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ABSTRACT

A well-established strategy to synthesize heterogeneous, metal-organic framework (MOF)
catalysts that exhibit nanoconfinement effects, and specific pores with highly-localized catalytic
sites, is to use organic linkers containing organocatalytic centers. Here, we report that by
combining this linker approach with reticular chemistry, and exploiting three-dimensioanl (3D)
MOF-structural data from the Cambridge Structural Database, we have designed four
heterogeneous MOF-based catalysts for standard organic transformations. These programmable
MOFs are isoreticular versions of pcu IRMOF-16, fcu UiO-68 and pillared-pcu SNU-8X, the
three most common topologies of MOFs built from the organic linker p,p’-terphenyldicarboxylic
acid (tpdc). To synthesize the four squaramide-based MOFs, we designed and synthesized a
linker, 4,4’-((3,4- dioxocyclobut- 1- ene- 1,2- diyl)bis(azanedyil))dibenzoic acid (Sqg_tpdc),
which is identical in directionality and length to tpdc but which contains organocatalytic
squaramide centers. Squaramides were chosen because their immobilization into a framework
enhances its reactivity and stability while avoiding any self-quenching phenomena. Therefore,
the four MOFs share the same organocatalytic squaramide moiety, but confine it within distinct
pore environments. We then evaluated these MOFs as heterogeneous H-bonding catalysts in
organic transformations: a Friedel-Crafts alkylation and an epoxide ring-opening. Some of them
exhibited good performance in both reactions but all showed distinct catalytic profiles that reflect

their structural differences.
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Introduction

Metal-organic frameworks (MOFs) are crystalline porous compounds based on metal ions or
clusters connected by organic ligands, whose topology, pore size and/or chemical composition
can be modulated to achieve functionalities such as catalysis or adsorption. Those MOFs that
exhibit confinement effects, and pores functionalized with specific and highly localized catalytic
sites, are a potentially limitless source of new heterogeneous catalysts. Most reported MOF-based
catalysts have been designed around metallic catalytic sites. In these, coordinatively unsaturated
metal sites form the MOF structure itself, or metal ions/complexes/clusters/nanoparticles are
encapsulated within the MOF pores or connected to the MOF organic linkers [1-5]. An
alternative, less-explored approach to synthesizing heterogeneous MOF catalysts is to incorporate
organocatalytic centers within MOFs [6, 7]. This can be done via postsynthetic modifications of
the organic linkers in existing MOFs [8-12], or during MOF synthesis, by using organic linkers
that contain these organocatalytic centers [13-28]. The latter approach in particular can benefit
from reticular chemistry, which can facilitate rational design of MOF-based catalysts with pre-
defined framework topologies and pores. Indeed, as Prof. O. M. Yaghi has affirmed, an important
feature of reticular chemistry is that “for a given framework, the constituents can also be
chemically functionalized either pre- or post-synthetically, while maintaining the framework’s
connectivity, to produce functionalized pores” [29, 30]. In our field, this idea translates to the
ability to modify the organic linker of an existing MOF by inserting an organocatalytic center,
without modifying the linker length or topology, thus enabling synthesis of the corresponding
isoreticular MOF structure containing the desired center. Telfer et al. were among the first to
prepare a MOF-based catalyst by this organocatalytic-center approach: an isoreticular MOF-5
with organocatalytic N-Boc-L-proline moieties that, after removing the thermolabile group,
catalyzed aldol reactions [26]. Also, Kapteijn et al. reported the isoreticular NH2-MIL-101,
showing high activity in base-catalyzed Knoevenagel condensations [22]. Soon afterwards, Farha,
Hupp et al. similarly introduced H-bonding organocatalytic centers (e.g. urea and squaramide)
into programmable MOFs [23-25]. For example, they synthesized two isoreticular UiO-67
catalysts from biphenyl-4,4’-dicarboxylate linkers functionalized with pendant urea and
squaramide groups [23, 25]. This type of strategy has since been extended to many other
isoreticular MOF-based catalysts containing urea moieties [19-21, 23, 24]. Herein we report the
rational synthesis of four heterogeneous, MOF-based catalysts with programmable topologies,
based on use of reticular chemistry and on MOF three-dimensional (3D)-structural information
from the Cambridge Structural Database [31]. Briefly, we confined the same squaramide

