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PERIODIC ORBITS OF A HAMILTONIAN SYSTEM RELATED

WITH THE FRIEDMANN-ROBERTSON-WALKER SYSTEM

IN ROTATING COORDINATES

CLAUDIO BUZZI1, JAUME LLIBRE2 AND PAULO SANTANA3

Abstract. We provide sufficient conditions on the four parameters of a Hamil-

tonian system, related with the Friedmann-Robertson-Walker Hamiltonian

system in a rotating reference frame, which guarantee the existence of 12 con-
tinuous families of periodic orbits, parameterized by the values of the Hamil-

tonian, which born at the equilibrium point localized at the origin of coordi-
nates. The main tool for finding analytically these families of periodic orbits is

the averaging theory for computing periodic orbits adapted to the Hamilton-

ian systems. The technique here used can be applied to arbitrary Hamiltonian
systems.

1. Introduction and statement of the main results

In astrophysics the study of the dynamics of the universe is an area where the
application of the techniques of the dynamical systems provide good results, mainly
in galactic dynamics, see the articles [2,9,13,14,19] and the references cited therein.

Recently it has been detected numerical and analytical existence of chaotic mo-
tion in the following simplified version of the Friedmann-Robertson-Walker Hamil-
tonian

(1) H =
1

2
(p2Y − p2X) +

1

2
(Y 2 −X2) +

b

2
X2Y 2,

introduced by Calzeta and Hasi in [6]. In fact this model is too simplified in order to
be considered realistic, but it is interesting due to its simplicity and for showing the
existence of chaos in cosmology, look for more details in [6]. Hawking [7] and Page
[12] used analogous models to analyze the relation between the thermodynamic
arrow of time and the cosmology.

The usual potentials in galactic dynamics are of the form V (x2, y2), see the article
[15] and the previous mentioned articles on galactic dynamics. These potentials
show a reflection symmetry with respect to both axes. Then in [10] was studied
the following generalized version of the Calzeta–Hasi’s model

(2) H =
1

2
(p2Y − p2X) +

1

2
(Y 2 −X2) +

a

4
X4 +

b

2
X2Y 2 +

c

4
Y 4.
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Following the classical restricted circular three-body problem in which its dynam-
ics is better understand in a rotating frame that in a sideral frame of coordinates,
our objective is to study the dynamics of the generalized version of the Calzeta–
Hasi’s model (2) in rotating coordinates. More precisely, we consider the following
generalized version of the Calzeta–Hasi’s model in rotating coordinates that itself
is a simplified version of the Friedmann-Robertson-Walker Hamiltonian

(3) H =
1

2

(
y2 − x2 + p2y − p2x

)
+

1

4

(
ax4 + 2bx2y2 + cy4

)
− ω (xpy − ypx) ,

where a, b, c, ω ∈ R and ω > 0. Therefore the corresponding Hamiltonian system
is

(4)

ẋ = ωy − px,
ẏ = −ωx+ py,
ṗx = x+ ωpy − ax3 − bxy2,
ṗy = −y − ωpx − bx2y − cy3.

In the qualitative theory of differential equations any orbit or trajectory is home-
omorphic either to a straight line, or to a circle, or to a point. The equilibrium
points are the orbits homeomorphic to a point and the periodic orbits are the ones
homeomorphic to a circle. These two types of orbits are relevant in the study of the
dynamics of a differential system, and usually their study is simpler than the study
of the orbits homeomorphic to straight lines, that in general exhibit more com-
plicate dynamics. Therefore in order to understand the dynamics of a differential
system we must start analyzing its equilibrium points and its periodic solutions.

The objective of this paper is to study analytically the periodic orbits of the
Hamiltonian system (4) in each Hamiltonian level H = h varying h ∈ R. For
obtaining the results we shall use the averaging theory for computing periodic so-
lutions. We shall give sufficient conditions on the parameters of the Hamiltonian
system (4) implying the existence of continuous families of periodic orbits parame-
terized by h, and the expression of these families are provided explicitly up to first
order in a small parameter.

