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Abstract. The aim of this work is to provide results that assure the existence
of many isolated T -periodic solutions for T -periodic second-order differential
equations of the form x′′ = a(t)x + b(t)x2 + c(t)x3. We use bifurcation meth-
ods, including Malkin functions and results of Fonda, Sabatini and Zanolin. In
addition, we give a general result that assures the existence of a T -periodic per-
turbation of a non-isochronous center with an arbitrary number of T -periodic
solutions.

1. Introduction

The aim of this work is to provide results that assure the existence of many
T -periodic solutions for the class of T -periodic second-order differential equations

(1) x′′ = a(t)x+ b(t)x2 + c(t)x3.

We assume that a, b, c ∈ C(R) are T-periodic functions, and T > 0 is a fixed real
number.

Recall that, when in the above equation we replace x′′ by x′, we obtain the
classical Abel equation. Hence equation (1) can be seen as a generalized Abel
equation, and our goal is similar to the celebrated result of Lins-Neto ([15]) where
the author proved that there is no upper bound for the number of isolated T -
periodic solutions for the classical T -periodic Abel differential equations.

Another motivation to look for such results came after reading the papers [12]
and [1] where sufficient conditions are given in order to assure the existence of 1
and, respectively, 2 non-null T -periodic solutions. We mention that the authors of
[1, 12] were motivated to study equations of this form by Austin [2] who proposed
a similar equation as a biomathematical model of an aneurysm, and by Cronin [6]
who was the first to study the existence of periodic solutions of it.

In the class of equations of the form (1) we distinguish the ones with constant
coefficients a, b, c ∈ R. Here T > 0 is not related with the coefficients. Note that,
whenever a 6= 0 and b2−4ac > 0, equation (1) has exactly 2 non-null constant (thus
T -periodic for any T ) isolated solutions. The equation x′′ = 0 has any constant
function as T -periodic solution (for arbitrary T > 0), while the solutions of the
equation x′′ = −x are all 2π-periodic. Another interesting example of autonomous
equation of the form (1) is x′′ = −x3 whose set of T -periodic orbits (for arbitrary
T > 0) is a countably infinite set. This example will be discussed in detail in
Section 2.

In addition, the linear Hill equation x′′ = a(t)x is in the class (1) when a ∈ C(R)
is T -periodic. An interesting aspect to discuss is how to find a(t) such that all the
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solutions of this equation are T -periodic. An answer will be given in Section 3.4.1.
For other results in this direction one can see [13, 17].

For equation (1) with time-dependent coefficients we obtain different sufficient
conditions that guarantee the existence of 2, 3, 8 and finally 2N (with arbitrary
N ∈ N∗) isolated T -periodic solutions. Our examples of such equations are small
perturbations of one of the equations x′′ = 0, x′′ = −x, or x′′ = −x3.

To obtain the main result in [1], Araujo-Pedroso used the Mawhin continuation
theorem, a result within the topological coincidence degree theory for infinite di-
mensional operators. The results in [12], which conclude the existence of a nonnull
T -periodic solution, where obtained by Grossinho-Sanchez using variational meth-
ods, more precisely, a variant of Mountain-Pass Theorem due to Rabinowitz. Here
we use bifurcation methods, more precisely, the Malkin bifurcation theorem and
another result due to Fonda-Sabatini-Zanolin [9]. These results will be stated in
Section 2. For a short history of the Malkin bifurcation theorem and for a modern
proof one can see [3, 4]. The main results on the generalized Abel equation (1) are
stated and proved in Section 3. In Section 4, the last one, we revisit the Malkin
theorem in the planar case and present new results on non-necessarily Hamilton-
ian systems. One of these results assures the existence of 2N different T -periodic
solutions, for any arbitrary integer N ≥ 2. Note that, in Section 3, we will ap-
ply the Fonda-Sabatini-Zanolin theorem in order to obtain 2N different T -periodic
solutions for a planar system with a Hamiltonian structure.

2. Main tools

2.1. The Malkin bifurcation theorem. Let n ≥ 1 be an integer and T > 0 be
a real. We consider in this subsection the n-dimensional differential system

(2) u′ = f(u) + εg(t, u)

where ε ∈ R, f : Rn → Rn and g : R × Rn → Rn are sufficiently smooth and
T -periodic with respect to the variable ′t′. Let k ∈ Z be such that 1 ≤ k ≤ n. We
assume that the unperturbed system

(3) u′ = f(u)

has a k-dimensional T -period manifold Z ⊂ Rn. More precisely, we assume that
there exists a C2 function ξ : U → Rn, where U is a nonempty, open subset of Rk,
such that the Jacobian matrix Dξ(θ) has full rank for any θ ∈ U , and Z = ξ(U).
Moreover, for any θ ∈ U , the solution of (3) with u(0) = ξ(θ), denoted u(t, θ), is
T -periodic. Note that T > 0 is not necessarily the minimal period.

