor in Eq. 2 as the angular part which describes polyatomic interactions. 

In order to optimize 𝜉𝛼 and 𝑐𝜇,𝑧𝑖,𝑧𝑗

(𝛽)
𝜑𝛽 parameters of a MTP, one needs to solve the following 

minimization problem (training of MTP): 

∑ [𝑤𝑒(𝐸𝑘
𝐴𝐼𝑀𝐷−𝐸𝑘

𝑀𝑇𝑃)
2

+ 𝑤𝑓 ∑|𝑓𝑘,𝑖
𝐴𝐼𝑀𝐷−𝐸𝑘,𝑖

𝑀𝑇𝑃|

𝑁

𝑖

 2]

𝐾

𝑘=1

→ 𝑚𝑖𝑛,     (3) 

where 𝐸𝑘
𝐴𝐼𝑀𝐷 and 𝑓𝑘,𝑖

𝐴𝐼𝑀𝐷 are the energy and atomic forces in the training set, respectively, K is 

the number of the configurations in the training set, we and wf are non-negative weights that 

express the importance of energies and forces in the optimization problem.  

Here we used PHONOPY code25 to evaluate the phononic properties, in which MTP replaces 

VASP in the force calculation step. To facilitate future studies, in the data availability section, 

we present a direct guide to create the training set (VASP AIMD inputs), as well as the MTP 

training procedure and the integration code to calculate forces using the MTP over input 

structures by PHONOPY code and PHONOPY inputs. Particularly all considered examples in 

this work are included. Such information will facilitate the learning and practical use of MTP 

for accurate evaluation of the phononic properties in structural systems of versatile 

complexity. 

3. Results and discussions 

The main objective of this study is to develop MTPs to replace DFT simulations in the force-

constant calculations for the evaluation of phononic properties. Although our work is focused 

on the 2D materials, the proposed approach can be equally employed for 3D or 1D lattices. 

First, we study on the monoelemental 2D structures. Since the carbon shows the unique 

ability to form diverse stable 2D atomic lattices, we mostly consider carbon-based structures. 

In Fig. 1, the studied monoelemental 2D lattices are illustrated. Apart from the graphene (Gr), 

we consider penta-graphene27, various haeckelite28 (Haeck) lattices, phagraphene 29 (Pha-Gr) 

and different graphyne 30 (GY) structures. We note that haeckelite and phagraphene lattices 

include non-hexagonal carbon rings and can be thus considered as defective graphene 

lattices, but with high degree of periodicities and close densities to that of the pristine 

graphene. On the other side, graphyne lattices are highly porous full carbon materials, which 

recently gained remarkable attentions because of experimental advances and their bright 

application prospect for the energy storage/conversion systems. Besides full-carbon 

structures, we also consider the single-layer black phosphorene (P) which shows a rather 

complicated buckled lattice.   
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Fig. 1, Top views of atomic structures of considered monoelemental systems. Side views are shown only for 
non-planar lattices. Black lines illustrate the primitive unitcell.  

Since the phononic properties are usually evaluated by applying the small displacements in 

supercell lattices, we created the training data sets by conducting the AIMD simulations at 

the very low temperature of 50 K, with an overall simulation time of less than 1 ps (1000 

simulation time steps). Since the MTPs are trained with a cutoff distance of 4 or 5 Å, the AIMD 

simulations were conducted over supercells with periodic box sizes over 10 Å. Larger 

supercells can be useful to describe the local large deflections better. Nonetheless, supercells 

with the minimum sizes closer to 10 Å are more computationally efficient because the costs 

of AIMD simulations increase exponentially with the number of atoms. To facilitate future 

studies, all created training sets in this work are provided in the data availability section. Using 

the AIMD results, we trained MTPs with 901 parameters for the monoelemental systems. The 

cutoff distance for graphene, other carbon allotropes and phosphorene were assumed to be 

3, 4 and 5 Å, respectively. In Fig. 2 we compare the PDRs predicted by MTPs with those by the 