Our main result is the following one.

Theorem 1. In section 3 we provide sufficient conditions for the existence of twelve
families of periodic orbits of the Hamiltonian system (4) parametrized by the values
of the Hamiltonian (3). Six of these families only exist for positive values of the
Hamiltonian, two only exist for negative values of the Hamiltonian, and the remain
four families can exist either for positive or negative values of the Hamiltonian
depending on the values of the parameters a, b and c. All these twelve families born
at the equilibrium point localized at the origin of coordinates of the Hamiltonain
system (4).

2. The averaging theory

In this section we recall the averaging theory of first order for finding periodic
solutions. The averaging theory up to third order specifically for studying periodic
orbit was developed in [5]. See this paper for a proof of the result stated in this
section. The averaging theory of higher order can be found in [8]. Other versions
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of the averaging theory can also be found in [4] and in Theorems 11.5 and 11.6 of
[18]. For a general view on the averaging theory see the book [16].

Theorem 2. Consider the differential system

(5) ẋ(t) = εF (t, x) + ε2R(t, x, ε),

where F : R×D → Rn, R : R×D × (−εf , εf )→ Rn are continuous functions, T -
periodic in the first variable and D is an open subset of Rn. We define f : D → Rn
as

f(z) =
1

T

∫ T

0

F (s, z) ds,

and assume that

(i) F and R are locally Lipschitz with respect to x;
(ii) for all a ∈ D with f(a) = 0, there exists a neighborhood V of a such that

f(z) 6= 0 for all z ∈ V \{a} and dB(f, V, 0) 6= 0 (see its definition later on).

Then for |ε| > 0 small enough there exists a T -periodic solution ϕ(·, ε) of system
(5) such that ϕ(·, ε)→ a as ε→ 0.

We denoted by dB(f, V, 0) the Brouwer degree at the triple (f, V, 0). A sufficient
condition for showing that the Brouwer degree is non-zero is that the Jacobian of
the function f at a (when it is defined) is non-zero, for a proof see [11]. For more
details about the Brouwer degree see [3].

3. Proof of Theorem 1

To prove Theorem 1 we apply Theorem 2 to the Hamiltonian system (4). Gener-
ically the periodic orbits of a Hamiltonian system with more than one degree of
freedom are on cylinders fulfilled of periodic orbits, see [1]. Therefore, we cannot
apply Theorem 2 directly to system (4), because the Jacobian will always be zero.
Then we must apply Theorem 2 at each Hamiltonian fixed level where the periodic
orbits generically are isolated.

In order to apply Theorem 2 we need a small parameter ε > 0. So in the
Hamiltonian system (4) we scaling the variables as follows

(6) (x, y, px, py) =
√
ε(X,Y, pX , pY ).

In these new variables system (4) becomes

(7)

Ẋ = ωY − pX ,
Ẏ = −ωX + pY ,
ṗX = X + ωpY − ε

(
aX3 + bXY 2

)
,

ṗY = −Y − ωpX − ε
(
bX2Y + cY 3

)
.

This system is again Hamiltonian with Hamiltonian

(8)
Y 2 −X2 + p2Y − p2X

2
+
ε(aX4 + 2bX2Y 2 + cY 4)

4
− ω (XpY − Y pX) .

Therefore for all ε 6= 0 the original and the transformed systems (4) and (7) have
essentially the same phase portrait. The linear part of system (7) at the origin of



4 C. BUZZI, J. LLIBRE AND P. SANTANA

coordinates is

L =




0 ω −1 0
−ω 0 0 1
1 0 0 ω
0 −1 −ω 0


 .

One can see that L has two eigenvalues of multiplicity two, given by ±i
√

1 + ω2.
Therefore we can apply a linear change of variables (X,Y, pX , pY ) to (u, v, pu, pv)
such that the new system has the linear part

J =




0
√

1 + ω2 0 0

−
√

1 + ω2 0 0 0

0 0 0
√

1 + ω2

0 0 −
√

1 + ω2 0




at the origin of coordinates in the real Jordan normal form. A linear change of
variables doing this is

X = u, Y =
pu +

√
1 + ω2v

ω
, pX = pu, pY =

√
1 + ω2pv − u

ω
.

