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Abstract

In plants, correct formation of reproductive organs is critical for successful seed-set
and perpetuation of the species. Plants have evolved different molecular mechanisms
to coordinate flower and seed development at the proper time of the year. Among the
plant-specific RELATED TO ABI3 AND VP1 (RAV) family of transcription factors, only
TEMPRANILLO1 (TEM1) and TEMPRANILLO2 (TEMZ2) have been shown to affect
reproductive development in Arabidopsis (Arabidopsis thaliana). They negatively regu-
late floral transition through direct repression of FLOWERING LOCUS T and GIBBER-
ELLIN 3-OXIDASE1/2, encoding major components of the florigen. Here we identify
RAV genes from rice (Oryza sativa), and unravel their regulatory roles in key steps of
reproductive  development. Our data strongly suggest that, like TEMSs,
OsRAV9/0OsTEML1 has a conserved function as a repressor of photoperiodic flowering
upstream of the floral activators OsMADS14 and Hd3a, through a mechanism reminis-
cent of that one underlying floral transition in temperate cereals. Furthermore,
OsRAV11 and OsRAV12 may have acquired a novel function in the differentiation of
the carpel and the control of seed size, acting downstream of floral homeotic factors.
Alternatively, this function may have been lost in Arabidopsis. Our data reveal conser-
vation of RAV gene function in the regulation of flowering time in monocotyledonous

and dicotyledonous plants, but also unveil roles in the development of rice gynoecium.

INTRODUCTION
In plants, the correct formation of reproductive organs is critical not only for successful

seed-set but also for the perpetuation of the species. Accordingly, floral evocation must
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take place at a favorable time of the year to guarantee pollination, and maximum sur-
vival possibilities for the offspring. Plants that are affected in their flowering time often
have a lower amount of seeds resulting in yield losses. Indeed, precocious flowering is
frequently associated with reduced photosynthetic capacity due to a shortened vegeta-
tive phase (Endo-Higashi and lzawa, 2011). Conversely, delayed flowering can affect
seed maturation due to exposure to unfavorable conditions. A negative correlation also
exists between grain size and grain number (Guo et al., 2018; Li et al., 2018), two im-
portant agronomic traits which are controlled by both genetic determinants and envi-
ronmental conditions.

Plants have evolved different molecular mechanisms to coordinate flower and seed
development at the proper time of the year. Actually, the switch from vegetative to re-
productive growth is controlled by multiple genetic determinants that integrate the re-
sponses to environmental and physiological conditions of the plant. Ultimately, the reg-
ulatory pathways underlying the floral transition converge on floral integrators that are
able to activate genes in the shoot apical meristem (SAM) that control the initiation and
development of the inflorescence meristem (IM), and then of floral meristems (FM)
from which floral organs differentiate. Upon fertilization, the carpel transforms into a

fruit in which the seeds develop.

In the last decade, the molecular basis of the floral transition has been unveiled in dif-
ferent plant species: the florigen, a long distance signaling molecule, is first produced
in leaves under favorable conditions, and then transported to the apical meristem to
initiate reproductive development (Andrés and Coupland, 2012). In the model species
Arabidopsis (Arabidopsis thaliana), photoperiodic flowering is triggered by FLOWER-
ING LOCUS T (FT), a small globular protein of 21 kDa (Kardailsky et al., 1999; Koba-
yashi et al., 1999). The expression of FT is activated under inductive long days (LD) in
vascular tissues of leaves by the positive regulator CONSTANS (CO, Suérez-Lopez et
al., 2001; An et al., 2004), and precocious flowering is prevented by the counteraction
of the RAV (RELATED TO ABI3 AND VP1) transcription repressors TEMPRANILLO1
(TEM1) and TEMPRANILLO2 (TEMZ2) (Castillejo and Pelaz, 2008). Since prevention of
precocious flowering is important for reproductive fithess other repressors such as
FLOWERING LOCUS C (FLC), SCHLAFMUTZE (SMZ), SCHNARCHZAPFENZ (SNZ),
TARGET OF EARLY ACTIVATION TAGGED 1 (TOE1), TOE2, FLOWERING LOCUS
M (FLM) or SHORT VEGETATIVE PHASE (SVP) play key roles in the control of FT
expression in response to vernalization, age, photoperiod or ambient temperature
(Hartmann et al., 2000; Scortecci et al.,, 2001, 2003; Aukerman and Sakai, 2003;
Schmid et al., 2003; Jung et al., 2007; Li et al., 2008; Lee et al., 2009; Mathieu et al.,
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2009; Lee et al.,, 2013; Posé et al., 2013). Once flowering is induced, FM identity
genes, such as the MADS-box genes SUPPRESSOR OF CONSTANS1 (SOC1) and
APETALA1 (AP1), are induced which in turn repress TEMs expression (Tao et al.,
2012; Kaufmann et al., 2010). Under non-inductive Short Days (SD), CO is not active
and there is no CO-dependent FT induction. In this light regime, the accumulation of
the plant hormones Gibberellins (GA) triggers floral transition by inducing SOC1 and
LEAFY (LFY) (Wilson et al., 1992; Blazquez et al., 1997; Moon et al., 2003; Eriksson et
al., 2006; Hisamatsu and King, 2008). Interestingly, TEMs also regulate GA accumula-
tion by repressing GA-3-OXIDASE 1 (GA30X1) and GA30X2 genes (Osnato et al.,
2012).

In the crop species rice (Oryza sativa), two closely related genes have been described
as FT orthologs: Heading date 3a (Hd3a), which promotes flowering under inductive
SD, and Rice Flowering locus T 1 (RFT1), which does it under non-inductive LD (Koji-
ma et al., 2002; Komiya et al., 2009). An evolutionarily conserved module defined by
the rice orthologs of Arabidopsis CO and FT controls photoperiodic flowering (Shrestha
et al., 2014). The rice homolog of CO, Heading date 1 (Hd1), functions as activator of
Hd3a in SD, and contrarily as repressor in LD (Yano et al., 2000; Nemoto et al., 2016).
Nevertheless, additional rice-specific regulators have been discovered: the floral acti-
vator Early Heading date 1 (Ehd1, Doi et al., 2004), and its repressor Grain number,
plant height and heading date 7 (Ghd7, Itoh et al., 2010). The Ehd1-Ghd7 pathway
determines the critical day-length necessary for the induction of the florigen through a
double gating mechanism dependent on the circadian clock and phytochrome-
mediated light perception (Itoh et al., 2010). Additional studies on phylogenetic recon-
structions revealed the presence of FLC homologs in monocots genomes (Ruelens et
al., 2013). These FLC-like factors repress the floral transition in response to cold in
temperate cereals (Winfield et al., 2009; Greenup et al., 2020), but appeared to have
acquired an opposite function in tropical cereals. Indeed, the rice FLC homolog Os-
MADSS51 activates the expression of the floral promoter Ehd1 (Kim et al., 2007).

Upon FT/Hd3a activation, the resulting gene product moves through the phloem from
the leaf to the SAM (Corbesier et al., 2007; Jager and Wigge, 2007; Mathieu et al.,
2007; Tamaki et al., 2007; Notaguchi et al., 2008; Komiya et al., 2009) where it triggers
transcriptional reprogramming able to confer the competence to form flowers (Corbesi-
er et al., 2007; Torti et al., 2012). Intriguingly, FT-like proteins do not have DNA binding
activity per se and must interact with bZIP Transcription Factors (TFs), i.e. FLOWER-
ING LOCUS D (FD) in Arabidopsis and OsFD1 in rice (Abe et al., 2005; Wigge et al.,
2005; Taoka et al., 2011; Brambilla et al., 2017; Collani et al., 2019), to activate the
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expression of downstream genes. The interaction of FT and FD proteins require the
14-3-3 adaptor proteins for the formation of an active Floral Activation Complex (FAC)
(Taoka et al., 2011; Collani et al., 2019), which in Arabidopsis directly activates the FM
identity gene AP1 (Wigge et al., 2005), whereas the rice FAC complex induces the ex-
pression of the AP1-like genes OsMADS14/15/18 and the SEPALLATA-like gene Os-
MADS34 that are required for the specification of IM identity (Kobayashi et al., 2012;
Gomez-Ariza et al., 2019) The florigens also mediate the transcriptional repression of
PINE, a gene encoding a Zinc Finger type TF involved in the negative regulation of
stem elongation. Therefore, the FAC coordinates the formation of reproductive struc-
tures (by activating IM identity genes) and internode elongation (by repressing PINE),
guaranteeing the emergence of the panicle from the flag leaf, known as heading, which

occurs when rice inflorescence development is completed (Gomez-Ariza et al., 2019).

In the rice inflorescence, primary and secondary branches form on the flanks of the IM
(rachis) and terminate in spikelet meristems that develop floret meristems from which
the palea, the lemma, two lodicules, six stamens and one central carpel differentiate.
The identity of different floral organs is specified by the interaction of MADS domain
TFs belonging to the SEPALLATA (OsMADS1), APETALA3 (OsMADS16) and AGA-
MOUS (OsMADS3-58) subfamilies (Jeon et al., 2000; Nagasawa et al., 2003; Dreni et
al., 2011). Eventually, the FM is consumed during gynoecium development, when a
single ovule primordium forms inside the carpel (Dreni et al., 2007). Recently, Os-
MADS1 was also shown to be essential during seed development, specifically in the

regulation of grain size and shape (Liu et al., 2018).