organocatalytic center into different MOFs that exhibit distinct nanoscale-pore environments. A



squaramide was chosen as the test case organocatalyst because it is known that its immobilization
into a framework enhances its reactivity and stability while avoiding any self-quenching
phenomena due to their tendency to self-aggregate in solution [6, 32]. The MOFs are isoreticular
versions of pcu IRMOF-16, fcu UiO-68 and pillared-pcu SNU-8X, the three most common
topologies of MOFs built from the organic linker p,p’-terphenyldicarboxylic acid (tpdc). Our
four-step strategy (Fig. 1) entailed the design and synthesis of the linker, 4,4’-((3,4-
dioxocyclobut-1-ene-1, 2-diyl)bis(azanedyil))dibenzoic acid (Sq_tpdc) [27], which is identical in
directionality and length to tpdc but which contains organocatalytic squaramide centers. We
evaluated the four MOF-based catalysts for H-bonding catalysis in a representative Friedel-Crafts
alkylation and a representative epoxide ring-opening. Some of these MOFs exhibited good
performance in both reactions but all showed distinct catalytic profiles that reflect their structural

differences.
2 Experimental
2.1 Materials and methods

Zinc(ll) nitrate hexahydrate (Zn(NOs)2-6H20), zirconium(lV) oxychloride octahydrate
(ZrOClI2-8H20), 4,4’-bipyridine and 2,5-bispyridylethane, dimethyl squarate, 4-aminobenzoic
acid, trimethylamine, and anilines were purchased from commercial sources and used as received
without further purification. 4,4’- ((3,4-Dioxocyclobut-1-ene-1,2-diyl)bis(azanediyl))dibenzene
used as molecular catalyst (MC) was synthesized following a described procedure in Ref. [27].
Nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Avance 300 MHz
spectrometer, running at 300 MHz (1 H) or 75 MHz (13C). In some cases (nhoted), they were
acquired on a Bruker Avance 250 MHz spectrometer. Chemical shifts () were reported in ppm
relative to residual solvent signals (CDCI3: 7.26 ppm for 1 H-NMR and 77.16 ppm for 13C-
NMR; DMSO-d6: 2.50 ppm for 1 H-NMR and 39.52 ppm for 13C-NMR). Coupling constants
were reported in Hertz. The following abbreviations are used to describe peak patterns: s (singlet),
d (doublet), t (triplet), g (quartet), m (multiplet), bs (broad singlet). Different methods were used
for measuring the exact mass (indicated for each case). Electrospray mass spectroscopy (MS
(ESI)) spectra were acquired with an Agilent Technologies 6120 Quadrupole LC/MS. Electron
ionization mass spectroscopy (MS (EI)) spectra were acquired with an Agilent Technologies
5977B MSD. For both techniques, MassWorks v. 4.0.0.0 (Cerno Bioscience) was used for the
formula identification. MassWorks is MS-calibration software that calibrates for isotope profile
as well as for mass accuracy, enabling highly accurate comparisons between calibrated and
theoretical spectra. Electrospray mass spectroscopy with time-of-flight detector (MS (TOF-ESI))
spectra were acquired with microTOF-Q Bruker Daltonics spectrometer. Optical rotation was

recorded in cells with 10-cm path-length; the solvents and concentrations (in g/100 mL) were



indicated in each case. Flash chromatography was performed on silica-gel columns (40 to 63 pm;
pore size: 60 A). Kinetics were studied by monitored reaction progress by gas chromatography
using a 7820A GC System (Agilent Technologies) equipped with a flame ionization detector
(FID). Elemental analyses were obtained on a EA1108 micro-analyzer (CarboErba). Volumetric
N2 adsorption—desorption isotherms were collected at 77 K using an ASAP2020 HD