Therefore the new system becomes

(9)

u̇ =
√

1 + ω2v,

v̇ = −
√

1 + ω2u+ ε
aω2u3 + bu

(
p2u + 2

√
1 + ω2puv +

(
1 + ω2

)
v2
)

ω2
√

1 + ω2
,

ṗu =
√

1 + ω2pv − ε
(
au3 +

bu
(
pu +

√
1 + ω2v

)2

ω2

)
,

ṗv = −
√

1 + ω2pu − ε
(
pu +

√
1 + ω2v

) (
bω2u2 + c

(
pu +

√
1 + ω2v

)2)

ω2
√

1 + ω2
,

and the old Hamiltonian becomes the first integral

(10)

1 + ω2

2ω2

(
u2 + v2 + p2u + p2v + 2

√
1 + ω2 (vpu − upv)

)

+ε
1

4

(
au4 +

2bu2
(
pu +

√
1 + ω2v

)2

ω2
+
c
(
pu +

√
1 + ω2v

)4

ω4

)
.

Now we apply a generalized polar change of coordinates given by

u = r cos θ, v = r sin θ, pu = ρ cos(θ + φ), pv = ρ sin(θ + φ).

We recall that this is a change of variables when r > 0 and ρ > 0. Moreover, doing
this change of variables, the angular variables θ and φ appear in the system. Later
on the variable θ will be used for obtaining the periodicity necessary for applying
the averaging theory. After this change of variables the first integral writes

(11) H =
1 + ω2

2ω2

(
r2 + ρ2 − 2rρ

√
1 + ω2 sinφ

)
+ εW1,

where

W1 =
1

4

(
ar4 cos4 θ +

2b

ω2
r2 cos2 θ W 2

2 +
c

ω4
W 4

2

)
,

W2 = ρ cos(θ + φ) + r
√

1 + ω2 sin θ.
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In the new variables system (9) writes

(12)

ṙ = ε
r cos θ sin θ

ω2
√

1 + ω2
W3,

θ̇ = −
√

1 + ω2 + ε
cos2 θ

ω2
√

1 + ω2
W3,

ρ̇ = −ε
(
r cos θ cos(θ + φ)W5 +

1√
1 + ω2

W6

)
,

φ̇ = ε

(
r cos θ

ρ
W7 −

cos2 θ

ω2
√

1 + ω2
W3 −

cos(θ + φ)

ρ
√

1 + ω2
W8

)
,

where
W3 = bρ2 cos2(θ + φ) + aω2r2 cos2 θ + b r sin θ W4,

W4 = 2ρ
√

1 + ω2 cos(θ + φ) + r(1 + ω2) sin θ,

W5 = ar2 cos2 θ +
b

ω2
W 2

2 ,

W6 = W2

(
br2 cos2 θ +

c

ω2
W 2

2

)
sin(θ + φ),

W7 =

(
ar2 cos2 θ +

b

ω2
W 2

2

)
sin(θ + φ),

W8 = W2

(
br2 cos2 θ +

c

ω2
W 2

2

)
.

In order to apply the averaging theory we take θ as the new independent vari-
able, and denote by a prime the derivative with respect to θ. With this change of
independent variable system (12) goes over to

(13)

r′ = −εr cos θ sin θ

ω2(1 + ω2)
W3 +O(ε2),

ρ′ =
ε√

1 + ω2

(
r cos θ cos(θ + φ)W5 +

1√
1 + ω2

W6

)
+O(ε2),

φ′ =
−ε√

1 + ω2

(
r cos θ

ρ
W7 −

cos2 θ

ω2
√

1 + ω2
W3 −

cos(θ + φ)

ρ
√

1 + ω2
W8

)
+O(ε2).