In this study, we identified four members of the RAV family of TF in rice, which share
sequence similarity with Arabidopsis TEMSs. In silico/co-expression analyses based on
available transcriptomics data revealed that OsRAVs interact with genes belonging to
the MADS-box superfamily at different developmental stages, suggesting that RAVs
are unknown players in the gene regulatory network underlying reproductive develop-
ment in rice. Specifically, OsRAV8 and OsRAV9 negatively correlate with IM identity
genes of the AP1 subfamily, whereas OsRAV11l and OsRAV12 act downstream of
MADS-domain floral homeotic factors of the SEP and AG subfamilies. Molecular and
functional studies using knock-down and knock-out mutant lines indicate a conserved
function for OsRAV9/OsTEM1 as repressor of photoperiodic flowering upstream of the
floral activators OsMADS14 and Hd3a, and reveal a role for OsRAV11 and OsRAV12
in the correct development of female reproductive organs, downstream of OsMADS1
and OsMADS13.

5

Downloaded from on June 22, 2020 - Published by www.plantphysiol.org
Copyright © 2020 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org

183
184

185
186
187
188
189
190
191
192
193
194
195
196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

215
216
217

RESULTS
The rice genome contains four RAV genes

Genes belonging to the RAV subfamily are present in all land plant species and en-
code for putative TFs which are characterized by two DNA binding domains, an
APETALA2-type at the N-terminus and a B3-type at the C-terminus (Kagaya et al.,
1999). In the model species Arabidopsis thaliana, the subfamily of RAV genes is com-
posed of six members (Riechmann, 2002), in addition to the TEMs other four genes
belong to this family; RAV1 and RAV1-like that are phylogenetically close to TEMs, and
RAV3 and RAV3-like which are the most divergent and nothing has been reported
about their function. The functional characterization of the closest four indicate their
regulatory role in different stages of plant development (Hu et al,. 2004; Castillejo and
Pelaz, 2008; Osnato et al., 2012; Feng et al., 2014; Matias-Hernandez et al., 2016;
Aguilar-Jaramillo et al., 2019) and in the response to abiotic stresses (Fowler et al.,
2005; Fu et al., 2014).

A preliminary phylogenomics analysis indicates a clear separation between AP2-B3
coding genes (RAV) and those encoding only the B3 domain (ARF, NGA, VAL), as
reported in Supplemental Fig. S1. Specifically in rice, although twelve genes were
named RAV (Supplemental Table S1; Swaminathan et al., 2008), only four encode
putative proteins containing both DNA binding domains as predicted by gene orthology
and paralogy: OsRAVS8, OsRAV9, OsRAV11 and OsRAV12 (Supplemental Fig. S2A).
Further analysis carried out by searching the SALAD (Surveyed conserved motif
ALignment diagram and the Associating Dendrogram) database (Mihara et al., 2009)
revealed the absence of RAV proteins in green and red algae, and the presence of
multiple conserved motifs in addition to the AP2 and B3 domains (Supplemental Fig.
S2B), including the bipartite nuclear localization signal and the B3 repression domain
(Supplemental Fig. S3) together with features associated to post-translational modifica-
tions (Supplemental Fig. S4). We also performed a phylogenetic analysis based on the
deduced full-length protein sequences retrieved by a BLAST-P search against the pro-
teomes of the two model species (Supplemental Fig. S3; Fig. 1). Although the four
OsRAV proteins clearly clustered together with AtRAV1/AtRAV1-like and TEM1/TEM2,
OsRAV8 and OsRAV9 showed the highest similarity with these Arabidopsis RAV fac-
tors (Riechmann et al., 2002).

In the rice genome, the regions corresponding to the OsRAV8 and OsRAV9 loci may
have originated recently, likely due to tandem duplication events after speciation. In-

deed, these genes are physically linked (having a distance of about 50 Kb) at the tip of
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the short arm of chromosome 1 in a region that is enriched in sequences related to
retro-transposons (Supplemental Fig. S5, A and B). Furthermore, when we searched
the Plant Genome Duplication Database (PGDD, Lee et al., 2013) using the OsRAV8-
OsRAV9 locus identifiers, we found intra-genome syntenic relationships with a region
on the long arm of chromosome 1 containing OsRAV11 (Supplemental Fig. S5C), and
a region on chromosome 5 containing OsRAV12 (Supplemental Fig. S5D). As a result
of these phylogenomics and phylogenetic analyses, OsRAV11 and the related gene
OsRAV12 appeared as within-species paralogs of OsRAV8-OsRAV9 with similar ge-

nomic structures.

Expression patterns of RAV genes and floral MADS-box genes are correlated

To gain insights into the possible function of OsRAV genes in various biological pro-
cesses and metabolic pathways, we carried out an in silico co-expression analysis by
using the RiceFREND platform (Sato et al., 2013) and constructed a coexpressed gene
list for OSRAV9 as guide gene (Supplemental Dataset S1). Among the top 474 genes
displaying a positive correlation with OsRAV9 (PCC higher than 0,3), we found enrich-
ment for biological processes GO categories related to reproductive processes, re-
sponse to chemical stimuli and response to oxidative stress (Supplemental Fig. S6, A
and B). Supporting this, we also found overrepresentation for molecular function of the
GO terms oxidoreductase and iron binding activities (Supplemental Fig. S6C). Taken
together, these findings suggest a possible role for RAV in reproductive development
as well as abiotic stress response (similarly to Arabidopsis RAVS). In particular, peroxi-
dases and oxidoreductases are detoxification enzymes activated upon accumulation of
reactive oxygen species (ROS) (Choudhury et al., 2013), and ion binding proteins are
able to sequester excess iron to avoid reaction with oxygen and the formation of dam-
aging ROS (Selote et al., 2015). On the other hand, GO analysis of the top 176 genes
displaying a negative correlation with OsRAV9 suggested a possible function in signal
transduction pathways, due to the enrichment of the terms related to protein
dephosphorylation and regulation of transcription for biological processes (Supple-
mental Fig. S7A). In particular we found a significant negative Pearson’s Correlation
Coefficient (PCC) between OsRAV9 and genes involved in reproductive development
including the florigen Hd3a and the IM identity genes such as OsMADS14, OsMADS15
and OsMADS34 (Table 1). Furthermore, a recent transcriptomics analysis of apical
meristems revealed a negative correlation between the expression of the closely relat-
ed gene OsRAV8 and IM identity genes OsMADS14, OsMADS15, OsMADS18 and

OsMADS34 at the transition from vegetative to reproductive growth (Gomez-Ariza et
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al., 2019; Supplemental Fig. S7). Taken together, co-expression and available tran-
scriptomics datasets may suggest a possible role for at least OSRAV8 and OsRAV9 in
the negative regulation of the transition from vegetative to reproductive phase, similarly

to RAV genes in Arabidopsis.

OsRAYV genes are differentially expressed during plant development

As a role for OsRAV genes in rice plant development is yet to be elucidated, we first
inferred their expression profiles by searching publicly available collections of tran-
scriptomics data (Sato et al., 2011). OsRAV9 and OsRAV12 are expressed in vegeta-
tive tissues (i.e. leaves and roots), the former at early stages of plant development
(Supplemental Fig. S8A), and the latter at maturity (Supplemental Fig. S8B), whereas
OsRAV11 is widely expressed in different organs with the exception of anthers (Sup-
plemental Fig. S8C). Moreover, the expression of OsRAV9 seems to follow a diurnal
oscillation: its transcript levels are almost undetectable during the day, then increase at
dusk and reach a peak in the middle of the night (Supplemental Fig. S8D). Likewise,
the expression of OsRAV11 and OsRAV12 appeared to oscillate during the day with a
peak after dusk (Supplemental Fig. S8, E and F), although with a smaller amplitude
compared to OsRAV9.

In order to validate these expression data, we designed specific primers for each of the
four OsRAV genes (Supplemental Fig. S8G). With respect to OsRAVS8, we performed
standard RT-PCR reactions, and even if a clear band was amplified using genomic
DNA as control template, no amplification was observed when using cDNA obtained
from different vegetative and reproductive tissues (Supplemental Fig. S8H), confirming
that this gene is not transcribed at detectable levels in the samples examined. Only
very recently OsRAV8 was found to be expressed, it was absent in all previous studies
likely because of its very specific expression in the apical meristem only at the time of

floral transition (Gomez-Ariza et al., 2019).

The expression profiles of the other three OsRAVs were investigated by RT-gPCR in
wild-type plants at different developmental stages. During the juvenile phase, the
MRNAs of OsRAV9 and OsRAV11 were detected in roots, basal region of the stem
comprising the SAM, and young leaves (Fig. 2A), although the abundance was much
higher for OsRAV9 than OsRAV11. During the adult phase, the expression of OSRAV9
became almost undetectable in vegetative tissues resembling Arabidopsis TEM genes
expression, whereas OsRAV11 and OsRAV12 displayed high transcript levels in ma-

ture leaves (Fig. 2B), resembling the expression behavior of the positive regulator of
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leaf senescence AtRAV1 in Arabidopsis (Woo et al., 2010). OsRAVs were also ex-
pressed in female reproductive organs (Fig. 2C), and their transcript levels decreased
after pollination, suggesting that their activities might be restricted to the gynoecium

before anthesis.

To investigate in detail a possible role of OsRAVs in phase changes during vegetative
growth, we dissected differentiating leaves from wild-type plants to monitor their tran-
script levels at different developmental stages. Precisely, in rice the juvenile phase is
limited to the second leaf (L2), since the transition to the adult phase occurs during the
development of the third to fifth leaf (L3-L4-L5) when the midrib differentiates (Itoh et
al., 2005). We also analyzed the expression of the Peter Pan Syndrome (PPS) gene
(Tanaka et al., 2011), the rice ortholog of the Arabidopsis COP1 (Liu et al., 2008), as a
marker for the transition from the juvenile to adult phase. In accordance with its func-
tion, PPS displayed a peak of expression in the fourth leaf four weeks after germina-
tion. OsRAV9 exhibited the highest transcript levels in L3 and then decreased in L4
and L5 (Fig. 2D), indicating that its transcription was drastically reduced at the transi-
tion to the adult phase. Also the expression of OsRAV11l was detected in young

leaves, although at very low levels as compared to PPS and OsRAV9 (Fig. 2D).