(Micromeritics).
2.2 X-ray diffraction

Composition of all bulk materials was confirmed through X-ray powder diffraction (XRPD)
measurements. They were collected on an X’Pert PRO MPD analytical diffractometer
(Panalytical) at 45 kV and 40 mA using Cu Ka radiation (A = 1.5419 A) and compared with
single-crystal simulated patterns. Single-crystal X-ray diffraction (SCXRD) data on Sq_IRMOF-
16, Sg_Ui0-68, Sq_SNU-8X and Sq_bptMOF were collected at 100(2) K in the BL13-XALOC
beamline [33] at the ALBA synchrotron, on a single-axis goniometer with a Pilatus 6M detector
using a monochromatic X-ray beam (A = 0.82656 A). Sq SNU-8X and Sq_bptMOF were also
collected at 293(2) K. The data frames were integrated and scaled using XDS software [34].
Absorption correction was not applied. All structures were solved by direct methods and
subsequently refined by correction of F2 against all reflections, using SHELXT2013 and
SHELXL2013 within the WinGX package and OLEX2 software [35, 36]. The framework atoms
were located and refined. For both Sg_IRMOF-16 and Sg_UiO-68, the atoms belonging to the
squaramide units were refined using rigid body constrains, and with partial occupancies, due to
the disorder that they exhibit. Residual electron density was found inside the pores, likely
corresponding to presence of disorder molecules. In all structures, attempts to adequately model
the disordered molecules were unsatisfactory; therefore, the PLATON/SQUEEZE routine was

applied to mask out the disordered electron density [37].
2.3 Synthesis of 4-((2-methoxy-3,4-dioxocyclobut-1- en-1-yl)amino)benzoic acid

A white suspension of dimethyl squarate (1.00 g, 7.00 mmol) and 4-aminobenzoic acid (0.960 g,
7.00 mmol) in 20 mL of dry MeOH was stirred 24 h at room temperature. The resulting yellow
suspension was filtered, washed with MeOH and Et20, and then dried under vacuum to afford the
desired pure compound 4-((2-methoxy-3,4-dioxocyclobut-1-en-1-yl)amino)benzoic acid (1.30 g,
5.26 mmol, 75% yield). 1 H-NMR (300 MHz, DMSO-d6): 5 12.71 (bs, 1H), 10.96 (s, 1H), 7.94—
7.86 (m, 2H), 7.50-7.40 (m, 2H), 4.40 (s, 3H). 13C-NMR (75 MHz, DMSO-d6): & 187.6, 184.4,
179.5, 169.1, 166.8, 142.0, 130.6, 125.7, 118.7, 60.7.

2.4 Synthesis of 4,4’-((3,4-dioxocyclobut-1-ene-1,2- diyl)bis(azanediyl))dibenzoic acid
(Sq_tpdc)



A mixture of 4-((2-methoxy-3,4-dioxocyclobut-1-en-1-yl) amino)benzoic acid (0.90 g, 3.60
mmol), 4-aminobenzoic acid (0.497 g, 3.60 mmol) and EtsN (0.503 mL, 3.60 mmol) in 18 mL of
dry CH3CN in a sealed tube was heated at 80 °C for 24 h. The resulting suspension was
concentrated down to ca. 9 mL. Then, H20 (20 mL) was added, and the pH was adjusted to 1
(conc. HCI). The solid was filtered and washed thoroughly with H20 until neutral pH, washed
with Et20 and finally, dried under vacuum to afford pure squaramide Sq_tpdc (1.01 g, 2.87 mmol,
80% yield). 1 H-NMR (250 MHz, DMSO-d6): 8 12.72 (bs, 2H), 10.31 (bs, 2H), 7.94 (d, ] = 8.4
Hz, 4H), 7.57 (d, J = 8.4 Hz, 4H). 13C-NMR (63 MHz, DMSO-d6): 5 182.0, 166.8, 165.9, 142.4,
130.9, 125.1, 118.0. MS (TOF-ESI-): calculated for C18H11N206 — ([M—H]- ): 351.0623.
Found: 351.0614.

2.5 Synthesis of Sq_IRMOF-16

Zn(NO3)2-6H20 (0.017 g, 0.057 mmol) and Sq_tpdc (0.020 g, 0.057 mmol) were dissolved in 4.8
mL DMF and heated to 85 °C for 7 days. This afforded yellow cubic crystals (0.010 g; 0.0075
mmol, 53% vyield), which were stored in DMF. FT-IR (ATR; cm—1): 1,650 (C=0 from
carboxylate) selected band. Anal. calcd. for ([ZnsO(L1)s]-6H20-4DMF; Zn4CessH70N10029): C,
45.85; H, 4.08; N, 8.10, found: C, 45.23; H, 3,97; N, 8.34

