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Abstract. Within a given range of energy levels the two fixed
centers problem under a variational gravitational field admits pe-
riodic orbits bifurcating from the Kepler problem. The analytical
expressions of these periodic orbits are given when the mass pa-
rameter of the system is sufficiently small.

1. Introduction and statement of the main result

It is well known that due to the non-integratable feature of the re-
stricted three-body problem. Scientists have not yet obtained analyti-
cal expressions of its general solutions, and that its periodic orbits have
extremely important applications in practical space missions. This fact
which has attracted a large number of mathematicians and astronomers
to carry out research on the periodic orbits of the restricted three-body
problem (see [1] and the references therein). The extensive research
covered three categories: qualitative analysis (see [1]-[4] and so on),
analytical calculation (see [5]-[7] ), and numerical simulation (see [8]-
[13]).

For the case of the planar circular restricted three-body problem,
Zotos [14] investigated the problem with two equivalent masses with
strong gravitational field, which was controlled by power of the grav-
itational potential. They revealed the influences of the gravitational
potential power on the nature of orbits. Based on the continuation
method, Llibre and Paşca [15] proved that the circular and the elliptic
symmetric periodic orbits of the planar rotating Kepler problem can be
continued into periodic orbits of the planar collision restricted three-
body problem. The method was also applied by Llibre and Makhlouf
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[16] to provide sufficient conditions of periodic solutions of a fourth-
order differential system. For large value of eccentricity e, Abouel-
magd et al. [17] found that the anisotropic Kepler problem with small
anisotropy has two periodic orbits in every negative energy level bi-
furcating from elliptic orbits of the Kepler problem by using averaging
theory. In addition, they also presented the approximate analytic ex-
pressions of the continued periodic orbits. Recently, for a sufficiently
small parameter and each value of eccentricity e ∈ (0, 1), Llibre and
Yuan [18] continued elliptic periodic orbits of the Kepler problem to
the the planar anisotropic Manev problem and of two perturbations of
the hydrogen atom problem.

As for the analytical calculation of periodic orbits of three-body
problem, there were already scientists conducting research on it as early
as a few decades ago. In 1973, Farquhar and Kamel [5] developed an
approximation for periodic orbit, spurring a spate of investigation into
the computation of periodic orbits. Richardson [6], [7] constructed
the classical periodic ‘halo’ orbits seven years later, he presented a
third-order analytical solution for halo-type periodic motion about the
collinear points of the circular restricted problem based on the method
of successive approximations and a technique similar to the Lindstedt-
Poincaré method.

Mainly motivated by Zotos [14] and Llibre [16] , this paper focuses on
the question of what kind of periodic orbits of the Kepler problem can
be continued to two fixed centers with the a variational gravitational
field, and presenting the analytical expression of periodic orbits.

1.1. Equations of Motion. The equations of motion of a particle in
the two fixed centers problem with a variational gravitational field can
be written as

(1) q′i =
∂H

∂pi
, p′i = −∂H

∂qi
, for i = 1, 2,

where

(2) H =
1

2

(
p21 + p22

)
− 1− µ

r1
− µ

rp2
,

and r1 =
√

(q1 + µ)2 + q22, r2 =
√

(q1 − 1 + µ)2 + q22.

Here the prime represents derivative with respect to the time t and µ
(0 < µ� 1) denotes the mass parameter of the two masses, one of mass
1− µ fixed at (−µ, 0) and the other of mass µ fixed at (1− µ, 0). The
parameter p represents the power of the gravitational potential. When
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p is negative, then the interaction is variationaler for short distances
and stronger for large distances. Zotos in [14] studied the restricted
circular three-body problem when p > 1. Here we shall study the two
fixed centers problem with the p = −2.

Our main result is the following:

Theorem 1. For the mass parameter µ > 0 sufficiently small and for
every value h ∈ (−1/2, 0), the elliptic periodic solution with eccentricity
e = −2h of the Kepler problem can be continued to the two fixed centers
problem with variational gravitational field p = −2.

