
This is the **accepted version** of the article:

Osnato, Michela; Matías Hernández, Luis; Aguilar Jaramillo, Andrea Elizabeth; [et al.]. «Genes of the RAV family control heading date and carpel development in rice». *Plant Physiology*, Vol. 183, issue 4 (Aug. 2020), p. 1663–1680. DOI 10.1104/pp.20.00562

This version is available at <https://ddd.uab.cat/record/231010>

under the terms of the IN COPYRIGHT license

1 **Short title: RAVs regulate heading date and carpel development**

2

3 **Corresponding author:**

4 Soraya Pelaz: Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB,
5 Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, and
6 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.

7 Phone: (34) 93 563 6600 e-mail: soraya.pelaz@cragenomica.es

8 Michela Osnato: Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB,
9 Campus UAB, Bellaterra (Cerdanyola del Vallès) 08193 Barcelona, Spain. Phone: (34)
10 93 563 6600 e-mail: michela.osnato@cragenomica.es

11

12 **Title: Genes of the RAV family control heading date and carpel development**

13 **in rice**

14

15 **Author names and affiliations:**

16 Michela Osnato^{1,2}, Luis Matias-Hernandez¹, Andrea Elizabeth Aguilar-Jaramillo¹, Mar-
17 tin M. Kater² and Soraya Pelaz^{1,3}

18 ¹Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus
19 UAB, Barcelona (SPAIN). ²Department BioSciences, University of Milan; Via Celoria
20 26, 20133, Milan (ITALY). ³ICREA, Pg. Lluís Companys 23, 08010 Barcelona, (SPAIN).

21 Corresponding authors: Michela Osnato and Soraya Pelaz

22

23 **One-sentence summary**

24 *RELATED TO ABI3 AND VP1 (RAV) gene function is conserved in the regulation of*
25 *flowering time in monocots and dicots, although via different mechanisms, and reveal*
26 *roles in rice gynoecium development.*

27

28 **Footnotes in the following order:**

29 **Author contributions**

30 MO, MK and SP designed the experiments. MO performed and analyzed most of the
31 experiments. LM and AA performed analyses of *Arabidopsis* transgenic plants express-
32 ing *OsRAV* genes. MO, MK and SP discussed the experiments and wrote the paper.

33

34 **Responsibilities of the Author for Contact**

35 The authors will ensure communication and share data upon request.

36

37 **Funding Information**

38 This work was supported by the Spanish Ministry of Economy and Competitiveness/European Regional Development Fund (grants BFU2015-64409-P and PGC2018-095804-B-I00), the Catalonian Government (CERCA Programme, Consolidated Research Group no. 2014 SGR 1406 and Investigator Training Program PhD fellowship to A.E.A.-J.), FLOWER POWER to MK and SP, EvoRepRice (FIRST) to MK and EMBO short-term fellowship to MO. We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa Programme for Centres of Excellence in R&D” 2016-2019 (SEV-2015-0533). A.E.A.-J. performed this work within the frame of a Ph.D. Program of the Universitat Autònoma de Barcelona.

48

49 **Email address of author for contact**

50 michela.osnato@cragenomica.es; soraya.pelaz@cragenomica.es

51

52 **Abstract**

53 In plants, correct formation of reproductive organs is critical for successful seed-set
54 and perpetuation of the species. Plants have evolved different molecular mechanisms
55 to coordinate flower and seed development at the proper time of the year. Among the
56 plant-specific RELATED TO ABI3 AND VP1 (RAV) family of transcription factors, only
57 TEMPRANILLO1 (TEM1) and TEMPRANILLO2 (TEM2) have been shown to affect
58 reproductive development in *Arabidopsis* (*Arabidopsis thaliana*). They negatively regu-
59 late floral transition through direct repression of *FLOWERING LOCUS T* and *GIBBER-*
60 *ELLIN 3-OXIDASE1/2*, encoding major components of the florigen. Here we identify
61 RAV genes from rice (*Oryza sativa*), and unravel their regulatory roles in key steps of
62 reproductive development. Our data strongly suggest that, like TEMs,
63 OsRAV9/OsTEM1 has a conserved function as a repressor of photoperiodic flowering
64 upstream of the floral activators OsMADS14 and *Hd3a*, through a mechanism reminis-
65 cent of that one underlying floral transition in temperate cereals. Furthermore,
66 OsRAV11 and OsRAV12 may have acquired a novel function in the differentiation of
67 the carpel and the control of seed size, acting downstream of floral homeotic factors.
68 Alternatively, this function may have been lost in *Arabidopsis*. Our data reveal conser-
69 vation of RAV gene function in the regulation of flowering time in monocotyledonous
70 and dicotyledonous plants, but also unveil roles in the development of rice gynoecium.

71

72 **INTRODUCTION**

73 In plants, the correct formation of reproductive organs is critical not only for successful
74 seed-set but also for the perpetuation of the species. Accordingly, floral evocation must

75 take place at a favorable time of the year to guarantee pollination, and maximum sur-
76 vival possibilities for the offspring. Plants that are affected in their flowering time often
77 have a lower amount of seeds resulting in yield losses. Indeed, precocious flowering is
78 frequently associated with reduced photosynthetic capacity due to a shortened vegeta-
79 tive phase (Endo-Higashi and Izawa, 2011). Conversely, delayed flowering can affect
80 seed maturation due to exposure to unfavorable conditions. A negative correlation also
81 exists between grain size and grain number (Guo et al., 2018; Li et al., 2018), two im-
82 portant agronomic traits which are controlled by both genetic determinants and envi-
83 ronmental conditions.

84 Plants have evolved different molecular mechanisms to coordinate flower and seed
85 development at the proper time of the year. Actually, the switch from vegetative to re-
86 productive growth is controlled by multiple genetic determinants that integrate the re-
87 sponds to environmental and physiological conditions of the plant. Ultimately, the reg-
88 ulatory pathways underlying the floral transition converge on floral integrators that are
89 able to activate genes in the shoot apical meristem (SAM) that control the initiation and
90 development of the inflorescence meristem (IM), and then of floral meristems (FM)
91 from which floral organs differentiate. Upon fertilization, the carpel transforms into a
92 fruit in which the seeds develop.

93 In the last decade, the molecular basis of the floral transition has been unveiled in dif-
94 ferent plant species: the florigen, a long distance signaling molecule, is first produced
95 in leaves under favorable conditions, and then transported to the apical meristem to
96 initiate reproductive development (Andrés and Coupland, 2012). In the model species
97 *Arabidopsis* (*Arabidopsis thaliana*), photoperiodic flowering is triggered by FLOWER-
98 ING LOCUS T (FT), a small globular protein of 21 kDa (Kardailsky et al., 1999; Koba-
99 yashi et al., 1999). The expression of *FT* is activated under inductive long days (LD) in
100 vascular tissues of leaves by the positive regulator CONSTANS (CO, Suárez-López et
101 al., 2001; An et al., 2004), and precocious flowering is prevented by the counteraction
102 of the RAV (RELATED TO ABI3 AND VP1) transcription repressors TEMPRANILLO1
103 (TEM1) and TEMPRANILLO2 (TEM2) (Castillejo and Pelaz, 2008). Since prevention of
104 precocious flowering is important for reproductive fitness other repressors such as
105 FLOWERING LOCUS C (FLC), SCHLAFMUTZE (SMZ), SCHNARCHZAPFENZ (SNZ),
106 TARGET OF EARLY ACTIVATION TAGGED 1 (TOE1), TOE2, FLOWERING LOCUS
107 M (FLM) or SHORT VEGETATIVE PHASE (SVP) play key roles in the control of *FT*
108 expression in response to vernalization, age, photoperiod or ambient temperature
109 (Hartmann et al., 2000; Scortecci et al., 2001, 2003; Aukerman and Sakai, 2003;
110 Schmid et al., 2003; Jung et al., 2007; Li et al., 2008; Lee et al., 2009; Mathieu et al.,

111 2009; Lee et al., 2013; Posé et al., 2013). Once flowering is induced, FM identity
112 genes, such as the MADS-box genes *SUPPRESSOR OF CONSTANS1* (*SOC1*) and
113 *APETALA1* (*AP1*), are induced which in turn repress *TEMs* expression (Tao et al.,
114 2012; Kaufmann et al., 2010). Under non-inductive Short Days (SD), CO is not active
115 and there is no CO-dependent *FT* induction. In this light regime, the accumulation of
116 the plant hormones Gibberellins (GA) triggers floral transition by inducing *SOC1* and
117 *LEAFY* (*LFY*) (Wilson et al., 1992; Blázquez et al., 1997; Moon et al., 2003; Eriksson et
118 al., 2006; Hisamatsu and King, 2008). Interestingly, *TEMs* also regulate GA accumula-
119 tion by repressing *GA-3-OXIDASE 1* (*GA3OX1*) and *GA3OX2* genes (Osnato et al.,
120 2012).

121 In the crop species rice (*Oryza sativa*), two closely related genes have been described
122 as *FT* orthologs: *Heading date 3a* (*Hd3a*), which promotes flowering under inductive
123 SD, and *Rice Flowering locus T 1* (*RFT1*), which does it under non-inductive LD (Koji-
124 ma et al., 2002; Komiya et al., 2009). An evolutionarily conserved module defined by
125 the rice orthologs of *Arabidopsis* CO and *FT* controls photoperiodic flowering (Shrestha
126 et al., 2014). The rice homolog of CO, *Heading date 1* (*Hd1*), functions as activator of
127 *Hd3a* in SD, and contrarily as repressor in LD (Yano et al., 2000; Nemoto et al., 2016).
128 Nevertheless, additional rice-specific regulators have been discovered: the floral acti-
129 vator *Early Heading date 1* (*Ehd1*, Doi et al., 2004), and its repressor *Grain number*,
130 *plant height and heading date 7* (*Ghd7*, Itoh et al., 2010). The *Ehd1*-*Ghd7* pathway
131 determines the critical day-length necessary for the induction of the florigen through a
132 double gating mechanism dependent on the circadian clock and phytochrome-
133 mediated light perception (Itoh et al., 2010). Additional studies on phylogenetic recon-
134 structions revealed the presence of *FLC* homologs in monocots genomes (Ruelens et
135 al., 2013). These *FLC*-like factors repress the floral transition in response to cold in
136 temperate cereals (Winfield et al., 2009; Greenup et al., 2020), but appeared to have
137 acquired an opposite function in tropical cereals. Indeed, the rice *FLC* homolog *Os-*
138 *MADS51* activates the expression of the floral promoter *Ehd1* (Kim et al., 2007).

139 Upon *FT/Hd3a* activation, the resulting gene product moves through the phloem from
140 the leaf to the SAM (Corbesier et al., 2007; Jäger and Wigge, 2007; Mathieu et al.,
141 2007; Tamaki et al., 2007; Notaguchi et al., 2008; Komiya et al., 2009) where it triggers
142 transcriptional reprogramming able to confer the competence to form flowers (Corbesi-
143 er et al., 2007; Torti et al., 2012). Intriguingly, *FT*-like proteins do not have DNA binding
144 activity *per se* and must interact with bZIP Transcription Factors (TFs), i.e. *FLOWER-*
145 *ING LOCUS D* (*FD*) in *Arabidopsis* and *OsFD1* in rice (Abe et al., 2005; Wigge et al.,
146 2005; Taoka et al., 2011; Brambilla et al., 2017; Collani et al., 2019), to activate the

147 expression of downstream genes. The interaction of FT and FD proteins require the
148 14-3-3 adaptor proteins for the formation of an active Floral Activation Complex (FAC)
149 (Taoka et al., 2011; Collani et al., 2019), which in *Arabidopsis* directly activates the FM
150 identity gene *AP1* (Wigge et al., 2005), whereas the rice FAC complex induces the ex-
151 pression of the *AP1-like* genes *OsMADS14/15/18* and the *SEPALLATA-like* gene *Os-
152 MADS34* that are required for the specification of IM identity (Kobayashi et al., 2012;
153 Gomez-Ariza et al., 2019) The florigens also mediate the transcriptional repression of
154 *PINE*, a gene encoding a Zinc Finger type TF involved in the negative regulation of
155 stem elongation. Therefore, the FAC coordinates the formation of reproductive struc-
156 tures (by activating IM identity genes) and internode elongation (by repressing *PINE*),
157 guaranteeing the emergence of the panicle from the flag leaf, known as heading, which
158 occurs when rice inflorescence development is completed (Gomez-Ariza et al., 2019).

159 In the rice inflorescence, primary and secondary branches form on the flanks of the IM
160 (rachis) and terminate in spikelet meristems that develop floret meristems from which
161 the palea, the lemma, two lodicules, six stamens and one central carpel differentiate.
162 The identity of different floral organs is specified by the interaction of MADS domain
163 TFs belonging to the SEPALLATA (*OsMADS1*), APETALA3 (*OsMADS16*) and AGA-
164 MOUS (*OsMADS3-58*) subfamilies (Jeon et al., 2000; Nagasawa et al., 2003; Dreni et
165 al., 2011). Eventually, the FM is consumed during gynoecium development, when a
166 single ovule primordium forms inside the carpel (Dreni et al., 2007). Recently, *Os-
167 MADS1* was also shown to be essential during seed development, specifically in the
168 regulation of grain size and shape (Liu et al., 2018).

169 In this study, we identified four members of the RAV family of TF in rice, which share
170 sequence similarity with *Arabidopsis* TEMs. In silico/co-expression analyses based on
171 available transcriptomics data revealed that *OsRAVs* interact with genes belonging to
172 the *MADS-box* superfamily at different developmental stages, suggesting that RAVs
173 are unknown players in the gene regulatory network underlying reproductive develop-
174 ment in rice. Specifically, *OsRAV8* and *OsRAV9* negatively correlate with IM identity
175 genes of the *AP1* subfamily, whereas *OsRAV11* and *OsRAV12* act downstream of
176 MADS-domain floral homeotic factors of the *SEP* and *AG* subfamilies. Molecular and
177 functional studies using knock-down and knock-out mutant lines indicate a conserved
178 function for *OsRAV9/OsTEM1* as repressor of photoperiodic flowering upstream of the
179 floral activators *OsMADS14* and *Hd3a*, and reveal a role for *OsRAV11* and *OsRAV12*
180 in the correct development of female reproductive organs, downstream of *OsMADS1*
181 and *OsMADS13*.

182

183 **RESULTS**

184 **The rice genome contains four RAV genes**

185 Genes belonging to the RAV subfamily are present in all land plant species and en-
186 code for putative TFs which are characterized by two DNA binding domains, an
187 APETALA2-type at the N-terminus and a B3-type at the C-terminus (Kagaya et al.,
188 1999). In the model species *Arabidopsis thaliana*, the subfamily of *RAV* genes is com-
189 posed of six members (Riechmann, 2002), in addition to the *TEMs* other four genes
190 belong to this family; *RAV1* and *RAV1-like* that are phylogenetically close to *TEMs*, and
191 *RAV3* and *RAV3-like* which are the most divergent and nothing has been reported
192 about their function. The functional characterization of the closest four indicate their
193 regulatory role in different stages of plant development (Hu et al., 2004; Castillejo and
194 Pelaz, 2008; Osnato et al., 2012; Feng et al., 2014; Matías-Hernández et al., 2016;
195 Aguilar-Jaramillo et al., 2019) and in the response to abiotic stresses (Fowler et al.,
196 2005; Fu et al., 2014).

197 A preliminary phylogenomics analysis indicates a clear separation between AP2-B3
198 coding genes (*RAV*) and those encoding only the B3 domain (*ARF*, *NGA*, *VAL*), as
199 reported in Supplemental Fig. S1. Specifically in rice, although twelve genes were
200 named *RAV* (Supplemental Table S1; Swaminathan et al., 2008), only four encode
201 putative proteins containing both DNA binding domains as predicted by gene orthology
202 and paralogy: *OsRAV8*, *OsRAV9*, *OsRAV11* and *OsRAV12* (Supplemental Fig. S2A).
203 Further analysis carried out by searching the SALAD (Surveyed conserved motif
204 ALignment diagram and the Associating Dendrogram) database (Mihara et al., 2009)
205 revealed the absence of RAV proteins in green and red algae, and the presence of
206 multiple conserved motifs in addition to the AP2 and B3 domains (Supplemental Fig.
207 S2B), including the bipartite nuclear localization signal and the B3 repression domain
208 (Supplemental Fig. S3) together with features associated to post-translational modifica-
209 tions (Supplemental Fig. S4). We also performed a phylogenetic analysis based on the
210 deduced full-length protein sequences retrieved by a BLAST-P search against the pro-
211 teomes of the two model species (Supplemental Fig. S3; Fig. 1). Although the four
212 *OsRAV* proteins clearly clustered together with *AtRAV1/AtRAV1-like* and *TEM1/TEM2*,
213 *OsRAV8* and *OsRAV9* showed the highest similarity with these *Arabidopsis RAV* fac-
214 tors (Riechmann et al., 2002).

215 In the rice genome, the regions corresponding to the *OsRAV8* and *OsRAV9* loci may
216 have originated recently, likely due to tandem duplication events after speciation. In-
217 deed, these genes are physically linked (having a distance of about 50 Kb) at the tip of

218 the short arm of chromosome 1 in a region that is enriched in sequences related to
219 retro-transposons (Supplemental Fig. S5, A and B). Furthermore, when we searched
220 the Plant Genome Duplication Database (PGDD, Lee et al., 2013) using the *OsRAV8-*
221 *OsRAV9* locus identifiers, we found intra-genome syntenic relationships with a region
222 on the long arm of chromosome 1 containing *OsRAV11* (Supplemental Fig. S5C), and
223 a region on chromosome 5 containing *OsRAV12* (Supplemental Fig. S5D). As a result
224 of these phylogenomics and phylogenetic analyses, *OsRAV11* and the related gene
225 *OsRAV12* appeared as within-species paralogs of *OsRAV8*-*OsRAV9* with similar ge-
226 nomic structures.

227

228 **Expression patterns of *RAV* genes and floral MADS-box genes are correlated**

229 To gain insights into the possible function of *OsRAV* genes in various biological pro-
230 cesses and metabolic pathways, we carried out an *in silico* co-expression analysis by
231 using the RiceFRENDS platform (Sato et al., 2013) and constructed a coexpressed gene
232 list for *OsRAV9* as guide gene (Supplemental Dataset S1). Among the top 474 genes
233 displaying a positive correlation with *OsRAV9* (PCC higher than 0,3), we found enrich-
234 ment for biological processes GO categories related to reproductive processes, re-
235 sponse to chemical stimuli and response to oxidative stress (Supplemental Fig. S6, A
236 and B). Supporting this, we also found overrepresentation for molecular function of the
237 GO terms oxidoreductase and iron binding activities (Supplemental Fig. S6C). Taken
238 together, these findings suggest a possible role for RAV in reproductive development
239 as well as abiotic stress response (similarly to *Arabidopsis* RAVs). In particular, peroxy-
240 dases and oxidoreductases are detoxification enzymes activated upon accumulation of
241 reactive oxygen species (ROS) (Choudhury et al., 2013), and ion binding proteins are
242 able to sequester excess iron to avoid reaction with oxygen and the formation of dam-
243 aging ROS (Selote et al., 2015). On the other hand, GO analysis of the top 176 genes
244 displaying a negative correlation with *OsRAV9* suggested a possible function in signal
245 transduction pathways, due to the enrichment of the terms related to protein
246 dephosphorylation and regulation of transcription for biological processes (Supple-
247 mental Fig. S7A). In particular we found a significant negative Pearson's Correlation
248 Coefficient (PCC) between *OsRAV9* and genes involved in reproductive development
249 including the florigen *Hd3a* and the IM identity genes such as *OsMADS14*, *OsMADS15*
250 and *OsMADS34* (Table 1). Furthermore, a recent transcriptomics analysis of apical
251 meristems revealed a negative correlation between the expression of the closely relat-
252 ed gene *OsRAV8* and IM identity genes *OsMADS14*, *OsMADS15*, *OsMADS18* and
253 *OsMADS34* at the transition from vegetative to reproductive growth (Gomez-Ariza et

254 al., 2019; Supplemental Fig. S7). Taken together, co-expression and available tran-
255 scriptomics datasets may suggest a possible role for at least *OsRAV8* and *OsRAV9* in
256 the negative regulation of the transition from vegetative to reproductive phase, similarly
257 to *RAV* genes in *Arabidopsis*.