In addition, we assume that Z = ξ(U) is normally nondegenerate, that is, for
each θ ∈ U , the first variational (T -periodic) system

(4) v′ = Df (u(t, θ)) v

has exactly k linearly independent T -periodic solutions.
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These hypotheses assure the existence (see [14]), for each θ ∈ U , of exactly k
linearly independent T -periodic solutions of the adjoint system

w′ = − [Df(u(t, θ))]trw,

denoted wi(t, θ), i = 1, k. The Malkin bifurcation function

M : U → Rk

is defined componentwise by

θ 7→
∫ T

0

〈 wi(t, θ), g(t, u(t, θ))〉dt, i = 1, k.

Here [·]tr denotes the transpose of a matrix, while 〈·, ·〉 denotes the scalar product
in Rn. We remark that in the literature there are other representations of the
bifurcation function, that eventually differ by a change of variable and/or a factor
without zeros.

In the hypotheses and notations of this section we have the following result
known as the Malkin theorem [16] (for a proof see also [3, 4]).

Theorem 1. Assume that there exists θ∗ ∈ U such that M(θ∗) = 0 and the
Jacobian determinant detDM(θ∗) 6= 0. Then there exists ε > 0 such that for each
ε ∈ (−ε, ε), system (2) has a T -periodic solution uε with lim

ε→0
uε(0) = ξ(θ∗), and

with the property that it is isolated in the set of T -periodic solutions of (2).

We say that a T -periodic solution u(t) of a non-autonomous differential equation
is isolated in the set of T -periodic solutions when there exists a neighborhood of
u(0) ∈ Rn where u(0) is the only initial value of a T -periodic solution. Note that
this definition is meaningful only for non-autonomous differential equations since
the only isolated T -periodic solutions of an autonomous differential equations are
its isolated critical points.

In the end of this subsection we discuss, for further use, different characteri-
zations of the condition that the k-dimensional T -period manifold Z is normally
nondegenerate.

For the case when the unperturbed system (3) is linear, we have the following
result.

Proposition 2. Assume that the unperturbed system (3) is linear and has exactly
k linearly independent T -periodic solutions. Let Z be the linear space spanned by
the initial values of the k linearly independent T -periodic solutions. Then Z is a
k–dimensional normally nondegenerate T -period manifold.

For the case when the unperturbed system (3) is nonlinear, the hypothesis that
Z is a k-dimensional T -period manifold assures that the Jacobian matrix Dθu(t, θ)
is an n× k matrix whose columns are k linearly independent T -periodic solutions
of the variational system (4). Other solutions of the variational system are deriva-
tives of the general solution of the unperturbed system (3) with respect to other
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directions in Rn. Thus, one has to decide whether one of these other solutions is
T -periodic.

2.2. The Fonda-Sabatini-Zanolin theorem. We consider in this subsection the
planar Hamiltonian system

(5) u′ = J∇H(u) + εJ∇H(t, u)

where J =

(
0 − 1
1 0

)
denotes the symplectic matrix, H : R2 → R and H :

R×R2 → R are sufficiently smooth and T -periodic with respect to the variable ′t′

and in ∇H(t, u) the gradient is only with respect the variable u. We assume that
the unperturbed autonomous planar Hamiltonian system

(6) u′ = J∇H(u)

has a period annulus A ⊂ R2 such that the inner and outer components of its
boundary are Jordan curves. Assume, in addition, that A is not isochronous, that
is, the period of the periodic orbits in A covers an interval [T1, T2], with T1 < T2.
Without loosing the generality, assume that the origin is a singularity of (6) and
the periodic orbits in A encircle the origin. Under these assumptions, the authors
in [9] proved the following result.

Theorem 3. Given a positive integer j satisfying

T1 < T/j < T2

there is an ε > 0 such that, if ε ∈ (−ε, ε), then system (5) has at least two T -
periodic solutions, whose orbits are contained in A, which make exactly j rotations
around the origin in the period time T .

Note that this result does not provide any information whether the T -periodic
solutions are isolated or not.

3. Results on the generalized Abel equation

3.1. Examples with two non-null periodic solutions.

Theorem 4. Let T > 0 and a, b, c ∈ C(R) be T -periodic functions. Denote

â =

∫ T

0

a(t)dt, b̂ =

∫ T

0

b(t)dt, ĉ =

∫ T

0

c(t)dt

and assume that

â 6= 0, b̂2 − 4 â ĉ > 0.