2. Proof of theorem

Introducing the McGehee coordinates (r, θ, v, u), of which r and θ
are the radius and the angle in polar coordinate, v and u are the scaled
radial and angular components of velocity, respectively, as follows

(q1, q2) = r(cos θ, sin θ),

r−1/2v = (p1, p2) · (cos θ, sin θ),

r−1/2u = (p1, p2) · (− sin θ, cos θ).

Then the Hamiltonian of system (2) with p = −2 becomes

(3)

H =
1

2
(p21 + p22)−

1√
q21 + q22

+µ

(
−1 + 2q1 − q21 − q22 +

q1 + q21 + q22

(q21 + q22)
3/2

)
+O(µ2),

and we have

(4)

r′ = r−1/2v,

θ′ = r−3/2u,

v′ = r−3/2
(
u2 +

v2

2
− 1

)

+µ r−5/2 [r (1 + 2r3) + 2 (1− r3) cos θ] +O(µ2),

u′ = r−3/2
(
−1

2
uv

)
+ µ r−5/2 (1 + 2r3) sin θ +O(µ2).
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Note that r = 0 corresponds to the collision singularity of equations
(4). Let dt/dτ = r5/2, hence equations (4) can be rewritten as

(5)

ṙ = r2v,

θ̇ = ru,

v̇ = r

(
u2 +

v2

2
− 1

)

+ µ [r (1 + 2r3) + 2 (1− r3) cos θ] +O(µ2),

u̇ = r

(
−1

2
uv

)
+ µ (1 + 2r3) sin θ +O(µ2),

where the dot denotes derivative with respect to the new time τ .

Taking into account that the Hamiltonian system (3) is reduced to
the Kepler problem when µ = 0, we will study what periodic orbits of
the Kepler problem can be continued to a given negative energy level
of the two fixed centers problem with variational gravitational field
p = −2.

For a given energy level H = h we have

(6)
1

2

(
u2 + v2

)
− 1 + µ

[
1− r − r3 +

(1 + 2r3)

r
cos θ

]
= rh.

Isolating r = r(θ, v, u, h) from equation (6) in power series of the
small mass parameter µ we obtain

(7) r = r(θ, v, u, h) = R0 + µR1 +O
(
µ2
)
,

where

R0 =
1

2h
(u2 + v2 − 2) ,

R1 =
1

8h4

[
8h3 − 4h2 (u2 + v2 − 2)− (u2 + v2 − 2)

3
]

+
1

2h3
4h3 + (u2 + v2 − 2)

3

u2 + v2 − 2
.
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Therefore substituting equation (7) into equations (5) and taking θ
as the new independent variable, equations (5) become

(8)

dv

dθ
=

2u2 + v2 − 2

2u
+ µ

[
1

u
+

(u2 + v2 − 2)
3

4h3u

+
8h3 − (u2 + v2 − 2)

3

2h2 (u2 + v2 − 2)u
cos θ

]
+O (µ2) ,

du

dθ
= −v

2
+ µ

4h3 + (u2 + v2 − 2)
3

2h2 (u2 + v2 − 2)u
sin θ +O (µ2) .

If µ = 0 equations (8) will be reduced to the following the unper-
turbed system

(9)

dv

dθ
=

2u2 + v2 − 2

2u
,

du

dθ
= −v

2
,

which admits the general solution

v(θ; e, θ0) =
e sin(θ − θ0)√

1 + e cos(θ − θ0)
,

u(θ; e, θ0) =
√

1 + e cos(θ − θ0),

where θ0 ∈ [0, 2π) and e are the argument of pericenter and the ec-
centricity of the planar Kepler problem, respectively. The eccentricity
e = 0 corresponds to circular periodic solutions, and e ∈ (0, 1) indi-
cates that the corresponding periodic solutions are elliptical ones.