In summary, these molecular analyses suggest diversification of expression patterns
for OsRAV9 and OsRAV11, the former being transcribed at higher levels in the vegeta-
tive phase and specifically in juvenile leaves, and the latter at maturity, in particular in

old leaves and female reproductive structures.

OsRAV9 negatively regulates floral transition

In order to investigate the functional conservation between rice and Arabidopsis RAV
genes, we used the Pro35S:0sRAV9 and Pro35S:0sRAV11 constructs to transform
Arabidopsis plants (Supplemental Fig. S9A). After selection of several independent
transgenic lines (Supplemental Fig. S9B), phenotypic analyses of selected T, genera-
tions revealed a mild late flowering phenotype of transgenic plants expressing OsRAV9
(OsRAV9-E), but no phenotypic alterations in plants expressing OsRAV11 (Supple-
mental Fig. S9C). Furthermore, molecular analyses of three representative Ts lines
revealed also a correlation between the late flowering phenotype of OsRAV9-E plants
(Fig. 3, A and D) and the down-regulation of FT and GA3oxidasel (Fig. 3, E and F),
two downstream targets of the TEM factors in Arabidopsis (Castillejo and Pelaz, 2008;

Osnato et al., 2012). Taken together, these findings suggest that rice OsRAV9 and the

9

Downloaded from on June 22, 2020 - Published by www.plantphysiol.org
Copyright © 2020 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org

323
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

358

Arabidopsis TEM genes have an at least partial conserved function as repressor of

photoperiodic flowering in Arabidopsis.

Besides the high sequence identity between OsRAV9 and AtTEMSs, also their expres-
sion patterns were similar as both displayed high transcripts levels in the juvenile
phase that decreased as the plant aged shortly before the transition from vegetative to
reproductive growth (Fig. 2; Castillejo and Pelaz, 2008). Consistently, expression anal-
yses in wild-type plants showed a mutual exclusive pattern for OsRAV9 and the flori-
gen Hd3a, not only during the day (Fig. 4A) but also throughout plant development
(Fig. 4B), similarly to the opposite expression patterns of TEM and FT in Arabidopsis
(Castillejo and Pelaz, 2008). Actually, the expression of OsRAV9 was high at early
stages and dropped at around the transition to the adult phase. Conversely, the ex-
pression of Hd3a is almost undetectable at early stages of vegetative growth, and in-
creases in the adult phase (Fig. 4B, Kojima et al., 2002; Komiya et al., 2009). The flori-
gen begins to be produced in adult leaves four weeks after germination under inductive
conditions, and triggers floral transition in adult plants when it reaches its maximum

accumulation around weeks 6.

Since the dynamics of OsRAV9 expression strikingly resembled those of TEM genes,
we decided to investigate if the function was also conserved in rice. We used an RNAI
silencing strategy due to the absence of insertion mutants in public collections for
OsRAV9. Wild-type rice calli were transformed with an RNAI construct carrying a Gene
Sequence Tag specific for the 3’ end of the gene under the control of a constitutive
promoter (Supplemental Fig. S10A). We obtained eleven independent transgenic lines
for the silencing construct, and selected T; OSRAV9-RNAI transformants by monitoring
its transcript levels at the peak of expression (Supplemental Fig. S10B). T, generation
lines were obtained by self-pollination, and three lines with the highest silencing of
OsRAV9 were characterized. The RNAI lines (reported as OsRAV9-i) flowered slightly
earlier than the wild-type under inductive photoperiods, more clearly under SD than
under 12 hours of light (Fig. 4, C and D; Supplemental Fig. S10C), but not under non
inductive LD (Supplemental Fig. S10C). Under SD the down-regulation of OsRAV9
resulted in significantly early flowering plants (Fig. 4C). Under 12h light/12h dark re-
gime, transgenic lines flowered on average 90 days after germination (DAG) and un-
derwent anthesis one week later, whereas wild-type plants were still at the booting
stage (Fig. 4, E and F). These findings suggested that OsRAV9 functions as floral re-
pressor in rice like TEMs do in Arabidopsis, likely upstream of the florigen Hd3a under

inductive conditions. Therefore, hereafter we refer to OsRAV9 as OsTEM1.
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OsTEM1 regulates floral activators OsMADS14 and Hd3a

Based on the results obtained it was tempting to speculate a role for OSTEML1 in the
direct repression of Hd3a as a non-canonical RAV binding site is present in its regula-
tory region (Fig. 5A). However, we could not exclude an indirect effect on Hd3a via
additional transcriptional regulators. Actually, a negative correlation also exists be-
tween OSTEM1 and additional floral activators including OsFT-likel and IM identity
genes (Table 1), previously shown to act in a regulatory loop with the florigen, up-
stream of Hd3a in the leaf and downstream of the Hd3a/14-3-3/0OsFD1 complex in re-
productive meristems (Kobayashi et al., 2012). OsMADS14 is also expressed in adult
leaves and a perfect RAV binding site was found in its promoter (Fig. 5B). Therefore,
we used a transient expression system based on a dual Renilla-Luciferase assay to
investigate the direct interaction between OsTEM1 and potential target genes. The
effector vector Pro35S:0sTEM1 was transiently co-expressed with reporter vectors
containing different regulatory regions of Hd3a and OsMADS14 (Fig. 5, C and D; Sup-
plemental Fig. S11). We evaluated transactivation ability of the floral repressor on tar-
get promoters by measuring the relative expression of LUC and REN reporter genes in
cell lysates. Despite the biological variability between independent replicates, a clear
reduction of LUC/REN relative transcript levels was always observed when OsTEM1
was co-transformed with a reporter vector carrying promoter sequences of OsMADS14
containing the RAV binding site but not Hd3a (Fig. 5, C and D; Supplemental Fig. S11,
B and C). However, this reduction was abolished when we co-transfected the effector
vector with a mutated version of the reporter vector carrying the RAV binding site of the
OsMADS14 promoter. For statistical analyses purposes, the values of these three rep-
licates including intact and mutated RAV binding sites, are shown as logarithmic values
(Fig. 5E; Supplemental Fig. S11D). Therefore, the transient co-transformation assays
soundly suggest that transcription repression mediated by OsTEML1 is stronger on DNA

regulatory sequences of OsMADS14 and is likely mediated by the RAV binding site.

Finally, we monitored the expression levels of OSTEM1 and floral activators shortly
before and around the floral transition in wild-type and OsTEM1-i lines grown under
inductive conditions. As expected, transcripts levels of OsTEM1 were confirmed to be
higher at week 4 in wild-type plants, and strong down-regulation was observed in the
transgenic lines (Fig. 5F). Conversely, the expression of OsMADS14 increased from
week 4 to week 6 in wild-type plants, and a clear up-regulation was detected in
OsTEM1-i lines #2 and #3 at 35 DAG (Fig. 5G). The related IM genes OsMADS15 and
OsMADS34 were expressed at extremely low levels in leaves at floral transition (Sup-

plemental Fig. 12A); however, OsMADS18 was transcribed at higher levels in vegeta-
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tive tissues, and alteration of its mMRNA abundance was found in the transgenic line
with highest OsRAV9 silencing (Supplemental Fig. 12B). Furthermore, considerable
increase in Hd3a MRNA levels was also detected in silencing lines around floral transi-
tion (Fig. 5H). Taken together, transient co-transformation of protoplasts and compara-
tive expression analysis of wild-type and transgenic RNAI lines suggest that OSTEM1
controls heading date via direct repression of OsMADS14, although it also modulates

Hd3a expression.

We also tested the effect of the down-regulation of OSTEM1 on other genetic pathways
involved in the control of heading date (Supplemental Fig. 12C), and, although varia-
ble, we found up-regulation of the flowering inductors OsMADS50, OsMADS51 and
Ehd1 in silencing lines (Supplemental Fig. S12, D and E), perhaps suggesting addi-
tional roles in parallel pathways. As a consequence, down-regulation of the OSTEM1
repressor and up-regulation of different floral activators in transgenic lines resulted in

early flowering phenotype.

OsRAV11 and OsRAV12 regulate carpel development

The fact that OsRAV11/OsRAV12 have diversified from OsTEML1 in their expression
patterns and coding sequences, prompted us to hypothesize that these genes might
have acquired different roles in plant development, likely after floral induction based on
their expression pattern in the reproductive phase (Fig. 2C). A preliminary spatio-
temporal expression analysis indicated that OSRAV11 was expressed at early stages
of flower development prior organ primordia differentiation as its mRNA was detected
in the spikelet meristem (Supplemental Fig. S13A). Later on, transcripts became first
restricted to the carpel primordia similar to carpel identity genes, and afterwards specif-

ically limited to the apical part of the developing gynoecium (Supplemental Fig. S13B).

The analysis of available transcriptomics data-sets performed on floral homeotic mu-
tants that revealed OsRAV11l down-regulation in OsMADS1-RNAi inflorescences
(Khanday et al., 2013; Supplemental Table S2), and conversely up-regulation in os-
mads13 mutant (M. Osnato and M.M. Kater, unpublished), suggested an interaction
between RAV and MADS-box genes controlling floral organ development. This could
be a direct effect since we found CArG-boxes, consensus sequences recognized and
bound by MADS-domain TFs, in OsRAV11 and also in OsRAV12 regulatory sequenc-
es (Supplemental Fig. S13D). The regulation by OsMADS1 and OsMADS13 is further
supported by the fact that both appear as regulators of OsRAV genes in the Environ-
mental Gene Regulatory Influence Networks (EGRIN, Wilkins et al., 2016). Therefore,
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OsRAV11 might have a role in the development of the pistil, likely downstream of

class-D and class-E MADS-domain floral homeotic factors.