2.6 Synthesis of the Sq_UiO-68

A DMF solution (4 mL) of Sg_tpdc (20 mg, 0.057 mmol) and ZrOCl.-8H20 (18.31 mg, 0.057
mmol) were added 5 mL of a DMF/formic acid mixture (4:1 w/w). The mixture was heated at
120 °C for 1 week. This afforded yellow crystals, which were filtered, washed with DMF and
MeOH, and then, air-dried to give Sq_UiO-68 (22.3 mg; 0.008 mmol, 84%). FT-IR (ATR; cm—1,
selected bands): 3,167 (OH); 2,927 (NH); 1,793, 1,647 (C=0 from DMF); 1,597 (C=0 from
carboxylate). Anal. calcd. for ([Zr604(OH)4(L1)6]; Zr6C108H64N12044): C, 46.64; H, 2.32;
N, 6.04, found: C, 47.12; H, 2,58; N, 7,00.

2.7 Synthesis of Sq_SNU-8X

Zn(NOs3)2-6H20 (0.017 g, 0.057 mmol), Sq_tpde (0.020 g, 0.057 mmol) and 4,4’-bipyridine
(0.009 g, 0.057 mmol) were dissolved in 4.8 mL DMF. The mixture was placed in a 10-mL
Erlenmeyer flask, which was covered with a septum, and then heated to 85 °C for 5 days. This
afforded yellow crystals (0.016 g; 0.015 mmol, 53% yield). FT-IR (ATR; cm—1, selected bands):
3,200 (OH), 1,788, 1,639, 1,598 (C=0O from carboxylate), 1,558, 1,488, 1,367, 1,240, 1,180,
1,100, 777, 636, 475. Anal. calcd. for Zn2C55H49N9015: C, 54.74; H, 4.09; N, 10.45, found: C,
54.30; H, 3.94; N, 10.60.

2.8 Synthesis of Sq_BptMOF



Zn(NOs)2-6H.0 (0.017 g, 0.057 mmol), Sq_tpdc (0.020 g, 0.057 mmol) and 1,2-bis(4-
pyridyl)ethane (0.010 g, 0.057 mmol) were dissolved in 4.8 mL DMF. The mixture was placed in
a 10-mL Erlenmeyer flask, which was covered with a septum, and then heated to 85 °C for 5 days.
This afforded orange crystals (0.013 g; 0.013 mmol, 45% vyield). FT-IR (ATR; cm—1, selected
bands): 3,200 (OH), 1,787, 1,703, 1,644 (C=0 from carboxylate), 1,602, 1,543, 1,493, 1,440,
1,241, 1,177, 1,102, 775. Anal. calcd. for Zn2C54H54N8018: C, 52.57; H, 4.41; N, 9.08, found:
C, 52.00; H, 4.16; N, 9.20.

2.9 Catalysis experiments

A 0.005 mmol-(squaramide equivalent) aliquot of a single, dried MOF-based catalyst (2.8 mg of
Sg_IRMOF-16; 2.9 mg of Sg_SNU-8X; 2.9 mg of Sq_BptMOF; or 2.4 mg of Sq_Ui0O-68), 0.1
mmol (12.3 mg) of p-methoxyaniline and a stirring bar were transferred to a septum-sealed vial,
which was flushed with N2 for 15 min. Note that Sq_SNU-8X, Sq_BptMOF, and Sq_UiO-68
were incubated in methanol for 72 h before use. Then, 200 pL of ethyl epoxide was added to the
mixture. The mixture was heated to 60 °C and stirred for 8 h. At different time-points (1, 2, 4, 6
and 8 h), a 20-uL aliquot of the reaction mixture was removed, and then diluted with 500 uL of a
0.005 M solution of 2-methylnaphthalene (gas chromatography standard) in toluene. The
resulting sample was then analyzed by gas chromatography with FID. For the Friedel-Craft
reaction, a 0.01 mmol-aliquot of a single, dried MOF-based catalyst (5.6 mg of Sq_IRMOF-16;
4.9 mg of Sg-Ui0O-68; 5.7 mg of Sg_SNU-8X; or 5.8 mg of Sq_bptMOF), 0.15 mmol of indole,
0.10 mmol of B-nitrostyrene and a stirring bar were transferred to a septum-sealed vial. Then, 1
mL of toluene was added to the mixture. The mixture was heated to 60 °C and stirred for 3 days.
At different timepoints (4, 7, 24, 48 and 72 h), a 100-uL aliquot of the reaction mixture was
removed, and then diluted with 500 pL of a 0.005 M solution of 2-methylnaphthalene (gas
chromatography standard) in toluene. The resulting sample was then analyzed by gas

chromatography with FID.
3 Results and discussion.
3.1 Design, synthesis and analysis of the squaramide based linker