Then there exists ε > 0 such that, for each ε ∈ (−ε, ε), the equation

x′′ = εa(t)x+ εb(t)x2 + εc(t)x3

has at least two isolated non-null T -periodic solutions.
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Proof. We write the given second order equation as the first order system,

x′ = y,

y′ = ε[a(t)x+ b(t)x2 + c(t)x3],

which has the form (2) with

n = 2, u =

(
x
y

)
, f(t, x, y) =

(
y
0

)
, g(t, x, y) =

(
0

a(t)x+ b(t)x2 + c(t)x3

)
.

The unperturbed system is

x′ = y, y′ = 0,

which is linear, and whose adjoint system is

x′ = 0, y′ = −x.

Let

k = 1, ξ : R→ R2, ξ(θ) =

(
θ
0

)
, for any θ ∈ R.

It is easy to see that, for all t, θ ∈ R,

u(t, θ) =

(
θ
0

)
, w1(t) =

(
0
1

)
,

which are constant functions, thus, in particular, T -periodic.
Hence Z = ξ(R) is an 1-dimensional T -period manifold, which, by Proposition 2,
is normally non-degenerate.

In this case, the Malkin bifurcation function is

M : R→ R, M(θ) =

∫ T

0

[a(t)θ + b(t)θ2 + c(t)θ3]dt.

Then

M(θ) = â θ + b̂ θ2 + ĉ θ3.

The conditions â 6= 0, b̂2 − 4 â ĉ > 0 from the hypothesis, assure that M has two
non-null simple zeros. From here, by Theorem 1, the conclusion follows. �

Remark 5. Let m ≥ 1 be an integer. One can check that Theorem 4 remains valid
for the differential equation of arbitrary order

x(m) = εa(t)x+ εb(t)x2 + εc(t)x3,

since the Malkin bifurcation function is the same.
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3.2. Other examples with two non-null periodic solutions. For complete-
ness and because it looks similar to our previous result, we state without proof
the main result of [1], that also concludes the existence of at least two non-null
periodic solutions for some equations of the form (1).

Theorem 6. [1] Assume that there exist four positive constants a, a, b, b, c, c > 0
such that

a ≤ a(t) ≤ a, b ≤ −b(t) ≤ b, c ≤ −c(t) ≤ c,

and

b
2 − b2 < 4ac, b

2
+ 4ac > (b− c)2.

Then there exists T > 0, depending on a, a, b, b, c, c, such that if

T < T ,

the equation (1) has at least two non-null T- periodic solutions.

3.3. Examples with three non-null periodic solutions.

Theorem 7. Let T > 0 and ϕi ∈ C2(R), i ∈ 1, 2, 3 be three T -periodic functions.
Assume that 0 < ϕ1(t) < ϕ2(t) < ϕ3(t) for all t ∈ R and consider

a(t) =
∆1(t)

∆(t)
, b(t) =

∆2(t)

∆(t)
, c(t) =

∆3(t)

∆(t)
,

where

∆ = ϕ1ϕ2ϕ3(ϕ3 − ϕ1)(ϕ2 − ϕ1)(ϕ3 − ϕ2),

∆1 =

∣∣∣∣∣∣

ϕ′′1 ϕ2
1 ϕ3

1

ϕ′′2 ϕ2
2 ϕ3

2

ϕ′′3 ϕ2
3 ϕ3

3

∣∣∣∣∣∣
, ∆2 =

∣∣∣∣∣∣

ϕ1 ϕ′′1 ϕ3
1

ϕ2 ϕ′′2 ϕ3
2

ϕ3 ϕ′′3 ϕ3
3

∣∣∣∣∣∣
, ∆3 =

∣∣∣∣∣∣

ϕ1 ϕ2
1 ϕ′′1

ϕ2 ϕ2
2 ϕ′′2

ϕ3 ϕ2
3 ϕ′′3

∣∣∣∣∣∣
.

Then a, b, c ∈ C(R) are T -periodic and the differential equation

x′′ = a(t)x+ b(t)x2 + c(t)x3

has at least three non-null T -periodic solutions, namely ϕ1, ϕ2, ϕ3.