Consistently, we found down-regulation of OsRAV11 in developing panicles of the os-
madsl mutant (Fig. 6A), characterized by the conversion of floral organs into glume-
like structures (Agrawal et al., 2005; Khanday et al., 2013), and up-regulation in young
panicles of the floral homeotic mutants osmads16 and osmads13 (Fig. 6B), in which
stamens and ovules are homeotically converted into extra carpels respectively (Naga-
sawa et al., 2003; Dreni et al., 2007) perhaps because the ectopic activation of
OsRAV11. Accordingly, we observed strong upregulation of OsRAV11 specifically in
osmads13 ovule primordia (Fig. 6C; M. Osnato and M.M. Kater, unpublished), which

later develop as carpels.

Therefore, we explored the function of OsRAV11 using a knock-out mutant character-
ized by the insertion of T-DNA in the 5 UTR of the gene (Fig. 6, D and E). The loss of
OsRAV11 function did not cause alteration of heading date, but elongated carpels (Fig.
6F). A detailed phenotypic analysis by Scanning Electron Microscopy (SEM) upon ferti-
lization indicated alteration in size and shape of the pistil, with an enlarged ovary com-
pared to wild-type pistils (Fig. 6G). Specifically, differentiation of apical tissues of the
gynoecium were altered in the osravll mutant as carpel tissues did not fuse (Fig. 6H).
Likewise, we observed alteration of seed morphology (Supplemental Fig. S13): mutant
plants produced seeds with increased seed length and decreased seed width (Sup-
plemental Fig. S3G), resulting in statistically significant alterations of length-to-width
ratio and circularity (Supplemental Fig. S3H). Interestingly, we observed a slight in-

crease in seed weight after de-husking (Fig. 61).

Ultimately, to investigate the possible redundancy between OsRAV11 and the closely
related OsRAV12 gene in the formation of female reproductive organs, we generated
transgenic rice plants in which the expression levels of both genes were reduced by
RNA interference (Supplemental Fig. S14). Vegetative growth of knock-down lines
(from now on OsRAV11/12-i) was normal, whereas flowers showed alterations caused
by abnormal morphology of female reproductive organs (Fig. 7A). Indeed, elongated
cylindrical pistils with highly reduced stigmas and enlarged ovaries (Fig. 7B) were ob-
served in transgenic plants with reduced levels of both OsRAV11 and OsRAV12 in the
gynoecium (Fig. 7C), indicating that these two genes redundantly regulate the basal-
apical patterning of the gynoecium. Interestingly, flowers of these transgenic lines pro-
duced viable pollen, but most of the ovules were not fertilized, resulting in very poor
seedset. Consequently, most of the transgenic lines displayed severe fertility defects
(Fig. 7D).
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To conclude, molecular and functional characterization of OsRAV11l and OsRAV12
suggest that these two genes might redundantly regulate the differentiation of the fe-
male reproductive structures. Intriguingly, a decreased activity of OsRAV11 correlated
with an increase in seed weight, whereas the loss of OsRAV11 and OsRAV12 activity

associates with sterility problems.

DISCUSSION
Arabidopsis and rice RAV genes are closely related

RAV proteins belong to the plant-specific B3 super-family of TFs (Swaminathan et al.,
2008), and are characterized by an additional AP2 DNA binding domain at the N-
terminus. AP2-B3 type proteins were not found in the green algae Chlamydomonas
reinhardtii, but they appeared early in the evolution of land plant species. The presence
of two DNA binding domains suggests that these TFs achieve high affinity by specifi-
cally binding bipartite sequences in regulatory regions of downstream targets (Kagaya
et al., 1999; Castillejo and Pelaz, 2008; Osnato et al., 2012; Matias-Hernandez et al.,
2016).

In this study, we focused on the four rice RAV genes which display striking similarities
with four RAV genes of Arabidopsis (Supplemental Fig. S15) that were already de-
scribed as regulators of different aspects of plant development and stress responses.
Specifically, AtRAV1 and AtRAV1-like redundantly control leaf senescence (Woo et al.,
2010), AtRAV1 and TEM2 modulate sensitivity to drought and salinity (Fu et al., 2014),
TEM1 and TEM2 repress trichome formation (Matias-Hernandez et al., 2016) and floral
transition under inductive and non-inductive photoperiods (Castillejo and Pelaz, 2008;
Osnato et al., 2012) as well as in response to low temperatures (Marin-Gonzalez et al.,
2015) and to plant age (Aguilar-Jaramillo et al., 2019). Interestingly, preliminary co-
expression analyses suggested that OsRAV9 and OsRAV11 could act in signal trans-
duction pathways activated in response to abiotic stresses. Nevertheless, OsRAV9 and
the closely related OsRAV8 could also act in Gene Regulatory Networks controlling the
transition from vegetative to reproductive growth in the leaf and in the apical meristem,

respectively.

OsRAV9/OsTEML1 is a novel player in flowering

Although phylogenomics and phylogenetic analyses revealed that OSRAV genes might

have originated from duplication events from a common ancestor after speciation and
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separation of monocots and dicots, it is difficult to draw conclusions from orthology with
AtRAVs. Furthermore, the expression domains of the four OsRAV paralogous genes
appear to have diversified likely due to polymorphisms in their regulatory regions. Re-
gardless of the remarkable similarities in the gene structures and coding sequences,
OsRAV8 and OsRAV9 are expressed in different tissues. Indeed, OSRAV9 mRNA is
abundant in juvenile leaves, and its reduction marks the transition to the adult phase
when plants acquire the competence to flower, whereas the transcripts of OSRAVS8 are
detected in the apical meristem and its levels also decrease at floral transition when IM
identity genes are activated (Gomez-Ariza et al., 2019). Therefore, at least OsRAV9
displayed an expression pattern that resembles that of TEM genes in Arabidopsis.
Supporting the functional conservation, the ectopic expression of OsRAV9 in Ara-
bidopsis plants correlated with the repression of the TEM targets FT and AtGA30X1
and delayed flowering time. In addition, silencing of OsRAV9/OsTEML1 in transgenic
rice lines resulted in early flowering due to up-regulation of the floral activators Os-
MADS14 and Hd3a.

The mechanism of action seems to be different in the two species. To avoid precocious
flowering, Arabidopsis TEMs directly target the florigens FT (Castillejo and Pelaz,
2008) and AtGA30x1/2 (Osnato et al., 2012), whereas OSTEM1 might regulate Hd3a
indirectly via repression of OsSMADS14 as proposed in Fig. 8A. Although this AP1/FUL-
like gene is expressed at high levels in reproductive tissues, its mMRNA accumulates
also during the vegetative phase. Accordingly, an additional role for OSMADS14 as
activator of the florigen in the leaf has been previously proposed, likely acting via a
positive regulatory loop with Hd3a (Kobayashi et al., 2012). Actually, knock-down lines
silencing OsMADS14, OsMADS15, OsMADS18 and OsMADS34 display delayed flow-
ering (Kobayashi et al., 2012), and conversely transgenic rice ectopically expressing
OsMADS14 and OsMADS18 are early flowering (Jeon et al., 2000; Fornara et al.,
2004). A very recent study also indicates that AP1-like genes could regulate drought-
escape; indeed, the early flowering phenotype under drought conditions correlates with

increased expression of OsMADS18 (Groen et al., 2020).

Upon floral transition, the FAC activates the expression of OsMADS14, together with
OsMADS15, OsMADS18 and OsMADS34, which specify IM identity and trigger the
development of reproductive structures (Kobayashi et al., 2012; Kobayashi et al.,
2010). Based on transcriptomics analysis, we speculate that OsRAV8 could play a role
in the maintenance of the vegetative state of the apical meristem, thus preventing the

formation of the rachis under non inductive conditions.
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Mechanisms controlling floral transition in cereals

It has long been known that AP1/FUL-like proteins control seasonal flowering in cere-
als growing in temperate regions (Fjellheim et al., 2014). Precisely, the floral transition
is triggered by the activation of VERNALIZATION 1-like (VRN1-like) and FT-like genes
in wheat leaves in response to increasing day-length and prolonged exposure to low
temperatures (Danyluk et al., 2003; Shimada et al., 2009). At least in wheat, VRN1
regulates flowering by directly binding the promoter of the downstream target FT-likel
(Deng et al., 2015; Tanaka et al., 2018). Surprisingly, the function of AP1/FUL-like pro-
teins as floral activators acting in leaves seems to be well conserved in rice (Jeon et
al., 2000; Kobayashi et al. 2012), despite the fact that it is a cereal crop of tropical
origin that does not require vernalization. Currently, we propose a novel mechanism
that is largely independent from previously described molecular networks determining
heading date in rice (Tsuji et al., 2013). Interestingly, the presence of TEM orthologs in
the Poacea family (Supplemental Fig. S1) opens up the intriguing possibility that the
RAV-AP1-FT regulatory module could be conserved among tropical (Oryza tribe) and

temperate (Triticeae tribe) cereals.

Moreover, as mentioned above AtRAV1 and TEM2 seem to modulate sensitivity to
drought and salinity (Fu et al., 2014), OSTEM1 has been recently shown to play a role
in response to abiotic stresses (OsRAV2, Duan et al., 2016), and OSTEM1 expression
was reduced in plants growing under drought conditions (Plessis et al., 2015) where
the transcription of OsSMADS18 was increased (Groen et al., 2020). Therefore, RAV
genes could be involved in adaptive growth by modulating heading date in response to
environmental limitations and fluctuations, by integrating external and internal physio-

logical conditions.