258

259 **OsRAV genes are differentially expressed during plant development**

260 As a role for *OsRAV* genes in rice plant development is yet to be elucidated, we first
261 inferred their expression profiles by searching publicly available collections of tran-
262 scriptomics data (Sato et al., 2011). *OsRAV9* and *OsRAV12* are expressed in vegeta-
263 tive tissues (i.e. leaves and roots), the former at early stages of plant development
264 (Supplemental Fig. S8A), and the latter at maturity (Supplemental Fig. S8B), whereas
265 *OsRAV11* is widely expressed in different organs with the exception of anthers (Sup-
266 plemental Fig. S8C). Moreover, the expression of *OsRAV9* seems to follow a diurnal
267 oscillation: its transcript levels are almost undetectable during the day, then increase at
268 dusk and reach a peak in the middle of the night (Supplemental Fig. S8D). Likewise,
269 the expression of *OsRAV11* and *OsRAV12* appeared to oscillate during the day with a
270 peak after dusk (Supplemental Fig. S8, E and F), although with a smaller amplitude
271 compared to *OsRAV9*.

272 In order to validate these expression data, we designed specific primers for each of the
273 four *OsRAV* genes (Supplemental Fig. S8G). With respect to *OsRAV8*, we performed
274 standard RT-PCR reactions, and even if a clear band was amplified using genomic
275 DNA as control template, no amplification was observed when using cDNA obtained
276 from different vegetative and reproductive tissues (Supplemental Fig. S8H), confirming
277 that this gene is not transcribed at detectable levels in the samples examined. Only
278 very recently *OsRAV8* was found to be expressed, it was absent in all previous studies
279 likely because of its very specific expression in the apical meristem only at the time of
280 floral transition (Gomez-Ariza et al., 2019).

281 The expression profiles of the other three *OsRAVs* were investigated by RT-qPCR in
282 wild-type plants at different developmental stages. During the juvenile phase, the
283 mRNAs of *OsRAV9* and *OsRAV11* were detected in roots, basal region of the stem
284 comprising the SAM, and young leaves (Fig. 2A), although the abundance was much
285 higher for *OsRAV9* than *OsRAV11*. During the adult phase, the expression of *OsRAV9*
286 became almost undetectable in vegetative tissues resembling *Arabidopsis TEM* genes
287 expression, whereas *OsRAV11* and *OsRAV12* displayed high transcript levels in ma-
288 ture leaves (Fig. 2B), resembling the expression behavior of the positive regulator of

289 leaf senescence *AtRAV1* in *Arabidopsis* (Woo et al., 2010). *OsRAVs* were also ex-
290 pressed in female reproductive organs (Fig. 2C), and their transcript levels decreased
291 after pollination, suggesting that their activities might be restricted to the gynoecium
292 before anthesis.

293 To investigate in detail a possible role of *OsRAVs* in phase changes during vegetative
294 growth, we dissected differentiating leaves from wild-type plants to monitor their tran-
295 script levels at different developmental stages. Precisely, in rice the juvenile phase is
296 limited to the second leaf (L2), since the transition to the adult phase occurs during the
297 development of the third to fifth leaf (L3-L4-L5) when the midrib differentiates (Itoh et
298 al., 2005). We also analyzed the expression of the *Peter Pan Syndrome* (*PPS*) gene
299 (Tanaka et al., 2011), the rice ortholog of the *Arabidopsis* *COP1* (Liu et al., 2008), as a
300 marker for the transition from the juvenile to adult phase. In accordance with its func-
301 tion, *PPS* displayed a peak of expression in the fourth leaf four weeks after germina-
302 tion. *OsRAV9* exhibited the highest transcript levels in L3 and then decreased in L4
303 and L5 (Fig. 2D), indicating that its transcription was drastically reduced at the transi-
304 tion to the adult phase. Also the expression of *OsRAV11* was detected in young
305 leaves, although at very low levels as compared to *PPS* and *OsRAV9* (Fig. 2D).

306 In summary, these molecular analyses suggest diversification of expression patterns
307 for *OsRAV9* and *OsRAV11*, the former being transcribed at higher levels in the vegeta-
308 tive phase and specifically in juvenile leaves, and the latter at maturity, in particular in
309 old leaves and female reproductive structures.

310

311 ***OsRAV9* negatively regulates floral transition**

312 In order to investigate the functional conservation between rice and *Arabidopsis RAV*
313 genes, we used the *Pro35S:OsRAV9* and *Pro35S:OsRAV11* constructs to transform
314 *Arabidopsis* plants (Supplemental Fig. S9A). After selection of several independent
315 transgenic lines (Supplemental Fig. S9B), phenotypic analyses of selected T_2 genera-
316 tions revealed a mild late flowering phenotype of transgenic plants expressing *OsRAV9*
317 (*OsRAV9-E*), but no phenotypic alterations in plants expressing *OsRAV11* (Supple-
318 mental Fig. S9C). Furthermore, molecular analyses of three representative T_3 lines
319 revealed also a correlation between the late flowering phenotype of *OsRAV9-E* plants
320 (Fig. 3, A and D) and the down-regulation of *FT* and *GA3oxidase1* (Fig. 3, E and F),
321 two downstream targets of the TEM factors in *Arabidopsis* (Castillejo and Pelaz, 2008;
322 Osnato et al., 2012). Taken together, these findings suggest that rice *OsRAV9* and the

323 Arabidopsis *TEM* genes have an at least partial conserved function as repressor of
324 photoperiodic flowering in *Arabidopsis*.

325 Besides the high sequence identity between *OsRAV9* and *AtTEMs*, also their expres-
326 sion patterns were similar as both displayed high transcripts levels in the juvenile
327 phase that decreased as the plant aged shortly before the transition from vegetative to
328 reproductive growth (Fig. 2; Castillejo and Pelaz, 2008). Consistently, expression anal-
329 yses in wild-type plants showed a mutual exclusive pattern for *OsRAV9* and the flori-
330 gen *Hd3a*, not only during the day (Fig. 4A) but also throughout plant development
331 (Fig. 4B), similarly to the opposite expression patterns of *TEM* and *FT* in *Arabidopsis*
332 (Castillejo and Pelaz, 2008). Actually, the expression of *OsRAV9* was high at early
333 stages and dropped at around the transition to the adult phase. Conversely, the ex-
334 pression of *Hd3a* is almost undetectable at early stages of vegetative growth, and in-
335 creases in the adult phase (Fig. 4B, Kojima et al., 2002; Komiya et al., 2009). The flori-
336 gen begins to be produced in adult leaves four weeks after germination under inductive
337 conditions, and triggers floral transition in adult plants when it reaches its maximum
338 accumulation around weeks 6.

339 Since the dynamics of *OsRAV9* expression strikingly resembled those of *TEM* genes,
340 we decided to investigate if the function was also conserved in rice. We used an RNAi
341 silencing strategy due to the absence of insertion mutants in public collections for
342 *OsRAV9*. Wild-type rice calli were transformed with an RNAi construct carrying a Gene
343 Sequence Tag specific for the 3' end of the gene under the control of a constitutive
344 promoter (Supplemental Fig. S10A). We obtained eleven independent transgenic lines
345 for the silencing construct, and selected T₁ *OsRAV9*-RNAi transformants by monitoring
346 its transcript levels at the peak of expression (Supplemental Fig. S10B). T₂ generation
347 lines were obtained by self-pollination, and three lines with the highest silencing of
348 *OsRAV9* were characterized. The RNAi lines (reported as *OsRAV9-i*) flowered slightly
349 earlier than the wild-type under inductive photoperiods, more clearly under SD than
350 under 12 hours of light (Fig. 4, C and D; Supplemental Fig. S10C), but not under non
351 inductive LD (Supplemental Fig. S10C). Under SD the down-regulation of *OsRAV9*
352 resulted in significantly early flowering plants (Fig. 4C). Under 12h light/12h dark re-
353 gime, transgenic lines flowered on average 90 days after germination (DAG) and un-
354 derwent anthesis one week later, whereas wild-type plants were still at the booting
355 stage (Fig. 4, E and F). These findings suggested that *OsRAV9* functions as floral re-
356 pressor in rice like *TEMs* do in *Arabidopsis*, likely upstream of the florigen *Hd3a* under
357 inductive conditions. Therefore, hereafter we refer to *OsRAV9* as *OsTEM1*.

358

359 **OsTEM1 regulates floral activators *OsMADS14* and *Hd3a***

360 Based on the results obtained it was tempting to speculate a role for OsTEM1 in the
361 direct repression of *Hd3a* as a non-canonical RAV binding site is present in its regula-
362 tory region (Fig. 5A). However, we could not exclude an indirect effect on *Hd3a* via
363 additional transcriptional regulators. Actually, a negative correlation also exists be-
364 tween *OsTEM1* and additional floral activators including *OsFT-like1* and IM identity
365 genes (Table 1), previously shown to act in a regulatory loop with the florigen, up-
366 stream of *Hd3a* in the leaf and downstream of the *Hd3a*/14-3-3/OsFD1 complex in re-
367 productive meristems (Kobayashi et al., 2012). *OsMADS14* is also expressed in adult
368 leaves and a perfect RAV binding site was found in its promoter (Fig. 5B). Therefore,
369 we used a transient expression system based on a dual Renilla-Luciferase assay to
370 investigate the direct interaction between *OsTEM1* and potential target genes. The
371 effector vector *Pro35S:OsTEM1* was transiently co-expressed with reporter vectors
372 containing different regulatory regions of *Hd3a* and *OsMADS14* (Fig. 5, C and D; Sup-
373 plemental Fig. S11). We evaluated transactivation ability of the floral repressor on tar-
374 get promoters by measuring the relative expression of *LUC* and *REN* reporter genes in
375 cell lysates. Despite the biological variability between independent replicates, a clear
376 reduction of *LUC/REN* relative transcript levels was always observed when *OsTEM1*
377 was co-transformed with a reporter vector carrying promoter sequences of *OsMADS14*
378 containing the RAV binding site but not *Hd3a* (Fig. 5, C and D; Supplemental Fig. S11,
379 B and C). However, this reduction was abolished when we co-transfected the effector
380 vector with a mutated version of the reporter vector carrying the RAV binding site of the
381 *OsMADS14* promoter. For statistical analyses purposes, the values of these three rep-
382 licates including intact and mutated RAV binding sites, are shown as logarithmic values
383 (Fig. 5E; Supplemental Fig. S11D). Therefore, the transient co-transformation assays
384 soundly suggest that transcription repression mediated by *OsTEM1* is stronger on DNA
385 regulatory sequences of *OsMADS14* and is likely mediated by the RAV binding site.

386 Finally, we monitored the expression levels of *OsTEM1* and floral activators shortly
387 before and around the floral transition in wild-type and *OsTEM1*-i lines grown under
388 inductive conditions. As expected, transcripts levels of *OsTEM1* were confirmed to be
389 higher at week 4 in wild-type plants, and strong down-regulation was observed in the
390 transgenic lines (Fig. 5F). Conversely, the expression of *OsMADS14* increased from
391 week 4 to week 6 in wild-type plants, and a clear up-regulation was detected in
392 *OsTEM1*-i lines #2 and #3 at 35 DAG (Fig. 5G). The related IM genes *OsMADS15* and
393 *OsMADS34* were expressed at extremely low levels in leaves at floral transition (Sup-
394 plemental Fig. 12A); however, *OsMADS18* was transcribed at higher levels in vegeta-

395 tive tissues, and alteration of its mRNA abundance was found in the transgenic line
396 with highest *OsRAV9* silencing (Supplemental Fig. 12B). Furthermore, considerable
397 increase in *Hd3a* mRNA levels was also detected in silencing lines around floral transi-
398 tion (Fig. 5H). Taken together, transient co-transformation of protoplasts and compara-
399 tive expression analysis of wild-type and transgenic RNAi lines suggest that *OsTEM1*
400 controls heading date via direct repression of *OsMADS14*, although it also modulates
401 *Hd3a* expression.

402 We also tested the effect of the down-regulation of *OsTEM1* on other genetic pathways
403 involved in the control of heading date (Supplemental Fig. 12C), and, although varia-
404 ble, we found up-regulation of the flowering inductors *OsMADS50*, *OsMADS51* and
405 *Ehd1* in silencing lines (Supplemental Fig. S12, D and E), perhaps suggesting addi-
406 tional roles in parallel pathways. As a consequence, down-regulation of the *OsTEM1*
407 repressor and up-regulation of different floral activators in transgenic lines resulted in
408 early flowering phenotype.

409

410 ***OsRAV11* and *OsRAV12* regulate carpel development**

411 The fact that *OsRAV11*/*OsRAV12* have diversified from *OsTEM1* in their expression
412 patterns and coding sequences, prompted us to hypothesize that these genes might
413 have acquired different roles in plant development, likely after floral induction based on
414 their expression pattern in the reproductive phase (Fig. 2C). A preliminary spatio-
415 temporal expression analysis indicated that *OsRAV11* was expressed at early stages
416 of flower development prior organ primordia differentiation as its mRNA was detected
417 in the spikelet meristem (Supplemental Fig. S13A). Later on, transcripts became first
418 restricted to the carpel primordia similar to carpel identity genes, and afterwards specif-
419 ically limited to the apical part of the developing gynoecium (Supplemental Fig. S13B).

420 The analysis of available transcriptomics data-sets performed on floral homeotic mu-
421 tants that revealed *OsRAV11* down-regulation in *OsMADS1-RNAi* inflorescences
422 (Khanday et al., 2013; Supplemental Table S2), and conversely up-regulation in *os-*
423 *mads13* mutant (M. Osnato and M.M. Kater, unpublished), suggested an interaction
424 between *RAV* and *MADS*-box genes controlling floral organ development. This could
425 be a direct effect since we found CArG-boxes, consensus sequences recognized and
426 bound by MADS-domain TFs, in *OsRAV11* and also in *OsRAV12* regulatory sequenc-
427 es (Supplemental Fig. S13D). The regulation by *OsMADS1* and *OsMADS13* is further
428 supported by the fact that both appear as regulators of *OsRAV* genes in the Environ-
429 mental Gene Regulatory Influence Networks (EGRIN, Wilkins et al., 2016). Therefore,

430 OsRAV11 might have a role in the development of the pistil, likely downstream of
431 class-D and class-E MADS-domain floral homeotic factors.

432 Consistently, we found down-regulation of *OsRAV11* in developing panicles of the *os-*
433 *mads1* mutant (Fig. 6A), characterized by the conversion of floral organs into glume-
434 like structures (Agrawal et al., 2005; Khanday et al., 2013), and up-regulation in young
435 panicles of the floral homeotic mutants *osmads16* and *osmads13* (Fig. 6B), in which
436 stamens and ovules are homeotically converted into extra carpels respectively (Naga-
437 sawa et al., 2003; Dreni et al., 2007) perhaps because the ectopic activation of
438 *OsRAV11*. Accordingly, we observed strong upregulation of *OsRAV11* specifically in
439 *osmads13* ovule primordia (Fig. 6C; M. Osnato and M.M. Kater, unpublished), which
440 later develop as carpels.

441 Therefore, we explored the function of *OsRAV11* using a knock-out mutant character-
442 ized by the insertion of T-DNA in the 5' UTR of the gene (Fig. 6, D and E). The loss of
443 *OsRAV11* function did not cause alteration of heading date, but elongated carpels (Fig.
444 6F). A detailed phenotypic analysis by Scanning Electron Microscopy (SEM) upon ferti-
445 lization indicated alteration in size and shape of the pistil, with an enlarged ovary com-
446 pared to wild-type pistils (Fig. 6G). Specifically, differentiation of apical tissues of the
447 gynoecium were altered in the *osrav11* mutant as carpel tissues did not fuse (Fig. 6H).
448 Likewise, we observed alteration of seed morphology (Supplemental Fig. S13): mutant
449 plants produced seeds with increased seed length and decreased seed width (Sup-
450 plemental Fig. S3G), resulting in statistically significant alterations of length-to-width
451 ratio and circularity (Supplemental Fig. S3H). Interestingly, we observed a slight in-
452 crease in seed weight after de-husking (Fig. 6I).

453 Ultimately, to investigate the possible redundancy between *OsRAV11* and the closely
454 related *OsRAV12* gene in the formation of female reproductive organs, we generated
455 transgenic rice plants in which the expression levels of both genes were reduced by
456 RNA interference (Supplemental Fig. S14). Vegetative growth of knock-down lines
457 (from now on *OsRAV11/12-i*) was normal, whereas flowers showed alterations caused
458 by abnormal morphology of female reproductive organs (Fig. 7A). Indeed, elongated
459 cylindrical pistils with highly reduced stigmas and enlarged ovaries (Fig. 7B) were ob-
460 served in transgenic plants with reduced levels of both *OsRAV11* and *OsRAV12* in the
461 gynoecium (Fig. 7C), indicating that these two genes redundantly regulate the basal-
462 apical patterning of the gynoecium. Interestingly, flowers of these transgenic lines pro-
463 duced viable pollen, but most of the ovules were not fertilized, resulting in very poor
464 seedset. Consequently, most of the transgenic lines displayed severe fertility defects
465 (Fig. 7D).

466 To conclude, molecular and functional characterization of *OsRAV11* and *OsRAV12*
467 suggest that these two genes might redundantly regulate the differentiation of the fe-
468 male reproductive structures. Intriguingly, a decreased activity of *OsRAV11* correlated
469 with an increase in seed weight, whereas the loss of *OsRAV11* and *OsRAV12* activity
470 associates with sterility problems.

471

472 **DISCUSSION**

473 ***Arabidopsis* and rice *RAV* genes are closely related**

474 *RAV* proteins belong to the plant-specific B3 super-family of TFs (Swaminathan et al.,
475 2008), and are characterized by an additional AP2 DNA binding domain at the N-
476 terminus. AP2-B3 type proteins were not found in the green algae *Chlamydomonas*
477 *reinhardtii*, but they appeared early in the evolution of land plant species. The presence
478 of two DNA binding domains suggests that these TFs achieve high affinity by specifi-
479 cally binding bipartite sequences in regulatory regions of downstream targets (Kagaya
480 et al., 1999; Castillejo and Pelaz, 2008; Osnato et al., 2012; Matías-Hernández et al.,
481 2016).