Proof. Given ϕ1, ϕ2, ϕ3 as in the hypothesis, it is easy to see that a, b, c are chosen
such that

a(t)ϕ1(t) + b(t)ϕ2
1(t) + c(t)ϕ3

1(t) = ϕ′′1(t)

a(t)ϕ2(t) + b(t)ϕ2
2(t) + c(t)ϕ3

2(t) = ϕ′′2(t)

a(t)ϕ3(t) + b(t)ϕ2
3(t) + c(t)ϕ3

3(t) = ϕ′′3(t).

Thus ϕ1, ϕ2, ϕ3 are the three solutions of the given equation. �

Notice that although in most cases the above construction gives a differential
equation for which the three functions ϕj(t), j = 1, 2, 3 are isolated T -periodic
solutions, in some cases they can belong to a continuum of periodic solutions.
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Remark 8. Let m ≥ 1 be an integer. One can check that Theorem 7 remains valid
for the differential equation of arbitrary order

x(m) = a(t)x+ b(t)x2 + c(t)x3,

by changing each ϕ′′j by ϕ
(m)
j .

3.4. Examples with eight non-null periodic solutions.

Theorem 9. There exist a0, a3, a4, b1, b2, b5, b6, c0, c3, c4 ∈ R and ε > 0 such that,
for each ε ∈ (−ε, ε), the differential equation

x′′ = −x+ εa(t)x+ εb(t)x2 + εc(t)x3,

where

a(t) = a0 + a3 cos(2t) + a4 sin(2t)

b(t) = b1 cos(t) + b2 sin(t) + b5 cos(3t) + b6 sin(3t)

c(t) = c0 + c3 cos(2t) + c4 sin(2t) + cos(4t),

has eight isolated non-null 2π-periodic solutions.

Proof. We write the given second order equation as the first order system,

x′ = y,

y′ = −x+ ε[a(t)x+ b(t)x2 + c(t)x3],

which has the form (2) with n = 2, T = 2π,

u =

(
x
y

)
, f(x, y) =

(
y
−x

)
, g(t, x, y) =

(
0

a(t)x+ b(t)x2 + c(t)x3

)
.

The unperturbed system is
x′ = y, y′ = −x,

which is linear, and whose adjoint is again

x′ = y, y′ = −x.
Let

k = 2, ξ : R2 → R2, ξ(θ) = θ, for any θ ∈ R2.

It is easy to see that,

u(t, θ) =

(
θ1 cos t+ θ2 sin t
−θ1 sin t+ θ2 cos t

)
, w1(t) =

(
cos t
− sin t

)
, w2(t) =

(
sin t
cos t

)
.

Hence Z = R2 is a 2-dimensional T -period manifold which, by Proposition 2, is
normally non-degenerate.

In this case, the Malkin bifurcation function is

M : R2 → R2, M1(θ) = −
∫ 2π

0

m(t, θ) sin tdt, M2(θ) =

∫ 2π

0

m(t, θ) cos tdt.

where θ = (θ1, θ2), M = (M1,M2) and

m(t, θ) = a(t)(θ1 cos t+ θ2 sin t) + b(t)(θ1 cos t+ θ2 sin t)2 + c(t)(θ1 cos t+ θ2 sin t)3.
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We remark that the above bifurcation function can also be obtained as a classical
averaged function. Indeed, through the linear change of variables (x, y) 7→ (ϕ, ψ),
given by

x = ϕ cos t+ ψ sin t, y = −ϕ sin t+ ψ cos t,

our system is transformed into

ϕ′ = −εm(t, ϕ, ψ) sin t, ψ′ = εm(t, ϕ, ψ) cos t.

After some tedious but straightforward computations we obtain:

− 8

π
M1(θ) = 4θ1a4 + (8a0 − 4a3)θ2

+(2b2 + 2b6)θ
2
1 + (4b1 − 4b5)θ1θ2 + (6b2 − 2b6)θ

2
2

+2c4θ
3
1 + (6c0 − 3)θ21θ2 + 6c4θ1θ

2
2 + (6c0 − 4c3 + 1)θ32,

8

π
M2(θ) = (8a0 + 4a3)θ1 + 4a4θ2

+(6b1 + 2b5)θ
2
1 + (4b2 + 4b6)θ1θ2 + (2b1 − 2b5)θ

2
2

+(6c0 + 4c3 + 1)θ31 + 6c4θ
2
1θ2 + (6c0 − 3)θ1θ

2
2 + 2c4θ

3
2.

Since both components of M are polynomials of degree 3, we deduce, by Bézout
Theorem, that M can have either a continuum of roots, or at most 3×3 = 9 simple
roots. In the sequel our work is focused on finding the coefficients such that M
has exactly 9 roots: the (0, 0) and 8 more simple zeros.