Mechanisms controlling floral organ development in rice

In the last decade, genetic and functional genomics analyses in different plant species
revealed that flower development is governed by a complex framework based on
MADS-domain TFs. Rice members of the grass-specific LOF-SEP clade sequentially
regulate different steps of flower development upon the vegetative to reproductive
phase change. First, OsMADS34 forms tetrameric complex with the AP1-like factors
OsMADS14 and OsMADS15 in the IM to initiate inflorescence branch meristem pri-
mordia development from which secondary branches and spikelets differentiate (Koba-
yashi et al., 2012). After the formation of rudimentary glumes and sterile lemmas, the

spikelet meristem is converted into floret meristem which produces different floral or-
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gans. Another grass-specific LOF-SEP factor, OsMADS1, plays a central role in the
determination of floral organ identity, as it interacts physically and genetically with AP3-
like and AG-like factors which are involved in the development of male and female re-
productive organs (Li et al., 2011; Khanday et al., 2013; Khanday et al., 2016). Recent-
ly, transcriptomics analysis performed on OsMADS1 knock-down panicles at very early
stages of flower development (Khanday et al., 2013) unveiled mis-regulation of floral
homeotic MADS-box genes as well as down-regulation of genes encoding B3-type
TFs, including OsARFs and OsRAV11 (Supplemental Table S2). Precisely, the ARF-
type TFs OsETTINL and 2 control the differentiation of apical tissues of the carpel, and
at least OsETTIN2 is directly regulated by OsMADS1 (Khanday et al., 2013). Intriguing-
ly, the aberrant carpel morphology of loss of OsETTINs (Khanday et al., 2013) is simi-
lar to that of transgenic lines with reduced level of OsRAV11 and OsRAV12 (Fig. 7B).

OsRAV11 and OsRAV12 regulate the development of gynoecium

In Arabidopsis, the early flowering TEM loss of function mutants do not display evident
alterations of flower development. Nonetheless, the late flowering TEM overexpressing
lines show fertility defects and produce shorter siliques containing fewer seeds. This
phenotype could be related to decreased content of GA, or alternatively to misregula-
tion of genes involved in the regulation of later organ development. In rice, Further mo-
lecular analyses suggest that RAV genes might have acquired additional functions at
later stages of vegetative and reproductive growth. Indeed, OsRAV11l and OsRAV12
are highly expressed not only in mature leaves at ripening, indicating a possible regula-
tory role in leaf senescence similarly to AtRAV1, but also in the gynoecium before ferti-
lization. Actually, functional characterization of knock-down and knock-out mutants
points at a novel function for OsRAV11 and OsRAV12 in the correct formation of fe-
male reproductive organs. Indeed, the whole basal-apical pattern was distorted; the
ovary was enlarged in osravll and misshapen in OsRAV11/12-i plants. Down-
regulation of both genes resulted in reduced stigmas and larger carpels than in single
osravll mutants, which may suggest a redundant function of these genes in carpel
development and differentiation. Therefore, we hypothesize a role for OsRAV11 and
OsRAV12 in the determination of the basal-apical pattern of the pistil, perhaps in paral-
lel with ARFs. Furthermore, we propose that at least OsRAV11 may control the differ-
entiation of the gynoecium downstream of MADS-domain TFs (Fig. 8B), due to its mis-
regulation in the floral homeotic mutants osmadsl, osmads13 and osmads16 (Fig. 6, A
and C).
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Besides the specification of the identity of different floral organs, OsMADS1 has been
proposed as a key trait of agronomical interest During spikelet development, Os-
MADS1 also interacts with Gy subunits of GS3 and DEP1 (Liu et al., 2018), which
regulate its transcriptional activity on a common set of target genes involved in the de-
termination of seed size and shape. The dominant negative mutation osmads1(lgy3)
causes an alternatively spliced protein variant and correlates with more slender grain,
as the mutated protein promotes cell proliferation in longitudinal direction (Liu et al.
2018). Pyramiding of Igy3 and depl-1 alleles in a japonica cultivar resulted not only in
a 10% increase in grain yield, but also improved grain length-to-width ratio and grain
chalkiness (Liu et al. 2018). We can hypothesize that the elongated seed phenotype
associated to down-regulation of OsMADS1 (Liu et al., 2018) could be mediated
through the down-regulation of B3 genes including OsRAV11 since a similar slender
phenotype is observed in osravll and OsRAV11/12-i carpels. Further analyses are
required to understand the interactions with putative upstream regulators, interacting
proteins and downstream targets constituting the molecular network that regulates the

development of the gynoecium in rice.

MATERIALS AND METHODS
RAV sequence analyses

OsRAV8 and AtTEM1 were used as queries in phylogenomics analyses in sequenced
land plants species (eudicotyledons, monocotyledones, Amborellales) using gene tree
tool of Pan-taxonomic Compara (http://www.gramene.org/). TEM1 protein sequence
was used as query in a BLAST-P search against the proteomes of Arabidopsis (Ara-

bidopsis thaliana) and rice (Oryza sativa).

TF binding sites (CArG box for MADS-domain proteins, consensus sequence com-
posed of CAACA and CCTG elements at a distance of 3-9 nucleotides for RAV pro-
teins) were searched in the regulatory regions of genes of interest by using the Pro-

moter Analysis tool of Plant PAN3.0 (http://plantpan.itps.ncku.edu.tw/index.html).

Gene and protein sequences were retrieved from TAIR (www.arabidopsis.org) and

GRAMENE (www.gramene.org).

Phylogenetic analyses
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Analysis of phylogenetic relationships between 24 RAV-related full length protein se-
quences and construction of phylogenetic tree were performed using tools available at
http://www.phylogeny.fr/ (Dereeper at al., 2008). MUSCLE was used for protein se-
quences alignment, and G-blocks for a more stringent selection. PhyML was used for
phylogenetic analysis with bootstrapping procedure (N=100) as statistical test for
branch support, and TreeDyn for tree visualization. Sequence Diversity Diagram
(SeDD) was used to compare two sets of RAV protein sequences from Arabidopsis
thaliana and Oryza sativa and visualize conserved versus diversified positions in the
two species. Motif clustering analysis was carried out using Surveyed conserved motif
ALignment diagram and the Associating Dendrogram (SALAD version 3,
https://salad.dna.affrc.go.jp/salad/en/) with OSRAV9 sequence, and the prediction of
functional and structural motifs in RAV protein sequences via web-based tools of

ExPASY (https://prosite.expasy.org/scanprosite; Castro et al., 2006).

Expression profiles

Expression profiles of rice RAV genes were inferred from a large collection of microar-
ray data derived from different tissues at different developmental stages under natural
field conditions (http://ricexpro.dna.affrc.go.jp/). Co-Expression Analyses were carried
out by using OsRAV9 as single guide genes and searching the Rice Functionally Re-
lated gene Expression Network Database (RiceFREND,
http://ricefrend.dna.affrc.go.jp/), the Plant Co-expression Database (PLANEX, Yim et
al., 2013) and the Rice Oligonucleotide Array Database (ROAD, Cao et al., 2012).

Plant material and growth conditions

Wild-type and transgenic Arabidopsis thaliana (Col-0 background) seeds were sown on
soil pots and plants were grown under LD (16 hours light/8 hours dark at 22°C) until
maturity. Wild-type and transgenic rice (O. sativa subspecies Japonica) seeds were
surface sterilized and sown on Murashige Skoog medium with 30g/l Sucrose. After
germination, seedlings were transferred to soil pots and grown under controlled condi-
tions until maturity (SD: 8 hours light at 28°C, 16 hours dark at 24°C; 12/12: 12 hours
light at 28°C, 12 hours dark at 24°C or LD; LD:16 hours light at 28°C, 8 hours dark at
24°C). For functional characterization of OsRAV genes, transgenic lines (cv. Nippon-

bare) and insertion mutant (PFG_2A-10680, cv. Hwayoung) were used. For expression
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analysis, segregating progenies of floral homeotic mutants (cv. Dongjin) were geno-
typed (Supplemental Tables S3), grown for 10 weeks in LD and then transferred to
inductive conditions. Pools of developing inflorescences were harvested 3 weeks after
floral transition from homozygous mutants (osmadsl, osmadsl13, osmads16) and wild-

type plants.

Cloning and generation of Arabidopsis and rice transgenic plants

The coding sequence of OsRAV9/OsTEM1 was amplified using primer sets SPp538-
SPp541, sub-cloned in pCRIlI and pENTR-3C by restriction/ligation, and introduced in
PALLIGATOR?2 vector downstream of Pro35S by Gateway technology (Supplemental
Table S4). Arabidopsis plants (Col-0, teml-tem2) were transformed with the
Pro35S:0sTEM1 construct by floral dip, and GFP-positive seeds were selected by fluo-
rescence microscopy. For the generation of the RNAI constructs, the Gene Sequence
Tags (GSTs) specific for the 3’ ends of OSRAV9/OsTEM1 and OsRAV11 were ampli-
fied using primer sets SPp516-SPp539 and SPp527-SPp537 respectively, then sub-
cloned in pCRII, and afterwards cloned in pENTR-3C by restriction/ligation (as Kpnl-
EcoRV fragments). The resulting constructs were digested with Pvul prior to LR re-
combination to pBios-378 plant expression vector. Scutellum-derived rice calli (cv Nip-
ponbare) were transformed by Agrobacterium co-cultivation. Independent transfor-
mation events were selected, 11 for OsRAV9 and 7 for OsRAV11 constructs, regener-
ated and propagated. Plants that underwent regeneration but did not contain the trans-
genic cassette were used as transformation control. The primers used for genotyping

and cloning are listed in Supplemental Tables S3 and S4.

Direct binding of OSTEM1 to downstream genes

To generate the set of reporter vectors, different promoter regions of OsMADS14 and
Hd3a were cloned as Sall-Pstl fragments in a modified pGreenll 0800-LUC carrying
Pro35S:LUC and Pro35S:REN (as internal control to estimate the proportion of trans-
formed protoplasts). Primers SPpl764- SPpl1765 were designed to introduce muta-
tions at the RAV binding site contained in ProOsMADS14 by PCR-based method. The
corresponding reporter vector was used as template for site-directed mutagenesis (15
cycles: 10" at 98°C, 20" at 66°C, 20" at 66°C), and the resulting vector employed in
transactivation assays. Protoplasts were isolated from calli by digesting the cell-wall
with Macerozyme R-10 and Cellulase (Yakult Pharmaceuticals), and transfected with

different combinations of reporter Pro35S:0sTEM1 and effector constructs using PEG.
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After 18 hours incubation in darkness at 24°C, transformed protoplasts were pelleted
and resuspended in homogenization buffer for RNA extraction. Transactivation activity
of OSsTEML1, based on the relative ratio of mMRNA abundance of Luciferase and Renilla
reporter genes, was assessed by RT-qPCR. The primers used for cloning and expres-

sion analyses are listed in Supplemental Tables S4 and S5.