In order to apply the averaging theory described in the Appendix to
equations (8), we do the following transformations

x =
(
v
u

)
, x(θ; z, 0) =

(
v(θ; e, θ0)
u(θ; e, θ0)

)
, z =

(
e
θ0

)
,

F0 =
(
F01

F02

)
, F1 =

(
F11

F12

)
,
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where

F01 =
2u2 + v2 − 2

2u
,

F02 = −v
2
,

F11 =
1

u
+

(u2 + v2 − 2)
3

4h3u
+

8h3 − (u2 + v2 − 2)
3

2h2 (u2 + v2 − 2)u
cos θ,

F12 =
4h3 + (u2 + v2 − 2)

3

2h2 (u2 + v2 − 2)u
sin θ.

Now we calculate the averaged function F(z) in equation (15) in the
Appendix.

Let

(10) (G1(θ; e, θ0), G2(θ; e, θ0)) = M−1
z (θ, z) F1(θ, x(θ; z, 0)),

where

M−1
z (θ, z) =

(
y1(θ; e, θ0) y2(θ; e, θ0)

y3(θ; e, θ0) y4(θ; e, θ0)

)
,

denotes the inverse of the fundamental matrix of equations (9). Here

y1(θ; e, θ0) =
(1 + e cos(θ − θ0))1/2

2(1 + e cos θ0)3/2
[2 cos θ(1 + e cos θ0)

+ e sin θ sin θ0] ,

y2(θ; e, θ0) =− 1

8(1 + e cos(θ − θ0))1/2(1 + e cos θ0)3/2

·
[
2
(
8 + e2 cos θ + 8e cos cos θ0

)
sin θ

+ 2(4 cos θ0 + 3e cos 2θ0) sin 2θ

+ 16e(2 + cos θ) sin2(θ/2) sin θ0

+ 6e2 sin2 θ sin 2θ0
]
,

y3(θ; e, θ0) =
(1 + e cos(θ − θ0))1/2

2(1 + e cos θ0)1/2
sin θ,

y4(θ; e, θ0) =
4 cos θ + e(cos(2θ − θ0) + 3 cos θ0)

4(1 + e cos(θ − θ0))1/2(1 + e cos θ0)1/2
.
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Hence

G1(θ; e, θ0)

=
1

8(1 + e cos θ0)3/2

[(
4 +

(−1 + e2)
3

h3(1 + e cos(θ − θ0))3

+
16h cos θ(1 + e cos(θ − θ0))

−1 + e2

·
(

1− (−1 + e2)3

8h3(1 + e cos(θ − θ0))3
))

· (2 cos θ(1 + e cos θ0) + e sin θ sin θ0)

+
2h sin θ

−1 + e2

(
1 +

(−1 + e2)3

4h3(1 + e cos(θ − θ0))3
)

·
(
−2
(
8 + e2 cos θ + 8e cos θ0

)
sin θ

− e(4 cos θ0 + 3e cos 2θ0) sin 2θ

− 16e(2 + cos θ) sin

(
θ

2

)2

sin θ0 − 6e2 sin2 θ sin 2θ0

)]
,

G2(θ; e, θ0)

=
sin θ

8(1 + e cos θ0)1/2

[(
4 +

(−1 + e2)
3

h3(1 + e cos(θ − θ0))3

+
16h cos θ(1 + e cos(θ − θ0))

−1 + e2

·
(

1− (−1 + e2)3

8h3(1 + e cos(θ − θ0))3
))

+
4h(4 cos θ + e(cos(2θ − θ0) + 3 cos θ0))

−1 + e2

·
(

1 +
(−1 + e2)3

4h3(1 + e cos(θ − θ0))3
)]

.

(11)

Substituting equations (11) into equation (15) in the Appendix and
computing the corresponding integrals we obtain

(12) F(z) = (f1(e, θ0), f2(e, θ0)),
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where

(13)

f1(e, θ0) =
3
√

1− e2
32h3(1 + e cos θ0)3/2

[3e2 − 8h

−4e(−1 + 2h) cos θ0 + e2 cos 2θ0] ,

f2(e, θ0) =
3e
√

1− e2 sin θ0

16h3
√

1 + e cos θ0
.