DFT. Remarkably close agreement between the MTP and DFT results are obtained. This is a 

highly promising outcome since the developed MTPs are first attempts without any long 

sequence of optimization. Noticeably for the penta-graphene, haeckelite lattices and 

phosphorene, acoustic and optical branches are reproduced with a high level of accuracy. The 

same observation is also valid for graphyne lattices. Notably, in some cases (Haeck-5, P, GY-2 

and GY-3) slight negative branches appear in the PDRs calculated with DFT, which are not 

observable in the MTP-based results. These negative branches in the DFT results originate 

from computational artifacts, and are not representative of dynamical instabilities31 and 

might be removed via more precise setups for the calculations, such as increasing the 

supercell size, increasing plane-wave cutoff energy and improving the resolution of k-point 

girds. These modifications can be affordably examined for highly symmetrical lattices like 

graphene, but for less symmetrical and nanoporous lattices may substantially increase the 

computational costs and lead to complexity of the problem.  
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Fig. 2, Phonon dispersion relations of monoelemental 2D lattices acquired by the DFPT (red-dotted lines) 

method and first-attempt MTPs (continuous green lines). The atomic lattices are show in Fig. 1. 

Despite of close agreements between the predicted PDRs for the most of monoelemental 

structures, two exceptions exist in which MTP based results show some inaccuracies. Among 

all studied samples, it is clear that high frequency optical modes are well reproduced by the 

MTP. Unexpectedly for the highest symmetrical lattice of graphene, optical modes with 

highest frequencies are not well reproduced by the MTP (Fig. 2a). On the other side for the 

phagraphene (Fig. 2h), a slight soft mode appears in the MTP result which is absent in the 

DFPT result. These disagreements between the DFPT and MTP results reveal that some 

degree of extrapolation may have occurred and accordingly suggest that for these samples 

the created passive training sets may have not been as accurate as those for other samples. 

We remind that when conducting the AIMD simulations at a low temperature of 50 K for a 

very short period, different configurations remain highly correlated and such that some 

critical configurations may never get explored in the training set. To address this issue, a 

simple effective solution is to expand the training set by including additional uncorrelated 

AIMD trajectories at higher temperatures. To this aim, an additional 1 ps AIMD trajectories 

were included by conducting the simulations at 200, 300, 500, 700 and 900 K. Then the new 

training sets were created by adding equal-length trajectories from different temperatures. 

In Fig. 3, we include the predicted PDRs for single-layer graphene and phagraphene by the 

improved training sets and compare the results with the original results. It is clear that by 

incorporating higher temperature trajectories, the negative branch in the phagraphene’s PDR 

vanishes, while the close agreement with DFPT results at higher frequencies is kept intact. 

Similarly, for the case of graphene, the accuracy of high-frequency optical modes is 
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considerably improved without affecting the lower frequency optical and acoustic modes. The 

acquired results reveal that the incorporation of high-temperature trajectories can further 

enhance the accuracy and stability of MTPs.  

 
Fig. 3, Phonon dispersion relations of (a) graphene and (b) phagraphene acquired by the DFPT (red-dotted 
lines) and MTPs passively trained over AIMD trajectories at 50 K (continuous green lines) and 50 to 900 K 

(continuous green lines). 

We next consider the binary 2D systems, which are shown in Fig. 4. We note that various 

carbon-nitride 2D systems, like CN31, C2N32, C3N4
33 and C3N34 are among the most attractive 

2D semiconductors that have been experimentally fabricated and exhibit promising 

performances for a wide-range of applications. BC3
35 has been also experimentally fabricated, 

C4N and C7N6, C9N4 and C10N3 have been theoretically predicted by Li et al. 36 and Mortazavi 

et al. 37, respectively. We also consider carbon-free binary structures of hexagonal boron-

nitride (BN), 2H transition metal dichalcogenides (MX2, M= Mo, W and X=S, Se, Te), SiP2 and 

As2Se3 monolayers. Similar to the case of monoelemental 2D lattices, we took MTPs with 1009 

parameters and trained them on 1ps long AIMD trajectories at the temperature of 50 K. 

 
Fig. 4, Top views of atomic structures of binary 2D systems. Side views are shown only for non-planar lattices. 

Black lines illustrate the primitive unitcell.  
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The predicted PDRs by MTPs are compared with those by the DFPT method for the binary 2D 

lattices in Fig. 5. As it is clear, passively-trained MTPs can very accurately reproduce the PDRs 

for the considered binary lattices. It is noticeable that PDRs on the basis of MTPs are free of 

slight negative branches that have occurred around the Γ points in the DFTP results for some 

samples. The C3N4 monolayer with a completely flat structure shows conspicuous negative 

branches, which are well reproduced by the MTP. These results are highly promising taking 

into account the complexity of considered structures, especially rectangular SiP2 and As2Se3 

exhibit intricate buckled lattices. It should also be noted that while the acoustic modes are 

very closely reproduced for all considered samples, slight deviations are observable for some 

of the optical modes in few samples, particularly for the C2N and BC3 monolayers. As discussed 

for the case of graphene, to better reproduce the optical modes, the training set should be 

improved by including the AIMD trajectories at higher temperatures. 