482 In this study, we focused on the four rice *RAV* genes which display striking similarities
483 with four *RAV* genes of *Arabidopsis* (Supplemental Fig. S15) that were already de-
484 scribed as regulators of different aspects of plant development and stress responses.
485 Specifically, AtRAV1 and AtRAV1-like redundantly control leaf senescence (Woo et al.,
486 2010), AtRAV1 and TEM2 modulate sensitivity to drought and salinity (Fu et al., 2014),
487 TEM1 and TEM2 repress trichome formation (Matías-Hernández et al., 2016) and floral
488 transition under inductive and non-inductive photoperiods (Castillejo and Pelaz, 2008;
489 Osnato et al., 2012) as well as in response to low temperatures (Marín-González et al.,
490 2015) and to plant age (Aguilar-Jaramillo et al., 2019). Interestingly, preliminary co-
491 expression analyses suggested that *OsRAV9* and *OsRAV11* could act in signal trans-
492 duction pathways activated in response to abiotic stresses. Nevertheless, *OsRAV9* and
493 the closely related *OsRAV8* could also act in Gene Regulatory Networks controlling the
494 transition from vegetative to reproductive growth in the leaf and in the apical meristem,
495 respectively.

496

497 ***OsRAV9/OsTEM1* is a novel player in flowering**

498 Although phylogenomics and phylogenetic analyses revealed that *OsRAV* genes might
499 have originated from duplication events from a common ancestor after speciation and

500 separation of monocots and dicots, it is difficult to draw conclusions from orthology with
501 AtRAVs. Furthermore, the expression domains of the four *OsRAV* paralogous genes
502 appear to have diversified likely due to polymorphisms in their regulatory regions. Re-
503 gardless of the remarkable similarities in the gene structures and coding sequences,
504 *OsRAV8* and *OsRAV9* are expressed in different tissues. Indeed, *OsRAV9* mRNA is
505 abundant in juvenile leaves, and its reduction marks the transition to the adult phase
506 when plants acquire the competence to flower, whereas the transcripts of *OsRAV8* are
507 detected in the apical meristem and its levels also decrease at floral transition when IM
508 identity genes are activated (Gomez-Ariza et al., 2019). Therefore, at least *OsRAV9*
509 displayed an expression pattern that resembles that of *TEM* genes in *Arabidopsis*.
510 Supporting the functional conservation, the ectopic expression of *OsRAV9* in *Ara-*
511 *bidopsis* plants correlated with the repression of the *TEM* targets *FT* and *AtGA30X1*
512 and delayed flowering time. In addition, silencing of *OsRAV9/OsTEM1* in transgenic
513 rice lines resulted in early flowering due to up-regulation of the floral activators *Os-*
514 *MADS14* and *Hd3a*.

515 The mechanism of action seems to be different in the two species. To avoid precocious
516 flowering, *Arabidopsis* *TEMs* directly target the florigens *FT* (Castillejo and Pelaz,
517 2008) and *AtGA3ox1/2* (Osnato et al., 2012), whereas *OsTEM1* might regulate *Hd3a*
518 indirectly via repression of *OsMADS14* as proposed in Fig. 8A. Although this *AP1/FUL-*
519 *like* gene is expressed at high levels in reproductive tissues, its mRNA accumulates
520 also during the vegetative phase. Accordingly, an additional role for *OsMADS14* as
521 activator of the florigen in the leaf has been previously proposed, likely acting via a
522 positive regulatory loop with *Hd3a* (Kobayashi et al., 2012). Actually, knock-down lines
523 silencing *OsMADS14*, *OsMADS15*, *OsMADS18* and *OsMADS34* display delayed flow-
524 ering (Kobayashi et al., 2012), and conversely transgenic rice ectopically expressing
525 *OsMADS14* and *OsMADS18* are early flowering (Jeon et al., 2000; Fornara et al.,
526 2004). A very recent study also indicates that *AP1*-like genes could regulate drought-
527 escape; indeed, the early flowering phenotype under drought conditions correlates with
528 increased expression of *OsMADS18* (Groen et al., 2020).

529 Upon floral transition, the FAC activates the expression of *OsMADS14*, together with
530 *OsMADS15*, *OsMADS18* and *OsMADS34*, which specify IM identity and trigger the
531 development of reproductive structures (Kobayashi et al., 2012; Kobayashi et al.,
532 2010). Based on transcriptomics analysis, we speculate that *OsRAV8* could play a role
533 in the maintenance of the vegetative state of the apical meristem, thus preventing the
534 formation of the rachis under non inductive conditions.

535

536 **Mechanisms controlling floral transition in cereals**

537 It has long been known that AP1/FUL-like proteins control seasonal flowering in cere-
538 als growing in temperate regions (Fjellheim et al., 2014). Precisely, the floral transition
539 is triggered by the activation of *VERNALIZATION 1-like* (*VRN1-like*) and *FT-like* genes
540 in wheat leaves in response to increasing day-length and prolonged exposure to low
541 temperatures (Danyluk et al., 2003; Shimada et al., 2009). At least in wheat, *VRN1*
542 regulates flowering by directly binding the promoter of the downstream target *FT-like1*
543 (Deng et al., 2015; Tanaka et al., 2018). Surprisingly, the function of AP1/FUL-like pro-
544 teins as floral activators acting in leaves seems to be well conserved in rice (Jeon et
545 al., 2000; Kobayashi et al. 2012), despite the fact that it is a cereal crop of tropical
546 origin that does not require vernalization. Currently, we propose a novel mechanism
547 that is largely independent from previously described molecular networks determining
548 heading date in rice (Tsuji et al., 2013). Interestingly, the presence of TEM orthologs in
549 the Poacea family (Supplemental Fig. S1) opens up the intriguing possibility that the
550 RAV-AP1-FT regulatory module could be conserved among tropical (Oryza tribe) and
551 temperate (Triticeae tribe) cereals.

552 Moreover, as mentioned above AtRAV1 and TEM2 seem to modulate sensitivity to
553 drought and salinity (Fu et al., 2014), OsTEM1 has been recently shown to play a role
554 in response to abiotic stresses (OsRAV2, Duan et al., 2016), and OsTEM1 expression
555 was reduced in plants growing under drought conditions (Plessis et al., 2015) where
556 the transcription of OsMADS18 was increased (Groen et al., 2020). Therefore, RAV
557 genes could be involved in adaptive growth by modulating heading date in response to
558 environmental limitations and fluctuations, by integrating external and internal physio-
559 logical conditions.

560

561 **Mechanisms controlling floral organ development in rice**

562 In the last decade, genetic and functional genomics analyses in different plant species
563 revealed that flower development is governed by a complex framework based on
564 MADS-domain TFs. Rice members of the grass-specific LOF-SEP clade sequentially
565 regulate different steps of flower development upon the vegetative to reproductive
566 phase change. First, OsMADS34 forms tetrameric complex with the AP1-like factors
567 OsMADS14 and OsMADS15 in the IM to initiate inflorescence branch meristem pri-
568 mordia development from which secondary branches and spikelets differentiate (Koba-
569 yashi et al., 2012). After the formation of rudimentary glumes and sterile lemmas, the
570 spikelet meristem is converted into floret meristem which produces different floral or-

571 gans. Another grass-specific LOF-SEP factor, OsMADS1, plays a central role in the
572 determination of floral organ identity, as it interacts physically and genetically with AP3-
573 like and AG-like factors which are involved in the development of male and female re-
574 productive organs (Li et al., 2011; Khanday et al., 2013; Khanday et al., 2016). Recent-
575 ly, transcriptomics analysis performed on OsMADS1 knock-down panicles at very early
576 stages of flower development (Khanday et al., 2013) unveiled mis-regulation of floral
577 homeotic *MADS*-box genes as well as down-regulation of genes encoding B3-type
578 TFs, including OsARFs and OsRAV11 (Supplemental Table S2). Precisely, the ARF-
579 type TFs OsETTIN1 and 2 control the differentiation of apical tissues of the carpel, and
580 at least OsETTIN2 is directly regulated by OsMADS1 (Khanday et al., 2013). Intriguing-
581 ly, the aberrant carpel morphology of loss of OsETTINs (Khanday et al., 2013) is simi-
582 lar to that of transgenic lines with reduced level of OsRAV11 and OsRAV12 (Fig. 7B).

583

584 **OsRAV11 and OsRAV12 regulate the development of gynoecium**

585 In *Arabidopsis*, the early flowering *TEM* loss of function mutants do not display evident
586 alterations of flower development. Nonetheless, the late flowering *TEM* overexpressing
587 lines show fertility defects and produce shorter siliques containing fewer seeds. This
588 phenotype could be related to decreased content of GA, or alternatively to misregula-
589 tion of genes involved in the regulation of later organ development. In rice, Further mo-
590 lecular analyses suggest that RAV genes might have acquired additional functions at
591 later stages of vegetative and reproductive growth. Indeed, OsRAV11 and OsRAV12
592 are highly expressed not only in mature leaves at ripening, indicating a possible regula-
593 tory role in leaf senescence similarly to AtRAV1, but also in the gynoecium before ferti-
594 lization. Actually, functional characterization of knock-down and knock-out mutants
595 points at a novel function for OsRAV11 and OsRAV12 in the correct formation of fe-
596 male reproductive organs. Indeed, the whole basal-apical pattern was distorted; the
597 ovary was enlarged in *osrav11* and misshapen in *OsRAV11/12-i* plants. Down-
598 regulation of both genes resulted in reduced stigmas and larger carpels than in single
599 *osrav11* mutants, which may suggest a redundant function of these genes in carpel
600 development and differentiation. Therefore, we hypothesize a role for OsRAV11 and
601 OsRAV12 in the determination of the basal-apical pattern of the pistil, perhaps in paral-
602 lel with ARFs. Furthermore, we propose that at least OsRAV11 may control the differ-
603 entiation of the gynoecium downstream of MADS-domain TFs (Fig. 8B), due to its mis-
604 regulation in the floral homeotic mutants *osmads1*, *osmads13* and *osmads16* (Fig. 6, A
605 and C).

606 Besides the specification of the identity of different floral organs, OsMADS1 has been
607 proposed as a key trait of agronomical interest. During spikelet development, Os-
608 MADS1 also interacts with Gy subunits of GS3 and DEP1 (Liu et al., 2018), which
609 regulate its transcriptional activity on a common set of target genes involved in the de-
610 termination of seed size and shape. The dominant negative mutation *osmads1(lgy3)*
611 causes an alternatively spliced protein variant and correlates with more slender grain,
612 as the mutated protein promotes cell proliferation in longitudinal direction (Liu et al.
613 2018). Pyramiding of *lgy3* and *dep1-1* alleles in a japonica cultivar resulted not only in
614 a 10% increase in grain yield, but also improved grain length-to-width ratio and grain
615 chalkiness (Liu et al. 2018). We can hypothesize that the elongated seed phenotype
616 associated to down-regulation of OsMADS1 (Liu et al., 2018) could be mediated
617 through the down-regulation of B3 genes including OsRAV11 since a similar slender
618 phenotype is observed in *osrav11* and *OsRAV11/12-i* carpels. Further analyses are
619 required to understand the interactions with putative upstream regulators, interacting
620 proteins and downstream targets constituting the molecular network that regulates the
621 development of the gynoecium in rice.

622

623

624 MATERIALS AND METHODS

625 RAV sequence analyses

626 OsRAV8 and *AtTEM1* were used as queries in phylogenomics analyses in sequenced
627 land plants species (eudicotyledons, monocotyledones, Amborellales) using gene tree
628 tool of Pan-taxonomic Compara (<http://www.gramene.org/>). TEM1 protein sequence
629 was used as query in a BLAST-P search against the proteomes of *Arabidopsis* (*Ara-
630 bidopsis thaliana*) and rice (*Oryza sativa*).

631 TF binding sites (CArG box for MADS-domain proteins, consensus sequence com-
632 posed of CAACA and CCTG elements at a distance of 3-9 nucleotides for RAV pro-
633 teins) were searched in the regulatory regions of genes of interest by using the Pro-
634 moter Analysis tool of Plant PAN3.0 (<http://plantpan.itps.ncku.edu.tw/index.html>).

635 Gene and protein sequences were retrieved from TAIR (www.arabidopsis.org) and
636 GRAMENE (www.gramene.org).

637

638 Phylogenetic analyses

639 Analysis of phylogenetic relationships between 24 RAV-related full length protein se-
640 quences and construction of phylogenetic tree were performed using tools available at
641 <http://www.phylogeny.fr/> (Dereeper et al., 2008). MUSCLE was used for protein se-
642 quences alignment, and G-blocks for a more stringent selection. PhyML was used for
643 phylogenetic analysis with bootstrapping procedure (N=100) as statistical test for
644 branch support, and TreeDyn for tree visualization. Sequence Diversity Diagram
645 (SeDD) was used to compare two sets of RAV protein sequences from *Arabidopsis*
646 *thaliana* and *Oryza sativa* and visualize conserved versus diversified positions in the
647 two species. Motif clustering analysis was carried out using Surveyed conserved motif
648 ALignment diagram and the Associating Dendrogram (SALAD version 3,
649 <https://salad.dna.affrc.go.jp/salad/en/>) with OsRAV9 sequence, and the prediction of
650 functional and structural motifs in RAV protein sequences via web-based tools of
651 ExPAsY (<https://prosite.expasy.org/scanprosite>; Castro et al., 2006).

652

653 **Expression profiles**

654 Expression profiles of rice *RAV* genes were inferred from a large collection of microar-
655 ray data derived from different tissues at different developmental stages under natural
656 field conditions (<http://ricexpro.dna.affrc.go.jp/>). Co-Expression Analyses were carried
657 out by using *OsRAV9* as single guide genes and searching the Rice Functionally Re-
658 lated gene Expression Network Database (RiceFREN, <http://ricefrend.dna.affrc.go.jp/>), the Plant Co-expression Database (PLANEX, Yim et
659 al., 2013) and the Rice Oligonucleotide Array Database (ROAD, Cao et al., 2012).

660

661

663 **Plant material and growth conditions**

664 Wild-type and transgenic *Arabidopsis thaliana* (Col-0 background) seeds were sown on
665 soil pots and plants were grown under LD (16 hours light/8 hours dark at 22°C) until
666 maturity. Wild-type and transgenic rice (*O. sativa subspecies Japonica*) seeds were
667 surface sterilized and sown on Murashige Skoog medium with 30g/l Sucrose. After
668 germination, seedlings were transferred to soil pots and grown under controlled condi-
669 tions until maturity (SD: 8 hours light at 28°C, 16 hours dark at 24°C; 12/12: 12 hours
670 light at 28°C, 12 hours dark at 24°C or LD; LD:16 hours light at 28°C, 8 hours dark at
671 24°C). For functional characterization of OsRAV genes, transgenic lines (cv. Nippon-
672 bare) and insertion mutant (PFG_2A-10680, cv. Hwayoung) were used. For expression

673 analysis, segregating progenies of floral homeotic mutants (cv. Dongjin) were geno-
674 typed (Supplemental Tables S3), grown for 10 weeks in LD and then transferred to
675 inductive conditions. Pools of developing inflorescences were harvested 3 weeks after
676 floral transition from homozygous mutants (*osmads1*, *osmads13*, *osmads16*) and wild-
677 type plants.

678

679 **Cloning and generation of *Arabidopsis* and rice transgenic plants**

680 The coding sequence of *OsRAV9/OsTEM1* was amplified using primer sets SPp538-
681 SPp541, sub-cloned in pCRII and pENTR-3C by restriction/ligation, and introduced in
682 pALLIGATOR2 vector downstream of Pro35S by Gateway technology (Supplemental
683 Table S4). *Arabidopsis* plants (Col-0, *tem1-tem2*) were transformed with the
684 *Pro35S:OsTEM1* construct by floral dip, and GFP-positive seeds were selected by fluo-
685 rescence microscopy. For the generation of the RNAi constructs, the Gene Sequence
686 Tags (GSTs) specific for the 3' ends of *OsRAV9/OsTEM1* and *OsRAV11* were ampli-
687 fied using primer sets SPp516-SPp539 and SPp527-SPp537 respectively, then sub-
688 cloned in pCRII, and afterwards cloned in pENTR-3C by restriction/ligation (as KpnI-
689 EcoRV fragments). The resulting constructs were digested with PvuI prior to LR re-
690 combination to pBIos-378 plant expression vector. Scutellum-derived rice calli (cv Nip-
691 ponbare) were transformed by *Agrobacterium* co-cultivation. Independent transfor-
692 mation events were selected, 11 for *OsRAV9* and 7 for *OsRAV11* constructs, regener-
693 ated and propagated. Plants that underwent regeneration but did not contain the trans-
694 genic cassette were used as transformation control. The primers used for genotyping
695 and cloning are listed in Supplemental Tables S3 and S4.

696

697 **Direct binding of *OsTEM1* to downstream genes**

698 To generate the set of reporter vectors, different promoter regions of *OsMADS14* and
699 *Hd3a* were cloned as Sall-PstI fragments in a modified pGreenII 0800-LUC carrying
700 *Pro35S:LUC* and *Pro35S:REN* (as internal control to estimate the proportion of trans-
701 formed protoplasts). Primers SPp1764- SPp1765 were designed to introduce muta-
702 tions at the RAV binding site contained in *ProOsMADS14* by PCR-based method. The
703 corresponding reporter vector was used as template for site-directed mutagenesis (15
704 cycles: 10'' at 98°C, 20'' at 66°C, 20'' at 66°C), and the resulting vector employed in
705 transactivation assays. Protoplasts were isolated from calli by digesting the cell-wall
706 with Macerozyme R-10 and Cellulase (Yakult Pharmaceuticals), and transfected with
707 different combinations of reporter *Pro35S:OsTEM1* and effector constructs using PEG.

708 After 18 hours incubation in darkness at 24°C, transformed protoplasts were pelleted
709 and resuspended in homogenization buffer for RNA extraction. Transactivation activity
710 of OsTEM1, based on the relative ratio of mRNA abundance of *Luciferase* and *Renilla*
711 reporter genes, was assessed by RT-qPCR. The primers used for cloning and expres-
712 sion analyses are listed in Supplemental Tables S4 and S5.

713

714 **RNA extraction and expression analyses**

715 For expression analyses in *Arabidopsis*, pools of 20 seedlings grown for one week un-
716 der LD were collected at ZT12. For expression analyses in rice, pools of 10-15 sam-
717 ples from different tissues and/or developmental stages were collected at ZT13 unless
718 otherwise stated. RNA was extracted with PureLink RNA mini kit (Ambion) and treated
719 with DNasel RNase free (Ambion). For large scale experiments, RNA was extracted
720 with Maxwell RSC Plant RNA kit (Promega) and DNase treatment was performed on-
721 column. 1 µg of DNase-treated RNA was retro-transcribed with SuperScript III (Invitro-
722 gen), and cDNA was used for RT-qPCR with Light Cycler 480 SYBR Green I master on
723 Light Cycler 480 II (Roche). Three biological replicates and three technical replicates
724 were performed. In situ hybridization was performed as previously reported (Dreni et
725 al., 2007). The primers used for expression analyses are listed in Supplemental Table
726 S5.