RNA extraction and expression analyses

For expression analyses in Arabidopsis, pools of 20 seedlings grown for one week un-
der LD were collected at ZT12. For expression analyses in rice, pools of 10-15 sam-
ples from different tissues and/or developmental stages were collected at ZT13 unless
otherwise stated. RNA was extracted with PureLink RNA mini kit (Ambion) and treated
with DNasel RNase free (Ambion). For large scale experiments, RNA was extracted
with Maxwell RSC Plant RNA kit (Promega) and DNase treatment was performed on-
column. 1 ug of DNase-treated RNA was retro-transcribed with SuperScript Il (Invitro-
gen), and cDNA was used for RT-gPCR with Light Cycler 480 SYBR Green | master on
Light Cycler 480 Il (Roche). Three biological replicates and three technical replicates
were performed. In situ hybridization was performed as previously reported (Dreni et
al., 2007). The primers used for expression analyses are listed in Supplemental Table
S5.

Phenotypic Analyses

Morphological analysis of reproductive structures was performed by Optical Microscopy
(Olympus DP71) and Scanning Electron Microscopy. For SEM, flowers at anthesis
were fixed in 2.5% v/v glutaraldehyde in 0.1 M P-buffer (pH 7.4) overnight at 4°C,
washed 4 times for 10 minutes in 0.1 M P-buffer, post-fixed in 1% osmium tetraoxide
with 0.7% ferrocyanide in P-buffer, washed in water, dehydrated in an ascending etha-
nol series (50, 70, 80, 90, and 95% for 10 min each and twice with 100% ethanol), and
dried by critical-point drying with CO,. Alteration on the morphology of the seed were
analysed by using the Smart-grain software (Tanabata et al., 2012). At least 100 seeds
per genotype (for three independent biological replicates) were spread uniformly on the
glass with a black background, and images were captured with HP Scanner at 300 dpi.
The software determined seed shape parameters such as seed length, width, perime-

ter and area, and also calculated length-to-width ratio and circularity.
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Statistical analyses

All statistical analyses are shown in Supplemental Table S6. Statistical significance of
each experiment was determined by using GraphPad Prism 7. For flowering time phe-
notype, we chose one-way ANOVA, multiple comparison were then corrected with
Dunnet's or Dunn's tests. For other kind of data, we compared two columns by using
unpaired t-test (two-tailed options), confidence Interval 95%.

Following instructions of GraphPad Prism, we first transformed ratios in log of ratios
(Y=log(Y)), for Fig. 5 and Supplemental Fig. S11. Then we created a column data table
and enter two columns of data (control — OSTEM1, +OsTEM1) with matched values on
the same row. We chose t tests from the list of column analyses, and selected condi-
tions as follows: Experimental design: Paired; Assume Gaussian distribution: Yes;
Choose test: Ratio paired t test. On the second tab of the t test dialog, we chose to
compute +OSTEM1 vs — OSTEM1.

Accession numbers

Sequence data from this article can be found in the GenBank/EMBL data libraries un-

der the following accession numbers.

AtRAV locus identifiers: AT1G13260 (AtRAV1), AT3G25730 (AtRAV1-like), At1g25560
(AtRAV2-like/TEM1), AT1G68840 (RAV2/TEM2), Atlg50680 (AtRAV3), Atlg51120
(AtRAV3-like).

OsRAV locus identifiers: LOC_0s10g39190 (OsRAV2), LOC_0s08g06120 (OsRAV3),
LOC_0s03g02900 (OsRAV4), LOC_0s04g49230 (OsRAV5), LOC_0s02g45850
(OsRAV6), LOC 0Os11g05740 (OsRAV7), LOC_0s01g04750 (OsRAVS),
LOC_0s01g04800 (OsRAV9/OSTEM1), LOC_0s01g49830 (OsRAV11),
LOC_0s05g47650 (OsRAV12).

OsMADS locus identifiers: LOC_0s03g54160 (OsMADS14); LOC_0s07g01820 (Os-
MADS15); LOC_0s07g41370 (OsMADS18); LOC_0s03g54170 (OsMADS34);
LOC_0s03g03100 (OsMADS50/0sS0OC1); LOC_0s01g69850 (OsMADS51)

SUPPLEMENTAL DATA
Supplemental Figure S1. Phylogenomic analysis of TEMPRANILLO (TEM) homologs
in sequenced land plants.

Supplemental Figure S2. Analysis of genes encoding AP2-B3 (RAV) proteins.
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Supplemental Figure S3. Similarity clustering based on distribution patterns of known
conserved motifs in RAV proteins.

Supplemental Figure S4. Similarity clustering based on distribution patterns of con-
served features related to post-translational modification.

Supplemental Figure S5. Analysis of RAV genes in Oryza sativa ssp Japonica. A,
Distribution of RAV genes in the rice reference genome (Nipponbare ecotype).
Supplemental Figure S6. GO analysis of genes strongly coexpressed with OsRAV9.
Supplemental Figure S7. GO test of genes negatively correlated with OsRAV9 and
expression analysis of genes acting in apical meristems at floral transition in rice.
Supplemental Figure S8. Inferred expression profiles of OsRAV genes during plant
development.

Supplemental Figure S9. Analysis of T, and T, transgenic lines ectopically expressing
OsRAV9 and OsRAV11 in Arabidopsis.

Supplemental Figure S10. Molecular and phenotypic analysis of T1 transgenic rice
lines silencing OsRAV9.

Supplemental Figure S11. Transactivation activity of OSTEM1 on floral activators in
rice protoplasts.

Supplemental Figure S12. Expression analyses of genes involved in the floral transi-
tion in OSRAV9-i rice lines.

Supplemental Figure S13. Analyses of OSRAV11-OsRAV12.

Supplemental Figure S14. Molecular characterization of OsRAV11-OsRAV12.
Supplemental Figure S15. Analysis of RAV proteins from Arabidopsis thaliana and
Oryza sativa.

Supplemental Table S1. List of RAV genes in Oryza sativa reported by Swaminathan
et al., 2008.

Supplemental Table S2. List of genes encoding B3-domain TFs down-regulated in
OsMADS1 knock-down panicles (modified from Khanday et al., 2013).

Supplemental Table S3. List of primers used for genotyping.

Supplemental Table S4. List of primers used for cloning.

Supplemental Table S5. List of primers used for expression analyses.

Supplemental Table S6. Statistical analyses.

Supplemental Dataset S1. Co-expression analyses
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Tables

Table 1. List of the top 20 genes negatively correlated with OsRAV9. In bold,

genes involved in the regulation of reproductive development.

Weighted Locus ldentifier Gene name Description
PCC
-0.568 LOC_0s03g54160 | OsMADsS14 | WADS-domain containing
Transcription Factor
-0.542 LOC_0s03g54170 | OsMADS34 | V/ADS-domain containing
- Transcription Factor
-0.526 LOC_0s07g01820 | OsMADS15 | MADS-domain containing
Transcription Factor
-0.497 LOC_0Os04g13150 Cyclin-like F-box domain
containing protein
-0.491 LOC_0s10g06560 cyclin-dependent kinase G-1
0.477 LOC_0s09g19500 Protel'n'klnase-ll.ke domain
containing protein
-0.476 LOC_0s01g11940 | OsFT-likel | omiarto SP3D
-0.464 LOC_0s01g19880 Conserved hypothetical protein
-0.463 LOC_0s10g06510 Protel-n-klnase-ll!<e domain
containing protein
-0.458 LOC_0s02g55990 Longin-like domain
containing protein.
-0.451 LOC_0s07g17230 | OsWRKy123 | WRKY-domain containing
Transcription Factor
Similar to O-methyltransferase ZRP4
-0.446 LOC_0s05g43930 OMT (EC2.1.1-)
Conserved hypothetical protein
-0.434 LOC_0s11g31770
Similar to Protein phosphatase 2C
-0.433 LOC_0s05g38290 (PP2C)
Similar to ABA-responsive element
-0.4315 LOC_0s02g52780 bZIP binding protein 2 (AREB2).
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Conserved hypothetical protein
-0.423 LOC_0s03g04990

HEADING DATE 3A
-0.424 LOC_0s06g06320 Hd3a

Conserved hypothetical protein
-0.422 LOC_0s12g13910

Conserved hypothetical protein
-0.411 LOC_0s09g27680

Similar to HIGH-AFFINITY
-0.407 LOC_Os08g36340 | HAK4 POTASSIUM TRANSPORTER 4

FIGURE LEGENDS

Figure 1. Phylogenetic analysis of RELATED TO ABI3 AND VP1 (RAV) proteins in
model species. Tree representing the most related RAV-like proteins from Arabidopsis
thaliana (At) and Oryza sativa (Os) retrieved using TEMPRANILLO1 (TEM1) as query
in a BLAST-P search, alignment with MUSCLE, and selected with G-blocks. TEM1 and
TEM2 are RAV2-like and RAV2, respectively. Phylogenetic analysis with bootstrapping
procedure (N=100) as statistical test for branch support was carried out with PhyML,
and tree visualization with TreeDyn. Scale bar indicates the number of substitutions per
site, values in red indicate percentage branch support values. 1

Figure 2. Patterns of OsRAV genes expression during plant development. A to C,
Transcript levels of OsRAVS, relative to OsUBQ, in vegetative and reproductive tissues
of wild-type plants. OsRAV9 in light green, OsRAV11 in light lilac and OsRAV12 in dark
lilac. A, RT-gPCR in roots, stems, and second leaf (L2) dissected from 1l-week-old
seedlings. B, RT-gPCR in mature leaves (L5, L6, L7) dissected from 10-week-old adult
plants. C, RT-gPCR in mature pistils and fertilized ovaries 1 and 3 days after pollination
(DAP). D, Transcript abundance of PPS (white), OSRAV9 and OsRAV11, relative to
OsUBQ, in juvenile (L2) and adult (L3-L4-L5) leaves. At week 2, L3 is formed and L4 is
emerging. At week 3, L4 expands and L5 is emerging. At week 4, L5 is fully expanded.
Expression data are mean value of three biological replicates, and error bars represent
SD.