The function F(z) in equation (12) is the averaged function of system
(8). According with the averaging theory (see the Appendix) we must
compute the simple zeros of the system f1(e, θ0) = 0, f2(e, θ0) = 0.
Here we must consider e 6= 0, otherwise f2(e, θ0) ≡ 0, and then the
averaging theory does not provide any information. From the equation
f2(e, θ0) = 0 we get

θ10 = 0, θ20 = π.

Case I: If θ10 = 0, we have e = 1 or e = 2h from the first equation of
(13). However, both values of e should be discarded because e ∈ (0, 1)
and h < 0.

Case II: If θ20 = π, we have e = 1 or e = −2h from the first equation
of (13), and e = 1 should also be discarded because it does not provide
a periodic solution of the Kepler problem. Thus e = −2h with the
h ∈ (−1/2, 0).

Note that the Jacobian

J =

∣∣∣∣∣∣∣

∂g1
∂e

∂g1
∂θ0

∂g2
∂e

∂g2
∂θ0

∣∣∣∣∣∣∣
(e, θ0)=(−2h, π)

=
9(2h− 1)

64h5
6= 0.

Therefore if h ∈ (−1/2, 0), we find that the periodic solution

(v(θ; −2h, π), u(θ; −2h, π)) =

(
2h sin θ√

1 + 2h cos θ
,
√

1 + 2h cos θ

)
,

can be continued to a periodic solution of the two fixed center problem
with variational gravitational field p = −2 when the mass parameter µ
is sufficiently small. This completes the proof of Theorem 1.
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Appendix

We consider the problem of the bifurcation of T -periodic solutions
from the following system

(14) ẋ = F0(t, x) + µF1(t, x) + µ2F2(t, x, µ),

with µ = 0 to µ 6= 0 sufficiently small. Here F0, F1 : R × Ω → Rn,
F2 : R × Ω × (−µ0, µ0) → Rn are C2 functions and T -periodic with
respect to variable t, and Ω is an open subset of Rn.

We assume that there is a submanifold V of periodic solutions with
the same period of the unperturbed system ẋ = F0(t, x). Let x(t, z, µ)
be the solution of this unperturbed system such that x(0, z, µ) = z.
Then its linearization system along a periodic x(t, z, 0) can be writ-
ten as ẏ = DxF0(t, x(t, z, 0))y, and the fundamental matrix can be
denoted by Mz(t).

Supposing that there exists an open set V with Cl(V ) ⊂ Ω such that
x(t, z, 0) is T -periodic for each z ∈ Cl(V ) and x(0, z, 0)) = z. Here
Cl(V ) denotes the closure of V in Rn. Then we have the following
result (please see corollary 1 of [19] for an easy proof):

If there is an open and bounded set V with Cl(V ) ⊂ Ω such that
x(t, z, 0) is T -periodic for each z ∈ Cl(V ). Consider the function
F : Cl(V )→ Rn, i.e.,

(15) F(z) =
1

T

∫ T

0

M−1
z (θ, z) F1(θ, x(θ; z, 0)) dθ.

Assume that there exists a ∈ V such that F(a) = 0 and det((dF/dx)(a)) 6=
0, then there is a T -periodic solution φ(t, µ) of system (14) such that
φ(0, µ)→ a as µ→ 0.
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[8] Hénon M., Generating families in the restricted three-body problem, Springer-
Verlag, 1997.

[9] Moore C., Braids in classical dynamics, Physical Review Letters 70: 3675-3679,
1993.

[10] Chenciner A., Montgomery R., A remarkable periodic solution of the three-
body problem in the case of equal masses, Annals of Mathematics 152: 881-
901, 2000.
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