727

728 **Phenotypic Analyses**

729 Morphological analysis of reproductive structures was performed by Optical Microscopy
730 (Olympus DP71) and Scanning Electron Microscopy. For SEM, flowers at anthesis
731 were fixed in 2.5% v/v glutaraldehyde in 0.1 M P-buffer (pH 7.4) overnight at 4°C,
732 washed 4 times for 10 minutes in 0.1 M P-buffer, post-fixed in 1% osmium tetroxide
733 with 0.7% ferrocyanide in P-buffer, washed in water, dehydrated in an ascending etha-
734 nol series (50, 70, 80, 90, and 95% for 10 min each and twice with 100% ethanol), and
735 dried by critical-point drying with CO₂. Alteration on the morphology of the seed were
736 analysed by using the Smart-grain software (Tanabata et al., 2012). At least 100 seeds
737 per genotype (for three independent biological replicates) were spread uniformly on the
738 glass with a black background, and images were captured with HP Scanner at 300 dpi.
739 The software determined seed shape parameters such as seed length, width, perime-
740 ter and area, and also calculated length-to-width ratio and circularity.

741

742 **Statistical analyses**

743 All statistical analyses are shown in Supplemental Table S6. Statistical significance of
744 each experiment was determined by using GraphPad Prism 7. For flowering time phe-
745 notype, we chose one-way ANOVA, multiple comparison were then corrected with
746 Dunnet's or Dunn's tests. For other kind of data, we compared two columns by using
747 unpaired t-test (two-tailed options), confidence Interval 95%.

748 Following instructions of GraphPad Prism, we first transformed ratios in log of ratios
749 ($Y=\log(Y)$), for Fig. 5 and Supplemental Fig. S11. Then we created a column data table
750 and enter two columns of data (control – OsTEM1, +OsTEM1) with matched values on
751 the same row. We chose t tests from the list of column analyses, and selected condi-
752 tions as follows: Experimental design: Paired; Assume Gaussian distribution: Yes;
753 Choose test: Ratio paired t test. On the second tab of the t test dialog, we chose to
754 compute +OsTEM1 vs – OsTEM1.

755

756 **Accession numbers**

757 Sequence data from this article can be found in the GenBank/EMBL data libraries un-
758 der the following accession numbers.

759 AtRAV locus identifiers: AT1G13260 (AtRAV1), AT3G25730 (AtRAV1-like), At1g25560
760 (AtRAV2-like/TEM1), AT1G68840 (RAV2/TEM2), At1g50680 (AtRAV3), At1g51120
761 (AtRAV3-like).

762 OsRAV locus identifiers: LOC_Os10g39190 (OsRAV2), LOC_Os08g06120 (OsRAV3),
763 LOC_Os03g02900 (OsRAV4), LOC_Os04g49230 (OsRAV5), LOC_Os02g45850
764 (OsRAV6), LOC_Os11g05740 (OsRAV7), LOC_Os01g04750 (OsRAV8),
765 LOC_Os01g04800 (OsRAV9/OsTEM1), LOC_Os01g49830 (OsRAV11),
766 LOC_Os05g47650 (OsRAV12).

767 OsMADS locus identifiers: LOC_Os03g54160 (OsMADS14); LOC_Os07g01820 (Os-
768 MADS15); LOC_Os07g41370 (OsMADS18); LOC_Os03g54170 (OsMADS34);
769 LOC_Os03g03100 (OsMADS50/OsSOC1); LOC_Os01g69850 (OsMADS51)

770

771 **SUPPLEMENTAL DATA**

772 **Supplemental Figure S1.** Phylogenomic analysis of *TEMPRANILLO (TEM)* homologs
773 in sequenced land plants.

774 **Supplemental Figure S2.** Analysis of genes encoding AP2-B3 (RAV) proteins.

775 **Supplemental Figure S3.** Similarity clustering based on distribution patterns of known
776 conserved motifs in RAV proteins.

777 **Supplemental Figure S4.** Similarity clustering based on distribution patterns of con-
778 served features related to post-translational modification.

779 **Supplemental Figure S5.** Analysis of *RAV* genes in *Oryza sativa* ssp *Japonica*. A,
780 Distribution of *RAV* genes in the rice reference genome (Nipponbare ecotype).

781 **Supplemental Figure S6.** GO analysis of genes strongly coexpressed with *OsRAV9*.

782 **Supplemental Figure S7.** GO test of genes negatively correlated with *OsRAV9* and
783 expression analysis of genes acting in apical meristems at floral transition in rice.

784 **Supplemental Figure S8.** Inferred expression profiles of *OsRAV* genes during plant
785 development.

786 **Supplemental Figure S9.** Analysis of T_1 and T_2 transgenic lines ectopically expressing
787 *OsRAV9* and *OsRAV11* in *Arabidopsis*.

788 **Supplemental Figure S10.** Molecular and phenotypic analysis of T_1 transgenic rice
789 lines silencing *OsRAV9*.

790 **Supplemental Figure S11.** Transactivation activity of *OsTEM1* on floral activators in
791 rice protoplasts.

792 **Supplemental Figure S12.** Expression analyses of genes involved in the floral transi-
793 tion in *OsRAV9-i* rice lines.

794 **Supplemental Figure S13.** Analyses of *OsRAV11*-*OsRAV12*.

795 **Supplemental Figure S14.** Molecular characterization of *OsRAV11*-*OsRAV12*.

796 **Supplemental Figure S15.** Analysis of RAV proteins from *Arabidopsis thaliana* and
797 *Oryza sativa*.

798 **Supplemental Table S1.** List of *RAV* genes in *Oryza sativa* reported by Swaminathan
799 et al., 2008.

800 **Supplemental Table S2.** List of genes encoding B3-domain TFs down-regulated in
801 *OsMADS1* knock-down panicles (modified from Khanday et al., 2013).

802 **Supplemental Table S3.** List of primers used for genotyping.

803 **Supplemental Table S4.** List of primers used for cloning.

804 **Supplemental Table S5.** List of primers used for expression analyses.

805 **Supplemental Table S6.** Statistical analyses.

806 **Supplemental Dataset S1.** Co-expression analyses

807

808 **ACKNOWLEDGMENTS**

809 Dr. Marti Bernardo, Dr. Jordi Morata and Dr. Victor Gonzalez for advice on bioinformat-
 810 ic analyses; Dr. Sebastien Santini for *Phylogeny.fr* tool; Elia Lacchini for technical help
 811 with set-up of genotyping of *osmads1* mutants, Dr. Ludovico Dreni for help with rice
 812 transgenic plants, and Pilar Fontanet for advice and technical help on protoplast co-
 813 transformation assays. We thank the Servei de Microscopia at the Universitat Autònoma
 814 de Barcelona for help with SEM. Dr. Paula Suárez-López for critical reading of the
 815 manuscript.

816

817 **Tables**

818 **Table 1. List of the top 20 genes negatively correlated with OsRAV9.** In bold,
 819 genes involved in the regulation of reproductive development.

Weighted PCC	Locus Identifier	Gene name	Description
-0.568	LOC_Os03g54160	<i>OsMADS14</i>	MADS-domain containing Transcription Factor
-0.542	LOC_Os03g54170	<i>OsMADS34</i>	MADS-domain containing Transcription Factor
-0.526	LOC_Os07g01820	<i>OsMADS15</i>	MADS-domain containing Transcription Factor
-0.497	LOC_Os04g13150		Cyclin-like F-box domain containing protein
-0.491	LOC_Os10g06560		cyclin-dependent kinase G-1
-0.477	LOC_Os09g19500		Protein kinase-like domain containing protein
-0.476	LOC_Os01g11940	<i>OsFT-like1</i>	Similar to SP3D
-0.464	LOC_Os01g19880		Conserved hypothetical protein
-0.463	LOC_Os10g06510		Protein kinase-like domain containing protein
-0.458	LOC_Os02g55990		Longin-like domain containing protein.
-0.451	LOC_Os07g17230	<i>OsWRKY123</i>	WRKY-domain containing Transcription Factor
-0.446	LOC_Os05g43930	<i>OMT</i>	Similar to O-methyltransferase ZRP4 (EC 2.1.1.-)
-0.434	LOC_Os11g31770		Conserved hypothetical protein
-0.433	LOC_Os05g38290		Similar to Protein phosphatase 2C (PP2C)
-0.4315	LOC_Os02g52780	<i>bZIP</i>	Similar to ABA-responsive element binding protein 2 (AREB2).

-0.423	LOC_Os03g04990		Conserved hypothetical protein
-0.424	LOC_Os06g06320	<i>Hd3a</i>	HEADING DATE 3A
-0.422	LOC_Os12g13910		Conserved hypothetical protein
-0.411	LOC_Os09g27680		Conserved hypothetical protein
-0.407	LOC_Os08g36340	<i>HAK4</i>	Similar to HIGH-AFFINITY POTASSIUM TRANSPORTER 4

820

821 **FIGURE LEGENDS**

822 **Figure 1.** Phylogenetic analysis of RELATED TO ABI3 AND VP1 (RAV) proteins in
 823 model species. Tree representing the most related RAV-like proteins from *Arabidopsis*
 824 *thaliana* (At) and *Oryza sativa* (Os) retrieved using TEMPRANILLO1 (TEM1) as query
 825 in a BLAST-P search, alignment with MUSCLE, and selected with G-blocks. TEM1 and
 826 TEM2 are RAV2-like and RAV2, respectively. Phylogenetic analysis with bootstrapping
 827 procedure (N=100) as statistical test for branch support was carried out with PhyML,
 828 and tree visualization with TreeDyn. Scale bar indicates the number of substitutions per
 829 site, values in red indicate percentage branch support values. 1

830 **Figure 2.** Patterns of *OsRAV* genes expression during plant development. A to C,
 831 Transcript levels of *OsRAVs*, relative to *OsUBQ*, in vegetative and reproductive tissues
 832 of wild-type plants. *OsRAV9* in light green, *OsRAV11* in light lilac and *OsRAV12* in dark
 833 lilac. A, RT-qPCR in roots, stems, and second leaf (L2) dissected from 1-week-old
 834 seedlings. B, RT-qPCR in mature leaves (L5, L6, L7) dissected from 10-week-old adult
 835 plants. C, RT-qPCR in mature pistils and fertilized ovaries 1 and 3 days after pollination
 836 (DAP). D, Transcript abundance of *PPS* (white), *OsRAV9* and *OsRAV11*, relative to
 837 *OsUBQ*, in juvenile (L2) and adult (L3-L4-L5) leaves. At week 2, L3 is formed and L4 is
 838 emerging. At week 3, L4 expands and L5 is emerging. At week 4, L5 is fully expanded.
 839 Expression data are mean value of three biological replicates, and error bars represent
 840 SD.

841

842 **Figure 3.** Late flowering phenotype of *Arabidopsis* (*Arabidopsis thaliana*) plants ex-
 843 pressing *OsRAV9*. A, Representative images of wild-type (wt, left) and *OsRAV9-E*
 844 transgenic (right) plants grown for 4 weeks under long days (LD). Scale bar indicates 1
 845 cm. B and C, Flowering time scored as number of rosette leaves and number of days
 846 to flower of wild-type (grey) and *OsRAV9-E* lines (green) grown under LD. D to F, Rela-
 847 tive expression levels of *OsRAV9* and TEM1 downstream targets in wild-type and rep-

848 representative T_3 *OsRAV9-E* lines grown for 1 week under LD. D, Ectopic expression of
849 *OsRAV9* in transgenic *Arabidopsis* lines. E and F, Down-regulation of *FT* and
850 *AtGA3ox1* in *OsRAV9-E* lines compared to wild-type.

851 Flowering time data are the average of 25 plants each genotype, with standard error of
852 the mean. Three biological replicates gave similar results, and one was chosen as rep-
853 resentative. Data were analyzed by one-way ANOVA followed by Dunnett's multiple
854 comparisons test between wild-type and transgenic lines. Asterisks indicate statistical
855 significance, with * P-value<0,05. Expression data are reported as mean value of three
856 biological replicates; error bar represents the standard error of the mean. *AtUBQ10*
857 was used for normalization.

858

859 **Figure 4.** Role of *OsRAV9* in heading date. A, Diurnal oscillation of *Hd3a* and *OsRAV9*
860 expression in leaves of 4-week-old wild-type (wt) plants. Grey block indicates night. B,
861 Mutually exclusive expression patterns of *Hd3a* and *OsRAV9* in leaves throughout
862 wild-type (wt) plant development. Grey block indicates floral transition. C to D, Scatter
863 plots representing heading date as number of days to flower of wild-type (in grey) and
864 *OsRAV9-i* plants (in light green) grown under inductive photoperiods (8h light/16h dark,
865 12h light/12h dark). Lines represent the median with 95% of CI. E, Early flowering phe-
866 nototype of a selected *OsRAV9* silencing line (*RAV9-i* #3, right) compared to wild-type
867 (left) 100 DAG. Bar represent 10 cm. F, Close-up view showing wild-type panicle at the
868 booting stage and *OsRAV9-i* panicle at anthesis. For molecular analyses, plants were
869 grown under 12 hours light/12 hours dark at 28°C, whereas for heading date plants
870 were grown under different daylengths. Expression data are reported as mean value of
871 three biological replicates; error bar represents the standard error of the mean. Flower-
872 ing time data are the average of 18–20 plants each genotype. Three biological repli-
873 cates gave similar results, and one was chosen as representative. Data were analyzed
874 by one-way ANOVA followed by Dunnett's multiple comparisons test between wild-type
875 and transgenic lines. Asterisks indicate statistical significance, with * P-value<0,05, **
876 P-value<0,033.

877

878 **Figure 5.** Interaction between *OsRAV9/OsTEM1* and floral activators. A, Non canoni-
879 cal RAV binding site in the promoter of *Hd3a*, 785 bp upstream of the TSS. B, Perfect
880 RAV binding site in the promoter of *OsMADS14*, 2250 bp upstream of the TSS, and
881 mutated version (right). Arrows represent oligonucleotides used to amplify fragments of
882 *ProHd3a* and *ProOsMADS14* without RAV binding sites (Ha and Ma, in orange) and
883 with RAV binding sites (Hb and Mb, in green). C and E, Transactivation activity of
884 *OsTEM1* in transiently transformed protoplasts, reported as ratio of transcript levels of

885 *LUC* and *REN* reporter genes relative to *UBQ*. C, RT-qPCR of protoplasts co-
886 transformed with *Pro35S:OsTEM1* and reporter vectors containing sequences of
887 *ProHd3a* (Ha in grey, Hb in green). D, RT-qPCR of protoplasts co-transformed with
888 *Pro35S:OsTEM1* and reporter vectors containing sequences of *ProOsMADS14* (Ma in
889 grey, Mb in green). E, Analysis of protoplasts co-transformed with *Pro35S-OsTEM1*
890 and reporter vectors containing sequences of *ProOsMADS14* (Mb in green, mutated
891 Mb in dark green). Values are the mean of three independent replicates. F to H, ex-
892 pression analysis of genes involved in heading date in independent T_2 lines (green)
893 compared to wild-type plants grown for 28, 35 and 42 days under inductive conditions.
894 F, Down-regulation of *OsRAV9/OsTEM1* in silencing lines (green). G and H, Up-
895 regulation of the floral activators *OsMADS14* and *Hd3a* in silencing lines (green lines)
896 compared to wild-type (black line). Expression data are mean value of three biological
897 replicates with three technical replicates each, and error bars represent SD.
898

899 **Figure 6.** Molecular and functional characterization of *OsRAV11*. A to C, Mis-
900 regulation of *OsRAV11* in floral homeotic mutants. A, Down-regulation of *OsRAV11* in
901 *osmads1* developing inflorescences. B, Up-regulation of *OsRAV11* in *osmads16* and
902 *osmads13* developing inflorescences. C, Strong activation of *OsRAV11* in specific cell
903 types (floral meristem and ovule primordia) isolated from *osmads13* mutant flowers. D,
904 Schematic representation of the T-DNA insertion in the 5' UTR of *OsRAV11*. Arrows,
905 primers used for genotyping. E, Down-regulation of *OsRAV11* in pistils dissected from
906 *osrav11* mutant flowers at maturity. F to H, Morphological analyses of female reproduc-
907 tive structures at maturity. F, Representative images of wild-type and *osrav11* carpels
908 dissected from mature flowers at anthesis obtained by optical Microscopy. Bar, 1 mm.
909 G and H, Representative images of reproductive structures obtained by Scanning Elec-
910 tron Microscopy (SEM). G, Wild-type and *osrav11* carpels upon fertilization. Glumes
911 were partly removed to show female reproductive organs. Bar, 500 μ m. H, Apical tis-
912 sues of wild-type and *osrav11* gynoecia after pollination. Bar, 100 μ m. I, Bar-plots rep-
913 resenting the weight of seed produced by wild-type (in grey) and *osrav11* (in white)
914 plants grown in the greenhouse under inductive conditions. Expression data are re-
915 ported as mean value of three biological replicates; error bar represents the standard
916 error of the mean. Phenotypic data are the average of three biological replicates of the
917 weight of 100 seeds each genotype, with standard error of the mean. Statistical signifi-
918 cance was examined by two tailed unpaired t-test, with * P-value<0,05.
919

920 **Figure 7.** Morphogenetic effects of *OsRAV11/OsRAV12* silencing in reproductive
921 phase. A, representative images of mature flowers dissected from wild-type (wt) and
922 *OsRAV11/12-i* inflorescences. Arrows indicate the position of the stigmas. B, repre-
923 sentative images of mature carpels dissected from wild-type and one T_3 *OsRAV11/12-i*
924 flowers obtained by optical microscopy. Bar, 1mm. C, Down-regulation of *OsRAV11*
925 and *OsRAV12* in mature pistils of two representative T_3 *OsRAV11/12-i* lines as com-
926 pared to wild-type. Expression data are reported as mean value of three biological rep-
927 licates with standard error of the mean. Data were analyzed by ordinary one-way
928 ANOVA followed by Dunnett's multiple comparisons test between wild-type and trans-
929 genic lines. Asterisks indicate statistical significance, with * P-value<0,05 and ** P-
930 value<0,033. D, fertility defects of mature *OsRAV11/12-i* panicles compared to wild-
931 type.

932

933 **Figure 8.** Model for interaction between RAV and MADS factors during reproductive
934 growth. A, *OsRAV9* represses the transcription of *OsMADS14*, a positive regulator of
935 the florigen *Hd3a*, in the leaf. Upon floral transition, the complex *Hd3a-OsFD* activates
936 the expression of IM identity genes *OsMADS14-15-18-34* in the apical meristem. B,
937 The expression of *OsMADS1* in developing flowers marks the formation of lem-
938 ma/palea (in green) and central carpel (in pink) from the FM, whereas the presence of
939 *OsMADS16* and *OsMADS13* prevents the expression of genes involved in carpel de-
940 velopment in stamen primordia (in yellow) and in ovule primordium (in violet).