Figure 3. Late flowering phenotype of Arabidopsis (Arabidopsis thaliana) plants ex-
pressing OsRAV9. A, Representative images of wild-type (wt, left) and OsRAV9-E
transgenic (right) plants grown for 4 weeks under long days (LD). Scale bar indicates 1
cm. B and C, Flowering time scored as number of rosette leaves and number of days
to flower of wild-type (grey) and OsRAV9-E lines (green) grown under LD. D to F, Rela-

tive expression levels of OsRAV9 and TEM1 downstream targets in wild-type and rep-
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resentative T3 OSRAV9-E lines grown for 1 week under LD. D, Ectopic expression of
OsRAV9 in transgenic Arabidopsis lines. E and F, Down-regulation of FT and
AtGA3o0x1 in OsRAV9-E lines compared to wild-type.

Flowering time data are the average of 25 plants each genotype, with standard error of
the mean. Three biological replicates gave similar results, and one was chosen as rep-
resentative. Data were analyzed by one-way ANOVA followed by Dunnett's multiple
comparisons test between wild-type and transgenic lines. Asterisks indicate statistical
significance, with * P-value<0,05. Expression data are reported as mean value of three
biological replicates; error bar represents the standard error of the mean. AtUBQ10

was used for normalization.

Figure 4. Role of OsRAV9 in heading date. A, Diurnal oscillation of Hd3a and OsRAV9
expression in leaves of 4-week-old wild-type (wt) plants. Grey block indicates night. B,
Mutually exclusive expression patterns of Hd3a and OsRAV9 in leaves throughout
wild-type (wt) plant development. Grey block indicates floral transition. C to D, Scatter
plots representing heading date as number of days to flower of wild-type (in grey) and
OsRAV9-i plants (in light green) grown under inductive photoperiods (8h light/16h dark,
12h light/12h dark). Lines represent the median with 95% of CI. E, Early flowering phe-
notype of a selected OsRAV9 silencing line (RAV9-i #3, right) compared to wild-type
(left) 100 DAG. Bar represent 10 cm. F, Close-up view showing wild-type panicle at the
booting stage and OsRAV9-i panicle at anthesis. For molecular analyses, plants were
grown under 12 hours light/12 hours dark at 28°C, whereas for heading date plants
were grown under different daylengths. Expression data are reported as mean value of
three biological replicates; error bar represents the standard error of the mean. Flower-
ing time data are the average of 18—-20 plants each genotype. Three biological repli-
cates gave similar results, and one was chosen as representative. Data were analyzed
by one-way ANOVA followed by Dunnett's multiple comparisons test between wild-type
and transgenic lines. Asterisks indicate statistical significance, with * P-value<0,05, **
P-value<0,033.

Figure 5. Interaction between OsRAV9/OsTEM1 and floral activators. A, Non canoni-
cal RAV binding site in the promoter of Hd3a, 785 bp upstream of the TSS. B, Perfect
RAV binding site in the promoter of OsMADS14, 2250 bp upstream of the TSS, and
mutated version (right). Arrows represent oligonucleotides used to amplify fragments of
ProHd3a and ProOsMADS14 without RAV binding sites (Ha and Ma, in orange) and
with RAV binding sites (Hb and Mb, in green). C and E, Transactivation activity of

OsTEML1 in transiently transformed protoplasts, reported as ratio of transcript levels of
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LUC and REN reporter genes relative to UBQ. C, RT-qPCR of protoplasts co-
transformed with Pro35S:0sTEM1 and reporter vectors containing sequences of
ProHd3a (Ha in grey, Hb in green). D, RT-gPCR of protoplasts co-transformed with
Pro35S:0sTEML1 and reporter vectors containing sequences of ProOsMADS14 (Ma in
grey, Mb in green). E, Analysis of protoplasts co-transformed with Pro35S-OsTEM1
and reporter vectors containing sequences of ProOsMADS14 (Mb in green, mutated
Mb in dark green). Values are the mean of three independent replicates. F to H, ex-
pression analysis of genes involved in heading date in independent T, lines (green)
compared to wild-type plants grown for 28, 35 and 42 days under inductive conditions.
F, Down-regulation of OsRAV9/OsTEML in silencing lines (green). G and H, Up-
regulation of the floral activators OsMADS14 and Hd3a in silencing lines (green lines)
compared to wild-type (black line). Expression data are mean value of three biological

replicates with three technical replicates each, and error bars represent SD.

Figure 6. Molecular and functional characterization of OsRAV11l. A to C, Mis-
regulation of OsRAV11 in floral homeotic mutants. A, Down-regulation of OSRAV11 in
osmadsl developing inflorescences. B, Up-regulation of OsRAV11 in osmads16 and
osmads13 developing inflorescences. C, Strong activation of OsRAV11 in specific cell
types (floral meristem and ovule primordia) isolated from osmads13 mutant flowers. D,
Schematic representation of the T-DNA insertion in the 5 UTR of OsRAV11. Arrows,
primers used for genotyping. E, Down-regulation of OsRAV11 in pistils dissected from
osravll mutant flowers at maturity. F to H, Morphological analyses of female reproduc-
tive structures at maturity. F, Representative images of wild-type and osravll carpels
dissected from mature flowers at anthesis obtained by optical Microscopy. Bar, 1 mm.
G and H, Representative images of reproductive structures obtained by Scanning Elec-
tron Microscopy (SEM). G, Wild-type and osravll carpels upon fertilization. Glumes
were partly removed to show female reproductive organs. Bar, 500 um. H, Apical tis-
sues of wild-type and osravll gynoecia after pollination. Bar, 100 um. I, Bar-plots rep-
resenting the weight of seed produced by wild-type (in grey) and osravll (in white)
plants grown in the greenhouse under inductive conditions. Expression data are re-
ported as mean value of three biological replicates; error bar represents the standard
error of the mean. Phenotypic data are the average of three biological replicates of the
weight of 100 seeds each genotype, with standard error of the mean. Statistical signifi-

cance was examined by two tailed unpaired t-test, with * P-value<0,05.
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Figure 7. Morphogenetic effects of OsRAV11/OsRAV12 silencing in reproductive
phase. A, epresentative images of mature flowers dissected from wild-type (wt) and
OsRAV11/12-i inflorescences. Arrows indicate the position of the stigmas. B, repre-
sentative images of mature carpels dissected from wild-type and one T; OSRAV11/12-|
flowers obtained by optical microscopy. Bar, 1mm. C, Down-regulation of OsRAV11
and OsRAV12 in mature pistils of two representative T3 OsRAV11/12-i lines as com-
pared to wild-type. Expression data are reported as mean value of three biological rep-
licates with standard error of the mean. Data were analyzed by ordinary one-way
ANOVA followed by Dunnett's multiple comparisons test between wild-type and trans-
genic lines. Asterisks indicate statistical significance, with * P-value<0,05 and ** P-

value<0,033. D, fertility defects of mature OsRAV11/12-i panicles compared to wild-
type.

Figure 8. Model for interaction between RAV and MADS factors during reproductive
growth. A, OsRAV9 represses the transcription of OsMADS14, a positive regulator of
the florigen Hd3a, in the leaf. Upon floral transition, the complex Hd3a-OsFD activates
the expression of IM identity genes OsMADS14-15-18-34 in the apical meristem. B,
The expression of OsMADS1 in developing flowers marks the formation of lem-
ma/palea (in green) and central carpel (in pink) from the FM, whereas the presence of
OsMADS16 and OsMADS13 prevents the expression of genes involved in carpel de-

velopment in stamen primordia (in yellow) and in ovule primordium (in violet).
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Figure 1. Phylogenetic analysis of RELATED TO ABI3 AND VP1 (RAV) proteins in model species.
Tree representing the most related RAV-like proteins from Arabidopsis thaliana (At) and Onyza
safiva (Os) retrieved using TEMPREANILLOA (TEM1) as guery in a BLAST-P search, alignment with
MUSCLE, and selected with G-blocks. TEM1 and TEMZ2 are RAV2-like and RAVZ, respectively.
Phylogenetic analysis with bootstrapping procedure (M=100) as statistical test for branch support
was carried out with PhyML, and tree visualization with TreeDyn. Scale bar indicates the number of

substitutions per site, values in red indicate percentage branch support values.