This system has only three equations because we do not need the θ̇ equation of
(12). Observe that system (13) is 2π-periodic in the variable θ. To apply Theorem
2 we must fix the value of the first integral at h ∈ R. By solving equation (11) in
ρ we obtain

ρ = r
√

1 + ω2 sinφ+

√
2hω2 − r2(1 + ω2) + r2(1 + ω2)2 sin2 φ

1 + ω2
+O(ε).

Substituting ρ into equations (13) we obtain the two differential equations

(14)

r′ = −εr cos θ sin θ

ω2(1 + ω2)
W 3 +O(ε2),

φ′ =
−ε√

1 + ω2

(
r cos θ

ρ
W 7 −

cos2 θ

ω2
√

1 + ω2
W 3 −

cos(θ + φ)

ρ
√

1 + ω2
W 8

)
+O(ε2),
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where W i = Wi(θ, r, ρ(r, φ), φ) with

(15) ρ(r, φ) = r
√

1 + ω2 sinφ+

√
2hω2 − r2(1 + ω2) + r2(1 + ω2)2 sin2 φ

1 + ω2
.

We observe that in order to apply the first order averaging theory it is not necessary
to have information about the terms in O(ε2).

One can now see that system (14) satisfies the assumptions of Theorem 2, and
it has the form (5) with T = π and F = (F1, F2) analytic where

F1 = −r cos θ sin θ

ω2(1 + ω2)
W 3,

F2 = − 1√
1 + ω2

(
r cos θ

ρ
W 7 −

cos2 θ

ω2
√

1 + ω2
W 3 −

cos(θ + φ)

ρ
√

1 + ω2
W 8

oo

)
.

The averaging function of first order is

f(r, φ) = (f1(r, φ), f2(r, φ)) =
1

π

∫ π

0

(F1(θ, r, φ), F2(θ, r, φ)) dθ,

becomes

(16)

f1(r, φ) =
br cosφ ρ(r, φ)

(
sinφ ρ(r, φ)− r

√
1 + ω2

)

4ω2(1 + ω2)
,

f2(r, φ) = −Ar
3 sinφ+Br2ρ(r, φ) + Cr sinφρ(r, φ)2 +Dρ(r, φ)3

8ω2
√

1 + ω2ρ(r, φ)
,

where

A = (1 + ω2)
(
b+ 2bω2 + 3

(
c+ (a+ c)ω2

))
,

B = −
√

1 + ω2(b+ 6c+ 3(a+ b+ 2c)ω2 −
(
2b+ 3c+ (b+ 3c)ω2

)
cos(2φ)),

C = 3(1 + ω2)(b+ 3c),

D = −
√

1 + ω2(2b+ 3c+ b cos(2φ)).

According with Theorem 2 we must find the zeros (r0, φ0) of the function f =
(f1, f2) and check that the Jacobian determinant of f at these points is not zero.

¿From f1(r, φ) = 0 we obtain r = r(φ), and in order that ρ(r(φ), φ) 6= 0 (other-
wise f2(r, φ) is not defined), we get that

r(φ) =





R0 with h > 0,

R1 with h > 0 and sinφ > 0,

R2(φ) with h(1 + ω2 − (1 + 2ω2) sin2 φ) > 0,

where

R0 = 0, R1 =

√
2hω2

1 + ω2
, R2(φ) =

√
2hω2

(1 + ω2)(1 + ω2 − (1 + 2ω2) sin2 φ)
sinφ.
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Substituting r = R0 into f2(r, φ) = 0, and solving with respect to φ we obtain
the following two zeros of the averaged function f(r, φ)

(r1, φ1) =

(
0, arccos

√
−b+ 3c

2b

)
,

(r2, φ2) =

(
0,− arccos

√
−b+ 3c

2b

)
.