941

942 LITERATURE CITED

943

944 **Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H,**
945 **Notaguchi M, Goto K, Araki T.** (2005) FD, a bZIP Protein Mediating Signals from
946 the Floral Pathway Integrator FT at the Shoot Apex. *Science* **309**: 1052–1056.

947 **Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H** (2005) Conservation of the
948 E-Function for Floral Organ Identity in Rice Revealed by the Analysis of Tissue
949 Culture-Induced Loss-of-Function Mutants of the *OsMADS1* Gene. *Plant Molecu-*
950 *lar Biology* **59**: 125–135.

951 **Aguilar-Jaramillo AE, Marín-González E, Matías-Hernández L, Osnato M, Pelaz S,**
952 **Suárez-López P** (2019) TEMPRANILLO is a direct repressor of the microRNA
953 miR172. *Plant J* **100**: 522-535.

954 **An H, Roussel C, Suárez-López P, Corbesier L, Vincent C, Piñeiro P, Hepworth S,**
955 **Mouradov A, Justin S, Turnbull C, Coupland G** (2004) CONSTANS Acts in the
956 Phloem to Regulate a Systemic Signal That Induces Photoperiodic Flowering of

957 *Arabidopsis*. Development **131**: 3615–3626.

958 **Andrés F, Coupland G** (2012) The Genetic Basis of Flowering Responses to Seasonal Cues. *Nature Reviews Genetics* **13**: 627–639.

960 **Aukerman MJ, Sakai H** (2003) Regulation of flowering time and floral organ identity by 961 a MicroRNA and its APETALA2-like target genes. *Plant Cell* **15**: 2730–2741.

962 **Blázquez MA, Soowal LN, Lee I, Weigel D** (1997) LEAFY expression and flower initiation 963 in *Arabidopsis*. Development **124**: 3835–3844.

964 **Cao P, Jung K-H, Choi D, Hwang D, Zhu J, Ronald PC** (2012) The Rice Oligonucleotide 965 Array Database: an atlas of rice gene expression. *Rice (NY)* **5**: e17.

966 **Castillejo C, Pelaz S** (2008) The Balance between CONSTANS and TEMPRANILLO 967 Activities Determines FT Expression to Trigger Flowering. *Curr Biol* **18**: 1338– 968 1343.

969 **Causier B, Ashworth M, Guo W, Davies B** (2012) The TOPLESS Interactome: A 970 Framework for Gene Repression in *Arabidopsis*. *Plant Physiol* **158**: 423–438.

971 **Choudhury S, Panda P, Sahoo L, Panda SK** (2013) Reactive oxygen species 972 signaling in plants under abiotic stress. *Plant Signal Behav* **8**: e23681.

973 **Collani S, Neumann M, Yant L, Schmid M** (2019) FT modulates genome-wide DNA- 974 binding of the bZIP transcription factor FD. *Plant Physiol* **180**: 367-380.

975 **Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona 976 S, Gissot L, Turnbull C, Coupland G** (2007) FT Protein Movement Contributes 977 to Long-Distance Signaling in Floral Induction of *Arabidopsis*. *Science* **316**: 1030– 978 1033.

979 **Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F** (2003) TaVRT-1, a 980 Putative Transcription Factor Associated with Vegetative to Reproductive Transi- 981 tion in Cereals. *Plant Physiol* **132**: 1849–1860.

982 **de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gastei- 983 ger E, Bairoch A, Hulo N** (2006) ScanProsite: detection of PROSITE signature 984 matches and ProRule-associated functional and structural residues in pro- 985 teins. *Nucleic Acids Res* **34** (Web Server issue): W362-W365.

986 **Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, Trevaskis B** (2015) 987 Direct Links between the Vernalization Response and Other Key Traits of Cereal 988 Crops. *Nat.Commun* **6**: e5882.

989 **Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, 990 Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O** (2008) *Phylogeny.fr: 991 robust phylogenetic analysis for the non-specialist*. *Nucleic Acids Res* **36** (Web 992 Server issue): W465-W469.

993 **Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, and Yoshi-**

994 **mura A** (2004) Ehd1, a B-Type Response Regulator in Rice, Confers Short-Day
995 Promotion of Flowering and Controls FT-like Gene Expression Independently of
996 Hd1. *Genes Dev* **18**: 926–936.

997 **Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PBF, An G, Colombo L, Kater MM** (2007) The D-Lineage MADS-Box Gene OsMADS13 Controls Ovule
998 Identity in Rice. *Plant J* **52**: 690–699.

1000 **Duan Y B, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB** (2016)
1001 Identification of a Regulatory Element Responsible for Salt Induction of Rice
1002 OsRAV2 through Ex Situ and in Situ Promoter Analysis. *Plant Molecular Biology*
1003 **90**: 49–62.

1004 **Endo-Higashi N, Izawa T** (2011) Flowering Time Genes Heading Date 1 and Early
1005 Heading Date 1 Together Control Panicle Development in Rice. *Plant Cell Physiol*
1006 **52**: 1083–1094.

1007 **Eriksson S, Bohlenius H, Moritz T, Nilsson O** (2006) GA4 Is the Active Gibberellin in
1008 the Regulation of LEAFY Transcription and Arabidopsis Floral Initiation. *Plant
1009 Cell* **18**: 2172–2181.

1010 **Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q** (2006) GS3, a major QTL
1011 for grain length and weight and minor QTL for grain width and thickness in rice,
1012 encodes a putative transmembrane protein. *Theor Appl Genet* **112**: 1164–1171.

1013 **Fjellheim S, Boden S, Trevaskis B** (2014) The Role of Seasonal Flowering Responses
1014 in Adaptation of Grasses to Temperate Climates. *Frontiers in Plant Science* **5**:
1015 e431.

1016 **Fu M, Kang HK, Son SH, Kim SK Nam KH** (2014) A Subset of RAV Transcription
1017 Factors Modulates Drought and Salt Stress Responses ABA-Independently in
1018 Arabidopsis. *Plant Cell Physiol* **55**: 1892–1904.

1019 **Gómez-Ariza J, Brambilla V, Vicentini G, Landini M, Cerise M, Carrera E, Shrestha
1020 R, Chiozzotto R, Galbiati F, Caporali E, López-Díaz I, Fornara F** (2019) A
1021 transcription factor coordinating internode elongation and photoperiodic signals in
1022 rice. *Nat Plants* **5**: 358–362.

1023 **Greenup AG, Sasani S, Oliver SN, Talbot MJ, Dennis ES, Hemming MN, Tresvas-
1024 kis B** (2010) ODDSOC2 is a MADS box floral repressor that is downregulated by
1025 vernalization in temperate cereals. *Plant Physiol* **153**: 1062–1073.

1026 **Groen SC, Ćalić I, Joly-Lopez Z, Platts AE, Choi JY, Natividad M, Dorph K, Mauck
1027 III WM, Bracken B, Cabral CLU, Kumar A, Torres RO, Satija R, Vergara G, Henry A, et al** (2020) The strength and pattern of natural selection on gene expression in rice. *Nature* **578**: 572–576.

1028 **Guo T, Chen K, Dong NQ, Shi CL, Ye WW, Gao JP, Shan JX, Lin HX** (2018) GRAIN
1029 **1030**

1031 SIZE AND NUMBER1 negatively regulates the OSMKKK10-OSMKK4-OSMPK6
1032 cascade to coordinate the trade-off between grain number per panicle and grain
1033 size in rice. *Plant Cell* **30**: 871-888.

1034 **Hartmann U, Hohmann S, Nettestheim K, Wisman E, Saedler H, Huijser P** (2000)
1035 Molecular cloning of SVP: a negative regulator of the floral transition in *Arabidopsis*.
1036 *Plant J* **21**: 351–360.

1037 **Hisamatsu T, King R** (2008) The nature of floral signals in *Arabidopsis*. II. Roles for
1038 FLOWERING LOCUS T (FT) and gibberellin. *J Exp Bot* **59**: 3821–3829.

1039 **Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X** (2009)
1040 Natural variation at the DEP1 locus enhances grain yield in rice. *Nat Genet* **41**:
1041 494-497.

1042 **Jäger K, Wigge P** (2007) FT protein acts as a long-range signal in *Arabidopsis*. *Curr
1043 Biol* **17**: 1050–1054.

1044 **Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua N-H, Park C-M** (2007) The GI-
1045 GANTEA-regulated microRNA172 mediates photoperiodic flowering independent
1046 of CONSTANS in *Arabidopsis*. *Plant Cell* **19**: 2736–2748.

1047 **Kagaya Y, Ohmiya K, Hattori T** (1999) RAV1, a Novel DNA-Binding Protein, Binds to
1048 Bipartite Recognition Sequence through Two Distinct DNA-Binding Domains
1049 Uniquely Found in Higher Plants. *Nucleic Acids Res* **27**: 470–478.

1050 **Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory
1051 J, Harrison MJ, Weigel D** (1999) Activation Tagging of the Floral Inducer FT.
1052 *Science* **286**: 1962–1965.

1053 **Khanday I, Yadav SR, Vijayraghavan U** (2013) Rice LHS1/OsMADS1 Controls Floret
1054 Meristem Specification by Coordinated Regulation of Transcription Factors and
1055 Hormone Signaling Pathways. *Plant Physiol* **161**: 1970–1983.

1056 **Khanday I, Das S, Chongloi GL, Bansal M, Grossniklaus U, Vijayraghavan U**
1057 (2016) Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor
1058 Reveals Its DNA Recognition Properties. *Plant Physiol* **172**: 372–388.

1059 **Kim SL, Lee S, Kim HJ, Nam HG, An G** (2007) OsMADS51 Is a Short-Day Flowering
1060 Promoter That Functions Upstream of *Ehd1*, *OsMADS14*, and *Hd3a*. *Plant Phys-
1061 iol* **145**: 1484–1494.

1062 **Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H,
1063 Nagamura Y, Kyozuka J** (2012) Inflorescence Meristem Identity in Rice Is Speci-
1064 fied by Overlapping Functions of Three AP1/FUL-Like MADS Box Genes and
1065 PAP2, a SEPALLATA MADS Box Gene. *Plant Cell* **24**: 1848–1859.

1066 **Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J** (2010) PANICLE
1067 PHYTOMER2 (PAP2), Encoding a SEPALLATA Subfamily MADS-Box Protein,

1068 Positively Controls Spikelet Meristem Identity in Rice. *Plant Cell Physiol* **51**: 47–
1069 57.

1070 **Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T** (1999) A Pair of Related Genes
1071 with Antagonistic Roles in Mediating Flowering Signals. *Science* **286**: 1960–1962.

1072 **Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M** (2002)
1073 Hd3a, a Rice Ortholog of the Arabidopsis FT Gene, Promotes Transition to Flow-
1074 ering Downstream of Hd1 under Short-Day Conditions. *Plant Cell Physiol* **43**:
1075 1096–1105.

1076 **Komiya R, Yokoi S, Shimamoto K** (2009) A Gene Network for Long-Day Flowering
1077 Activates RFT1 Encoding a Mobile Flowering Signal in Rice. *Development* **136**:
1078 3443–3450.

1079 **Kyozuka J, Kobayashi T, Morita M, Shimamoto K** (2000) Spatially and Temporally
1080 Regulated Expression of Rice MADS Box Genes with Similarity to Arabidopsis
1081 Class A, B and C Genes. *Plant Cell Physiol* **41**: 710–718.

1082 **Lee JH, Ryu HS, Chung KS, Posé D, Kim S, Schmid M, Ahn JH** (2013) Regulation
1083 of temperature-responsive flowering by MADS-box transcription factor repressors.
1084 *Science* **342**: 628–632.

1085 **Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH** (2007) Role of SVP in the con-
1086 trol of flowering time by ambient temperature in Arabidopsis. *Genes Dev* **21**: 397–
1087 402.

1088 **Lee TH, Tang H, Wang X, Paterson AH** (2013) PGDD: A Database of Gene and Ge-
1089 nome Duplication in Plants. *Nucleic Acids Res* **41** (Database issue): D1152–8.

1090 **Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz
1091 E, Yu H** (2008) A repressor complex governs the integration of flowering signals in
1092 Arabidopsis. *Dev Cell* **15**: 110–120.

1093 **Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D** (2011) Rice
1094 MADS6 Interacts with the Floral Homeotic Genes SUPERWOMAN1, MADS3,
1095 MADS58, MADS13, and DROOPING LEAF in Specifying Floral Organ Identities
1096 and Meristem Fate. *Plant Cell* **23**: 2536–2552.

1097 **Li N, Xu R, Duan P, Li Y** (2018) Control of grain size in rice. *Plant Reprod* **31**: 237–
1098 251.

1099 **Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ** (2008) COP1-
1100 Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation
1101 of Flowering in Arabidopsis. *Plant Cell* **20**: 292–306.

1102 **Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, et al**
1103 (2018) G-protein β subunits determine grain size through interaction with MADS-
1104 domain transcription factors in rice. *Nat Commun* **9**: e852.

1105 **Marín-González E, Matías-Hernández L, Aguilar-Jaramillo AE, Lee JH, Ahn JH,**
1106 **Suárez-López P, Pelaz S** (2015) SHORT VEGETATIVE PHASE Up-Regulates
1107 TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures. *Plant Physiol*
1108 **169:** 1214–1224.

1109 **Mathieu J, Yant LJ, Mürdtner F, Küttner F, Schmid M** (2009) Repression of Flower-
1110 ing by the miR172 Target SMZ. *Plos Biol* **7:** e1000148.

1111 **Mathieu J, Warthmann N, Küttner F, Schmid M** (2007) Export of FT protein from
1112 phloem companion cells is sufficient for floral induction in *Arabidopsis*. *Curr Biol*
1113 **17:** 1055–1060.

1114 **Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P,**
1115 **Pelaz S** (2014) RAV Genes: Regulation of Floral Induction and beyond. *Ann Bot*
1116 **114:** 1459–1470.

1117 **Matías-Hernández L, Aguilar-Jaramillo AE, Osnato M, Weinstain R, Shani E,**
1118 **Suárez-López P, Pelaz S** (2016) TEMPRANILLO Reveals the Mesophyll as Cru-
1119 cial for Epidermal Trichome Formation. *Plant Physiol* **170:** 1624–1639.

1120 **Mihara M, Itoh T, Izawa T** (2010) SALAD database: a motif-based database of protein
1121 annotations for plant comparative genomics. *Nucleic Acids Res* **38** (Database is-
1122 sue): D835–D842.

1123 **Moon J, Suh S, Lee H, Choi K, Hong C, Paek N, Kim S, Lee I** (2003) The SOC1
1124 MADS-box gene integrates vernalization and gibberellin signals for flowering
1125 in *Arabidopsis*. *Plant J* **35:** 613–623.

1126 **Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y** (2003)
1127 SUPERWOMAN1 and DROOPING LEAF Genes Control Floral Organ Identity in
1128 Rice. *Development* **130:** 705–718.

1129 **Nemoto Y, Nonoue Y, Yano M, Izawa T** (2016) Hd1,a CONSTANS Ortholog in Rice,
1130 Functions as an Ehd1 Repressor through Interaction with Monocot-Specific CCT-
1131 Domain Protein Ghd7. *Plant J* **86:** 221–233.

1132 **Notaguchi M, Abe M, Kimuram T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita**
1133 **Y, Dohi K, Mori M, Araki T** (2008) Long-distance, graft-transmissible action
1134 of *Arabidopsis* FLOWERING LOCUS T protein to promote flowering. *Plant Cell*
1135 *Physiol* **49:** 1645–1658.

1136 **Osnato M, Castillejo C, Matías-Hernández L, Pelaz S** (2012) TEMPRANILLO Genes
1137 Link Photoperiod and Gibberellin Pathways to Control Flowering in *Arabidopsis*.
1138 *Nat Commun* **3:** e808.

1139 **Posé D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RG, Schmid M**
1140 **(2013)** Temperature-dependent regulation of flowering by antagonis-
1141 tic FLM variants. *Nature* **503**: 414-417.

1142 **Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U** (2001) Ectopic
1143 Expression of Rice OsMADS1 Reveals a Role in Specifying the Lemma and Pa-
1144 lea, Grass Floral Organs Analogous to Sepals. *Dev Genes Evol* **211**: 281–290.

1145 **Riechmann JL** (2002) Transcriptional Regulation: A Genomic Overview. *The Ara-
1146 bidopsis Book / American Society of Plant Biologists* **1**: e0085.

1147 **Ruelens P, de Maagd RA, Proost S, Theißen G, Geuten K, Kaufmann K** (2013)
1148 FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-
1149 specific MADS-box genes. *Nat Commun* **4**: e2280.

1150 **Sakai R, Aerts J** (2014) Sequence Diversity Diagram for Comparative Analysis of Mul-
1151 tiple Sequence Alignments. *BMC Proc* **8**: S9.

1152 **Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, Minami H,**
1153 **Kamatsuki K, Kusaba M, Hirochika H, Nagamura Y** (2011) Field transcriptome
1154 revealed critical developmental and physiological transitions involved in the ex-
1155 pression of growth potential in *japonicarice*. *BMC Plant Biol* **11**: e10.

1156 **Sato Y, Namiki N, Takehisa H, Kamatsuki K, Minami H, Ikawa H, Ohyanagi H,**
1157 **Sugimoto K, Itoh J-I, Antonio BA, Nagamura Y** (2013) RiceFRENDS: a platform
1158 for retrieving coexpressed gene networks in rice. *Nucleic Acids Res* **41** (Database
1159 issue): D1214–D1221.

1160 **Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA** (2015) Iron-Binding E3 Lig-
1161 ase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Tran-
1162 scription Factors. *Plant Physiol* **167**: 273–286.

1163 **Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU**
1164 **(2003)** Dissection of floral induction pathways using global expression analysis.
1165 *Development* **130**: 6001–6012.

1166 **Scortecci KC, Michaels SD, Amasino RM** (2001) Identification of a MADS-box gene,
1167 FLOWERING LOCUS M, that represses flowering. *Plant J* **26**: 229–236.

1168 **Scortecci K, Michaels SD, Amasino RM** (2003) Genetic interactions between FLM
1169 and other flowering-time genes in *Arabidopsis thaliana*. *Plant Mol Biol* **52**: 915–
1170 922.

1171 **Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T,**
1172 **Kawahigashi H, Kikuchi R, Handa H, Murai K** (2009) A Genetic Network of
1173 Flowering-Time Genes in Wheat Leaves, in Which an APETALA1/FRUITFULL-
1174 like Gene, VRN1, Is Upstream of FLOWERING LOCUS T. *Plant J* **58**: 668–681.

1175 **Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F** (2014) Molecular Control of

1176 Seasonal Flowering in Rice, Arabidopsis and Temperate Cereals. *Ann Bot* **114**:
1177 1445-1458. .

1178 **Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G**
1179 (2001) CONSTANS Mediates between the Circadian Clock and the Control of
1180 Flowering in Arabidopsis. *Nature* **410**: 1116–1120.

1181 **Swaminathan K, Peterson K, Jack T** (2008) The Plant B3 Superfamily. *Trends Plant*
1182 *Sci* **13**: 647-655

1183 **Tamaki S, Matsuo S, Wong HW, Yokoi S, Shimamoto K** (2007) Hd3a Protein Is a
1184 Mobile Flowering Signal in Rice. *Science* **316**: 1033–1036.