The 10 parameters appearing in the expression of M are uniquely defined after
imposing that M has, for instance, the following 5 zeros:

(1, 1), (2, 7), (3, 5), (−2, 6), (−3, 3).

Now the expression of M is

kM1(θ) = 2441173θ31 + 16014171θ21θ2 + 7323519θ1θ
2
2 + 718869θ32

−65085731θ21 − 54282494θ1θ2 − 20379971θ22
+41207986θ1 + 72042478θ2,

−kM2(θ) = 17330805θ31 + 7323519θ21θ2 + 16014171θ1θ
2
2 + 2441173θ32

−16270255θ21 − 130171462θ1θ2 − 27141247θ22
+89265310θ1 + 41207986θ2,

where k = 16/(3494667π). So, M(θ) = 0 is a system of two polynomial equations
with two unknowns. Moreover, this system has integer coefficients. For solving
such a system we used an algorithm based on resultants, see for instance [18, 11].
We will prove that, beside the 5 solutions that we initially imposed and the (0, 0)
solution, the system has other three real solutions. Finally, due to Bézout Theorem
we deduce that all these 9 roots are simple.

It holds that

S(θ1) = Resθ2(M1,M2) =θ1(θ1 + 3)(θ1 + 2)(θ1 − 1)(θ1 − 2)(θ1 − 3)P3(θ1),

T (θ2) = Resθ1(M1,M2) =θ2(θ2 − 1)(θ2 − 3)(θ2 − 5)(θ2 − 6)(θ2 − 7)Q3(θ2),



MANY PERIODIC SOLUTIONS 9

where Resy(U(y), V (y)) denotes the resultant of two polynomials U and V respect
to y, and P3 and Q3 are two cubic polynomials with rational coefficients. Since the
resultants are not identically zero, it holds that the maximum number of solutions
of the system M = 0, taking into account their multiplicities, is 9. In particular, if
we prove that there are 9 solutions, all of them must be simple.

It is easy to prove that P3 has 3 real roots, say u1 < u2 < u3 and Q3 also, say
v1 < v2 < v3. In fact

u1 ≈ −1.037593, u2 ≈ −0.874090, u3 ≈ 38.784916,

v1 ≈ −240.095677, v2 ≈ 0.786412, v3 ≈ 5.035431.

Hence, each solution (θ1, θ2) of M = 0 is contained in the set of 9× 9 = 81 couples
formed by one solution of S and one of T. In this case, because P3 and Q3 are cubic
polynomials, it is not difficult to check that the system has exactly 9 solutions: the
6 ones that we already know, together with

(u1, v3), (u2, v2), (u3, v1).

For higher degree polynomials, the use of Poincaré-Miranda Theorem helps to
decide which of the couples, candidate to be a solution of the system, is an actual
solution for it, see [10, 11].

Finally, we give now the exact expressions of the coefficients of the equation that
has eight non-null 2π-periodic solutions

a(t) = −40326947

6989334
− 130476

105899
cos(2t)− 20603993

3494667
sin(2t)

b(t) =
21705751

6989334
cos t+

42732851

6989334
sin t− 32576743

6989334
cos(3t) +

87438611

6989334
sin(3t)

c(t) = −7181447

6989334
− 125848

105899
cos(2t)− 2441173

3494667
sin(2t) + cos(4t).

�

Remark 10. Let m ≥ 1 be an integer. One can check that Theorem 9 remains
valid for the differential equation of arbitrary order

x(2m) = (−1)mx+ εa(t)x+ εb(t)x2 + εc(t)x3,

since the Malkin bifurcation function is the same.

3.4.1. The equation x′′ = ã(t)x. In this subsection we will consider the linear
equation x′′ = ã(t)x, assuming that ã ∈ C(R) is T -periodic and such that all the
solutions of this equation are T -periodic. Also, consider its perturbation

x′′ = ã(t)x+ εa(t)x+ εb(t)x2 + εc(t)x3,

where a, b, c ∈ C(R) are T -periodic. The Malkin bifurcation theorem can be applied
to this equation in the same way as it was applied in the proof of Theorem 9.
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Just note that, denoting C(t) and S(t) the two linearly independent solutions of
x′′ = ã(t)x, that satisfy S(0) = C ′(0) = 0 and C(0) = S ′(0) = 1, we have

u(t, θ) =

(
θ1C(t) + θ2S(t)
θ1C

′(t) + θ2S
′(t)

)
, w1(t) =

(
−S ′(t)
S(t)

)
, w2(t) =

(
−C ′(t)
C(t)

)
.