Since the value of

ρ(ri, φi) =
ω
√

2h (ω2 + 1)

1 + ω2
for i = 1, 2,

and the determinant of the Jacobian matrix of f at these two zeros is

3h2(b+ c)(b+ 3c)

8 (1 + ω2)
4 ,

it follows from the averaging theory (Theorem 2) that if

h > 0, 0 < −b+ 3c

2b
≤ 1, and (b+ c)(b+ 3c) 6= 0,

then the zeros (ri, φi) provide two periodic solutions of the differential system (14),
and consequently of the Hamiltonian system (4) in every level H = h > 0.

Substituting r = R1 into f2(r, φ) = 0, and solving with respect to φ we obtain
the following six zeros of the averaged function f(r, φ)

(r3, φ3) =
(√

2hω2

1+ω2 , π
)
,

(r4, φ4) =
(√

2hω2

1+ω2 , 0
)
,

(r5, φ5) =

(√
2hω2

1+ω2 ,− arccos

√
b(4ω2+3)−

√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13))

8b(1+ω2)

)
,

(r6, φ6) =

(√
2hω2

1+ω2 , arccos

√
b(4ω2+3)−

√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13))

8b(1+ω2)

)
,

(r7, φ7) =

(√
2hω2

1+ω2 ,− arccos

√
b(4ω2+3)+

√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13))

8b(1+ω2)

)
,

(r8, φ8) =

(√
2hω2

1+ω2 , arccos

√
b(4ω2+3)+

√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13))

8b(1+ω2)

)
.

Since the value of

ρ(r3, φ3) = ρ(r4, φ4) = 0,

ρ(r5, φ5) = ρ(r6, φ6) = ω

√
h(b(4ω2+5)+

√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13)))

b(1+ω2) ,

ρ(r7, φ7) = ρ(r8, φ8) = ω

√
h(b(4ω2+5)−

√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13)))

b(1+ω2) .
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Since ρ(ri, φi) cannot be zero, otherwise f2 is not defined, for the zeros ρ(ri, φi)
with i = 3, 4 the averaging theory does not provide any information about if these
zeros produce or not periodic solutions of the differential system (14).

The determinant D(r, φ) of the Jacobian matrix of f at the other four zeros is

D(r5, φ5) = D(r6, φ6) =
h7/2ω7(ω2+1)

6
sin(2φ)(bF+eD)(2A

√
hω(ω2+1)−

√
2BC)

8b2 ,

D(r7, φ7) = D(r8, φ8) =
h7/2ω7(ω2+1)

6
sin(2φ)(bF−eD)(2A

√
hω(ω2+1)−

√
2BC)

8b2 ,

where

A =

√
−2ω4(3a+ 2b+ 3c)− 2ω2(3a+ b+ 6c) + b− 6c−D

b (ω2 + 1)
2 ,

B =

√
hω2

(
1 + ω2

) (
4bω2 + 5b+D

)

b
,

C =

√
b
(
4ω2 + 3

)
−D

b (1 + ω2)
,

D =
√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13)),

E = 3ω4
(
15ab− 9ac+ 34b2 − 15bc− 9c2

)
+ ω2

(
42ab− 27ac+ 145b2 − 66bc− 54c2

)

+9(b− c)(5b+ 3c),

F = 18ω6(3a+ 14b− 9c)(a+ 2b+ c) + ω4(54a2 + 579ab− 225ac+ 1082b2

−147bc− 495c2) + 3ω2
(
72ab− 39ac+ 247b2 − 24bc− 168c2

)

+3(b− c)(55b+ 57c).

¿From Theorem 2 if for i = 5, 6 we have that

0 ≤ b(4ω2 + 3)−
√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13))

b(1 + ω2)
≤ 1,

b(4ω2 + 5) +
√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13))

b(1 + ω2)
≥ 0,

h > 0, sinφi > 0, ρ(ri, φi) > 0 and D(ri, φi) 6= 0,

then these two zeros (ri, φi) provide two periodic solutions of the differential system
(14), and consequently of the Hamiltonian system (4) in every level H = h > 0.