1185 **Tanaka N, Itoh H, Sentoku N, Kojima M, Sakakibara H, Izawa T, Itoh JI, Nagato Y**
1186 (2011) The COP1 Ortholog PPS Regulates the Juvenile-Adult and Vegetative-
1187 Reproductive Phase Changes in Rice. *Plant Cell* **23**: 2143–2154.

1188 **Tanaka N, Itoh H, Iwasaki Y, Mizuno N, Nasuda S, Murai K** (2018) Direct interaction
1189 between VRN1 protein and the promoter region of the wheat FT gene. *Genes*
1190 *Genet. Syst* **93**: 25-29.

1191 **Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M,**
1192 **Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A,**
1193 **Kojima C, Shimamoto K** (2011) 14-3-3 Proteins Act as Intracellular Receptors for
1194 Rice Hd3a Florigen. *Nature* **476**: 332–335.

1195 **Torti S, Fornara F, Vincent C, Andres F, Nordstrom K, Gobel U, Knoll D, Schoof**
1196 **H, Coupland G** (2012) Analysis of the Arabidopsis Shoot Meristem Transcriptome
1197 during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich
1198 Repeat Protein That Promotes Flowering. *Plant Cell* **24**: 444–462.

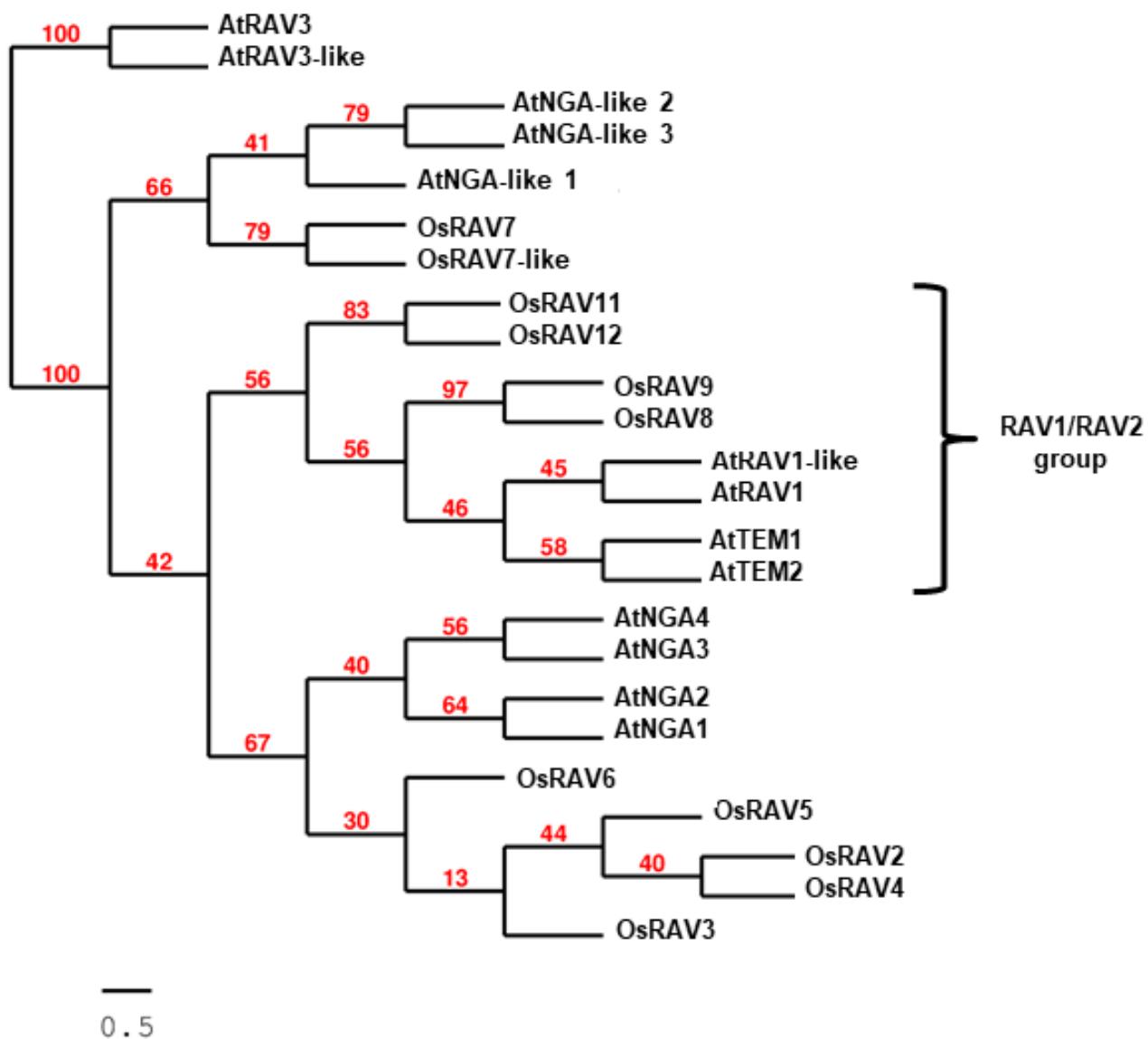
1199 **Tsuji H, Taoka KI, Shimamoto K** (2013) Florigen in Rice: Complex Gene Network for
1200 Florigen Transcription, Florigen Activation Complex, and Multiple Functions. *Curr*
1201 *Opin Plant Biol* **16**: 228-235.

1202 **Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JA, Weigel D**
1203 (2005) Integration of Spatial and Temporal Information during Floral Induction in
1204 Arabidopsis. *Science* **309**: 1056–1059.

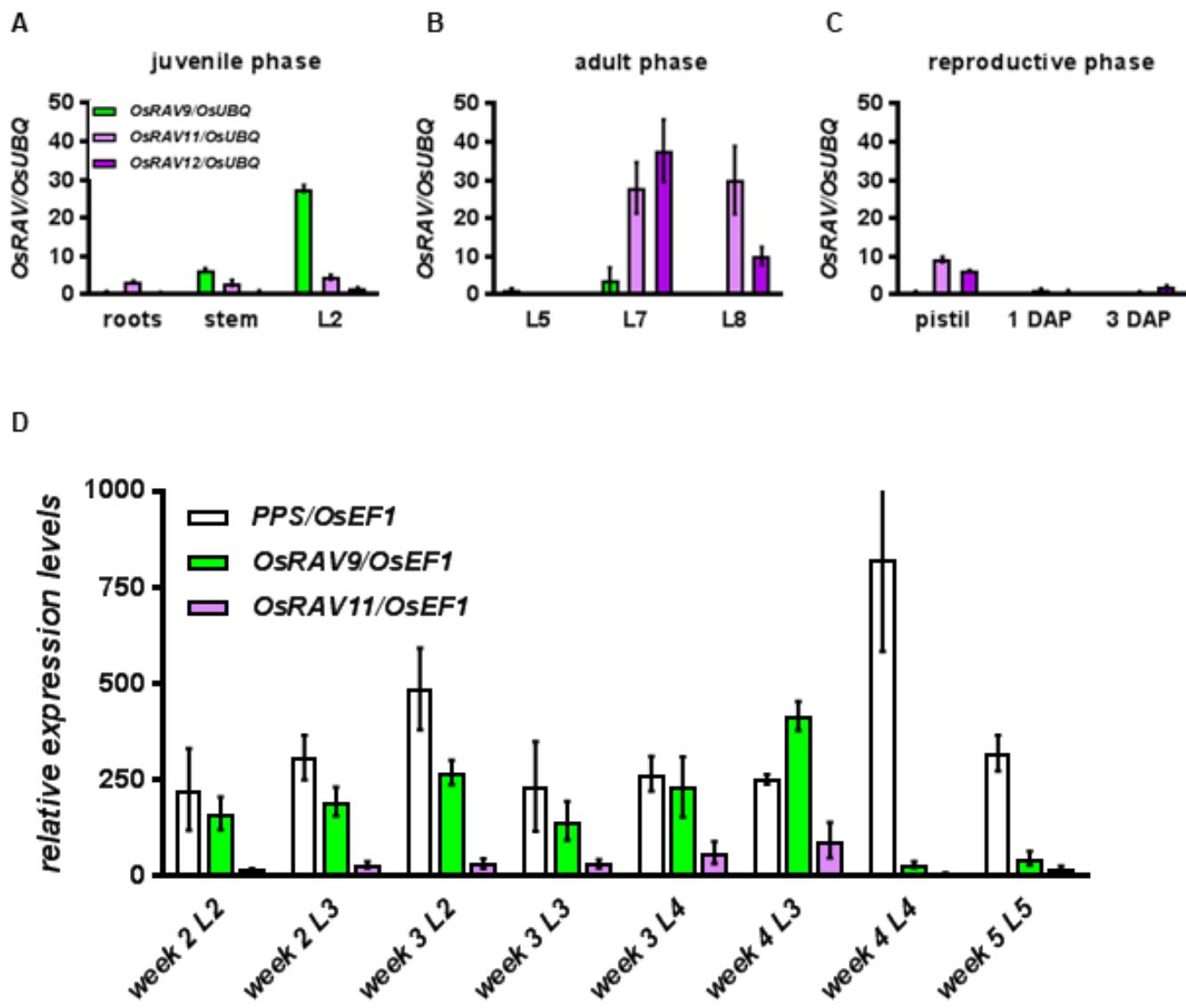
1205 **Wilkins O, Hafemeister C, Plessis A, Holloway-Phillips MM, Pham GM, Nicotra**
1206 **AB, Gregorio GB, Jagadish SV, Septiningsih EM, Bonneau R, Purugganan M**
1207 (2016) EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That
1208 Function in the Response to Water Deficit, High Temperature, and Agricultural
1209 Environments. *Plant Cell* **28**: 2365–2384.

1210 **Wilson R, Heckman J, Somerville C** (1992) Gibberellin is required for flowering
1211 in *Arabidopsis thaliana* under short days. *Plant Physiol* **100**: 403–408.

1212 **Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ** (2009) Cold- and light-
1213 induced changes in the transcriptome of wheat leading to phase transition from
1214 vegetative to reproductive growth. *BMC. Plant Biol* **9**: e55.


1215 **Woo HR, Kim JH, Kim J, Kim J, Lee U, Song IJ, Kim JH, Lee HY, Nam HG, Lim PO**
1216 (2010) The RAV1 Transcription Factor Positively Regulates Leaf Senescence in
1217 *Arabidopsis*. *J Exp Bot* **61**: 3947–3957.

1218 **Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T,**
1219 **Yamamoto K, Umehara Y, Nagamura Y, Sasaki T** (2000) Hd1, a Major Photo-
1220 period Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Ara-
1221 *bidopsis* Flowering Time Gene CONSTANS. *Plant Cell* **12**: 2473–2484.


1222 **Yim WC, Yu Y, Song K, Jang CS, Lee B-M** (2013) PLANEX: the plant co-expression
1223 database. *BMC Plant Biol* **13**: e83.

1224

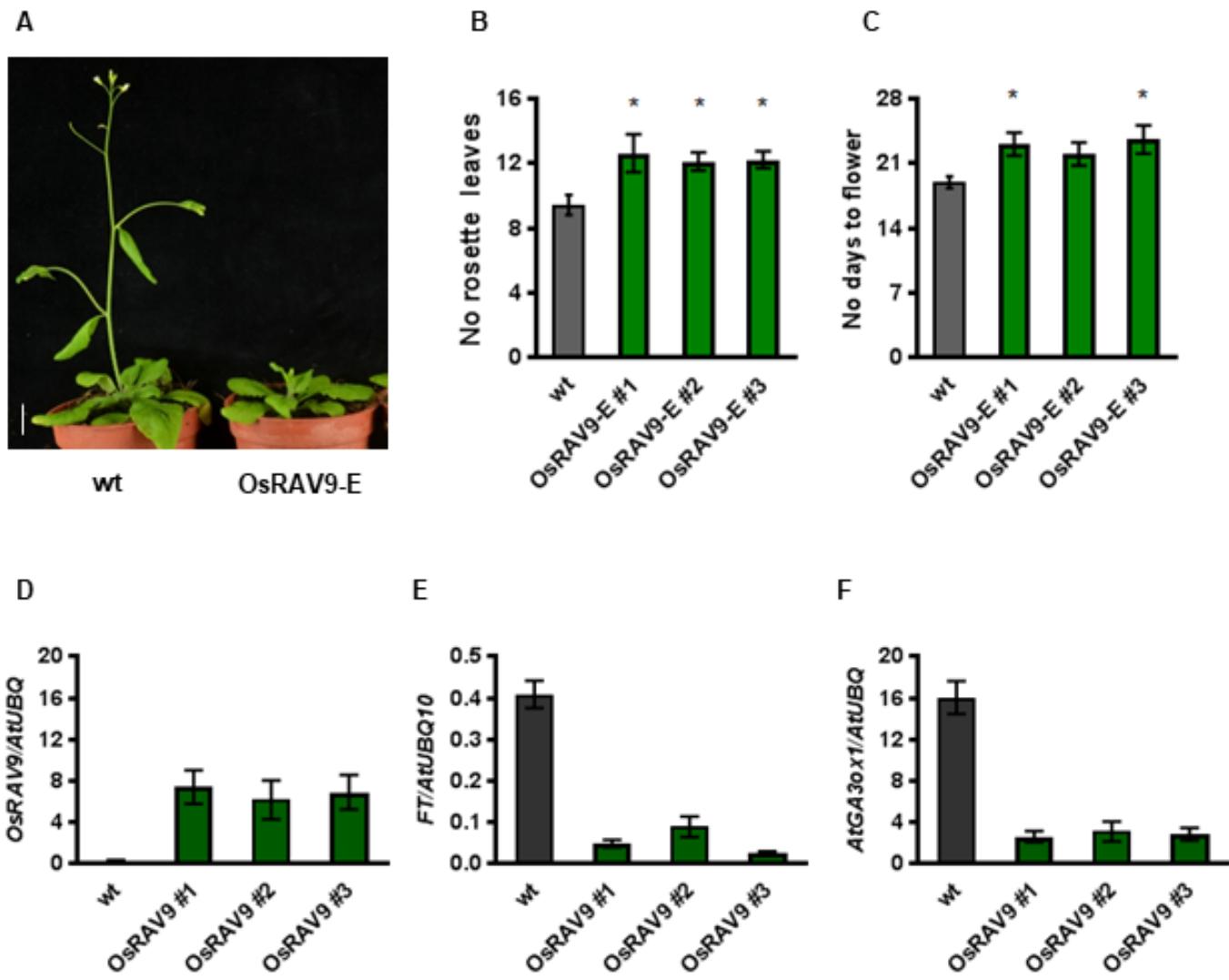

1225

Figure 1. Phylogenetic analysis of RELATED TO ABI3 AND VP1 (RAV) proteins in model species. Tree representing the most related RAV-like proteins from *Arabidopsis thaliana* (At) and *Oryza sativa* (Os) retrieved using TEMPRANILLO1 (TEM1) as query in a BLAST-P search, alignment with MUSCLE, and selected with G-blocks. TEM1 and TEM2 are RAV2-like and RAV2, respectively. Phylogenetic analysis with bootstrapping procedure (N=100) as statistical test for branch support was carried out with PhyML, and tree visualization with TreeDyn. Scale bar indicates the number of substitutions per site, values in red indicate percentage branch support values.

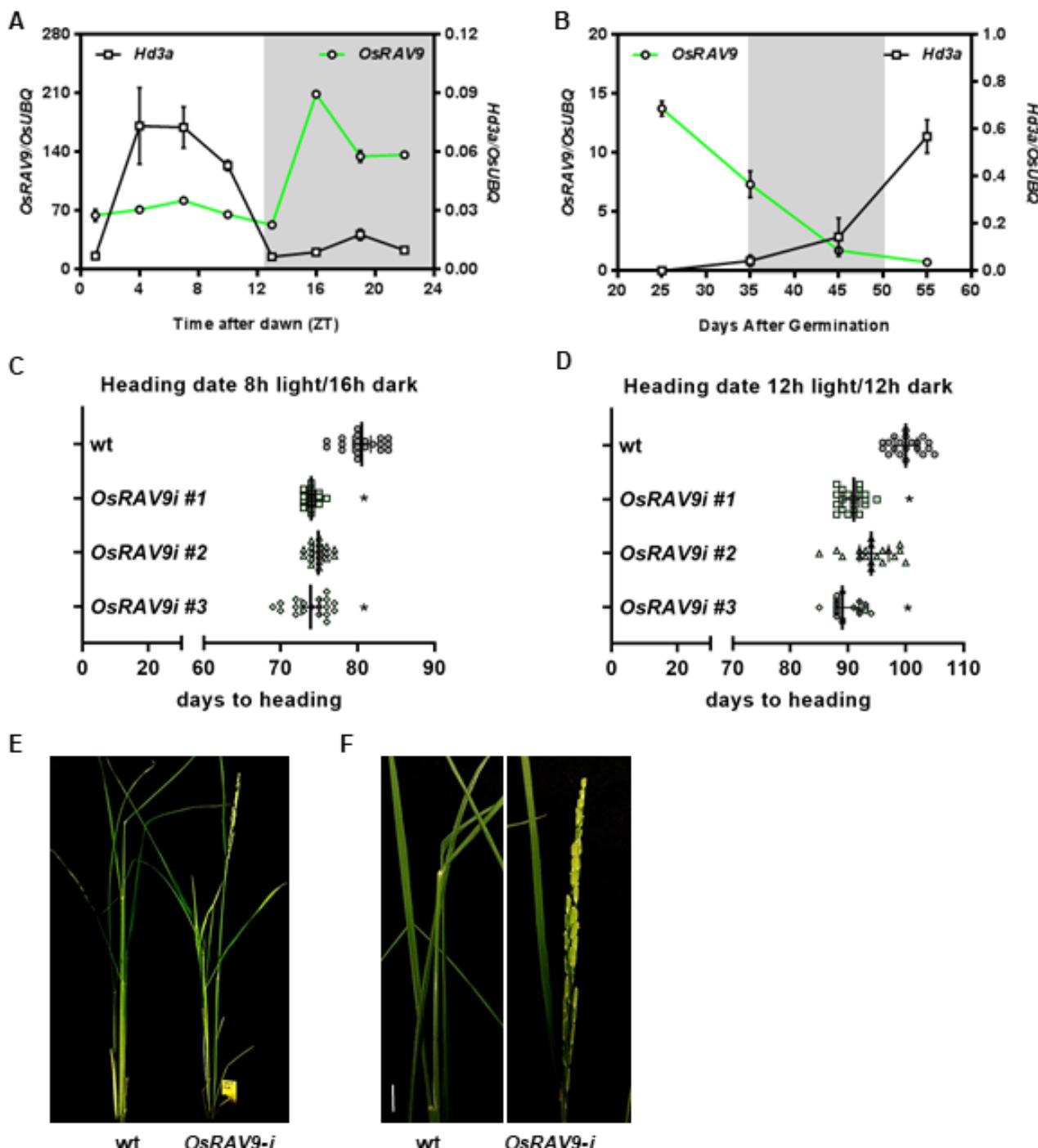


Figure 2. Patterns of OsRAV genes expression during plant development. A to C, Transcript levels of OsRAVs, relative to OsUBQ, in vegetative and reproductive tissues of wild-type plants. OsRAV9 in light green, OsRAV11 in light lilac and OsRAV12 in dark lilac. A, RT-qPCR in roots, stems, and second leaf (L2) dissected from 1-week-old seedlings. B, RT-qPCR in mature leaves (L5, L6, L7) dissected from 10-week-old adult plants. C, RT-qPCR in mature pistils and fertilized ovaries 1 and 3 days after pollination (DAP). D, Transcript abundance of PPS (white), OsRAV9 and OsRAV11, relative to OsUBQ, in juvenile (L2) and adult (L3-L4-L5) leaves. At week 2, L3 is formed and L4 is emerging. At week 3, L4 expands and L5 is emerging. At week 4, L5 is fully expanded. Expression data are mean value of three biological replicates with three technical replicates each, and error bars represent SD.