Both components of the Malkin bifurcation function will be, like in Theorem 9,
polynomials of degree 3. Thus M can have at most 8 non-null simple zeros. Of
course, the realization of this number of non-null simple zeros cannot be decided
in this general situation.

An interesting aspect to discuss is how to find ã(t) such that all the solutions of
x′′ = ã(t)x are T -periodic. An answer is given in the next result.

Theorem 11. Let C, S ∈ C2(R) be two T -periodic functions with the property
that, for all t ∈ R,

W (t) =

∣∣∣∣
C(t) S(t)
C ′(t) S ′(t)

∣∣∣∣ > 0.

Define

ã =
3

4

(
W ′

W

)2

− W ′′

2W
− W̃

W
, where W̃ =

∣∣∣∣
C ′ S ′

C ′′ S ′′

∣∣∣∣ .

Then the functions

C(t)√
W (t)

and
S(t)√
W (t)

are two linearly independent T -periodic solutions of

x′′ = ã(t)x.

Proof. First we make the following notations.

ϕ =
C√
W
, ψ =

S√
W
, Wν =

∣∣∣∣
ϕ ψ
ϕ′ ψ′

∣∣∣∣ , W̃ν =

∣∣∣∣
ϕ′ ψ′

ϕ′′ ψ′′

∣∣∣∣ .

By direct but cumbersome computations we obtain that

Wν = 1, W̃ν = −ã.

The second order differential equation whose solutions are ϕ and ψ is
∣∣∣∣∣∣

ϕ ψ x
ϕ′ ψ′ x′

ϕ′′ ψ′′ x′′

∣∣∣∣∣∣
= 0,

which is equivalent to Wνx
′′ −W ′

νx
′ + W̃νx = 0 and, further, to x′′ = ã(t)x. �
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3.5. Examples with an arbitrary number of non-null periodic solutions.

Theorem 12. Let N ≥ 1 be an arbitrary integer. We have that there exists ε > 0
such that for each ε ∈ (−ε, ε) the differential equation

x′′ = −x3 + ε[a(t)x+ b(t)x2 + c(t)x3],

has 2N non-null T -periodic solutions.

Proof. We intend to apply Theorem 3. We write the given second order equation
as the first order system,

x′ = −y,
y′ = x3 − ε[a(t)x+ b(t)x2 + c(t)x3],

which is T -periodic and has the form (5) with

u =

(
x
y

)
, H(x, y) = x4/4+y2/2, H(t, x, y) = −a(t)x2/2−b(t)x3/3−c(t)x4/4.

The unperturbed system is

(7) x′ = −y, y′ = x3.

It has a unique singularity (0, 0) and all its nontrivial orbits are the level curves
of H defined above, and they are Jordan curves. For every h > 0 denote by
τ(h) the main period of the orbit H = h. It is known that the period function
τ : (0,∞) → (0,∞) is such that τ ′(h) < 0 for all h > 0 and that the image of τ
is the whole interval (0,∞). For these results see [5]. In fact, when the origin is a
degenerated center (the eigenvalues of the linear part at the critical point are not
purely imaginary) it is known that the period of the orbits tend to infinity when
the orbits approach the critical point, see [7].

Consider A ⊂ R2 the period annulus of (7) whose boundaries are the orbits of
periods T2 = T +1 and, respectively, T1 = T/(N +1). Note that T/j ∈ (T1, T2) for
each j = 1, N . Theorem 3 assures that, for each j = 1, N , system (7) has at least
two T -periodic solutions, which make exactly j rotations around the origin in the
period time T . Thus, system (7) has at least 2N different T-periodic solutions. �

Remark 13. The conclusion of Theorem 12 is also valid when, instead of the
unperturbed equation x′′ = −x3 we consider, for example, x′′ = −x + x2 or x′′ =
−x+ x3.

4. Consequences of the Malkin theorem in the planar case

In this section we use the notations of subsection 2.1, considering the particular
case when n = 2.

We assume that the planar autonomous system

(8) u′ = f(u)

has a period annulus P ⊂ R2, i.e. P is nonempty, open and connected, is invariant
under the flow of (8) and any orbit of (8) in P is a nontrivial closed curve. Thus,
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in particular, f(u) 6= 0 for all u ∈ P . In these hypotheses it is known that there
exists a C1 first integral H : P → R without critical points. Recall that the C1,
locally nonconstant function H : P → R is a first integral of (8) if and only if

〈∇H, f〉 = 0 in P .
Let I ⊂ R be an open nonempty interval such that P =

⋃
h∈I Γh, where Γh is

the closed orbit of (8) in P contained in H = h. Denote by σ(t, h) the solution
of (8) whose orbit is Γh. Define also the period function τ : I → (0,∞), τ(h)
being the minimal period of σ(t, h). Fix T > 0 and assume that there exist h∗ ∈ I
and an integer j ≥ 1 such that τ(h∗) = T/j. Denote by ξ(t) = σ(t, h∗). We
have that the cycle Z = ξ(R) is an 1–dimensional T -period manifold. It is known
that its nondegeneracy condition can be given in terms of the period function.
More precisely, we have the following result, whose proof will be included for
completeness. The proof in the particular case of a Hamiltonian system can be
found in [9].