¿From Theorem 2 if for i = 7, 8 we have that

0 ≤ b(4ω2 + 3) +
√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13))

b(1 + ω2)
≤ 1,

b(4ω2 + 5)−
√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13))

b(1 + ω2)
≥ 0,

h > 0, sinφi > 0, ρ(ri, φi) > 0 and D(ri, φi) 6= 0,

then these two zeros (ri, φi) provide two periodic solutions of the differential system
(14), and consequently of the Hamiltonian system (4) in every level H = h > 0.
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Substituting r = R2 into f2(r, φ) = 0, and solving with respect to φ we obtain
the following

φ = ± arccos

(√
−(a+ b)ω2

b+ c+ (c− a)ω2

)
.

Substituting these values of φ into R2 we get the following two zeros of the averaged
function f(r, φ)

(r9, φ9) =

(√
−2(b+ c)h

(a+ 2b+ c)(1 + ω2)
,− arccos

√
−(a+ b)ω2

b+ c+ (c− a)ω2

)
,

(r10, φ10) =

(√
−2(b+ c)h

(a+ 2b+ c)(1 + ω2)
, arccos

√
−(a+ b)ω2

b+ c+ (c− a)ω2

)
.

We cannot guarantee that these last two solutions are all the solutions for r = R2,
these are the ones that we can obtain explicitly.

Since the value of

ρ(ri, φi) =
(
ω2|a+ b|+ (1 + ω2)(b+ c)

)
√

−2h

(1 + ω2) (a+ 2b+ c)(b+ c+ (c− a)ω2)
,

for i = 9, 10, and we denote the determinant of the Jacobian matrix of f at these
two zeros by D(ri, φi), we do not give its huge expression here.

It follows from the averaging theory (Theorem 2) that if

0 ≤ −(a+ b)ω2

b+ c+ (c− a)ω2
≤ 1,

−2(b+ c)h

a+ 2b+ c
> 0, ρ(ri, φi) > 0, and D(ri, φi) 6= 0,

then the zeros (ri, φi) for i = 9, 10 provide two periodic solutions of the differential
system (14), and consequently of the Hamiltonian system (4) in every level H = h.

¿From f1(r, φ) = 0 we obtain φ = φ(r), and in order that ρ(r(φ), φ) 6= 0 (other-
wise f2(r, φ) is not defined), we get that

φ(r) =





Φ1 with h < 0,

Φ2(φ) with
(b+ 3c)h

(3a+ 2b+ 3c)
< 0,

where

Φ1 = ±π
2
, Φ2 = ± arcsin

(
r(1 + ω2)√

r2(1 + 3ω2 + 2ω4) + 2hω2

)
.
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Substituting φ = Φ1 into f2(r, φ) = 0, and solving with respect to r we obtain
the following four zeros of the averaged function f(r, φ)

(r11, φ11) =

(√
− 2h

1 + ω2
,−π

2

)
,

(r12, φ12) =

(√
− 2h

1 + ω2
,
π

2

)
,

(r13, φ13) =

(√
− 2(b+ 3c)h

(3a+ 2b+ 3c)(1 + ω2)
,−π

2

)
,

(r14, φ14) =

(√
− 2(b+ 3c)h

(3a+ 2b+ 3c)(1 + ω2)
,−π

2

)
.

Since the value of

ρ(ri, φi) =
√
−2h for i = 11, 12,

ρ(r13, φ13) =

√
2h(3a+ b)ω2

(1 + ω2)(3a+ 2b+ 3c)
+

√
− 2h(b+ 3c)

3a+ 2b+ 3c
,

ρ(r14, φ14) =

√
2h(3a+ b)ω2

(1 + ω2)(3a+ 2b+ 3c)
−
√
− 2h(b+ 3c)

3a+ 2b+ 3c
.

and the determinant of the Jacobian matrix of f at these two zeros is

D(ri, φi) =
bh2(3a+ b)

8 (1 + ω2)
4 for i = 11, 12,

D(ri, φi) = − bh2(3a+ b)(b+ 3c)

4(1 + ω2)4(3a+ 2b+ 3c)
for i = 13, 14,

Again from Theorem 2 we obtain that

h < 0, and D(ri, φi) 6= 0,

then the two zeros (ri, φi) for i = 11, 12 provide two periodic solutions of the
differential system (14), and consequently of the Hamiltonian system (4) in every
level H = h < 0.