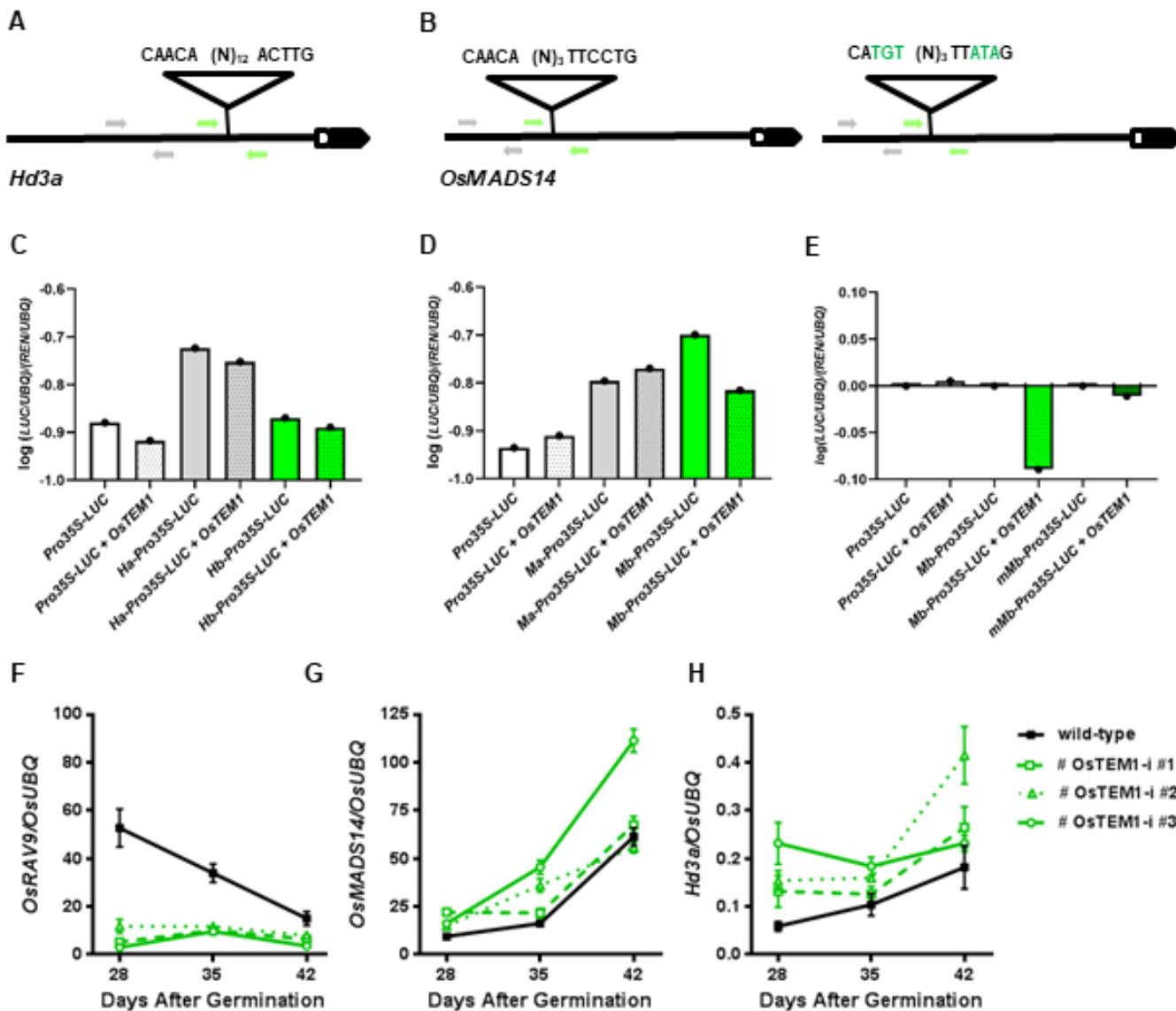
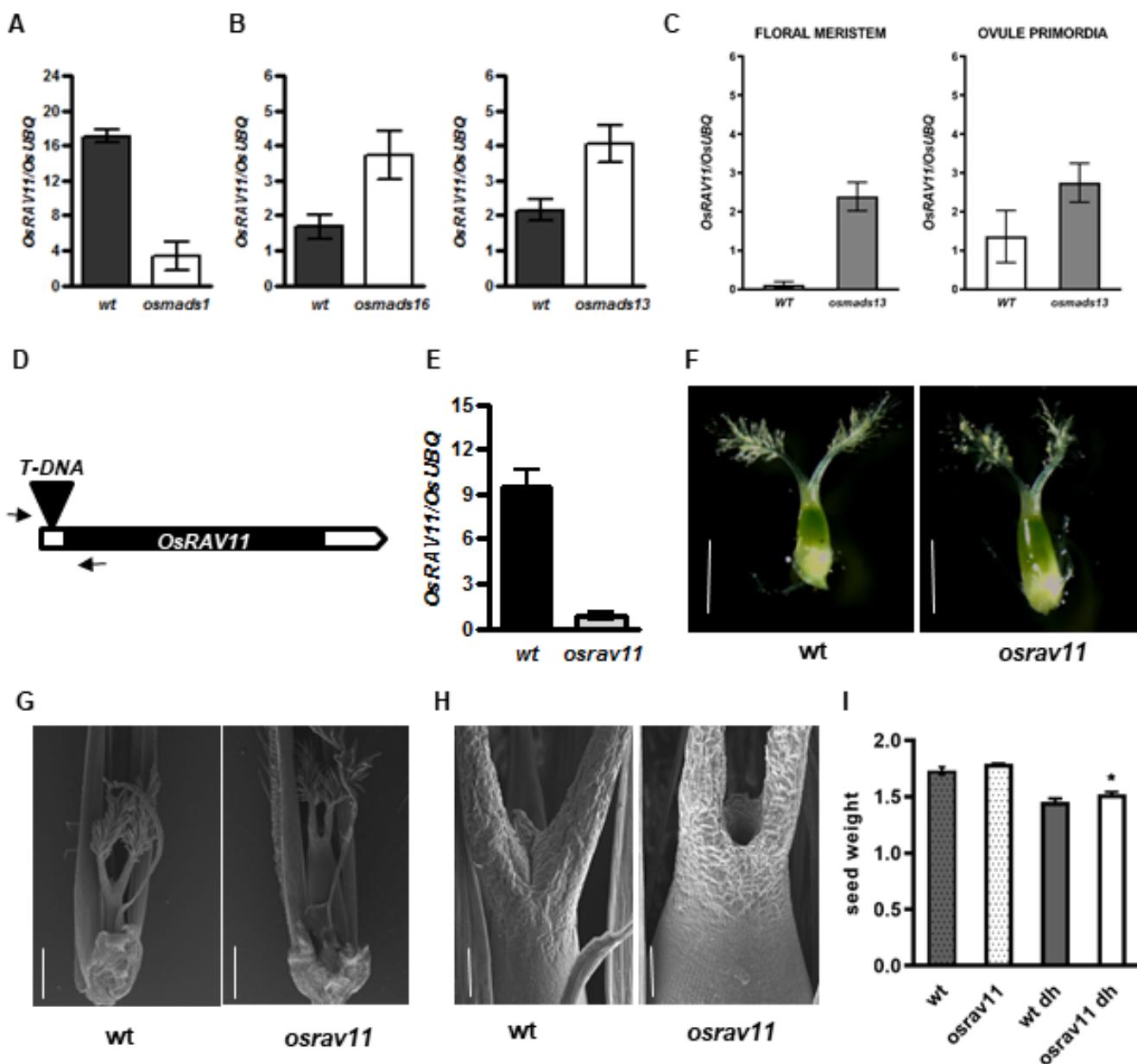
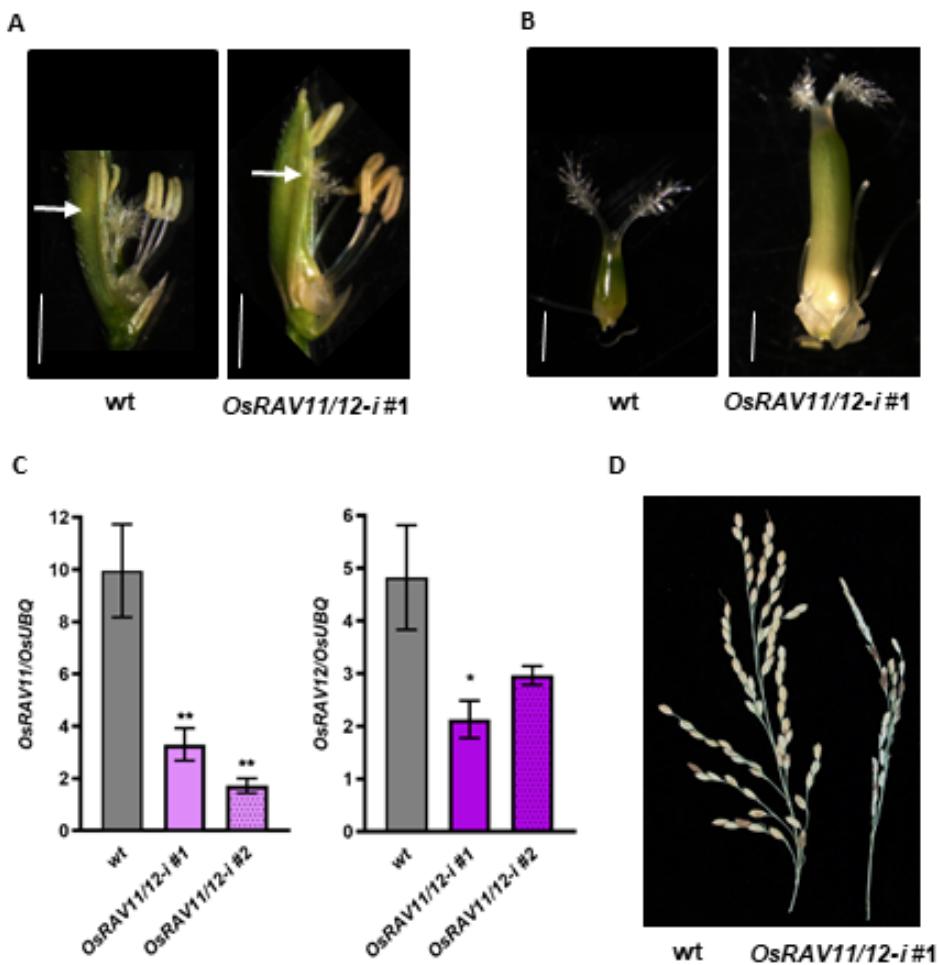


Figure 3. Late flowering phenotype of *Arabidopsis* (*Arabidopsis thaliana*) plants expressing OsRAV9. A, Representative images of wild-type (wt, left) and OsRAV9-E transgenic (right) plants grown for 4 weeks under long days (LD). Scale bar indicates 1 cm. B and C, Flowering time scored as number of rosette leaves and number of days to flower of wild-type (grey) and OsRAV9-E lines (green) grown under LD. D to F, Relative expression levels of OsRAV9 and TEM1 downstream targets in wild-type and representative T₃ OsRAV9-E lines grown for 1 week under LD. D, Ectopic expression of OsRAV9 in transgenic *Arabidopsis* lines. E and F, Down-regulation of *FT* and *AtGA3ox1* in OsRAV9-E lines compared to wild-type.


Flowering time data are the average of 25 plants each genotype, with standard error of the mean. Three biological replicates gave similar results, and one was chosen as representative. Data were analyzed by one-way ANOVA followed by Dunnett's multiple comparisons test between wild-type and transgenic lines. Asterisks indicate statistical significance, with * P-value < 0.05. Expression data are reported as mean value of three biological replicates with three technical replicates each; error bar represents the standard error of the mean. AtUBQ10 was used for normalization.


Figure 4. Role of OsRAV9 in heading date. A, Diurnal oscillation of *Hd3a* and *OsRAV9* expression in leaves of 4-week-old wild-type (wt) plants. Grey block indicates night. B, Mutually exclusive expression patterns of *Hd3a* and *OsRAV9* in leaves throughout wild-type (wt) plant development. Grey block indicates floral transition. C and D, Scatter plots representing heading date as number of days to flower of individual wild-type (in grey) and *OsRAV9*-*i* plants (in light green) grown under inductive photoperiods (8h light/16h dark and 12h light/12h dark). Lines represent the median with 95% of CI. E, Early flowering phenotype of a selected *OsRAV9* silencing line (*RAV9*-*i* #3, right) compared to wild-type (left) 100 DAG. Bar represents 10 cm. F, Close-up view showing wild-type panicle at the booting stage and *OsRAV9*-*i* panicle at anthesis. Bar represents 2 cm. For molecular analyses, plants were grown under 12 hours light/12 hours dark at 28°C, whereas for heading date plants were grown under different daylengths. Expression data are reported as mean value of three biological replicates; error bar represents the standard error of the mean. Flowering time data are the average of 18-20 plants each genotype. Three biological replicates gave similar results, and one was chosen as representative. Data were analyzed by one-way ANOVA followed by Dunnett's multiple comparisons test between wild-type and *OsRAV9*-*i* lines. Asterisks indicate statistical significance, with * P-value < 0.05 and ** P-value < 0.033.

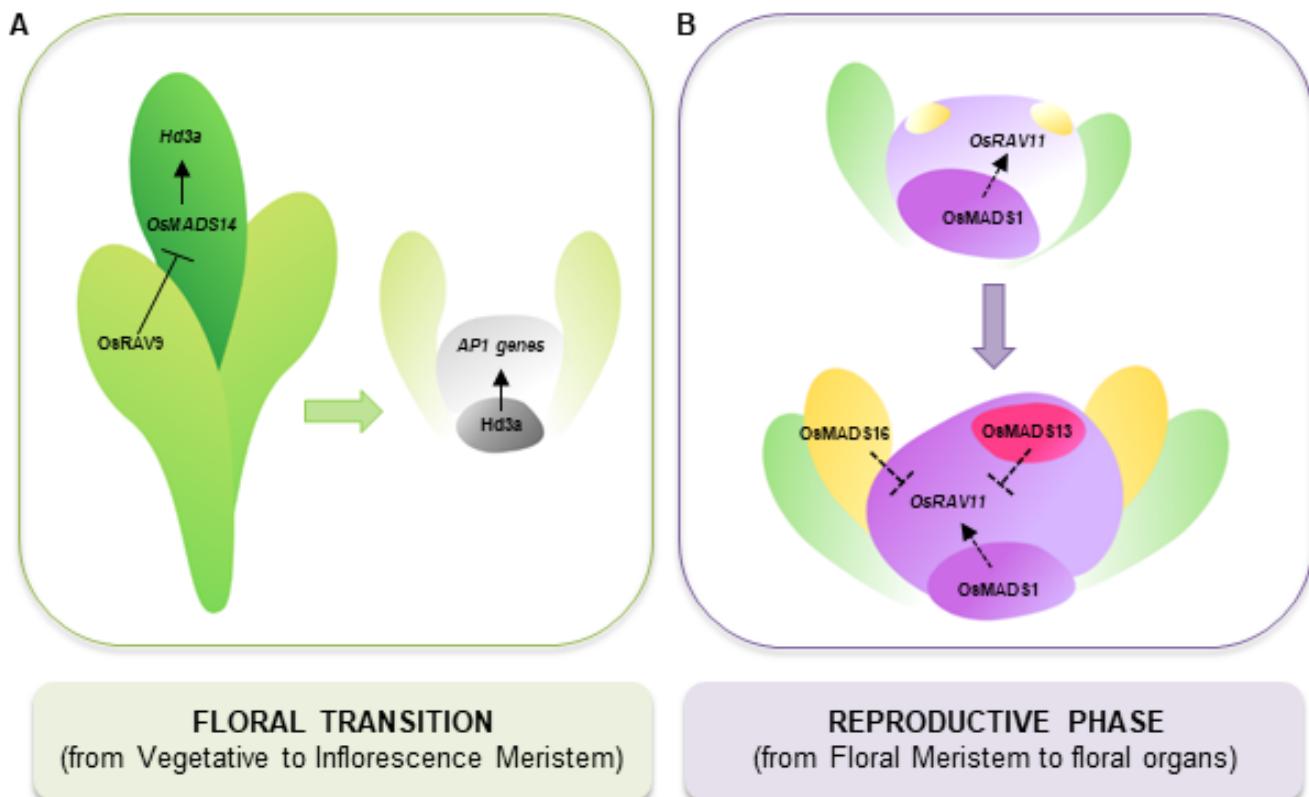

Figure 5. Interaction between OsRAV9/OsTEM1 and floral activators. A, Non canonical RAV binding site in the promoter of *Hd3a*, 785 bp upstream of the TSS. B, Perfect RAV binding site in the promoter of *OsMADS14*, 2250 bp upstream of the TSS, and mutated version (right). Arrows represent oligonucleotides used to amplify fragments of *ProHd3a* and *ProOsMADS14* without RAV binding sites (Ha and Ma, in orange) and with RAV binding sites (Hb and Mb, in green). C and E, Transactivation activity of OsTEM1 in transiently transformed protoplasts, reported as ratio of transcript levels of *LUC* and *REN* reporter genes relative to *UBQ*. C, RT-qPCR of protoplasts co-transformed with *Pro35S:OsTEM1* and reporter vectors containing sequences of *ProHd3a* (Ha in grey, Hb in green). D, RT-qPCR of protoplasts co-transformed with *Pro35S:OsTEM1* and reporter vectors containing sequences of *ProOsMADS14* (Ma in grey, Mb in green). E, Analysis of protoplasts co-transformed with *Pro35S:OsTEM1* and reporter vectors containing sequences of *ProOsMADS14* (Mb in green, mutated Mb in dark green). Values are the mean of three independent replicates. F to H, expression analysis of genes involved in heading date in independent T_2 lines (green) compared to wild-type plants grown for 28, 35 and 42 days under inductive conditions. F, Down-regulation of *OsRAV9/OsTEM1* in silencing lines (green). G and H, Up-regulation of the floral activators *OsMADS14* and *Hd3a* in silencing lines (green lines) compared to wild-type (black line). Expression data are mean value of three biological replicates with three technical replicates each, and error bars represent SD.