 
Fig. 5, Phonon dispersion relations of binary 2D lattices acquired by the DFPT (red-dotted lines) and first-

attempt MTPs (continuous green lines). The corresponding atomic lattices are show in Fig. 4. 
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We next explore the accuracy of the PDRs predictions by MTP method for ternary 2D lattices. 

In Fig. 6 we compare the PDRs for six different ternary lattices by the DFTP and MTP methods. 

We note that BC10N2 is recently predicted by Tromer et al.38, BC6N shows hexagonal and 

rectangular atomic lattices, BrCuTe2 and ICuTe2 are also predicted according to their bulk 

counterparts and BC6N6 is a novel ternary lattice that we examine its stability. It is noticeable 

that negative branches in the DFTP results are also well reproduced by the passively trained 

MTPs. The results consistent with our previous observations, highlight that the accuracy of 

MTPs are insensitive to the number of elements’ types and/or complexity of the structure. 

Despite we limited our AIMD simulations for less than 1 ps at 50 K, our results shown up to 

this stage reveal that for the most of cases no additional AIMD trajectories are required to 

assess the phonon-dispersions. Nonetheless, if required incorporation of additional AIMD 

trajectories at high temperatures in the training set are expected to improve the accuracy and 

stability as well.    

 
Fig. 6, Phonon dispersion relations for six different ternary 2D lattices acquired by the DFPT (red-dotted lines) 

and first-attempt MTPs (continuous green lines).  

Besides the phonon dispersions, the phonons group velocity is another important phononic 

property, which can provide useful information concerning the lattice thermal conductivity. 

In Fig. 7 we compare the phonon group velocities predicted by MTP method with those 

obtained within the DFT using the PHONOPY code25. Remarkably, passively trained MTPs can 

very closely reproduce the phonon group velocities for the studied samples. For some of the 

samples like graphene, penta-graphene and -SiP2, CN, BC6N6 and transition metal 
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dichalcogenides (MX2, M= Mo, W and X=S, Se, Te) excellent agreements between the MTP 

method and DFT based estimations are observable. It is clear that in the worst cases, like 

BrCuTe2, BC3 or C2N the group velocities are slightly up- or down-shifted and the results are 

free of substantial inaccuracies.  

 

Fig. 7, Phonon group velocity (vɡ) predicted by MTP and DFT methods. 

Last but not least we examine the agreement between the MTP- and DFT-based approaches 

to calculate the free energy, heat capacity, and entropy from their statistical thermodynamic 

expressions using the PHONOPY code25. We compared the MTP- and DFT-based estimations 

for the aforementioned thermal properties in Fig. 8. As it is clear, the observable agreements 

are impressive, which accordingly clear any concern to extend the training set in order to 

improve the accuracy.  
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Fig. 8, Free energy, heat capacity, and entropy with the units of kJ/mol, J/K/mol, and J/K/mol, respectively, on 

the basis of MTP (continuous lines) and DFT (circles) methods acquired using the PHONOPY code25.  

Our results for a wide variety of 2D structures examined in this work highlight the accuracy 

and stability of the MTP-based method to explore the phononic properties of complex 2D 

lattices. The required AIMD simulations to assess the phononic properties are 

computationally less expensive than the those conducted to examine the thermal stability, 

which usually require more than 10 ps long AIMD simulations. Nonetheless, we believe that 

for highly symmetrical structures like graphene, transition metal dichalcogenides with 2H 

lattice and penta-graphene, the standard DFPT method is by a large extent more 

computationally efficient. Accordingly, the computational efficiency of MTP enhances as the 

symmetry decreases, like that for haeckelites and C7N6, or for materials with large primitive 

unitcells, such as metal- or conductive-organic frameworks and graphyne/graphdiyne lattices. 

Moreover, acquired results highlight that MTP-based approach generally offers a simple and 

convenient solution. We note that in this approach changing the supercell size for the 

evaluation of PDRs can be achieved with negligible computational costs. Moreover, in this 

approach the effects of plane-wave cutoff energy or k-point grids in the force constant 

calculations basically vanish, though they should be carefully examined within the AIMD step. 