We designed the linker Sg_tpdc by attaching two benzoic acid moieties to the NH groups of the
squaramide (Fig. 1), which was justified based on two factors. Firstly, we reasoned that the phenyl
rings would favor structural planarity and rigidity in the linker, while the two opposing carboxyl
groups would enable construction of extended structures via metal ion coordination. Secondly,
we sought to exploit the para position of squaramide groups relative to the carboxyl groups, to
maximize the acidity of the squaramide-NH protons. Specifically, the electron-withdrawing
nature of the carboxylic groups acts by resonance in the ortho and para positions, thereby

diminishing the electron density of the NH groups and increasing their acidity and, consequently,



their ability to form hydrogen bonds (i.e. to catalyze H-bonding reactions). We further reasoned
that since the squaramide ring is roughly equivalent in size to a phenyl ring, then the carboxylic
groups of Sq_tpdc would be separated by a distance very close (14.6 A) to that corresponding to
three phenyl rings (14.4 A). Accordingly, we considered that Sq_tpdc is roughly equivalent in
both directionality (topology) and length to tpdc (Fig. 1), a wellknown dicarboxylate linker in
MOF synthesis [38-40]. Once we had designed Sq_tpdc, we synthesized it by a previously-
reported, two-step method [27].

3.2 Cambridge Structural Database search

We searched the Cambridge Crystallographic Data Centre (CCDC) database (ConQuest v. 2.0.0,
CCDC, Cambridge, UK) for 3D MOF structures built from tpdc. We found three structures, which
we classified into two framework topologies: two of the structures corresponded to IRMOF-16
MOF (pcu topology; one non-interpenetrated framework and one double-interpenetrated
framework (this latter also known as IRMOF-15); Fig. 2(a)); and the third one, to UiO-68 MOF
(fcu topology; Fig. 2(b)). The pcu IRMOF-16 comprises Zn40 clusters linked to six tpdc linkers
in an octahedral coordination. The non-interpenetrated IRMOF-16 contains cubic cavities
delimited by twelve tpdc linkers, with a pore opening of ca. 15 A [40]. The fcu UiO-68 comprises
octahedral [ZrsO4(OH)4] clusters linked by twelve tpdc linkers that create two types of spaces
between them: octahedral cavities delimited by twelve tpdc linkers, and tetrahedral cavities
delimited by six tpdc linkers, both showing trigonal pore openings of ca. 10 A [38, 39]. To extend
the number of potential 3D MOF structures that could be synthesized using Sqg_tpdc, we also
searched for 3D MOF structures built from tpdc functionalized at any of the four aromatic
positions of the central phenyl ring by groups that cannot coordinate to metal ions (i.e. to maintain
the directionality of the parent tpdc). This revealed 53 additional 3D structures: fifteen (28%) of
which exhibit fcu topology and six (11%) of which, pcu topology [41-54]. Of the remaining 32
structures, eighteen (24%) correspond to pillared-pcu MOFs (Figs. 2(c) and 2(d)) [55-59]. In
these latter MOFs, paddle-wheel M2 (M = Zn(Il), Cu(ll) and Cd(ll)) clusters are bridged by four
tpdc linkers that form 2D square grids, which are linked by pillared N-based linkers that form 3D
structures with bidirectional one-dimensional (1D) pores. These pores are delimited by four tpdc
linkers and by two tpdc and two pillared linkers. In some cases, the pillared linkers are not truly
perpendicular to the cluster-carboxylic layers and the pores are distorted prisms with rhombic
windows. The fourteen remaining structures pertain to four MOF topology groups: eight (15%)
of them comprise planes or chains of metal oxides (M = Co(Il), Ni(ll), Mn(II), Pb(I1), Mg(ll),
Eu(l1l) and Cd(I1)) linked by tpdc linkers; three (6%) of them exhibit a diamond topology [60,
61]; two (4%) of them, acs topology [62, 63]; and one (2%) of them, bcu topology [41]. The
diamond MOFs are formed by linkage of tetrahedral Zn(Il) or Cd(Il) ions through two tpdc and
two N,N’-based linkers. The acs MOFs are formed through linkage of trigonal M3O (M = Fe(lll)