Figure 6. Molecular and functional characterization of OsRAV11. A to C, Mis-regulation of OsRAV11 in floral homeotic mutants. A, Down-regulation of OsRAV11 in *osmads1* developing inflorescences. B, Up-regulation of OsRAV11 in *osmads16* and *osmads13* developing inflorescences. C, Strong activation of OsRAV11 in specific cell types (floral meristem and ovule primordia) isolated from *osmads13* mutant flowers. D, Schematic representation of the T-DNA insertion in the 5' UTR of OsRAV11. Arrows, primers used for genotyping. E, Down-regulation of OsRAV11 in pistils dissected from *osrav11* mutant flowers at maturity. F to H, Morphological analyses of female reproductive structures at maturity. F, Representative images of wild-type and *osrav11* carpels dissected from mature flowers at anthesis obtained by optical Microscopy. Bar, 1 mm. G and H, Representative images of reproductive structures obtained by Scanning Electron Microscopy (SEM). G, Wild-type and *osrav11* carpels upon fertilization. Glumes were partly removed to show female reproductive organs. Bar, 500 μ m. H, Apical tissues of wild-type and *osrav11* gynoecia after pollination. Bar, 100 μ m. I, Bar-plots representing the weight of seeds produced by wild-type (in grey) and *osrav11* (in white) plants grown in the greenhouse under inductive conditions. Expression data are reported as mean value of three biological replicates; error bar represents the standard error of the mean. Phenotypic data are the average of three biological replicates of the weight of 100 seeds each genotype, with standard error of the mean. Statistical significance was examined by two tailed unpaired t-test, with * P-value<0.05.

Figure 7. Morphogenetic effects of *OsRAV11*/*OsRAV12* silencing in reproductive phase. A, representative images of mature flowers dissected from wild-type (wt) and *OsRAV11/12-i* inflorescences. Arrows indicate the position of the stigmas. B, representative images of mature carpels dissected from wild-type and one T_3 *OsRAV11/12-i* flowers obtained by optical microscopy. Bar, 1mm. C, Down-regulation of *OsRAV11* and *OsRAV12* in mature pistils of two representative T_3 *OsRAV11/12-i* lines as compared to wild-type. Expression data are reported as mean value of three biological replicates with standard error of the mean. Data were analyzed by ordinary one-way ANOVA followed by Dunnett's multiple comparisons test between wild-type and transgenic lines. Asterisks indicate statistical significance, with * P -value < 0,05 and ** P -value < 0,033. D, fertility defects of mature *OsRAV11/12-i* panicles compared to wild-type.

Figure 8. Model for interaction between RAV and MADS factors during reproductive growth. A, OsRAV9 represses the transcription of *OsMADS14*, a positive regulator of the florigen *Hd3a*, in the leaf. Upon floral transition, the complex *Hd3a/OsFD/14-3-3* activates the expression of IM identity genes *OsMADS14-15-18-34* in the apical meristem. B, The expression of *OsMADS1* in developing flowers marks the formation of lemma/palea (in green) and central carpel (in violet) from the FM, whereas the presence of *OsMADS16* and *OsMADS13* prevents the expression of genes involved in carpel development in stamen primordia (in yellow) and in ovule primordium (in pink).

Parsed Citations

Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. (2005) FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. *Science* 309: 1052–1056.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-Function for Floral Organ Identity in Rice Revealed by the Analysis of Tissue Culture-Induced Loss-of-Function Mutants of the OsMADS1 Gene. *Plant Molecular Biology* 59: 125–135.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Aguilar-Jaramillo AE, Marín-González E, Matías-Hernández L, Osnato M, Pelaz S, Suárez-López P (2019) TEMPRANILLO is a direct repressor of the microRNA miR172. *Plant J* 100: 522–535.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

An H, Roussel C, Suárez-López P, Corbesier L, Vincent C, Piñeiro P, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS Acts in the Phloem to Regulate a Systemic Signal That Induces Photoperiodic Flowering of *Arabidopsis*. *Development* 131: 3615–3626.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Andrés F, Coupland G (2012) The Genetic Basis of Flowering Responses to Seasonal Cues. *Nature Reviews Genetics* 13: 627–639.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. *Plant Cell* 15: 2730–2741.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Blázquez MA, Soosal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in *Arabidopsis*. *Development* 124: 3835–3844.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cao P, Jung K-H, Choi D, Hwang D, Zhu J, Ronald PC (2012) The Rice Oligonucleotide Array Database: an atlas of rice gene expression. *Rice (NY)* 5: e17.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Castillejo C, Pelaz S (2008) The Balance between CONSTANS and TEMPRANILLO Activities Determines FT Expression to Trigger Flowering. *Curr Biol* 18: 1338–1343.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Causier B, Ashworth M, Guo W, Davies B (2012) The TOPLESS Interactome: A Framework for Gene Repression in *Arabidopsis*. *Plant Physiol* 158: 423–438.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. *Plant Signal Behav* 8: e23681.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Collani S, Neumann M, Yant L, Schmid M (2019) FT modulates genome-wide DNA-binding of the bZIP transcription factor FD. *Plant Physiol* 180: 367–380.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of *Arabidopsis*. *Science* 316: 1030–1033.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a Putative Transcription Factor Associated with Vegetative to Reproductive Transition in Cereals. *Plant Physiol* 132: 1849–1860.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. *Nucleic Acids Res* 34 (Web Server issue): W362–W365.

Downloaded from on June 22, 2020 - Published by www.plantphysiol.org
Copyright © 2020 American Society of Plant Biologists. All rights reserved.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, Trevaskis B (2015) Direct Links between the Vernalization Response and Other Key Traits of Cereal Crops. *Nat. Commun* 6: e5882.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. *Nucleic Acids Res* 36 (Web Server issue): W465-W469.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, and Yoshimura A (2004) Ehd1, a B-Type Response Regulator in Rice, Confers Short-Day Promotion of Flowering and Controls FT-like Gene Expression Independently of Hd1. *Genes Dev* 18: 926–936.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PBF, An G, Colombo L, Kater MM (2007) The D-Lineage MADS-Box Gene OsMADS13 Controls Ovule Identity in Rice. *Plant J* 52: 690–699.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Duan Y B, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB (2016) Identification of a Regulatory Element Responsible for Salt Induction of Rice OsRAV2 through Ex Situ and in Situ Promoter Analysis. *Plant Molecular Biology* 90: 49–62.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Endo-Higashi N, Izawa T (2011) Flowering Time Genes Heading Date 1 and Early Heading Date 1 Together Control Panicle Development in Rice. *Plant Cell Physiol* 52: 1083–1094.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Eriksson S, Bohlenius H, Moritz T, Nilsson O (2006) GA4 Is the Active Gibberellin in the Regulation of LEAFY Transcription and *Arabidopsis* Floral Initiation. *Plant Cell* 18: 2172–2181.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. *Theor Appl Genet* 112: 1164-1171.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Fjellheim S, Boden S, Trevaskis B (2014) The Role of Seasonal Flowering Responses in Adaptation of Grasses to Temperate Climates. *Frontiers in Plant Science* 5: e431.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Fu M, Kang HK, Son SH, Kim SK Nam KH (2014) A Subset of RAV Transcription Factors Modulates Drought and Salt Stress Responses ABA-Independently in *Arabidopsis*. *Plant Cell Physiol* 55: 1892-1904.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Gómez-Ariza J, Brambilla V, Vicentini G, Landini M, Cerise M, Carrera E, Shrestha R, Chiozzotto R, Galbiati F, Caporali E, López-Díaz I, Fornara F (2019) A transcription factor coordinating internode elongation and photoperiodic signals in rice. *Nat Plants* 5: 358-362.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Greenup AG, Sasani S, Oliver SN, Talbot MJ, Dennis ES, Hemming MN, Trevaskis B (2010) ODDSOC2 is a MADS box floral repressor that is downregulated by vernalization in temperate cereals. *Plant Physiol* 153: 1062–1073.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Groen SC, Ćalić I, Joly-Lopez Z, Platts AE, Choi JY, Natividad M, Dorph K, Mauck III WM, Bracken B, Cabral CLU, Kumar A, Torres RO, Satija R, Vergara G, Henry A, et al (2020) The strength and pattern of natural selection on gene expression in rice. *Nature* 578: 572–576.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Guo T, Chen K, Dong NQ, Shi CL, Ye WW, Gao JP, Shan JX, Lin HX (2018) GRAIN SIZE AND NUMBER1 negatively regulates the OSMKKK10-OSMKK4-OSMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. *Plant Cell* 30: 871-888.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hartmann U, Hohmann S, Nettesheim K, Wanner E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the

Copyright © 2020 American Society of Plant Biologists. All rights reserved.

floral transition in *Arabidopsis*. *Plant J* 21: 351–360.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hisamatsu T, King R (2008) The nature of floral signals in *Arabidopsis*. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. *J Exp Bot* 59: 3821–3829.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. *Nat Genet* 41: 494–497.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Jäger K, Wigge P (2007) FT protein acts as a long-range signal in *Arabidopsis*. *Curr Biol* 17: 1050–1054.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua N-H, Park C-M (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in *Arabidopsis*. *Plant Cell* 19: 2736–2748.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a Novel DNA-Binding Protein, Binds to Bipartite Recognition Sequence through Two Distinct DNA-Binding Domains Uniquely Found in Higher Plants. *Nucleic Acids Res* 27: 470–478.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation Tagging of the Floral Inducer FT. *Science* 286: 1962–1965.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Khanday I, Yadav SR, Vijayraghavan U (2013) Rice LHS1/OsMADS1 Controls Floret Meristem Specification by Coordinated Regulation of Transcription Factors and Hormone Signaling Pathways. *Plant Physiol* 161: 1970–1983.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Khanday I, Das S, Chongloi GL, Bansal M, Grossniklaus U, Vijayraghavan U (2016) Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties. *Plant Physiol* 172: 372–388.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kim SL, Lee S, Kim HJ, Nam HG, An G (2007) OsMADS51 Is a Short-Day Flowering Promoter That Functions Upstream of Ehd1, OsMADS14, and Hd3a. *Plant Physiol* 145: 1484–1494.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y, Kyozuka J (2012) Inflorescence Meristem Identity in Rice Is Specified by Overlapping Functions of Three AP1/FUL-Like MADS Box Genes and PAP2, a SEPALLATA MADS Box Gene. *Plant Cell* 24: 1848–1859.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J (2010) PANICLE PHYTOMER2 (PAP2), Encoding a SEPALLATA Subfamily MADS-Box Protein, Positively Controls Spikelet Meristem Identity in Rice. *Plant Cell Physiol* 51: 47–57.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals. *Science* 286: 1960–1962.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a Rice Ortholog of the *Arabidopsis* FT Gene, Promotes Transition to Flowering Downstream of Hd1 under Short-Day Conditions. *Plant Cell Physiol* 43: 1096–1105.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Komiya R, Yokoi S, Shimamoto K (2009) A Gene Network for Long-Day Flowering Activates RFT1 Encoding a Mobile Flowering Signal in Rice. *Development* 136: 3443–3450.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatial and Temporally Regulated Expression of Rice MADS Box Genes with Copyright © 2020 American Society of Plant Biologists. All rights reserved.

Similarity to *Arabidopsis* Class A, B and C Genes. *Plant Cell Physiol* 41: 710–718.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lee JH, Ryu HS, Chung KS, Posé D, Kim S, Schmid M, Ahn JH (2013) Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. *Science* 342: 628–632.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in *Arabidopsis*. *Genes Dev* 21: 397–402.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lee TH, Tang H, Wang X, Paterson AH (2013) PGDD: A Database of Gene and Genome Duplication in Plants. *Nucleic Acids Res* 41 (Database issue): D1152–8.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Hellwell CA, Ito T, Meyerowitz E, Yu H (2008) A repressor complex governs the integration of flowering signals in *Arabidopsis*. *Dev Cell* 15: 110–120.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D (2011) Rice MADS6 Interacts with the Floral Homeotic Genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in Specifying Floral Organ Identities and Meristem Fate. *Plant Cell* 23: 2536–2552.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li N, Xu R, Duan P, Li Y (2018) Control of grain size in rice. *Plant Reprod* 31: 237–251.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in *Arabidopsis*. *Plant Cell* 20: 292–306.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, et al (2018) G-protein β subunits determine grain size through interaction with MADS-domain transcription factors in rice. *Nat Commun* 9: e852.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Marín-González E, Matías-Hernández L, Aguilar-Jaramillo AE, Lee JH, Ahn JH, Suárez-López P, Pelaz S (2015) SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures. *Plant Physiol* 169: 1214–1224.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Mathieu J, Yant LJ, Mürdtner F, Küttner F, Schmid M (2009) Repression of Flowering by the miR172 Target SMZ. *Plos Biol* 7: e1000148.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Mathieu J, Warthmann N, Küttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in *Arabidopsis*. *Curr Biol* 17: 1055–1060.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S (2014) RAV Genes: Regulation of Floral Induction and beyond. *Ann Bot* 114: 1459–1470.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Matías-Hernández L, Aguilar-Jaramillo AE, Osnato M, Weinstain R, Shani E, Suárez-López P, Pelaz S (2016) TEMPRANILLO Reveals the Mesophyll as Crucial for Epidermal Trichome Formation. *Plant Physiol* 170: 1624–1639.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Mihara M, Itoh T, Izawa T (2010) SALAD database: a motif-based database of protein annotations for plant comparative genomics. *Nucleic Acids Res* 38 (Database issue): D835–D842.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Moon J, Suh S, Lee H, Choi K, Hong C, Paek N, Kim S, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in *Arabidopsis*. *Plant Physiol* 133: 613–623.

Copyright © 2020 American Society of Plant Biologists. All rights reserved.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF Genes Control Floral Organ Identity in Rice. *Development* 130: 705–718.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Nemoto Y, Nonoue Y, Yano M, Izawa T (2016) Hd1, a CONSTANS Ortholog in Rice, Functions as an Ehd1 Repressor through Interaction with Monocot-Specific CCT-Domain Protein Ghd7. *Plant J* 86: 221–233.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Notaguchi M, Abe M, Kimuram T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T (2008) Long-distance, graft-transmissible action of *Arabidopsis* FLOWERING LOCUS T protein to promote flowering. *Plant Cell Physiol* 49: 1645–1658.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Osnato M, Castillejo C, Matías-Hernández L, Pelaz S (2012) TEMPRANILLO Genes Link Photoperiod and Gibberellin Pathways to Control Flowering in *Arabidopsis*. *Nat Commun* 3: e808.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Posé D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RG, Schmid M (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. *Nature* 503: 414–417.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U (2001) Ectopic Expression of Rice OsMADS1 Reveals a Role in Specifying the Lemma and Palea, Grass Floral Organs Analogous to Sepals. *Dev Genes Evol* 211: 281–290.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Riechmann JL (2002) Transcriptional Regulation: A Genomic Overview. The *Arabidopsis* Book / American Society of Plant Biologists 1: e0085.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ruelens P, de Maagd RA, Proost S, Theißen G, Geuten K, Kaufmann K (2013) FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. *Nat Commun* 4: e2280.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Sakai R, Aerts J (2014) Sequence Diversity Diagram for Comparative Analysis of Multiple Sequence Alignments. *BMC Proc* 8: S9.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, Minami H, Kamatsuki K, Kusaba M, Hirochika H, Nagamura Y (2011) Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonicarice. *BMC Plant Biol* 11: e10.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Sato Y, Namiki N, Takehisa H, Kamatsuki K, Minami H, Ikawa H, Ohyanagi H, Sugimoto K, Itoh J-I, Antonio BA, Nagamura Y (2013) RiceFREN: a platform for retrieving coexpressed gene networks in rice. *Nucleic Acids Res* 41 (Database issue): D1214–D1221.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors. *Plant Physiol* 167: 273–286.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. *Development* 130: 6001–6012.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Scortecci KC, Michaels SD, Amasino RM (2001) Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. *Plant J* 26: 229–236.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Scortecci K, Michaels SD, Amasino RM (2003) Genetic interactions between FLM and other flowering-time genes in *Arabidopsis thaliana*. *Plant Mol Biol* 52: 915–922 downloaded from on June 22, 2020 - Published by www.plantphysiol.org

Copyright © 2020 American Society of Plant Biologists. All rights reserved.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H, Murai K (2009) A Genetic Network of Flowering-Time Genes in Wheat Leaves, in Which an APETALA1/FRUITFULL-like Gene, VRN1, Is Upstream of FLOWERING LOCUS T. Plant J 58: 668–681.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F (2014) Molecular Control of Seasonal Flowering in Rice, Arabidopsis and Temperate Cereals. Ann Bot 114: 1445–1458.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS Mediates between the Circadian Clock and the Control of Flowering in Arabidopsis. Nature 410: 1116–1120.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Swaminathan K, Peterson K, Jack T (2008) The Plant B3 Superfamily. Trends Plant Sci 13: 647–655

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tamaki S, Matsuo S, Wong HW, Yokoi S, Shimamoto K (2007) Hd3a Protein Is a Mobile Flowering Signal in Rice. Science 316: 1033–1036.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tanaka N, Itoh H, Sentoku N, Kojima M, Sakakibara H, Izawa T, Itoh JI, Nagato Y (2011) The COP1 Ortholog PPS Regulates the Juvenile-Adult and Vegetative-Reproductive Phase Changes in Rice. Plant Cell 23: 2143–2154.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tanaka N, Itoh H, Iwasaki Y, Mizuno N, Nasuda S, Murai K (2018) Direct interaction between VRN1 protein and the promoter region of the wheat FT gene. Genes Genet. Syst 93: 25–29.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14-3-3 Proteins Act as Intracellular Receptors for Rice Hd3a Florigen. Nature 476: 332–335.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Torti S, Fornara F, Vincent C, Andres F, Nordstrom K, Gobel U, Knoll D, Schoof H, Coupland G (2012) Analysis of the Arabidopsis Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering. Plant Cell 24: 444–462.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tsuji H, Taoka KI, Shimamoto K (2013) Florigen in Rice: Complex Gene Network for Florigen Transcription, Florigen Activation Complex, and Multiple Functions. Curr Opin Plant Biol 16: 228–235.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JA, Weigel D (2005) Integration of Spatial and Temporal Information during Floral Induction in Arabidopsis. Science 309: 1056–1059.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Wilkins O, Hafermeister C, Plessis A, Holloway-Phillips MM, Pham GM, Nicotra AB, Gregorio GB, Jagadish SV, Septiningsih EM, Bonneau R, Purugganan M (2016) EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to Water Deficit, High Temperature, and Agricultural Environments. Plant Cell 28: 2365–2384.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Wilson R, Heckman J, Somerville C (1992) Gibberellin is required for flowering in *Arabidopsis thaliana* under short days. Plant Physiol 100: 403–408.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2009) Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC. Plant Biol 9: e55.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Woo HR, Kim JH, Kim J, Kim J, Lee U, Song IJ, Kim JH, Lee HY, Nam HG, Lim PO (2010) The RAV1 Transcription Factor Positively Regulates Leaf Senescence in Arabidopsis. *J Exp Bot* 61: 3947–3957.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS. *Plant Cell* 12: 2473–2484.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Yim WC, Yu Y, Song K, Jang CS, Lee B-M (2013) PLANEX: the plant co-expression database. *BMC Plant Biol* 13: e83.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)