Additionally, slight changes in the structure and lattice parameters can be easily examined 

with the MTP-based approach, without the need for retraining of existing MTP. One of the 

most prominent advantages of the MTP-based method is that it usually yields stable results 

without nonphysical imaginary branches in the acquired PDRs. This is an important feature, 

knowing that slight negative branches in PDRs may results in the instabilities for evaluating 

other thermal properties, particularly when calculating the lattice thermal conductivity. 

Although the majority of our results obtained on the basis of short AIMD trajectories at low 

temperature reveal outstanding accuracy, it is nonetheless highly recommended to include 
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AIMD trajectories at higher temperatures to ensure improved stability and accuracy as well. 

Worthy to remind that since AIMD simulations are available by a vast number of free and 

open-source first-principles packages, the proposed methodology by this study can be 

efficiently employed to conveniently examine the phononic properties of complex structures. 

4. Conclusion 

Our extensive results for a wide variety of 2D materials, highlight that machine-learning 

interatomic potentials trained over short ab-initio molecular dynamics trajectories are able 

to reproduce the phononic properties in strikingly close agreements with those by DFT based 

results. The proposed methodology could therefore play a pivotal role to conveniently explore 

the phononic properties of a large variety of low-symmetrical and porous nanomembranes, 

with a high level of accuracy and reproducibility. In recent years astonishing advances have 

been achieved on the synthesis of low-symmetrical and highly porous atomic lattices, like 

metal- or conductive-organic frameworks and graphdiyne nanomembranes. It is clear that 

phononic properties of these novel systems can be now effectively explored using the 

proposed approach by this work, which would otherwise require overdemanding 

computational resources with DFT based methods. To facilitate the practical application, we 

include the full details of the proposed approach in the data availability section.  

Acknowledgment 

B.M. and X.Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German 

Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence 

PhoenixD (EXC 2122, Project ID 390833453). E.V.P, I.S.N., and A.V.S. were supported by the 

Russian Science Foundation (Grant No 18-13-00479). 

Data availability 

The following data are available to download: (1) a brief guide for the installation of MLIP 

package, (2) all energy minimized lattices, (3) passive training approach and related 

commands, (4) VASP input script for the AIMD simulations, (5) VASP output file (vasprun.xml) 

for the DFPT calculations of all considered 38 examples, (6) created training sets and trained 

MTPs (p.mtp) for the all considered 38 examples, (7) the C++ code to calculate the force 

constants using the PHONOPY and MTP for the input geometries and force calculator, 

respectively and (8) PHONOPY related scripts to adjust the outputs, from: GITLAB:  and 

Mendeley: 

References 

1. Dove, M. T. Introduction to the theory of lattice dynamics. École thématique la 
Société Française la Neutron. (2011). doi:10.1051/sfn/201112007 

2. Dove, M. T. Introduction to lattice dynamics. Introd. to lattice Dyn. (1993). 
doi:10.1119/1.17708 

3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 
666–9 (2004). 



13 

 

4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007). 
5. Wang, Y. & Ding, Y. Strain-induced self-doping in silicene and germanene from first-

principles. Solid State Commun. 155, 6–11 (2013). 
6. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 

transistors. Nat. Nanotechnol. 6, 147–50 (2011). 
7. Baughman, R. H., Eckhardt, H. & Kertesz, M. Structure-property predictions for new 

planar forms of carbon: Layered phases containing sp$^{2}$ and sp atoms. J. Chem. 
Phys. 87, 6687 (1987). 

8. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging 
device applications for semiconducting two-dimensional transition metal 
dichalcogenides. ACS Nano 8, 1102–1120 (2014). 

9. Mortazavi, B., Shahrokhi, M., Cuniberti, G. & Zhuang, X. Two-Dimensional SiP, SiAs, 
GeP and GeAs as Promising Candidates for Photocatalytic Applications. Coatings 9, 
522 (2019). 

10. Sun, B. & Barnard, A. S. Visualising multi-dimensional structure/property relationships 
with machine learning. J. Phys. Mater. 2, 34003 (2019). 

11. Oda, H., Kiyohara, S. & Mizoguchi, T. Machine learning for structure determination 
and investigating the structure-property relationships of interfaces. J. Phys. Mater. 2, 
34005 (2019). 

12. Schleder, G. R., Padilha, A. C. M., Acosta, C. M., Costa, M. & Fazzio, A. From DFT to 
machine learning: recent approaches to materials science–a review. J. Phys. Mater. 2, 
32001 (2019). 

13. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and 
applications of machine learning in solid-state materials science. npj Comput. Mater. 
5, 83 (2019). 

14. Podryabinkin, E. V & Shapeev, A. V. Active learning of linearly parametrized 
interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017). 

15. Gubaev, K., Podryabinkin, E. V., Hart, G. L. W. & Shapeev, A. V. Accelerating high-
throughput searches for new alloys with active learning of interatomic potentials. 
Comput. Mater. Sci. 156, 148–156 (2019). 

16. Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. & Oganov, A. R. Accelerating 
crystal structure prediction by machine-learning interatomic potentials with active 
learning. Phys. Rev. B 99, 064114 (2019). 

17. Ladygin, V. V, Korotaev, P. Y., Yanilkin, A. V & Shapeev, A. V. Lattice dynamics 
simulation using machine learning interatomic potentials. Comput. Mater. Sci. 172, 
109333 (2020). 

18. Korotaev, P., Novoselov, I., Yanilkin, A. & Shapeev, A. Accessing thermal conductivity 
of complex compounds by machine learning interatomic potentials. Phys. Rev. B 100, 
144308 (2019). 

19. Shapeev, A. V. Moment tensor potentials: A class of systematically improvable 
interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016). 

20. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals 
and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 
(1996). 

21. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy 
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). 

22. Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave 



14 

 

method. Phys. Rev. B 59, 1758–1775 (1999). 
23. Perdew, J., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made 

Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). 
24. Monkhorst, H. & Pack, J. Special points for Brillouin zone integrations. Phys. Rev. B 13, 

5188–5192 (1976). 
25. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. 

Mater. 108, 1–5 (2015). 
26. Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. Machine learning of molecular 

properties: Locality and active learning. J. Chem. Phys. 148, 241727 (2018). 
27. Zhang, S. et al. Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. U. S. A. 

(2015). doi:10.1073/pnas.1416591112 
28. Terrones, H. et al. New Metallic Allotropes of Planar and Tubular Carbon. Phys. Rev. 

Lett. 84, 1716–1719 (2000). 
29. Wang, Z. et al. Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 

Carbon Rings with Distorted Dirac Cones. Nano Lett. 15, 6182–6186 (2015). 
30. Baughman, R. H., Eckhardt, H., Kertesz, M., Baughman, R. H. & Eckhardt, H. 

Structureproperty predictions for new planar forms of carbon: Layered phases 
containing sp2 and sp atoms Structure-property predictions for new planar forms of 
carbon : Layered phases containing Sp2 and sp atoms. J. Chem. Phys. 11, 6687–6699 
(1987). 

31. Popov, V. N. & Lambin, P. Theoretical Raman fingerprints of $\ensuremath{\alpha}$-, 
$\ensuremath{\beta}$-, and $\ensuremath{\gamma}$-graphyne. Phys. Rev. B 88, 
75427 (2013). 

32. Mahmood, J. et al. Nitrogenated holey two-dimensional structures. Nat. Commun. 6, 
1–7 (2015). 

33. Algara-Siller, G. et al. Triazine-based graphitic carbon nitride: A two-dimensional 
semiconductor. Angew. Chemie - Int. Ed. 53, 7450–7455 (2014). 

34. Mahmood, J. et al. Two-dimensional polyaniline (C3N) from carbonized organic single 
crystals in solid state. Proc. Natl. Acad. Sci.  113, 7414–7419 (2016). 

35. Tanaka, H. et al. Novel macroscopic BC3honeycomb sheet. Solid State Commun. 
(2005). doi:10.1016/j.ssc.2005.06.025 

36. Li, L. et al. Carbon-Rich Carbon Nitride Monolayers with Dirac Cones: Dumbbell C4N. 
Carbon N. Y. 118, 285–290 (2017). 

37. Mortazavi, B., Shahrokhi, M., Shapeev, A. V, Rabczuk, T. & Zhuang, X. Prediction of 
C7N6 and C9N4: stable and strong porous carbon-nitride nanosheets with attractive 
electronic and optical properties. J. Mater. Chem. C 7, 10908–10917 (2019). 

38. Tromer, R. M., Felix, I. M., Freitas, A., Azevedo, S. & Pereira, L. F. C. Diboron-porphyrin 
monolayer: A new 2D semiconductor. Comput. Mater. Sci. 172, 109338 (2019). 

 
 