Also from Theorem 2 we get that

ri > 0, ρi > 0, D(ri, φi) 6= 0,

then the two zeros (ri, φi) for i = 13, 14 provide two periodic solutions of the
differential system (14), and consequently of the Hamiltonian system (4) in every
level H = h.

Substituting φ = Φ2 into f2(r, φ) = 0, and solving with respect to r we obtain
again the solutions (ri, φi) for i = 9, 10, 11, 12. Again we cannot guarantee that
these last four solutions are all the solutions for φ = Φ2, because these four solutions
are the ones that we can obtain explicitly.

For i = 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and according with Theorem 2 the zero
(ri, φi) provides a periodic solution (r̄i(θ, ε), φ̄i(θ, ε)) of the differential system (14)
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such that
(r̄i(0, ε), φ̄i(0, ε))→ (ri, φi) when ε→ 0.

Going back to the differential system (13) we obtain for this system a periodic
solution (r̄i(θ, ε), ρ̄i(θ, ε), φ̄i(θ, ε)) such that

(r̄i(0, ε), ρ̄i(0, ε), φ̄i(0, ε))→ (ri, ρi, φi) when ε→ 0,

where ρi = ρ(ri, φi). Now going back to the differential system (12) we get for this
system a periodic solution (r̄i(t, ε), θ̄(t, ε), ρ̄i(t, ε), φ̄i(t, ε)) such that

(r̄i(0, ε), θ̄(0, ε), ρ̄i(0, ε), φ̄i(0, ε))→ (ri, 0, ρi, φi) when ε→ 0.

Again going back to the differential system (9) we have for this system a periodic
solution (ū(t, ε), v̄(t, ε), p̄u(t, ε), p̄v(t, ε)) such that

(ū(0, ε), v̄(0, ε), p̄u(0, ε), p̄v(0, ε))→ (ri, 0, ρi cosφi, ρi sinφi) when ε→ 0.

Going back to the Hamiltonian system (7) we have for this system a periodic solu-
tion (X̄(t, ε), Ȳ (t, ε), p̄X(t, ε), p̄Y (t, ε)) such that

(X̄(0, ε), Ȳ (0, ε), p̄X(0, ε), p̄Y (0, ε))→
(
ri,

ρi cosφi
ω

, ρi cosφi,

√
1 + ω2ρi sinφi − ri

ω

)

when ε → 0. Finally going back to the Hamiltonian system (4) we have for this
system a periodic solution (x̄(t, ε), ȳ(t, ε), p̄x(t, ε), p̄y(t, ε)) such that

(x̄(0, ε), ȳ(0, ε), p̄x(0, ε), p̄y(0, ε))→ √ε
(
ri,

ρi cosφi
ω

, ρi cosφi,

√
1 + ω2ρi sinφi − ri

ω

)

→ (0, 0, 0, 0),

when ε → 0. In summary, these 12 families of periodic orbits of the Hamiltonian
system (4) born at the equilibrium localized at the origin of coordinates.

This completes the proof of Theorem 1.

4. Conclusions

Under different conditions on the four parameters of the system a, b, c and ω, we
have find analytically 12 families of periodic orbits for the Hamiltonian system (4).
These families are associated to the given zeros (ri, φi) of the averaged function
f(r, φ) = (f1(r, φ), f2(r, φ)) given in (16) for i = 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.

We remark that the families of the periodic orbits associated to the zeros (ri, φi)
of the averaged function with i = 1, 2, 5, 6, 7, 8 only exist in the levels H = h > 0,
with i = 11, 12 only exist in the levels H = h < 0, while with i = 9, 10, 13, 14 can
exist either in the levels H = h > 0, or H = h < 0, depending on the values of the
parameters a, b and c.
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