and In(111)) clusters by six tpdc linkers (two linkers per edge). Both structures show pores with
the shape of a bipyramidal trigonal base (or a slightly distorted tetrahedron) delimited by six tpdc
ligands with (slightly distorted) hexagonal windows of ca. 19 A. The bcu MOF is formed by
octahedral [ZrsOs(OH2)s] clusters coordinated by eight tpdc linkers that generate octahedral pores,

which are delimited by eight tpdc linkers and exhibit rhombic windows of ca. 13 A.
3.3 Selection, synthesis and structural analysis of isoreticular MOFs

After the Cambridge Structural Database search, we selected the three most common MOF
topologies and investigated the synthesis of the corresponding isoreticular MOFs incorporating
the squaramide moieties. Here, we chose both pcu IRMOF-16 and fcu UiO-68 frameworks (Figs.
2(a) and 2(b)), as they are the only two topologies reported using the non-functionalized tpdc
linker and are highly abundant, together corresponding to 41% of all reported 3D structures. We
also chose pillared-pcu MOFs (Figs. 2(c) and 2(d)), due to their rich potential for obtaining
myriad compositions by simply exchanging the pillared linker, and because they, too, are highly
abundant (32% of all reported 3D structures). Here, we used bipy and bpt linkers as the pillars,
aiming to synthesize isoreticular versions of SNU-8X (hereafter, Sg_ SNU-8X) and OZASUF
(hereafter, Sq_bptMOF) [57]. Characterization of the synthesized Sq_IRMOF-16 crystals by
SCXRD confirmed that they retain the characteristic IRMOF-16 pcu topology (Fig. 2(a) and
Table S1 in the Electronic Supplemenary Material (ESM)). Thus, Sq_IRMOF-16 exhibits a 3D
structure built from the connection of Zn40 clusters through six Sqg_tpdc linkers to form the
expected cubic cavities delimited by twelve Sq_tpdc linkers and showing a pore opening of 14 A
(Fig. 1(a); Brunauer—Emmett—Teller surface area SBET measured by N2 sorption at 77 K of 784
m2 /g; Fig. S6 in the ESM). However, in this structure, the squaramide rings of the Sq_tdpc linkers
exhibit high mobility and positional disorder: They could only be partly positioned during the
SCXRD refinement, even when it was performed at 100 K. Accordingly, their position and
orientation were refined by employing rigid-body restraints, which revealed that Sq_ IRMOF-16
has cubic cavities containing zero, four or eight squaramide rings pointing towards them (Fig.
2(a)). However, given the high mobility of the squaramide rings, each cubic cavity could also be
statistically considered to contain three rings pointing towards it. Characterization of the
synthesized Sq_UiO-68 crystals by SCXRD confirmed formation of the desired analogous fcu
Ui0-68 structure (Fig. 2(b) and Table S2 in the ESM) [14]. According to the SCXRD refinement,
the Sqg_tpdc linker exhibits positional disorder, as evidenced by the splitting in the position of
some of the carbon atoms in the phenyl rings. This implies different possible orientations of the
squaramide units. Thus, the atoms in the squaramide moieties of the Sq_tpdc linkers were refined
with the use of rigid body constrains and partial occupancies after being located in the density
maps. Overall, Sq_UiO-68 exhibits a fcu topology in which [ZrsO4(OH)4] nodes are connected
via 12 Sqg_tpdc ligands forming a porous network (Seer = 637 m2 /g; Fig. S8 in the ESM). This