Proposition 14. The cycle Z is an 1–dimensional T -period manifold which is
normally nondegenerate if and only if τ ′(h∗) 6= 0.

Proof. One can check that u(t, θ) = ξ(t + θ), which, of course, is T -periodic. It is
clear that the number of independent T -periodic solutions of the variational system

v′ = Df(ξ(t+ θ))v

does not depend on θ. Thus, we will study only the system

(9) v′ = Df(ξ(t))v.

Let us start proving that f(ξ(t)) and ∂σ
∂h

(t, h∗) are both solutions of (9). Recall
that ξ′(t) = f(ξ(t)). Hence, derivating with respect to t this equality we get

(
f(ξ(t))

)′
=
(
ξ′(t)

)′
= Df(ξ(t))ξ′(t) = Df(ξ(t))f(ξ(t)),

as desired. By using that σ(t, h) = f(σ(t, h)) and derivating with respect to h,
after some manipulations we get that

(∂σ
∂h

(t, h)
)′

= Df(σ(t, h))
∂σ

∂h
(t, h).

Plugging h = h∗ we arrive to
(∂σ
∂h

(t, h∗)
)′

= Df(ξ(t))
∂σ

∂h
(t, h∗),

as we wanted to prove.

We claim that f(ξ(t)) and ∂σ
∂h

(t, h∗) are linearly independent. Indeed, taking the
derivative with respect to h in the relation

H(σ(t, h)) = h, h ∈ I, t ∈ R,
one gets 〈∇H(σ(t, h)), ∂σ

∂h
(t, h)〉 = 1 for all h ∈ I, t ∈ R. Assuming, by contradic-

tion, that ∂σ
∂h

(t, h) = αf(ξ(t)) (with α ∈ R∗), from the previous relation we obtain
〈∇H(ξ(t)), f(ξ(t))〉 = 1/α. This contradicts the fact that H is a first integral of
(8).
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Notice also that f(ξ(t)) is a T -periodic solution. Thus, Z is normally degenerate
if and only if ∂σ

∂h
(t, h∗) is also T -periodic, which is equivalent to the condition

(10)
∂σ

∂h
(T, h∗) =

∂σ

∂h
(0, h∗).

By the definition of τ(h), we have

σ(τ(h), h) = σ(0, h), h ∈ I.
Since the minimal period of ξ is T/j and we are interested in studying T -periodic
solutions, we need to work with the relation

σ(jτ(h), h) = σ(0, h), h ∈ I.
After taking the derivative with respect to h in the above relation, and using

that jτ(h∗) = T and ∂σ
∂t

(T, h∗) = ξ′(T ) = ξ′(0) = f(ξ(0)), we obtain

jτ ′(h∗) f(ξ(0)) +
∂σ

∂h
(T, h∗) =

∂σ

∂h
(0, h∗).

Since f(ξ(0)) is not the null vector, using the above relation we deduce that the
degeneracy condition (10) is equivalent to τ ′(h∗) = 0. �

The next result will be useful in the construction of the Malkin bifurcation
function.

Proposition 15. [∇H(ξ(t))]tr is a solution of the linear system

v′ = −[Df(ξ(t))]trv.

Proof. As usual, ∇H is a line vector. Note that, in fact, we have to prove the
validity of the following relation for all t ∈ R,

d

dt
∇H(ξ(t)) = −∇H(ξ(t))Df(ξ(t)).

This will follow, on one hand, from

d

dt
∇H(ξ(t)) = D(∇H)(ξ(t))ξ′(t) = D(∇H)(ξ(t))f(ξ(t)),

and on the other hand, from the identity

D(∇H)f = −∇HDf, valid in P ,
which is obtained by differentiating 〈∇H, f〉 = 0 in P . The proof is done. �

We deduce that for the planar system

(11) u′ = f(u) + εg(t, u)

the Malkin bifurcation function, M : R→ R, has the following expression

M(θ) =

∫ T

0

〈∇H(ξ(t+ θ)), g(t, ξ(t+ θ))〉dt.
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Note that M is T/j-periodic. Note also that it can be written as

(12) M(θ) =

∫ T

0

〈∇H(ξ(t)), g(t− θ, ξ(t))〉dt.