Downloaded from on June 22, 2020 - Published by www.plantphysiol.org
Copyright © 2020 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org

A B C
juvenile phase adult phase reproductive phase

509 owavsosuse 50~ 50 -
E 40 4= OsRAVITOslBG E 40 4 E 40 -
= = OsRAVIZOSUBD =1 b
& 30 & 30+ & 30+
= 20 = 204 I 20+
§ 10 E 10+ E 10- M

ol O [l 0 e 0 - - .
roots stem L2 LS LT pistii 1 DAP 3 DAP

D

® 1000 -

T — PPS/OsEF1

=

L 750 = OsRAVY'OsEF1

Z 1 = osrav11/0sEF1

w

7

L 500+ ‘}

o

)

E 250 -

=

: i i [ [

i i [wa iy
E 0 I'I'I*_
T - i ) b % b -
%\..- ,_.L\«- "hh "hh "hh h\..- h"v {:\.«-
o ot ot o o o ot ot

Figure 2. Patterns of OsRAV genes expression during plant development. A to C, Transcript levels of
OsRAVs, relative to OsUBAQ, in vegetative and reproductive tissues of wild-type plants. OsRAVS in
light green, OsRAVYT in light lilac and OsRAVT2 in dark lilac. A, RT-gPCR in roots, stems, and
second leaf (L2) dissected from 1-week-old seedlings. B, RT-gPCR in mature leaves (L5, L&, L7)
dissected from 10-week-old adult plants. C, RT-gPCR in mature pistils and fertilized ovaries 1 and 3
days after pollination (DAP). D, Transcrnpt abundance of PPS (white), OsRAVY and OsRAV1Y,
relative to OsUBQ, in juvenile (L2) and adult (L3-L4-L5) leaves. At week 2, L3 is formed and L4 is
emerging. At week 3, L4 expands and L5 is emerging. At week 4, L5 is fully expanded. Expression
data are mean value of three biological replicates with three technical replicates each, and error bars

represent SO,
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Figure 3. Late flowering phenotype of Arabidopsis (Arabidopsis thaliana) plants expressing
OsRAVI. A, Representative images of wild-type (wt, left) and OsRAVS-E transgenic (right) plants
grown for 4 weeks under long days (LD). Scale bar indicates 1 cm. B and C, Flowering time scored
as number of rosette leaves and number of days to flower of wild-type (grey) and OsRAVS-E lines
(green) grown under LD. D to F, Relative expression levels of OsRAVS and TEM1 downstream
targets in wild-type and representative Tz OsRAVS-E lines grown for 1 week under LD. D, Ectopic
expression of OsRAVE in transgenic Arabidopsis lines. E and F, Down-regulation of FT and
AfGA3ox1 in OsRAVS-E lines compared to wild-type.

Flowering time data are the average of 25 plants each genotype, with standard error of the mean.
Three biological replicates gave similar results, and one was chosen as representative. Data were
analyzed by one-way ANOVA followed by Dunnett's multiple comparisons test between wild-type
and transgenic lines. Asterisks indicate statistical significance, with * P-value<0,05. Expression data
are reported as mean value of three biological replicates with three technical replicates each; error
bar represents the standard error of the mean. Af{UBQ710 was used for normalization.
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Figure 4. Role of OsRAVY in heading date. A, Diurnal oscillation of Hd3a and OsRAVS expression in
leaves of 4-week-old wildtype (wt) plants. Grey block indicates night. B, Mutually exclusive
expression patterns of Hd3a and OsRAVY in leaves throughout wild-type (wt) plant development.
Grey block indicates floral transition. C and D, Scatter plots representing heading date as number of
days to flower of individual wild-type (in grey) and OsRAVS-i plants (in light green) grown under
inductive photoperiods (8h light/16h dark and 12h light/12h dark). Lines represent the median with
95% of Cl. E, Early flowering phenotype of a selected OsRAVY silencing line (RAVS- #3, right)
compared to wild-type (left) 100 DAG. Bar represents 10 cm. F, Close-up view showing wild-type
panicle at the booting stage and OsRAVS-r panicle at anthesis. Bar represents 2 cm. For molecular
analyses, plants were grown under 12 hours light/12 hours dark at 28C, whereas for heading date
plants were grown under different daylengths. Expression data are reported as mean value of three
biological replicates; error bar represents the standard error of the mean. Flowering time data are the
average of 18-20 plants each genotype. Three biological replicates gave similar results, and one was
chosen as representative. Data were analyzed by one-way ANMOWVA followed by Dunnett’s multiple

comparisons test bet@g’gﬂ mggﬁg’nﬂgﬂ%%j&iﬁ&@@'ﬁ@%{ﬁﬂﬂ@@@%@te statistical significance,

with * Pwvalue<0 05 and ** ualue-::li] 033.


http://www.plantphysiol.org

A B

CAMCA (N} ACTTG CAACA (NLTTCCTG CATGT (N} TTATAG
Hda OsMADS T4

M
=2
m

_ 0.8= — 0.6
] .
8 g
gﬂb g 0s-
= 0,94 g.. 0.9
g g
1.0 1.0 T T T
&, lq, ‘:;'J & ‘}Q N 5 B '»2? "3
fﬂ# q::ﬁ‘f) & _Jiﬁ” ‘“tif -dﬁ ‘#f -"F
l'.- b
Q‘é‘_‘a ‘\,9‘“ jﬂ“ & ';;pg}ﬁ ‘t};ﬁ* é"‘:’.;ﬁ"&l
&
F G H
100 5 125
o - wild-type
O 80~ m 100 == M OSTEMI- 51
m =
:.:.‘ c0 3 5 & & OSTEMI - 52
Q S ™ <~ ¥ OSTEMI-i #2
o =
I 40 2 so.
: 3
O 20- w25
a T T T 1] T T ¥
28 35 4z 24 35 42 ] 35 42
Days After Germination Days After Germination Days After Germination

Figure 5. Interaction between OsRAVY/0OsTEM1 and floral activators. A, Non canonical RAV binding
site in the promoter of Hd3a, 785 bp upstream of the TSS. B, Perfect RAV binding site in the
promoter of OsMADST4, 2250 bp upstream of the TSS, and mutated wversion (right). Arrows
represent oligonucleotides used to amplify fragments of ProHd3a and ProOsMADS14 without RAV
binding sites (Ha and Ma, in orange) and with RAV binding sites (Hb and Mb, in green). C and E,
Transactivation activty of OsTEM1 in transiently transformed protoplasts, reported as ratio of
transcript levels of LUC and REN reporter genes relative to UBQ. C, RT-gPCR  of protoplasts co-
transformed with Pro355:0sTEM1 and reporter vectors containing sequences of ProHd3a (Ha in
grey, Hb in green). D, RT-gPCR of protoplasts co-transformed with Pro355:0sTEMT and reporter
vectors containing sequences of FroOsMADST4 (Ma in grey, Mb in green). E, Analysis of protoplasts
co-transformed with Pro355-0OsTEM T and reporter vectors containing sequences of ProOsMADS14
(Mb in green, mutated Mb in dark green). Values are the mean of three independent replicates. F to
H |, expression analysis of genes involved in heading date in independent Tz lines (green) compared
to wild-type plants grown for 28, 35 and 42 days under inductive conditions. F, Down-regulation of
OsRAVS/0sTEMT in silencing lines (green). G and H, Up-regulation of the floral activators
OsMADS14 and Hd3a in silencing lines (green lines) compared to wild-type (black line). Expression
data are mean value of three biological replicates with three technical replicates each, and error bars
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Figure 6. Molecular and functional charactenzation of OsRAV11. Ato C, Mis-regulation of OsRAVT1
in floral homeotic mutants. A, Down-regulation of OsRAV11 in osmads1 developing inflorescences.
B, Up-regulation of OsRAVTT in osmads?6 and osmads?3 developing inflorescences. C, Strong
activation of OsRAVT1 in specific cell types (floral meristem and ovule primordia) isolated from
osmads13 mutant flowers. D, Schematic representation of the T-DMA insertion in the & UTR of
OsRAV11. Arrows, primers used for genotyping. E, Down-regulation of OsRAV11 in pistils dissected
from osrav!? mutant flowers at matunty. F to H, Morphological analyses of female reproductive
structures at maturity. F, Representative images of wild-type and osravi1 carpels dissected from
mature flowers at anthesis obtained by optical Microscopy. Bar, 1 mm. G and H, Representative
images of reproductive structures obtained by Scanning Electron Microscopy (SEM). G, Wild-type
and osravii carpels upon fertilization. Glumes were partly removed to show female reproductive
organs. Bar, 500 um. H, Apical tissues of wild-type and osrav?1 gynoecia after pollination. Bar, 100
um. |, Bar-plots representing the weight of seeds produced by wild-type (in grey) and osrav?? (in
white) plants grown in the greenhouse under inductive conditions. Expression data are reported as
mean value of three biological replicates; error bar represents the standard error of the mean.
Phenotypic data are the average of three biological replicates of the weight of 100 seeds each
genotype, with standard error of the mean. Statistical significance was examined by two tailed
unpaired t-test, with * P-value<( 05
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Figure 7. Morphogenetic effects of OsRAV11/0sRAVIZ silencing in reproductive phase.
A, representative images of mature flowers dissected from wild-type (wt) and OsRAV11/12-
inflorescences. Arrows indicate the position of the stigmas. B, representative images of mature
carpels dissected from wild-type and one Tz OsRAV11/12-] lowers obtained by optical microscopy.
Bar, 1mm. C, Down-regulation of OsRAVT! and OsRAVT2 in mature pistils of two representative Tz
OsRAV11/12- lines as compared to wild-type. Expression data are reported as mean value of three
biological replicates with standard error of the mean. Data were analyzed by ordinary one-way
ANOVA followed by Dunnett's multiple comparisons test between wild-type and transgenic lines.
Asterisks indicate statistical significance, with * P-value<0,05 and ** P-value<0,033. D, fertility defects
of mature OsRAVT1/12- panicles compared to wild-type.
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Figure 8. Model for interaction between RAV and MADS factors during reproductive growth.
A, OsRAVY represses the transcription of OsMADS14, a positive regulator of the florigen Hd3a, in
the leaf. Upon floral transition, the complex Hd3a/OsFD/14-3-3 activates the expression of IM identity
genes OsMADS14-15-18-34 in the apical meristem. B, The expression of OsMADS T in developing
flowers marks the formation of lemma/palea (in green) and central carpel {in violet) from the FM,
whereas the presence of OsMADS16 and OsMADS13 prevents the expression of genes involved in
carpel development in stamen primordia (in yellow) and in owule primordium (in pink).
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