network shows octahedral cavities and tetrahedral cavities delimited by twelve and six Sq_tpdc
linkers, respectively, and connected by windows of 7 A. In these cavities, six squaramide rings
are pointing towards the octahedron cavities (Fig. 2(b)). Similarly to the previous examples,
SCXRD of the synthesized Sq_SNU-8X crystals revealed formation of the expected pillared MOF
with pcu topology (Fig. 2(c) and Table S3 in the ESM). The basic Sq_SNU-8X units are paddle-
wheel Zn: clusters, in which each Zn(ll) ion exhibits square-pyramidal coordination geometry.
The equatorial sites of the pyramid are occupied by four oxygen atoms of the carboxylate groups
of four Sqg_tpdc linkers, whereas the last axial coordination position is occupied by a nitrogen
atom of the N-donor bipy linker. The resulting paddle-wheel Zn2 clusters are connected through
four Sqg_tpdc linkers that form two-dimensional (2D) square grids, which in turn are connected
by bipy linkers that form 3D pcu nets, which are doubly interpenetrated. Note that the parent
SNU-8X is also a doubly-interpenetrated MOF. Interpenetrated Sq_SNU-8X possesses 1D
channels of two sizes: 12 A x 12 A, delimited by four Sq_tpdc and running along the a-axis; and
8 A x 12 A, delimited by two Sq_tpdc and two bipy linkers and running along the c-axis (Fig.
2(c)). The squaramide rings are parallel to the pores along the a-axis but point towards those along
the c-axis. Based on these apparent voids and free channels, the porosity of Sq_SNU-8X was
evaluated by measuring its N2 sorption at 77 K, which gave an Sger value of 634 m?/g (Fig. S10
in the ESM). We also prepared Sq_bptMOF by using the same conditions as for Sq_SNU-8X,
except that instead of bipy, we used bpt. Interestingly, SCXRD revealed formation of a
doubleinterpenetrated pillared pcu MOF (SBET = 789 m?/g, Table S4 and Fig. S13 in the ESM)
much like that in Sq_SNU-8X, as it similarly contained 1D channels of two sizes: 8 A x 11 A,
delimited by two Sq_tpdc and two bipy linkers and running along the a-axis; and 12 A x 11 A,
delimited by four Sq_tpdc linkers and running along the c-axis (Fig. 2(d)). In this case, the
squaramide rings point towards the pores along the a-axis but are parallel to those along the c-
axis. Finally, as these type of pillared pcu MOFs (including the isoreticular SNU-8X and
OZASUF) [57] tend to show structural flexibility upon solvent removal, we also solved the crystal
structures of both Sq_SNU-8X and Sq_bptMOF at 293 K (Tables S5 and S6 and Figs. S11 and
S14 in the ESM). As expected, both frameworks showed to be flexible, with Sq_ bptMOF
exhibiting a decrease of its pore sizes (6.5 A x 11 Aand 11.5 A x 11 A) at 293 K. 3.4 Evaluation
of catalytic performance We hypothesized that synthesis of diverse heterogeneous catalysts using
our reticular approach, followed by catalytic screening of them in test reactions, would greatly
augment the probability of finding high-performing catalysts for any desired chemistry. Thus, we
evaluated our MOF-based catalysts in two archetypical, squaramide-catalyzed reactions: a
representative Friedel-Crafts alkylation and a representative epoxide ring-opening. Importantly,
XRPD performed during and after these two catalytic reactions confirmed the crystallinity and
stability of squaramide-based MOFs (Figs. S15-S18 in the ESM); albeit Sq_bptMOF showed a

certain loss of crystallinity after both catalytic reactions. The stability of squaramide-based MOF