A consequence of Theorem 1 in this case is the following result.

Theorem 16. Assume that τ ′(h∗) 6= 0 and that there exists θ∗ ∈ [0, T/j) such that
M(θ∗) = 0 and M ′(θ∗) 6= 0, where M is given in (12). Then there exists ε > 0
such that for each ε ∈ (−ε, ε), equation (11) has a T -periodic solution uε with
lim
ε→0

uε(0) = ξ(θ∗) and with the property that it is isolated in the set of T -periodic

solutions of (11).

Without loosing the generality, suppose that the origin is a singularity of u′ =
f(u) and that the closed orbits in P encircle the origin. Note that, since uε(t) and
ξ(t + θ∗) are ”close enough” on the compact interval [0, T ], we deduce that the
number of rotations of uε(t) around the origin in the interval [0, T ] is equal to the
number of rotations of ξ(t + θ∗) around the origin in the same interval. Thus, uε
makes exactly j rotations around the origin in the period time T .

We present a consequence of Theorem 7 from [4] for the case considered in this
section.

Theorem 17. Assume that τ ′(h∗) 6= 0 and M is given in (12). Then

(i) For any sequences (um)m≥1 from C(R,R2) and (εm)m≥1 from [0, 1] such that
um(0)→ ξ(θ∗) ∈ ξ(R), εm → 0 as m→∞ and um is a T -periodic solution
of (11) with ε = εm, we have that M(θ∗) = 0.

(ii) Assume that there exist 0 ≤ θ1 < θ2 < T/j such that M(θ1)M(θ2) < 0.
Then M has at least two zeros θ∗1 ∈ (θ1, θ2), θ∗2 ∈ (θ2, θ1 + T/j), while
system (11) has at least two T -periodic solutions, denoted u1,ε, u2,ε, which
make exactly j rotations around the origin in the period time T , and such
that the distance between ϕε(0) and ξ(R) goes to 0 as ε→ 0.

Remarks. Hypothesis (ii) in the theorem above assures that the Brouwer degree
of M on both intervals (θ1, θ2) and (θ2, θ1 + T/j), respectively, is not null. This
remark is to justify that the hypotheses of Theorem 7 from [4] are satisfied. For
the Brouwer degree theory one can see the book of Dincă-Mawhin [8].

In general, Theorem 17 does not assure that the periodic solutions obtained are
isolated in the set of T -periodic solutions.

If M is not identically null and
∫ T
0
M(θ)dθ = 0, then there exist 0 ≤ θ1 < θ2 <

T/j such that M(θ1)M(θ2) < 0.

In the sequel we provide an example of perturbation g in system (11) such
that the Malkin bifurcation function associated satisfies the hypothesis in (ii) of
Theorem 17. In addition, we provide an example of such system whose Malkin
bifurcation function does not have any zero, thus the system does not have T -
periodic solutions like in (i) of Theorem 17. The last result assures the existence
of 2N periodic solutions for an arbitrary integer N ≥ 1. We will skip the proofs of
the next results, since they are not difficult.
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Theorem 18. Assume that τ ′(h∗) 6= 0. Let A ∈ C(R) be T -periodic and consider
g(t, u) = A(t)∇H(u). For the planar system

(13) u′ = f(u) + εA(t)∇H(u)

the Malkin bifurcation function can be computed as

M(θ) =

∫ T

0

A(t− θ)||∇H(ξ(t))||2dt.

(i) If M is not identically null and
∫ T
0
A(s)ds = 0, then there exist 0 ≤ θ1 <

θ2 < T/j such that M(θ1)M(θ2) < 0.
(ii) If A(t) 6= 0 for all t ∈ R, then M(θ) 6= 0 for all θ ∈ R.

Theorem 19. Let N ≥ 1 be fixed. Assume that τ ′(h) 6= 0 for all h ∈ I and that
τ(I) = (0,∞). For any j ≥ 1 denote by ξj(t) the solution of u′ = f(u) of minimal
period T/j and

Mj(θ) =

∫ T

0

A(t− θ)||∇H(ξj(t))||2dt.

(i) If there exist N functions from {Mj : j ≥ 1} that are not identically null

and
∫ T
0
A(s)ds = 0, then system (13) has at least 2N different T -periodic solutions.

(ii) If A(t) 6= 0 for all t ∈ R, then Mj(θ) 6= 0 for all θ ∈ R, for all j ≥ 1.
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