was further corroborated by discarding the leaching of catalytic species into the reaction media.
Such feature was assessed by means of experiments consisting on filtering off the catalytic
material at intermediate stages of each reaction, observing that product content did not evolve
further after MOF removal. Crucially, when the molecular squaramide 4,4’- ((3,4-dioxocyclobut-
1-ene-1,2-diyl)bis(azanediyl))dibenzene was used alone as catalyst, both reactions barely
progressed, likely due to its self-aggregation and poor solubility. This result supported our original
strategy of designing heterogeneous catalysts in which the squaramide rings are immobilized
within MOFs. We then studied the kinetics of a representative Friedel-Crafts alkylation: reaction
of indole (0.15 mmol) and B-nitrostyrene (0.10 mmol) in the presence of the corresponding
squaramidebased MOFs (0.005 mmol = 5 mol% (catalytic centers) relative to B-nitrostyrene) at
60 °C. Figure 3 is a plot of the kinetics for each squaramide-based MOF catalyst over 72 h. The
most active catalyst for this reaction was Sq_SNU-8X (yield: 85%) followed by Sg_UiO-68 and
Sg-IRMOF-16 (yield for each: ca. 70%), and finally, Sq_bptMOF (yield: 18%). We attributed the
low performance of Sq_bptMOF to the structural flexibility already observed by SCRXD at 293
K and XRPD (Fig. S18 in the ESM). Note that structural flexibility is commonly observed when
flexible pillar ligands such as bpt, which have a high degree of rotation freedom due to the -CH2—
CHa— chain between the pyridine fragments, are used to synthesize pillared pcu MOFs [57]. This
highly dynamic behavior impedes catalytic Figure 3 Kinetic plots for the Friedel-Crafts reaction
of indole and B-nitrostyrene at 60 °C, forming the alkylated product, in the presence of
Sg_IRMOF-16 (yellow), Sq_SNU-8X (orange), Sg_UiO-68 (blue) or Sqg_bptMOF (grey
performance, as it decreases the pore size and therefore accessibility of the substrates to the active
sites. We next studied the kinetics of a representative epoxide ring-opening: reaction of 4-
methoxy aniline (0.1 mmol) and ethyl epoxide (molar excess) at 60 °C in the presence of the
corresponding squaramide-based MOF (0.005 mmol = 5 mol% (catalytic centers) relative to 4-
methoxy aniline) for 8 h. Figure 4 shows the kinetics of the ring-opening reaction. This reaction
can consecutively generate two products: the mono-addition and bis-addition products. The best
catalysts for the formation of the bis-addition product were Sq_IRMOF-16 and Sq_ SNU-8X,
which gave nearly quantitative transformation after 8 h. In contrast, Sq_UiO-68 and Sq_bptMOF
gave roughly 50/50 mixtures of the mono-addition and bis-addition products after 8 h. Figure 4
Kinetic plots for the epoxide ring-opening reaction of 4-methoxy aniline (blue) and ethyl epoxide
at 60 °C to form the mono-adduct (orange) or bis-adduct (grey) product, in the presence of
Sg_IRMOF-16, Sq_SNU-8X, Sg_UiO-68 or Sq_bptMOF. We explained this discrepancy in
catalytic performance according to sterics. Specifically, formation of the bis-adduct from the
double epoxide ring-opening process appears to be highly sterically demanding and sensitive to
aperture sizes. Accordingly, the most sterically-restricted MOFs would be the worse catalysts for
the double-epoxide activation. This was indeed the case for the flexible Sq_bptMOF (vide supra)
as well as for Sq_UiO-68, which has a smaller pore opening (7 A) than Sq_IRMOF-16 (14 A)



and Sq_SNU-8X (12 A). 4 Conclusions In summary, we have reported the design, synthesis and
testing of heterogeneous, MOF-based catalysts containing squaramide organocatalysts trapped
within their pores. We demonstrated that organocatalytic MOFs with programmable topologies
can be synthesized by exploiting reticular chemistry and 3D MOF-structural data from the
Cambridge Structural Database. Our approach entailed design and synthesis of a new
dicarboxylate linker containing the squaramide ring, Sq_tpdc, which was used to prepare four
MOF-based catalysts that share the same organocatalytic center but differ in their pore
environments. The MOFs are isoreticular versions of pcu IRMOF-16, fcu UiO-68 and pillared-
pcu SNU-8X, the three most common topologies of MOFs built from the organic linker tpdc,
which is similar in length and directionality to Sq_tpdc. Sq_SNU-8X was the best catalyst in a
representative Friedel-Crafts alkylation, whereas Sq_IRMOF-16 and Sq_SNU8X were the best
in a representative epoxide ring-opening (formation of the bis-addition product). Using an
approach like ours, researchers could ultimately design an entire catalog of MOF-based catalysts,
thereby greatly increasing the chances of finding high-performance catalysts for targeted

chemistries.
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Figure 1. The reticular chemistry-based strategy for rational design of MOF-based
catalysts containing organocatalytic centers. CSD: Cambridge Structural Database.
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Figure 3. Kinetic plots for the Friedel-Crafts reaction of indole and B-nitrostyrene at 60
°C, forming the alkylated product, in the presence of Sq_IRMOF-16 (yellow), Sq_SNU-
8X (orange), Sq_UiO-68 (blue) or Sq_bptMOF (grey).
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Figure 4. Kinetic plots for the epoxide ring-opening reaction of 4-methoxy aniline (blue)
and ethyl epoxide at 60 °C to form the mono-adduct (orange) or bis-adduct (grey) product,
in the presence of Sq_IRMOF-16, Sq_SNU-8X, Sq_UiO-68 or Sq_bptMOF.



